Science.gov

Sample records for airborne diesel soot

  1. Fragmentation and bond strength of airborne diesel soot agglomerates

    PubMed Central

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  2. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    NASA Astrophysics Data System (ADS)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  3. Modeling light scattering from diesel soot particles

    SciTech Connect

    Hull, Patricia; Shepherd, Ian; Hunt, Arlon

    2002-07-16

    The Mie model is widely used to analyze light scattering from particulate aerosols. The Diesel Particle Scatterometer (DPS), for example, determines the size and optical properties of diesel exhaust particles that are characterized by measuring three angle-dependent elements of the Mueller scattering matrix. These elements are then fitted using Mie calculations with a Levenburg-Marquardt optimization program. This approach has achieved good fits for most experimental data. However, in many cases, the predicted real and imaginary parts of the index of refraction were less than that for solid carbon. To understand this result and explain the experimental data, we present an assessment of the Mie model by use of a light scattering model based on the coupled dipole approximation. The results indicate that the Mie calculation can be used to determine the largest dimension of irregularly shaped particles at sizes characteristic of Diesel soot and, for particles of known refractive index, tables can be constructed to determine the average porosity of the particles from the predicted index of refraction.

  4. Soot formation in diesel combustion under high-EGR conditions.

    SciTech Connect

    Idicheria, Cherian A.; Pickett, Lyle M.

    2005-06-01

    Experiments were conducted in an optically accessible constant-volume combustion vessel to investigate soot formation at diesel combustion conditions - in a high exhaust-gas recirculation (EGR) environment. The ambient oxygen concentration was decreased systematically from 21% to 8% to simulate a wide range of EGR conditions. Quantitative measurements of in-situ soot in quasi-steady n-heptane and No.2 diesel fuel jets were made by using laser extinction and planar laser-induced incandescence (PLII) measurements. Flame lift-off length measurements were also made in support of the soot measurements. At constant ambient temperature, results show that the equivalence ratio estimated at the lift-off length does not vary with the use of EGR, implying an equal amount of fuel-air mixing prior to combustion. Soot measurements show that the soot volume fraction decreases with increasing EGR. The regions of soot formation are effectively 'stretched out' to longer axial and radial distances from the injector with increasing EGR, according to the dilution in ambient oxygen. However, the axial soot distribution and location of maximum soot collapses if plotted in terms of a 'flame coordinate', where the relative fuel-oxygen mixture is equivalent. The total soot in the jet cross-section at the maximum axial soot location initially increases and then decreases to zero as the oxygen concentration decreases from 21% to 8%. The trend is caused by competition between soot formation rates and increasing residence time. Soot formation rates decrease with decreasing oxygen concentration because of the lower combustion temperatures. At the same time, the residence time for soot formation increases, allowing more time for accumulation of soot. Increasing the ambient temperature above nominal diesel engine conditions leads to a rapid increase in soot for high-EGR conditions when compared to conditions with no EGR. This result emphasizes the importance of EGR cooling and its beneficial

  5. Synthesis of Single-Wall Carbon Nanotubes from Diesel Soot

    NASA Astrophysics Data System (ADS)

    Uchida, Takashi; Ohashi, Ouji; Kawamoto, Hironori; Yoshimura, Hirofumi; Kobayashi, Ken-ichi; Tanimura, Makoto; Fujikawa, Naohiro; Nishimoto, Tetsuro; Awata, Kazuhiko; Tachibana, Masaru; Kojima, Kenichi

    2006-10-01

    We show that diesel soot can be recycled as a carbon source for the synthesis of single-wall carbon nanotubes (SWNTs). The synthesis of SWNTs was carried out by the laser vaporization of diesel soot. The presence of SWNTs was confirmed by Raman spectroscopy and transmission electron microscopy. SWNTs produced in this way should provide economic benefits and also contribute to a cleaner environment.

  6. Mutagenicity of diesel exhaust soot dispersed in phospholipid surfactants

    SciTech Connect

    Wallace, W.; Keane, M.; Xing, S.; Harrison, J.; Gautam, M.; Ong, T.

    1994-06-01

    Organics extractable from respirable diesel exhaust soot particles by organic solvents have been known for some time to be direct acting frameshift mutagens in the Ames Salmonella typhimurium histidine reversion assay. Upon deposition in a pulmonary alveolus or respiratory bronchiole, respirable diesel soot particles will contact first the hypophase which is coated by and laden with surfactants. To model interactions of soot and pulmonary surfactant, the authors dispersed soots in vitro in the primary phospholipid pulmonary surfactant dipalmitoyl glycerophosphorylcholine (lecithin) (DPL) in physiological saline. They have shown that diesel soots dispersed in lecithin surfactant can express mutagenic activity, in the Ames assay system using S. typhimurium TA98, comparable to that expressed by equal amounts of soot extracted by dichloromethane/dimethylsulfoxide (DCM/DMSO). Here the authors report additional data on the same system using additional exhaust soots and also using two other phospholipids, dipalmitoyl glycerophosphoryl ethanolamine (DPPE), and dipalmitoyl phosphatidic acid (DPPA), with different ionic character hydrophilic moieties. A preliminary study of the surfactant dispersed soot in an eucaryotic cell test system also is reported.

  7. Changes of hygroscopicity and morphology during ageing of diesel soot

    NASA Astrophysics Data System (ADS)

    Tritscher, Torsten; Jurányi, Zsófia; Martin, Maria; Chirico, Roberto; Gysel, Martin; Heringa, Maarten F.; DeCarlo, Peter F.; Sierau, Berko; Prévôt, André S. H.; Weingartner, Ernest; Baltensperger, Urs

    2011-07-01

    Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH - TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.

  8. Uncatalysed and catalysed soot combustion under NO{sub x} + O{sub 2}: Real diesel versus model soots

    SciTech Connect

    Atribak, I.; Bueno-Lopez, A.; Garcia-Garcia, A.

    2010-11-15

    In this work, the uncatalysed and catalysed combustion of two commercial carbon blacks and three diesel soot samples were analysed and related to the physico-chemical properties of these carbon materials. Model soot samples are less reactive than real soot samples, which can be attributed, mainly, to a lower proportion in heteroatoms and a higher graphitic order for the case of one of the carbon blacks. Among the diesel soot samples tested, the most relevant differences are the volatile matter/fixed carbon contents, which are directly related to the engine operating conditions (idle or loaded) and to the use of an oxidation catalyst or not in the exhaust. The soot collected after an oxidation catalyst (A-soot) is more reactive than the counterpart virgin soot obtained under the same engine operating modes but before the oxidation catalyst. The reactivity of the different soot samples follows the same trend under uncatalysed and catalysed combustion, the combustion profiles being always shifted towards lower temperatures for the catalysed reactions. The differences between the soot samples become less relevant in the presence of a catalyst. The ceria-zirconia catalysts tested are very effective not only to oxidise soot but also to combust the soluble organic fraction emitted at low temperatures. The most reactive soot (A-soot) exhibits a T{sub 50%} parameter of 450 C when using the most active catalyst. (author)

  9. Comparison of Three Soot Models Applied to Multi-Dimensional Diesel Combustion Simulations

    NASA Astrophysics Data System (ADS)

    Tao, Feng; Srinivas, Sukhin; Reitz, Rolf D.; Foster, David E.

    In this paper, three soot models previously proposed for diesel combustion and soot formation studies are briefly reviewed and compared. The three models are (1) two-step empirical soot model, (2) eight-step phenomenological soot model, and (3) complex-chemistry coupled phenomenological soot model. All three models have been implemented into the KIVA-3V simulation code. For comparison, a heavy-duty DI diesel engine case with fuel injection typical of standard DI diesel operating conditions was studied. Flame structures of a single diesel spray predicted using these three models were compared, and the results offer our perspective on the application of these three models to soot modeling in diesel engines.

  10. Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

    SciTech Connect

    Al-Qurashi, Khalid; Boehman, Andre L.

    2008-12-15

    This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

  11. Soot particle trajectories of a Di diesel engine at 18° ATDC crankshaft angle

    NASA Astrophysics Data System (ADS)

    Hafidzal, M. H. M.; Mahmood, W. M. F. W.; Manaf, M. Z. A.; Zakaria, M. S.; Saadun, M. N. A.; Nordin, M. N. A.

    2013-12-01

    Among the major pollutants of diesel engine is soot. Soot is formed as an unwelcome product in combustion systems. Soot emission to the atmosphere leads to global air warming and health problems. Furthermore, deposition of soot particles on cylinder walls contaminates lubricant oil hence increases its viscosity. This reduces durability of lubricant oil, causing pumpability problems and increasing wear. Therefore, it is necessary to study soot formation and its movement in diesel engines. This study focuses on soot particle trajectories in diesel engines by considering the diameter of soot particles that were formed at 18° ATDC crankshaft angle. These soot particle movements are under the influence of drag force with different radial, axial and angular settings and simulated by using MATLAB routine. The mathematical algorithm which was used in the MATLAB routine is trilinear interpolation and 4th order of Runge Kutta. Simulation was carried out for a combustion system of 4 valves DI diesel engine from inlet valve closing (IVC) to exhaust valve opening (EVO). The results show that small diameter of soot particles were transferred near the cylinder wall while bigger soot particle mostly moved in inner radius of the combustion chamber.

  12. Is Carbon Black a Suitable Model Colloidal Substrate for Diesel Soot?

    PubMed

    Growney, David J; Mykhaylyk, Oleksandr O; Middlemiss, Laurence; Fielding, Lee A; Derry, Matthew J; Aragrag, Najib; Lamb, Gordon D; Armes, Steven P

    2015-09-29

    Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS-PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane is compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugation. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS-PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS-PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer-particle-solvent combinations for which substantial differences can be observed

  13. Influence of diesel engine combustion parameters on primary soot particle diameter.

    PubMed

    Mathis, Urs; Mohr, Martin; Kaegi, Ralf; Bertola, Andrea; Boulouchos, Konstantinos

    2005-03-15

    Effects of engine operating parameters and fuel composition on both primary soot particle diameter and particle number size distribution in the exhaust of a direct-injected heavy-duty diesel engine were studied in detail. An electrostatic sampler was developed to deposit particles directly on transmission electron microscopy (TEM) grids. Using TEM, the projected area equivalent diameter of primary soot particles was determined. A scanning mobility particle sizer (SMPS) was used for the measurement of the particle number size distribution. Variations in the main engine operating parameters (fuel injection system, air management, and fuel properties) were made to investigate soot formation and oxidation processes. Primary soot particle diameters determined by TEM measurements ranged from 17.5 to 32.5 nm for the diesel fuel and from 24.1 to 27.2 nm for the water-diesel emulsion fuel depending on the engine settings. For constant fuel energy flow rate, the primary particle size from the water-diesel emulsion fuel was slightly larger than that from the diesel fuel. A reduction in primary soot particle diameter was registered when increasing the fuel injection pressure (IP) or advancing the start of injection (SOI). Larger primary soot particle diameters were measured while the engine was operating with exhaust gas recirculation (EGR). Heat release rate analysis of the combustion process revealed that the primary soot particle diameter decreased when the maximum flame temperature increased for the diesel fuel. PMID:15819252

  14. Impacts of fuel formulation and engine operating parameters on the nanostructure and reactivity of diesel soot

    NASA Astrophysics Data System (ADS)

    Yehliu, Kuen

    This study focuses on the impacts of fuel formulations on the reactivity and nanostructure of diesel soot. A 2.5L, 4-cylinder, turbocharged, common rail, direct injection light-duty diesel engine was used in generating soot samples. The impacts of engine operating modes and the start of combustion on soot reactivity were investigated first. Based on preliminary investigations, a test condition of 2400 rpm and 64 Nm, with single and split injection strategies, was chosen for studying the impacts of fuel formulation on the characteristics of diesel soot. Three test fuels were used: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester (B100), and a synthetic Fischer-Tropsch fuel (FT) produced in a gas-to-liquid process. The start of injection (SOI) and fuel rail pressures were adjusted such that the three test fuels have similar combustion phasing, thereby facilitating comparisons between soots from the different fuels. Soot reactivity was investigated by thermogravimetric analysis (TGA). According to TGA, B100 soot exhibits the fastest oxidation on a mass basis followed by BP15 and FT derived soots in order of apparent rate constant. X-ray photoelectron spectroscopy (XPS) indicates no relation between the surface oxygen content and the soot reactivity. Crystalline information for the soot samples was obtained using X-ray diffraction (XRD). The basal plane diameter obtained from XRD was inversely related to the apparent rate constants for soot oxidation. For comparison, high resolution transmission electron microscopy (HRTEM) provided images of the graphene layers. Quantitative image analysis proceeded by a custom algorithm. B100 derived soot possessed the shortest mean fringe length and greatest mean fringe tortuosity. This suggests soot (nano)structural disorder correlates with a faster oxidation rate. Such results are in agreement with the X-ray analysis, as the observed fringe length is a measure of basal plane diameter. Moreover the relation

  15. Experimental study of soot formation from a diesel fuel surrogate in a shock tube

    SciTech Connect

    Mathieu, Olivier; Djebaili-Chaumeix, Nabiha; Paillard, Claude-Etienne; Douce, Francoise

    2009-08-15

    The soot tendency (soot induction delay time and soot yield) of a diesel fuel surrogate and of the hydrocarbons that constitute this mixture was studied in a heated shock tube. The surrogate is composed of three hydrocarbons representative of major chemical families of diesel fuels (39% n-propylcyclohexane, 28% n-butylbenzene, and 33% 2,2,4,4,6,8,8-heptamethylnonane in mass proportion). Experiments were carried out for highly diluted mixtures in argon; in the case of pyrolysis and at two equivalence ratios: 18 and 5. The pressure range was relatively high (1090-1870 kPa) and the carbon atom concentration was kept constant at around 2 x 10{sup +18} atoms cm{sup -3}. The effects of the nature of the hydrocarbon, the oxygen addition, and the temperature on the soot induction delay time and soot yield were investigated. A second growth stage of the soot volume fraction was observed. The influence of several parameters on the existence and/or on the amplitude of this second growth seems to indicate the chemical nature of this phenomenon. Results for the soot tendency show that the soot induction delay time and soot yield depend strongly on the structure of the hydrocarbon and on the concentration of oxygen. The study of the diesel surrogate shows that the soot inception process does not depend on synergistic effects between hydrocarbons but seems to be initiated by the constituent of the surrogate that produces soot fastest, while other constituents were consumed later during the soot growth. (author)

  16. Effect of fuel formulation on soot properties and regeneration of diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Song, Juhun

    A critical requirement for implementation of particulate filters on diesel applications is having a low "break even temperature" (BET), defined as the exhaust temperature at which particulate removal occurs at roughly the same rate as particulate deposition. This needs to occur at sufficiently low temperatures either to fit within the exhaust temperature range of the typical duty cycle for a diesel vehicle or to require a minimum of active regeneration. Since catalytic coating on the diesel particulate filter was used in this study, one important factor in lowering the BET is catalyst activity for NO conversion to NO2, which can be adversely affected by sulfur content in the fuel, because the sulfur dioxide generated during diesel combustion can poison catalyst activity. However, a second important factor that significantly affects DPF regeneration behavior is particulate reactivity, which is related to the chemical and physical properties of diesel particulates. Differences in diesel combustion characteristics and fuel formulation can be a source of variation in these soot properties. The first phase of this work considered low sulfur diesel fuel (325 ppm sulfur), ultra low sulfur fuel (15 ppm sulfur) and 20 wt.% biodiesel blends. The lowest break even temperature was observed for the 325 ppm sulfur fuel blended with 20 wt.% biodiesel, due in part to increased engine-out NOx emissions with the B20 blend, which shows that engine-out exhaust composition can be as or more important than sulfur content. Furthermore, examination of the soot generated with these fuels shows a variation in the nanostructure and the oxidative reactivity for soots derived from the different fuels. The second phase of work has been performed by adding neat alternative fuels such as Biodiesel (B100) and Fisch-Tropsch (FT) fuel. B100 soot displays a similar initial soot structure as soot from three other fuels, ultra low sulfur diesel, B20 (a 20 wt.% blend of biodiesel and ultra low sulfur

  17. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  18. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  19. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-chuan; Cai, Zhen-bing; Peng, Jin-fang; Zhu, Min-hao

    2016-02-01

    The tribology behavior of exhaust diesel soot as a lubricant additive was investigated and then compared with that of a selection of commercial nano-graphite particles. Specifically, 0.01 wt% particles were dispersed in PAO4 oil with 1 wt% sorbitan monooleate (Span 80) as a dispersing agent, and wear tests based on the ball against plate mode were conducted at various temperatures. Different analytical techniques (e.g. transmission electron, scanning electron and infrared microscopy; energy dispersive x-ray and Raman spectroscopy; and charge measurement) were employed to characterize the chemistry and morphology of the additives and their tribology performance. The oil containing only 0.01 wt% diesel soot clearly improved wear resistance over 60 °C. In particular, at 100 °C the wear rate decreased by approximately 90% compared to the function of base oil. In the same test conditions, diesel soot exhibited better anti-wear performance than nano-graphite at high temperatures. The potential measure showed that the nano-graphite had positive charge and the diesel soot had negative charge. Electrochemical action may play an important role in the lubricant mechanisms of diesel soot and graphite as oil additives.

  20. The effect of oxygenate molecular structure on soot production in direct-injection diesel engines.

    SciTech Connect

    Westbrook, Charles K.; Pitz, William J.; Mueller, Charles J.; Martin, Glen M.; Pickett, Lyle M.

    2003-06-01

    A combined experimental and kinetic modeling study of soot formation in diesel engine combustion has been used to study the addition of oxygenated species to diesel fuel to reduce soot emissions. This work indicates that the primary role of oxygen atoms in the fuel mixture is to reduce the levels of carbon atoms available for soot formation by fixing them in the form of CO or COz. When the structure of the oxygenate leads to prompt and direct formation of CO2, the oxygenate is less effective in reducing soot production than in cases when all fuel-bound 0 atoms produce only CO. The kinetic and molecular structure principles leading to this conclusion are described.

  1. Morphology Of Diesel Soot Residuals From Supercooled Water Droplets And Ice Crystals: Implications For Optical Properties

    SciTech Connect

    China, Swarup; Kulkarni, Gourihar; Scarnatio, Barbara; Sharma, Noopur; Pekour, Mikhail S.; Shilling, John E.; Wilson, Jacqueline M.; Zelenyuk, Alla; Chand, Duli; Liu, Shang; Aiken, Allison; Dubey, Manvendra K.; Laskin, Alexander; Zaveri, Rahul A.; Mazzoleni, Claudio

    2015-11-04

    Freshly emitted soot particles are fractal-like aggregates, but atmospheric processing often transforms their morphology. Morphology of soot particles plays an important role in determining their optical properties, life cycle and hence their effect on Earth’s radiative balance. However, little is known about the morphology of soot particles that participated in cold cloud processes. Here we report results from laboratory experiments that simulate cold cloud processing of diesel soot particles by allowing them to form supercooled droplets and ice crystals at -20 and -40°C, respectively. Electron microscopy revealed that soot residuals from ice crystals were more compact (roundness~0.55) than those from supercooled droplets (roundness ~0.45), while nascent soot particles were the least compact (roundness~0.41). Optical simulations using the discrete dipole approximation showed that the more compact structure enhances soot single scattering albedo by a factor up to 1.4, thereby reducing the top-of-the-atmosphere direct radiative forcing by ~63%. These results underscore that climate models should consider the morphological evolution of soot particles due to cold cloud processing to improve the estimate of direct radiative forcing of soot.

  2. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine

    SciTech Connect

    Musculus, Mark P.B.; Singh, Satbir; Reitz, Rolf D.

    2008-04-15

    Two-color soot optical pyrometry is a widely used technique for measuring soot temperature and volume fraction in many practical combustion devices, but line-of-sight soot temperature and volume fraction gradients can introduce significant uncertainties in the measurements. For diesel engines, these uncertainties usually can only be estimated based on assumptions about the soot property gradients along the line of sight, because full three-dimensional transient diesel soot distribution data are not available. Such information is available, however, from multidimensional computer model simulations, which are phenomenologically based, and have been validated against available in-cylinder soot measurements and diesel engine exhaust soot emissions. Using the model-predicted in-cylinder soot distributions, uncertainties in diesel two-color pyrometry data are assessed, both for a conventional high-sooting, high-temperature combustion (HTC) operating condition, and for a low-sooting, low-temperature combustion (LTC) condition. The simulation results confirm that the two-color soot measurements are strongly biased toward the properties of the hot soot. For the HTC condition, line-of-sight gradients in soot temperature span 600 K, causing relatively large errors. The two-color temperature is 200 K higher than the soot-mass-averaged value, while the two-color volume fraction is 50% lower. For the LTC condition, the two-color measurement errors are half as large as for the HTC condition, because the model-predicted soot temperature gradients along the line of sight are half as large. By contrast, soot temperature and volume fraction gradients across the field of view introduce much smaller errors of less than 50 K in temperature and 20% in volume fraction. (author)

  3. An investigation of late-combustion soot burnout in a DI diesel engine using simultaneous planar imaging of soot and OH radical

    SciTech Connect

    John E. Dec; Peter L. Kelly-Zion

    1999-10-01

    Diesel engine design continues to be driven by the need to improve performance while at the same time achieving further reductions in emissions. The development of new designs to accomplish these goals requires an understanding of how the emissions are produced in the engine. Laser-imaging diagnostics are uniquely capable of providing this information, and the understanding of diesel combustion and emissions formation has been advanced considerably in recent years by their application. However, previous studies have generally focused on the early and middle stages of diesel combustion. These previous laser-imaging studies do provide important insight into the soot formation and oxidation processes during the main combustion event. They indicate that prior to the end of injection, soot formation is initiated by fuel-rich premixed combustion (equivalence ratio > 4) near the upstream limit of the luminous portion of the reacting fuel jet. The soot is then oxidized at the diffusion flame around the periphery of the luminous plume. Under typical diesel engine conditions, the diffusion flame does not burn the remaining fuel and soot as rapidly as it is supplied, resulting in an expanding region of rich combustion products and soot. This is evident in natural emission images by the increasing size of the luminous soot cloud prior to the end of injection. Hence, the amount of soot in the combustion chamber typically increases until shortly after the end of fuel injection, at which time the main soot formation period ends and the burnout phase begins. Sampling valve and two-color pyrometry data indicate that the vast majority (more than 90%) of the soot formed is oxidized before combustion ends; however, it is generally thought that a small fraction of this soot from the main combustion zones is not consumed and is the source of tail pipe soot emissions.

  4. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  5. Nondestructive X-ray Inspection of Thermal Damage, Soot and Ash Distributions in Diesel Particulate Filters

    SciTech Connect

    Zandhuis, Jan; FINNEY, Charles E A; Toops, Todd J; Partridge Jr, William P; Daw, C Stuart; Fox, Thomas

    2009-01-01

    We describe novel results of ongoing research at 3DX-RAY Ltd and Oak Ridge National Laboratory using new, commercially available, nondestructive x-ray techniques to make engineering measurements of diesel particulate filters (DPF). Nondestructive x-ray imaging and data-analysis techniques were developed to detect and visualize the small density changes corresponding to the addition of substances such as soot and ash to DPF monoliths. The usefulness of this technique was explored through the analysis of field-aged samples, accelerated-aged samples, and the synthetic addition of ash and soot to clean DPF samples. We demonstrate the ability to visualize and measure flaws in substrates and quantify the distribution of ash and soot within the DPF. We also show that the technology is sensitive enough for evaluations of soot and ash distribution and thermal damage without removing the DPF from its metal casing.

  6. Laser Diagnostic Methods to Characterize Soot Evolution in Diesel-relevant Fuels

    NASA Astrophysics Data System (ADS)

    Overheim, Steven; Fisher, Brian

    2014-11-01

    Soot particles are a harmful byproduct of diesel combustion and can be detrimental to the environment and our health. The purpose of this research is to gain a better understanding of how the soot formation, growth, and oxidation are directly related to the chemical structure of the fuel in a diffusion flame. Such understanding is expected to help with soot reduction methods in the future. A new method to analyze soot concentrations was developed combining previous successful methods of experimentation. The new method employs combined elastic scattering and extinction to characterize soot formation, growth, and oxidation throughout the flame. These concentrations are quantifiable through the use of a 532-nm Nd:YAG laser and carefully calibrated photodetectors as optical measuring tools. This study focused on the doping of the diffusion flame with toluene, which has an aromatic molecular structure. The diffusion flame is doped with a low concentration of toluene, 1000 ppm, in its fuel stream and compared to a methane-fueled base flame. By comparing the doped flame to the methane/oxygen base flame, the higher level of active soot formation in the doped flame was clearly observed. Future work on the project will entail further data analysis to convert measured signals into quantitative soot size and concentration information. NSF ECE Grant #1358991 supported the first author as an REU student.

  7. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics. PMID:21117422

  8. X-ray scattering and spectroscopy studies on diesel soot from oxygenated fuel under various engine load conditions

    USGS Publications Warehouse

    Braun, Andreas; Shah, N.; Huggins, Frank E.; Kelly, K.E.; Sarofim, A.; Jacobsen, C.; Wirick, S.; Francis, H.; Ilavsky, J.; Thomas, G.E.; Huffman, G.P.

    2005-01-01

    Diesel soot from reference diesel fuel and oxygenated fuel under idle and load engine conditions was investigated with X-ray scattering and X-ray carbon K-edge absorption spectroscopy. Up to five characteristic size ranges were found. Idle soot was generally found to have larger primary particles and aggregates but smaller crystallites, than load soot. Load soot has a higher degree of crystallinity than idle soot. Adding oxygenates to diesel fuel enhanced differences in the characteristics of diesel soot, or even reversed them. Aromaticity of idle soot from oxygenated diesel fuel was significantly larger than from the corresponding load soot. Carbon near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was applied to gather information about the presence of relative amounts of carbon double bonds (CC, CO) and carbon single bonds (C-H, C-OH, COOH). Using scanning X-ray transmission microspectroscopy (STXM), the relative amounts of these carbon bond states were shown to vary spatially over distances approximately 50 to 100 nm. The results from the X-ray techniques are supported by thermo-gravimetry analysis and high-resolution transmission electron microscopy. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Investigation of potassium containing glass coatings as diesel soot oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Zokoe, James, Jr.

    Diesel engines provide superior fuel economy to gasoline engines, but their emissions contain harmful compounds that endanger human health and the environment. Because of this, government regulations have demanded increasingly cleaner exhaust from diesel engines. Diesel engines are now being fitted with additional "Exhaust aftertreatment units" which utilize catalysts in various components in the exhaust stream to eliminate the unsafe compounds. One harmful diesel exhaust component that has proven difficult to eliminate is solid carbonaceous particulate matter. Diesel particulate filters (DPFs) are currently required of all engines to remove the solid PM, also termed soot, from the exhaust. One means for reducing cost of the aftertreatment unit is to lower the required temperature for soot oxidation (DPF regeneration) by implementing a low cost, low temperature soot oxidation catalysts. Potassium based catalysts provide the low temperature oxidation of soot, but quickly degrade in the harsh conditions of the diesel exhaust. Novel K-glass catalysts have recently been shown to stabilize the K within a silicate matrix and initial degradation studies have shown promise with soot oxidation as low as 380°C in loose catalyst-soot contact conditions. To further the study of these K-glass catalysts, this dissertation will delve into the measurement and characterization of the prolonged degradation mechanisms experienced by the glasses that fall into two categories termed as follows: combustion (K loss) and chemical (hydrothermal) degradation. K-glass catalyst samples were used to measure end of useful lifetime (EUL) testing for an estimated 100,000 mi of engine use. A baseline glass compound (KCS-1) was found to sustain acceptable soot oxidation temperatures after this lifetime (T50 < 500°C). Catalytic degradation was caused by the creation of K-rich carbonate or sulfate precipitates. These precipitates deplete the surrounding glass of active K and also mask active

  10. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. PMID:25662252

  11. Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment

    SciTech Connect

    Strzelec, Andrea; Toops, Todd J; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, David; Rutland, Prof. Christopher J.; Vander Wal, Dr. Randy

    2009-01-01

    Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

  12. Capture and destruction of soot emissions from diesel engines used in power generation

    SciTech Connect

    Levendis, Y.A.; Caceres, J.; Kim, Sung Ho

    1998-04-01

    A method is described for reducing emissions from diesel engines. Particulate emissions are captured in the effluent duct using high-efficiency ceramic filters. The filters are regenerated (cleaned) with compressed air. Periodically, compressed air flows in the opposite to the exhaust direction in the filter and removes the soot. The soot is channeled to a chamber, fitted with a secondary filter, where it is oxidized. A slipstream of the filtered engine exhaust is channeled back to the engine intake (flue gas recirculation, FGR) to lower the peak temperatures in the cylinder and, thus, the nitrogen oxide emissions. A design for the soot incinerator - secondary filter chamber is presented herein. This design employs an electric burner and dual wall-flow filters. The system was mounted in a diesel vehicle and was tested for 700 km. The average sooting rate of the engine was 0.1 g/km. The baseline value of the pressure drop across the primary monolith was 150 mbars, after both the primary and secondary monoliths were regenerated. During testing the pressure drop across the primary monolith would gradually increase to a value of 400 mbars as soot particles were captured, and then decrease to a value of 200 mbars after every primary regeneration. The pressure drop would further decrease to the baseline value of 150 mbars when primary regeneration was performed after incineration in the secondary chamber was complete. Aerodynamic regeneration was performed every {approx}17 km and incineration of the soot particles occurred every {approx}64 km. The CO emissions created by the oxidation of the soot particles the incinerator were monitored at the tailpipe. To prevent these CO emissions from being released to the atmosphere the effluent of the incinerator was channeled back to the air intake manifold of the engine to oxidize CO to CO{sub 2}.

  13. Three dimensionally ordered macroporous Ce(1-x)Zr(x)O(2) solid solutions for diesel soot combustion.

    PubMed

    Zhang, Guizhen; Zhao, Zhen; Liu, Jian; Jiang, Guiyuan; Duan, Aijun; Zheng, Jianxiong; Chen, Shengli; Zhou, Renxian

    2010-01-21

    The microstructure with open, interconnected macropores of 3DOM Ce(1-x)Zr(x)O(2), successfully prepared using PMMA colloidal crystal as template and cerium nitrate and zirconium oxide chloride as raw materials, facilitates the contact between soot and catalysts and results in much higher catalytic activity for diesel soot combustion than the corresponding disordered macroporous catalysts. PMID:20066324

  14. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber.

    PubMed

    Omidvarborna, Hamid; Kumar, Ashok; Kim, Dong-Shik

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. PMID:26657390

  15. Insights on postinjection-associated soot emissions in direct injection diesel engines

    SciTech Connect

    Arregle, Jean; Pastor, Jose V.; Lopez, J. Javier; Garcia, Antonio

    2008-08-15

    A comprehensive study was carried out in order to better understand combustion behavior in a direct injection diesel engine when using postinjections. More specifically, the aim of the study is twofold: (1) to better understand the mechanism of a postinjection to reduce soot and (2) to improve the understanding of the contribution of the postinjection combustion on the total soot emissions by looking at the effect of the postinjection timing variation and the postinjection mass variation on the soot emissions associated with the postinjection. The study is focused only on far postinjections, and the explored operating conditions include the use of EGR. The first objective was fulfilled analyzing some results from a previous work adding only a few complementary results. Concerning the second objective, the basic idea behind the analysis performed is the search of appropriate parameters physically linked to the processes under analysis. These parameters are found based on the state-of-the-art of diesel combustion. For the effect of the postinjection timing, the physical parameter found was the temperature of the unburned gases at the end of injection, T{sub ug{sub E}}{sub oI}. It was checked that a threshold level of T{sub ug{sub E}}{sub oI} ({proportional_to}700 K for the cases explored here) exists below which soot is unable to be formed, independently of the postinjection size, and the amount of soot increases as the temperature increases beyond this threshold. For the effect of the postinjection size, the physical parameter that was found was DoI/ACT (the ratio between the actual duration of injection and the time necessary for mixing - the apparent combustion time). This parameter can quantify when the postinjection is able to produce soot (the threshold value is {proportional_to}0.37 for the cases explored here), and the amount of soot produced increases as this parameter increases beyond this threshold value. A function containing these two parameters has been

  16. Bulk and surface structural investigations of diesel engine soot and carbon black.

    PubMed

    Müller, J-O; Su, D S; Wild, U; Schlögl, R

    2007-08-14

    The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. The materials exhibit differences in the predominant bonding, which influences microstructure as well as surface functionalization. These chemical and physical properties depend on the formation history of the investigated carbonaceous materials. In this work, a correlation of the microstructure of the samples to the predominant bonding and incorporation of oxygen into the carbons is obtained. It is shown that a high amount of defects and the deviation of the carbons from a perfect graphitic structure results in a increased incorporation of oxygen and hydrogen. A correlation between the length and curvature of graphene layers with the bonding state of carbon atoms and incorporation of oxygen and hydrogen is established. PMID:17646891

  17. Detailed modeling of soot size distribution evolution and pollutant formation inside aircraft and diesel engines

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Chowdhury G.

    Combustion emission of soot and pollutant gas species contributes to poor regional air quality near emission sources and to climate change. It is important to understand the formation mechanism and time evolution of these pollutants inside the combustion engine, through detailed modeling of combustion chemistry and microphysics as well as comparison with observation. In this thesis, two multi-zone gas parcel combustion engine models, one for aircraft engines and another for diesel engines, have been developed to study soot size distribution evolution and pollutant formation inside the engines as well as emissions. The models take into account size-resolved (sectional) soot aerosol dynamics (nucleation, growth, and coagulation) and detailed combustion chemistry of jet and diesel fuel. For the aircraft engine, the model considers 362 chemical species, 2657 reversible reactions and 75 aerosol size bins. The model was applied to a CFM56-2-C1 aircraft engine for idle operating conditions. This is the first model to simulate soot size distribution evolution inside an aircraft engine (to our knowledge). The simulated values for major species are generally consistent with measurements. Model simulation shows that, for idle operating conditions, concentrations of most key combustion products don't change significantly in the post-combustor, however, HONO, H2SO4, and HO 2 concentrations change by more than a factor of 10. The sulfur oxidation efficiency (SOE), ([SO3]+[H2SO4])/([SO 2]+[SO3] +[H2SO4]), was found to be 2.1% at the engine exit. For the diesel engine, the multi-zone gas parcel model has been further enhanced by including fuel injection, droplet break-up, fuel evaporation and air entrainment rate. The model considers 283 chemical species, 2137 reversible reactions, and 75 aerosol size bins. The developed model calculates the time evolution of concentrations of these chemical species and soot size distributions inside a diesel engine. This is the first model to

  18. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  19. Capture and destruction of soot emissions from diesel engines used in power generation

    SciTech Connect

    Levendis, Y.A.; Caceres, J.; Kim, S.H.

    1998-07-01

    A method is described for reducing emissions from diesel engines. Particulate emissions are captured in the effluent duct using high-efficiency ceramic filters. The filters are regenerated (cleaned) with compressed air. Periodically, compressed air flows in the opposite to the exhaust direction in the filter and removes the soot. The soot is channeled to a chamber, fitted with a secondary filter, where it is oxidized. A slipstream of the filtered engine exhaust is channeled back to the engine intake (flue gas recirculation, FGR) to lower the peak temperatures in the cylinder and, thus, the nitrogen oxide emissions. A design for the soot incinerator--secondary filter chamber is presented herein. This design employs an electric burner and dual wall-flow filters. The system was mounted in a diesel vehicle and was tested for 700 km. The average sooting rate of the engine was 0.1 g/km. The baseline value of the pressure drop across the primary monolith was 150 mbars, after both the primary and secondary monoliths were regenerated. During testing the pressure drop across the primary monolith would gradually increase to a value of 400 mbars as soot particles were captured, and then decrease to a value of 200 mbars after every primary regeneration. The pressure drop would further decrease to the baseline value of 150 mbars when primary regeneration was performed after incineration in the secondary chamber was complete. Aerodynamic regeneration was performed every {approx} 17 km and incineration of the soot particles occurred every {approx} 64 km. The CO emissions created by the oxidation of the soot particles the incinerator were monitored at the tailpipe. During normal driving, CO levels were observed to be under 200 ppm before burning occurred, and increased to levels as high as 550 ppm during the combustion of the collected soot. To prevent these CO emissions from being released to the atmosphere, the effluent of the incinerator was channeled back to the air intake

  20. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot

    PubMed Central

    Adler, Gabriella; Riziq, Ali Abo; Erlick, Carynelisa; Rudich, Yinon

    2010-01-01

    This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (2∶1, 1∶1, and 1∶2) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200–250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh–Debye–Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh–Debye–Gans theory provides a more realistic physical model for the calculation PMID:20018649

  1. Effect of intrinsic organic carbon on the optical properties of fresh diesel soot.

    PubMed

    Adler, Gabriella; Riziq, Ali Abo; Erlick, Carynelisa; Rudich, Yinon

    2010-04-13

    This study focuses on the retrieval of the normalized mass absorption cross section (MAC) of soot using theoretical calculations that incorporate new measurements of the optical properties of organic carbon (OC) intrinsic to fresh diesel soot. Intrinsic OC was extracted by water and an organic solvent, and the complex refractive index of the extracted OC was derived at 532 and 355-nm wavelengths using cavity ring-down aerosol spectrometry. The extracted OC was found to absorb weakly in the visible wavelengths and moderately at blue wavelengths. The mass ratio of OC and elemental carbon (EC) in the collected particles was evaluated using a thermo-optical method. The measured EC/OC ratio in the soot exhibited substantial variability from measurement to measurement, ranging between 2 and 5. To test the sensitivity of the MAC to this variability, three different EC/OC ratios (21, 11, and 12) were chosen as representative. Particle size and spherule morphology were estimated using scanning electron microscopy, and the soot was found to be primarily in the form of aggregates with a dominant aggregate diameter mode in the range 200-250 nm. The measured refractive index of the extracted OC was used with a variety of theoretical models to calculate the MAC of internally mixed diesel soot at 532 and 355 nm. We conclude that Rayleigh-Debye-Gans theory on clusters of coated spherules and T-matrix of a solid EC spheroid coated by intrinsic OC are both consistent with previous measurements; however, Rayleigh-Debye-Gans theory provides a more realistic physical model for the calculation. PMID:20018649

  2. Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship.

    PubMed

    Lu, Zhijiang; MacFarlane, John K; Gschwend, Philip M

    2016-01-01

    Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature. PMID:26587648

  3. The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

    SciTech Connect

    Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G; Toops, Todd J

    2009-01-01

    The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner the deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean

  4. Control of diesel soot and NOx emissions with a particulate trap and EGR.

    PubMed

    Liu, Rui-xiang; Gao, Xi-yan; Yang, De-sheng; Xu, Xiao-guang

    2005-01-01

    The exhaust gas recirculation (EGR), coupled with a high-collection efficiency particulate trap to simultaneously control smoke and NOx emissions from diesel engines were studied. This ceramic trap developed previously provided the soot cleaning efficiency of 99%, the regeneration efficiency reaches 80% and the ratio of success reaches 97%, which make EGR used in diesel possible. At the presence of EGR, opening of the regeneration control valve of the trap was over again optimized to compensate for the decrease of the oxygen concentration in the exhaust gas resulted from EGR. The results indicated the cleaning efficiency and regeneration performance of the trap were maintained at the same level except that the back pressure increased faster. A new EGR system was developed, which is based on a wide range oxygen (UEGO) sensor. Experiments were carried out under steady state conditions while maintaining the engine speed at 1600 r/min, setting the engine loads at 0%, 25%, 50%, 75% and 100% respectively. Throughout each test the EGR rate was kept at nine different settings and data were taken with the gas analyzer and UEGO sensor. Then, the EGR rate and engine load maps, which showed the tendencies of NOx, CO and HC emissions from diesel engine, were made using the measured data. Using the maps, the author set up the EGR regulation, the relationship between the optimal amounts of EGR flow and the equivalence ratio, sigma, where sigma = 14.5/AFR. PMID:16295898

  5. Soot and liquid-phase fuel distributions in a newly designed optically accessible D.I. diesel engine

    SciTech Connect

    Dec, J.E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection Diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  6. Assessment of soot particle-size imaging with LII at Diesel engine conditions

    NASA Astrophysics Data System (ADS)

    Cenker, E.; Kondo, K.; Bruneaux, G.; Dreier, T.; Aizawa, T.; Schulz, C.

    2015-04-01

    Two-time-step laser-induced incandescence (LII) imaging was performed in Diesel engine-relevant combustion to investigate its applicability for spatially resolved measurements of soot primary particle sizes. The method is based on evaluating gated LII signals acquired with two cameras consecutively after the laser pulse and using LII modeling to deduce the particle size from the ratio of local signals. Based on a theoretical analysis, optimized detection times and durations were chosen to minimize measurement uncertainties. Experiments were conducted in a high-temperature high-pressure constant-volume pre-combustion vessel under the Engine Combustion Network's "Spray A" conditions at 61-68 bar with additional parametric variations in injection pressure, gas temperature, and composition. The LII measurements were supported by pyrometric imaging measurements of particle heat-up temperatures. The results were compared to particle-size and size-dispersion measurements from transmission electron microscopy of soot thermophoretically sampled at multiple axial distances from the injector. The discrepancies between the two measurement techniques are discussed to analyze uncertainties and related error sources of the two diagnostics. It is found that in such environment where particles are small and pressure is high, LII signal decay times are such that LII with standard nanosecond laser and detector equipment suffers from a strong bias toward large particles.

  7. Multi-lognormal soot particle size distribution for time-resolved laser induced incandescence in diesel engines

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Menkiel, B.; Ganippa, L. C.

    2009-08-01

    In-cylinder and exhaust soot particle size measurements were carried out using time-resolved laser induced incandescence and electrical mobility spectrometer techniques in a single cylinder optical diesel engine and multi-cylinder high-speed diesel engine. The temporal decay of the laser induced incandescence signal from a polydisperse nanoparticle ensemble of soot during transient diesel combustion is shown to be described by both a single-lognormal distribution as well as multi-lognormal size distribution. However, a multi-lognormal particle size distribution is introduced in the existing model for a comprehensive characterisation and realistic reconstruction of the size distribution. Detailed theoretical analysis of multi-lognormal size distribution along with its application to the experimentally measured soot particle size is validated in this work. These results were also qualitatively compared and independently verified by the experimental results obtained by the electrical mobility spectrometer and published transmission electron microscopy data. These findings reveal that the in-cylinder and the exhaust soot particle size distributions in engines are better represented by a multi-lognormal size distribution.

  8. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.

    PubMed

    Zhang, Renlin; Kook, Sanghoon

    2014-07-15

    The current understanding of soot particle morphology in diesel engines and their dependency on the fuel injection timing and pressure is limited to those sampled from the exhaust. In this study, a thermophoretic sampling and subsequent transmission electron microscope imaging were applied to the in-flame soot particles inside the cylinder of a working diesel engine for various fuel injection timings and pressures. The results show that the number count of soot particles per image decreases by more than 80% when the injection timing is retarded from -12 to -2 crank angle degrees after the top dead center. The late injection also results in over 90% reduction of the projection area of soot particles on the TEM image and the size of soot aggregates also become smaller. The primary particle size, however, is found to be insensitive to the variations in fuel injection timing. For injection pressure variations, both the size of primary particles and soot aggregates are found to decrease with increasing injection pressure, demonstrating the benefits of high injection velocity and momentum. Detailed analysis shows that the number count of soot particles per image increases with increasing injection pressure up to 130 MPa, primarily due to the increased small particle aggregates that are less than 40 nm in the radius of gyration. The fractal dimension shows an overall decrease with the increasing injection pressure. However, there is a case that the fractal dimension shows an unexpected increase between 100 and 130 MPa injection pressure. It is because the small aggregates with more compact and agglomerated structures outnumber the large aggregates with more stretched chain-like structures. PMID:24933154

  9. The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode.

    PubMed

    Yu, Yifu; Meng, Ming; Dai, Fangfang

    2013-02-01

    A simple and feasible contact mode called gravitational contact mode (GCM) was developed for the first time to imitate the practical state between soot and catalyst. By simulating rainwater adsorption on a lawn in nature, we synthesized a lawn-like CuO nanorods array, which exhibited rather good catalytic activity for diesel soot combustion under GCM. Moreover, the CuO nanorods array could serve as a support for composite catalysts through a sequential chemical bath deposition method and exhibited higher catalytic activity than a traditional supported catalyst. The monolithic macroscopic structure of such a catalyst shows its potential for large-scale preparation and application. PMID:23254389

  10. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    SciTech Connect

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performed after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.

  11. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    DOE PAGESBeta

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less

  12. Soot particle size modelling in 3D simulations of diesel engine combustion

    NASA Astrophysics Data System (ADS)

    Fraioli, V.; Beatrice, C.; Lazzaro, M.

    2011-12-01

    The present work is focused on multi-dimensional simulations of combustion in diesel engines. The primary objective was to test, in a diesel engine framework, a soot particle size model to represent the carbon particle formation and calculate the corresponding size distribution function. Simulations are performed by means of a parallel version of the KIVA3V numerical code, modified to adopt detailed kinetics reaction mechanisms. A skeletal reaction scheme for n-heptane autoignition has been extended, to include PAH kinetics and carbonaceous particle formation and consumption rates: the full reaction set is made up of 82 gas species and 50 species accounting for the particles, thus the complete reaction scheme comprises 132 species and 2206 reaction steps. Four different engine operative conditions, varying engine speed and load, are taken into account and experimentally tested on a single cylinder diesel engine fuelling pure n-heptane. Computed particle size distribution functions are compared with corresponding measurements at the exhaust, performed by a differential mobility spectrometer. A satisfying agreement between computed and measured combustion profiles is obtained in all the conditions. A reasonable aerosol evolution can be obtained, yet in all the cases the model exhibits the tendency to overestimate the number of particles within the range 5-160 nm. Moreover calculations predict a nucleation mode not detected by the available instrument. According to the simulations, the total number and size of the nascent particles would not depend on the operative conditions, while the features of the larger aggregates distinctly vary with the engine functioning.

  13. Development and characterization of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas.

    PubMed

    Beck, H A; Niessner, R; Haisch, C

    2003-04-01

    Upcoming regulations for vehicle exhaust emission demand substantial reduction of particle emission in diesel exhaust. To achieve these emission levels, the car manufacturing industry is developing new combustion concepts and exhaust after-treatment techniques such as the use of catalysts and particle filters. Many of the state-of-the-art analytical instruments do not meet the required detection limits, in combination with a high temporal resolution necessary for engine optimization. This paper reports a new detection system and the first results of its application to on-line diesel exhaust soot measurements on a engine test bench (MAN diesel engine facility Nürnberg, Germany). The instrument is based on differential photoacoustic (PA) spectroscopy of black carbon aerosol. It contains two identical PA cells, one for the measurement of the aerosol particles and one which analyses the particle-free gas. Thus, a potential cross-sensitivity to gaseous absorbers in the exhaust gas can be excluded. The PA cells were characterized in a laboratory set-up, with water vapor as reference gas and artificial soot generated by a spark discharge generator. The detection limit was found to be 2 microg m(-3) BC (for diesel soot) with a sampling rate of 3 Hz. The temporal response of the system was found to be in the order of 1 s. After full characterization of the cells, the system was transferred into a mobile 19"-rack. Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. Results for the limit of detection, the time resolution, accuracy, repeatability, and robustness of the sensor system are very promising with regards to a routine application of the system in engine development. PMID:12733029

  14. Morphological and semi-quantitative characteristics of diesel soot agglomerates emitted from commercial vehicles and a dynamometer.

    PubMed

    Luo, Chin-Hsiang; Lee, Whei-May; Liaw, Jiun-Jian

    2009-01-01

    Diesel soot aggregates emitted from a model dynamometer and 11 on-road vehicles were segregated by a micro-orifice uniform deposit impactor (MOUDI). The elemental contents and morphological parameters of the aggregates were then examined by scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS), and combined with a fractional Brownian motion (fBm) processor. Two mode-size distributions of aggregates collected from diesel vehicles were confirmed. Mean mass concentration of 339 mg/m3 (dC/dlogdp) existed in the dominant mode (180-320 nm). A relatively high proportion of these aggregates appeared in PM1, accentuating the relevance regarding adverse health effects. Furthermore, the fBm processor directly parameterized the SEM images of fractal like aggregates and successfully quantified surface texture to extract Hurst coefficients (H) of the aggregates. For aggregates from vehicles equipped with a universal cylinder number, the H value was independent of engine operational conditions. A small H value existed in emitted aggregates from vehicles with a large number of cylinders. This study found that aggregate fractal dimension related to H was in the range of 1.641-1.775, which is in agreement with values reported by previous TEM-based experiments. According to EDS analysis, carbon content ranged in a high level of 30%-50% by weight for diesel soot aggregates. The presence of Na and Mg elements in these sampled aggregates indicated the likelihood that some engine enhancers composed of biofuel or surfactants were commonly used in on-road vehicles in Taiwan. In particular, the morphological H combined with carbon content detection can be useful for characterizing chain-like or cluster diesel soot aggregates in the atmosphere. PMID:19634419

  15. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.

    PubMed

    Tapia, A; Salgado, M S; Martín, María Pilar; Lapuerta, M; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2016-03-15

    Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated. PMID:26886850

  16. On source identification and alteration of single diesel and wood smoke soot particles in the atmosphere; an X-ray microspectroscopy study.

    PubMed

    Vernooij, M G C; Mohr, M; Tzvetkov, G; Zelenay, V; Huthwelker, T; Kaegi, R; Gehrig, R; Grobéty, B

    2009-07-15

    Diesel and wood combustion are major sources of carbonaceous particles in the atmosphere. It is very hard to distinguish between the two sources by looking at soot particle morphology, but clear differences in the chemical structure of single particles are revealed by C(1s) NEXAFS (near edge X-ray absorption fine structure) microspectroscopy. Soot from diesel combustion has a dominant spectral signature at approximately 285 eV from aromatic pi-bonds, whereas soot from wood combustion has the strongest signature at approximately 287 eV from phenolic carbon bonds. To investigate if it is possible to use these signatures for source apportionment purposes, we collected atmospheric samples with either diesel or wood combustion as a dominant particle source. No spectra obtained from the atmospheric particles completely matched the emission spectra. Especially particles from the wood dominated location underwent large modifications; the phenolic spectral signature at approximately 287 eV is greatly suppressed and surpassed by the peak attributed to the aromatic carbon groups at approximately 285 eV. Comparison with spectra from diesel soot samples experimentally aged with ozone show that very fast modification of the carbon structure of soot particles occurs as soon as they enter the atmosphere. Source attribution of single soot particles with microspectroscopy is thus hardly possible, but NEXAFS remains a powerful tool to study aging effects. PMID:19708363

  17. Experimental correlations for transient soot measurement in diesel exhaust aerosol with light extinction, electrical mobility and diffusion charger sensor techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel

    2014-06-01

    A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.

  18. Optimization of an improved analytical method for the determination of 1-nitropyrene in milligram diesel soot samples by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Barreto, R P; Albuquerque, F C; Netto, Annibal D Pereira

    2007-09-01

    A method for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs) in diesel soot by high-performance liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (APCI) and detection by ion-trap following ultrasonic extraction is described. The determination of 1-nitropyrene that it is the predominant NPAH in diesel soot was emphasized. Vaporization and drying temperatures of the APCI interface, electronic parameters of the MS detector and the analytical conditions in reversed-phase HPLC were optimized. The patterns of fragmentation of representative NPAHs were evaluated by single and multiple fragmentation steps and negative ionization led to the largest signals. The transition (247-->217) was employed for quantitative analysis of 1-nitropyrene. Calibration curves were linear between 1 and 15 microgL(-1) with correlation coefficients better than 0.999. Typical detection limit (DL) of 0.2 microgL(-1) was obtained. Samples of diesel soot and of the reference material (SRM-2975, NIST, USA) were extracted with methylene chloride. Recoveries were estimated by analysis of SRM 2975 and were between 82 and 105%. DL for 1-nitropyrene was better than 1.5 mg kg(-1), but the inclusion of an evaporation step in the sample processing procedure lowered the DL. The application of the method to diesel soot samples from bench motors showed levels diesel soot. PMID:17624359

  19. Impact of Ferrocene on the Structure of Diesel Exhaust Soot as Probed with Wide-Angle X-ray Scattering and C(1s) NEXAFS Spectroscopy

    SciTech Connect

    Braun,A.; Huggins, F.; Kelly, K.; Mun, B.; Ehrlich, S.; Huffman, G.

    2006-01-01

    We report on the structure of a set of diesel exhaust samples that were obtained from reference diesel fuel and diesel fuel mixed with ferrocene. Characterization was carried out with X-ray absorption spectroscopy (C(1s) NEXAFS) and wide-angle X-ray scattering (WAXS). The reference diesel soot shows a pronounced graphite-like microstructure and molecular structure, with a strong (0 0 2) graphite Bragg reflex and a strong aromatic C{double_bond}C resonance at 285 eV. The mineral matter in the reference soot could be identified as Fe{sub 2}O{sub 3} hematite. The soot specimen from the diesel mixed with ferrocene has an entirely different structure and lacks significantly in graphite-like characteristics. NEXAFS spectra of such soot barely show aromatics but pronounced contributions from aliphatic structures. WAXS patterns show almost no intensity at the Bragg (0 0 2) reflection of graphite, but a strong aliphatic {gamma}-side band. The iron from the ferrocene transforms to Fe{sub 2}O{sub 3} maghemite.

  20. Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction

    SciTech Connect

    Kakwani, R.M.

    2000-08-20

    Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

  1. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot from a diesel engine at a particular running condition.

    PubMed

    Tapia, A; Salgado, M S; Martín, M P; Sánchez-Valdepeñas, J; Rossi, M J; Cabañas, B

    2015-04-01

    Two gases, O3 and NO2, were selected to probe the surface of a diesel fuel combustion aerosol sample, diesel soot, and amorphous carbon nanoparticles (PRINTEX XE2-B) using heterogeneous (i.e., gas-surface reactions). The gas uptake to saturation of the probes was measured under molecular flow conditions using a Knudsen flow reactor in order to quantify and characterize surface functional groups. Specifically, O3 and NO2 are used for the titration of oxidizable groups. Diesel soot samples interacted with the probe gases to various extents which points to the coexistence of different functional groups on the same aerosol surface such as reduced groups. The carbonaceous particles displayed significant differences: PRINTEX XE2-B amorphous carbon had a significantly lower surface functional group density of both total and strongly reducing groups despite its significantly larger internal surface area, compared to diesel soot. The uptake kinetics of the gas-phase probe molecules (uptake probabilities) were also measured in order to obtain further information on the reactivity of emitted soot aerosols in order to enable the potential prediction of health effects. PMID:24807246

  2. An In-Cylinder Study of Soot and NO in a DI Diesel Engine. Final report

    SciTech Connect

    Litzinger, T.A.

    1995-10-18

    Clearly the reduction of NOx and particulate emissions remains a major challenge to Diesel engine manufacturers due to increasingly stringent emission standards in the US and other countries. The well documented NOx/particulate trade-off observed in Diesel engines makes the simultaneous reduction of both emissions particularly difficult for manufacturers to achieve. In an effort to provide an improved understanding of the fundamental processes which result in this trade-off, a program was carried out at Penn State to develop the appropriate engine facilities and laser diagnostics to permit in-cylinder studies of Diesel combustion and emissions production with the support of the Department of Energy Advanced Industrial Technology Division . This work has also been supported by the Cummins Engine Company, Lubrizol Corporation and the National Science Foundation. An optically accessible, direct injection, Diesel engine was constructed for these studies. The major objective of the, design of the engine was to maximize optical access under conditions representative of Diesel engine combustion in small bore, commercial engines. Intake air is preheated and boosted in pressure to make the in-cylinder conditions of heat release and pressure as realistic as possible. Another important objective of the design was flexibility in combustion chamber geometry to permit a variety of head and bowl geometries to be studied. In all the results reported in this report a square bowl was used to simplify the introduction of laser light sheets into the engine.

  3. Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation

    NASA Astrophysics Data System (ADS)

    Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2014-03-01

    The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8‑21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.

  4. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  5. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    PubMed Central

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  6. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles.

    PubMed

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-01-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals. PMID:26177695

  7. Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles

    NASA Astrophysics Data System (ADS)

    Shi, Yuanyuan; Ji, Yanfeng; Sun, Hui; Hui, Fei; Hu, Jianchen; Wu, Yaxi; Fang, Jianlong; Lin, Hao; Wang, Jianxiang; Duan, Huiling; Lanza, Mario

    2015-07-01

    In 2012 air pollutants were responsible of seven million human death worldwide, and among them particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) are the most hazardous because they are small enough to invade even the smallest airways and penetrate to the lungs. During the last decade the size, shape, composition, sources and effect of these particles on human health have been studied. However, the noxiousness of these particles not only relies on their chemical toxicity, but particle morphology and mechanical properties affect their thermodynamic behavior, which has notable impact on their biological activity. Therefore, correlating the physical, mechanical and chemical properties of PM2.5 airborne pollutants should be the first step to characterize their interaction with other bodies but, unfortunately, such analysis has never been reported before. In this work, we present the first nanomechanical characterization of the most abundant and universal groups of PM2.5 airborne pollutants and, by means of atomic force microscope (AFM) combined with other characterization tools, we observe that fluffy soot aggregates are the most sticky and unstable. Our experiments demonstrate that such particles show strong adhesiveness and aggregation, leading to a more diverse composition and compiling all possible toxic chemicals.

  8. Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

    NASA Astrophysics Data System (ADS)

    Kooter, Ingeborg M.; van Vugt, Marcel A. T. M.; Jedynska, Aleksandra D.; Tromp, Peter C.; Houtzager, Marc M. G.; Verbeek, Ruud P.; Kadijk, Gerrit; Mulderij, Mariska; Krul, Cyrille A. M.

    2011-03-01

    This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro III heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as B100 and blends with conventional diesel (B5, B10, and B20) and pure plant oil DIN51605 (PPO). In addition application of a (wall flow) diesel particulate filter (DPF) with conventional diesel EN590 was tested. The use of B100 or PPO as a fuel or the DPF reduced particulate matter (PM) mass and numbers over 80%. Similarly, significant reduction in the emission of chemical constituents (EC 90%, (oxy)-PAH 70%) were achieved. No significant changes in nitro-PAH were observed. The use of B100 or PPO led to a NOx increase of about 30%, and no increase for DPF application. The effects of B100, PPO and the DPF on the biological test results vary strongly from positive to negative depending on the biological end point. The oxidative potential, measured via the DTT assay, of the B100 and PPO or DPF emissions is reduced by 95%. The cytotoxicity is increased for B100 by 200%. The measured mutagenicity, using the Ames assay test with TA98 and YG1024 strains of Salmonella typhimurium indicate a dose response for the nitroarene sensitive YG1024 strain for B100 and PPO (fold induction: 1.6). In summary B100 and PPO have good potential for the use as a second generation biofuel resulting in lower PM mass, similar to application of a DPF, but caution should be made due to potential increased toxicity. Besides regulation via mass, the biological reactivity of exhaust emissions of new (bio)fuels and application of new technologies, needs attention. The different responses of different biological tests as well as differences in results between test laboratories underline the need for harmonization of test methods and international cooperation.

  9. Bilateral vagotomy or atropine pre-treatment reduces experimental diesel-soot induced lung inflammation

    SciTech Connect

    McQueen, D.S. . E-mail: D.S.McQueen@ed.ac.uk; Donaldson, K.; McNeilly, J.D.; Barton, N.J.; Duffin, R.

    2007-02-15

    To investigate the role of the vagus nerve in acute inflammatory and cardiorespiratory responses to diesel particulate (DP) in the rat airway, we measured changes in respiration, blood pressure and neutrophils in lungs of urethane anesthetized Wistar rats 6-h post-instillation of DP (500 {mu}g) and studied the effect of mid-cervical vagotomy or atropine (1 mg kg{sup -1}) pre-treatment. In conscious rats, we investigated DP, with and without atropine pre-treatment. DP increased neutrophil level in BAL (bronchoalveolar lavage) fluid from intact anesthetized rats to 2.5 {+-} 0.7 x 10{sup 6} cells (n = 8), compared with saline instillation (0.3 {+-} 0.1 x 10{sup 6}, n = 7; P < 0.05). Vagotomy reduced DP neutrophilia to 0.8 {+-} 0.2 x 10{sup 6} cells (n = 8; P < 0.05 vs. intact); atropine reduced DP-induced neutrophilia to 0.3 {+-} 0.2 x 10{sup 6} (n = 4; P < 0.05). In conscious rats, DP neutrophilia of 8.5 {+-} 1.8 x 10{sup 6}, n = 4, was reduced by pre-treatment with atropine to 2.2 {+-} 1.2 x 10{sup 6} cells, n = 3. Hyperventilation occurred 6 h after DP in anesthetized rats with intact vagi, but not in bilaterally vagotomized or atropine pre-treated animals and was abolished by vagotomy (P < 0.05, paired test). There were no significant differences in the other variables (mean blood pressure, heart rate and heart rate variability) measured before and 360 min after DP. In conclusion, DP activates a pro-inflammatory vago-vagal reflex which is reduced by atropine. Muscarinic ACh receptors in the rat lung are involved in DP-induced neutrophilia, and hence muscarinic antagonists may reduce airway and/or cardiovascular inflammation evoked by inhaled atmospheric DP in susceptible individuals.

  10. Soot Imaging and Measurement

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Soot, sometimes referred to as smoke, is made up primarily of the carbon particles generated by most combustion processes. For example, large quantities of soot can be seen issuing from the exhaust pipes of diesel-powered vehicles. Heated soot also is responsible for the warm orange color of candle flames, though that soot is generally consumed before it can exit the flame. Research has suggested that heavy atmospheric soot concentrations aggravate conditions such as pneumonia and asthma, causing many deaths each year. To understand the formation and oxidation of soot, NASA Lewis Research Center scientists, together with several university investigators, are investigating the properties of soot generated in reduced gravity, where the absence of buoyancy allows more time for the particles to grow. The increased time allows researchers to better study the life cycle of these particles, with the hope that increased understanding will lead to better control strategies. To quantify the amount of soot present in a flame, Lewis scientists developed a unique imaging technique that provides quantitative and qualitative soot data over a large field of view. There is significant improvement over the single-point methods normally used. The technique is shown in the sketch, where light from a laser is expanded with a microscope objective, rendered parallel, and passed through a flame where soot particles reduce the amount of light transmitted to the camera. A filter only allows light at the wavelength of the laser to pass to the camera, preventing any extraneous signals. When images of the laser light with and without the flame are compared, a quantitative map of the soot concentration is produced. In addition to that data, a qualitative image of the soot in the flame is also generated, an example of which is displayed in the photo. This technique has the potential to be adapted to real-time process control in industrial powerplants.

  11. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGESBeta

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  12. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  13. VALIDATION AND RESULTS OF A PSEUDO-MULTI-ZONE COMBUSTION TRAJECTORY PREDICTION MODEL FOR CAPTURING SOOT AND NOX FORMATION ON A MEDIUM DUTY DIESEL ENGINE

    SciTech Connect

    Bittle, Joshua A.; Gao, Zhiming; Jacobs, Timothy J.

    2013-01-01

    A pseudo-multi-zone phenomenological model has been created with the ultimate goal of supporting efforts to enable broader commercialization of low temperature combustion modes in diesel engines. The benefits of low temperature combustion are the simultaneous reduction in soot and nitric oxide emissions and increased engine efficiency if combustion is properly controlled. Determining what qualifies as low temperature combustion for any given engine can be difficult without expensive emissions analysis equipment. This determination can be made off-line using computer models or through factory calibration procedures. This process could potentially be simplified if a real-time prediction model could be implemented to run for any engine platform this is the motivation for this study. The major benefit of this model is the ability for it to predict the combustion trajectory, i.e. local temperature and equivalence ratio in the burning zones. The model successfully captures all the expected trends based on the experimental data and even highlights an opportunity for simply using the average reaction temperature and equivalence ratio as an indicator of emissions levels alone - without solving formation sub-models. This general type of modeling effort is not new, but a major effort was made to minimize the calculation duration to enable implementation as an input to real-time next-cycle engine controller Instead of simply using the predicted engine out soot and NOx levels, control decisions could be made based on the trajectory. This has the potential to save large amounts of calibration time because with minor tuning (the model has only one automatically determined constant) it is hoped that the control algorithm would be generally applicable.

  14. Examination of the oxidation behavior of biodiesel soot

    SciTech Connect

    Song, Juhun; Alam, Mahabubul; Boehman, Andre L.; Kim, Unjeong

    2006-09-15

    In this work, we expand upon past work relating the nanostructure and oxidative reactivity of soot. This work shows that the initial structure alone does not dictate the reactivity of diesel soot and rather the initial oxygen groups have a strong influence on the oxidation rate. A comparison of the complete oxidation behavior and burning mode was made to address the mechanism by which biodiesel soot enhances oxidation. Diesel soot derived from neat biodiesel (B100) is far more reactive during oxidation than soot from neat Fischer-Tropsch diesel fuel (FT100). B100 soot undergoes a unique oxidation process leading to capsule-type oxidation and eventual formation of graphene ribbon structures. The results presented here demonstrate the importance of initial properties of the soot, which lead to differences in burning mode. Incorporation of greater surface oxygen functionality in the B100 soot provides the means for more rapid oxidation and drastic structural transformation during the oxidation process. (author)

  15. Liquid Cloud Responses to Soot

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    2010-12-01

    Although soot absorption warms the atmosphere, soot may cause climate cooling due to its effects on liquid clouds, including contribution to cloud condensation nuclei (CCN) and semi-direct effects. Six global models that include aerosol microphysical schemes conducted three soot experiments. The average model cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.12 Wm-2, comparable in size but opposite in sign to the respective direct atmospheric warming. In a more idealized fossil fuel black carbon only experiment, some models calculated a positive cloud response because the soot provided a deposition sink for sulfate, decreasing formation of more viable CCN. Biofuel soot particles were typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models < ±0.06 Wm-2 from clouds. The net semi-direct effect alone may also be negative in global models, as found by several previous studies. The soot-cloud effects are quite uncertain. The range of model responses was large and interrannual variability for each model can also be large. Furthermore the aerosol microphysical schemes are poorly constrained, and the non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. However, results so far suggest that soot-induced cloud-cooling effects are comparable in magnitude to the direct warming effects from soot absorption.

  16. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  17. Kinetics of soot oxidation by NO2

    SciTech Connect

    Shrivastava, ManishKumar B.; Nguyen, Anh; Zheng, Zhongqing; Wu, Hao-Wei; Jung, Hee-Jung

    2010-06-15

    Modern technologies use NO2 to promote low temperature soot oxidation for diesel particulate filter regeneration. Most previous methods studied soot oxidation with NO2 using offline methods such as thermo-gravimetric analysis (TGA). In this study, the online aerosol-technique of high-temperature oxidation tandem differential mobility analysis (HTO-TDMA) is used to study kinetics of soot oxidation with NO2 under N2 environment. This method has significant advantages over previous offline methods in reducing heat and mass transfer diffusion limitations to the soot surface. Soot particles are exposed to varying temperature and NO2 concentration inside the furnace resulting from thermal decomposition of NO2 to NO. This causes soot oxidation rates to vary throughout the furnace. In this study, variations in temperatures, NO2 concentrations and particle residence times are thoroughly accounted for the first time, and soot oxidation rates are derived. Soot oxidation rate is calculated as a function of Arrhenius rate constant Asoot, activation energy Esoot, and partial pressure of NO2 PNO2 within the furnace at temperatures ranging 500- 950 C. Results suggest Asoot and Esoot values for soot oxidation with NO2 of 1.68 nm K-0.5 s-1 (Nm-2)-n and 46.5 kJ mol-1 respectively. The activation energy for soot oxidation with NO2 is significantly lower than oxidation with air. However, ppm levels of NO2 cause soot oxidation at low temperatures suggesting NO2 is a stronger oxidant than O2. This study also shows that a semi-empirical approach with just a few kinetic parameters could represent varying soot oxidation rates in a diesel engine cylinder or on a diesel particulate filter. Further studies should be directed towards understanding synergistic effects of other oxidants as O2 and H2O in addition to NO2 using the HTO-TDMA method.

  18. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  19. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode

    NASA Astrophysics Data System (ADS)

    Cao, Chunmei; Li, Xingang; Zha, Yuqing; Zhang, Jing; Hu, Tiandou; Meng, Ming

    2016-03-01

    Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen species. Based upon the catalytic performance and multiple characterization results, two reaction pathways for soot oxidation are identified, namely, the direct oxidation by the activated oxygen species via oxygen vacancies and the NOx-aided soot oxidation.Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen

  20. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode.

    PubMed

    Cao, Chunmei; Li, Xingang; Zha, Yuqing; Zhang, Jing; Hu, Tiandou; Meng, Ming

    2016-03-21

    Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen species. Based upon the catalytic performance and multiple characterization results, two reaction pathways for soot oxidation are identified, namely, the direct oxidation by the activated oxygen species via oxygen vacancies and the NOx-aided soot oxidation. PMID:26509240

  1. Tribology of soot suspension in hexadecane as distinguished by the physical structure and chemistry of soot particles

    NASA Astrophysics Data System (ADS)

    Bhowmick, Hiralal; Majumdar, S. K.; Biswas, S. K.

    2012-05-01

    Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.

  2. Diesel engine combustion processes

    SciTech Connect

    1995-12-31

    Diesel Engine Combustion Processes guides the engineer and research technician toward engine designs which will give the ``best payoff`` in terms of emissions and fuel economy. Contents include: Three-dimensional modeling of soot and NO in a direct-injection diesel engine; Prechamber for lean burn for low NOx; Modeling and identification of a diesel combustion process with the downhill gradient search method; The droplet group micro-explosions in W/O diesel fuel emulsion sprays; Combustion process of diesel spray in high temperature air; Combustion process of diesel engines at regions with different altitude; and more.

  3. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  4. Soot Optical Property Study

    NASA Technical Reports Server (NTRS)

    Aung, K. T.; Hassan, M. I.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent past studies of soot reaction processes in laminar premixed and nonpremixed flames generally have used the intrusive technique of thermophoretic sampling and analysis by transmission electron microscopy (TEM) to observe soot structure and obtain important fundamental information about soot particle properties, such as soot primary particle diameters, the rate of change of soot primary particle diameter as a function of time (or rate of soot surface growth or oxidation), the amount of soot particle reactive surface area per unit volume, the number of primary soot particles per unit volume, and the rate of formation of primary soot particles (or the rate of soot primary particle nucleation). Given the soot volume per unit volume of the flame (or the soot volume fraction), all these properties are readily found from a measurement of the soot primary particle diameter (which usually is nearly a constant for each location within a laminar flame). This approach is not possible within freely propagating flames, however, because soot properties at given positions in such flames vary relatively rapidly as a function of time in the soot formation and oxidation regions compared to the relatively lengthy sampling times needed to accumulate adequate soot samples and to minimize effects of soot collected on the sampling grid as it moves to and from the sampling position through other portions of the flame. Thus, nonintrusive optical methods must be used to find the soot primary particle diameters needed to define the soot surface reaction properties mentioned earlier. Unfortunately, approximate nonintrusive methods used during early studies of soot reaction properties in flames, found from laser scattering and absorption measurements analyzed assuming either Rayleigh scattering or Mie scattering from polydisperse effective soot particles having the same mass of soot as individual soot aggregates, have not been found to be an effective way to estimate the soot surface

  5. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.

    PubMed

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  6. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf

    2015-01-01

    Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621

  7. Biomass burning layers measured with an airborne Single Particle Soot Photometer (SP2) during the Deep Convective Clouds and Chemistry (DC3) experiment

    NASA Astrophysics Data System (ADS)

    Heimerl, K.; Weinzierl, B.; Minikin, A.; Sauer, D. N.; Fütterer, D.; Lichtenstern, M.; Schlager, H.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.; Fahey, D. W.; Huntrieser, H.

    2013-12-01

    The 2012 wildfire season in the U.S. was one of the worst in the past decade. Coinciding with the period of intense wildfires in the western U.S., the Deep Convective Clouds and Chemistry (DC3) experiment took place in the central U.S. in May and June of 2012. Although the main goal of this experiment was to characterize chemical processes in and around thunderstorms, biomass burning plumes from wildfires were also measured during almost every flight. Measurements were performed with three different research aircraft (NCAR GV, NASA DC8 and DLR Falcon 20E), accompanied by ground based measurements with radars and radiosondes, and measurements of meteorological parameters and lightning. The instrumentation aboard the DLR Falcon included measurements of the trace gases NO, CO, O3, CO2, CH4, SO2, volatile organic compounds, and a variety of aerosol microphysical parameters. To cover a wide range of aerosol particle sizes, the DLR Falcon payload included optical particle counters (UHSAS-A, FSSP-300, FSSP-100, PCASP-100X/SPP-200 and Sky-OPC 1.129), a multi-channel CPC system for measuring total and non-volatile particle concentrations and, for absorbing particles, a three-wavelength PSAP and a Single Particle Soot Photometer (SP2). We will focus on the latter in this presentation. The SP2 measures both the mass of refractory black carbon (rBC) particles as well as their optical size, providing information about the mixing state of particles in the biomass burning layers. Most biomass burning layers were found between 3 and 8 km altitude. We will discuss measurements of plumes originating from New Mexico wildfires (Little Bear wildfire on June 11th of 2012 and Whitewater-Baldy wildfire on May 29th and 30th of 2012). Peaks of the rBC mass concentration in the plumes were as high as 2μg/m3, the fraction of rBC particles with thick coatings was higher than what is usually found in the boundary layer. During the Falcon transfer flights from Germany to the U.S. and back

  8. -based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    NASA Astrophysics Data System (ADS)

    Miceli, Paolo; Bensaid, Samir; Russo, Nunzio; Fino, Debora

    2014-05-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters.

  9. PORE STRUCTURE OF SOOT DEPOSITS FROM SEVERAL COMBUSTION SOURCES. (R825303)

    EPA Science Inventory

    Abstract

    Soot was harvested from five combustion sources: a dodecane flame, marine and bus diesel engines, a wood stove, and an oil furnace. The soots ranged from 20% to 90% carbon by weight and molar C/H ratios from 1 to 7, the latter suggesting a highly condensed aro...

  10. Soot oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Ranji-Burachaloo, H.; Masoomi-Godarzi, S.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    Oxidation of soot by corona plasma was investigated at conditions of exhaust gases from diesel engines, both in the absence and presence of CoOx as a catalyst. The CoOx catalyst nanoparticles were synthesized by a precipitation method. The BET surface area of the catalyst was 50 m2/g, corresponding to 23 nm particles. An aluminum grid was sequentially dip-coated for several times by suspensions of the soot in toluene and/or fine catalyst powder in DI water. The grid was used as the plate of a pin-to-plate corona reactor. Air at 180 °C was passed through the corona reactor to oxidize the soot, oxidation products of which were analyzed by both gas chromatograph and FTIR with a gas cell. Soot oxidation rate linearly increased with an increase of input energy. When the soot was deposited on a layer of the CoOx catalyst, the soot oxidation rate increased up to 2 times. The only product of the plasma (catalytic) oxidation of soot was CO2 determined by FTIR. O produced in the plasma discharge oxidized the soot and the active surface oxygen enhanced its rate.

  11. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    Lin, K. -C.; Dai, Z.; Faeth, G. M.

    1999-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide associated with soot emissions is responsible for most fire deaths, and limited understanding of soot processes is a major impediment to the development of computational combustion. Thus, soot processes within laminar nonpremixed (diffusion) flames are being studied, emphasizing space-based experiments at microgravity. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. The microgravity environment is emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. Results discussed here were obtained from experiments carried out on two flights of the Space Shuttle Columbia. After a brief discussion of experimental methods, results found thus far are described, including soot concentration measurements, laminar flame shapes, laminar smoke points and flame structure. The present discussion is brief.

  12. Soot Reaction Properties (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Three major soot reaction processes are needed to predict soot properties in flame environments: soot growth, or the formation of soot on soot nuclei and soot particles; soot oxidation, or the reaction of soot with oxidizing species to yield the combustion products of soot oxidation; and soot nucleation, or the formation of soot nuclei from soot precursors having large molecular weights (generally thought to be large and particularly stable PAH molecules in flame environments, called stabilomers). These processes are addressed in the following, considering soot growth, oxidation and nucleation, in turn, by exploiting the soot and flame structure results for premixed and diffusion flames already discussed in Section 2.

  13. Development and Characterization of Laser-Induced Incandescence Towards Nanoparticle (Soot) Detection

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2000-01-01

    The production of particulates, notably soot, during combustion has both positive and negative ramifications. Exhaust from diesel engines under load (for example, shifting gears), flickering candle flames and fireplaces all produce soot leaving a flame. From an efficiency standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame represents a loss of useful energy. The emission of soot from diesel engines, furnaces, power generation facilities, incinerators and even simple flames poses a serious environmental problem and health risk. Yet some industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as pigments. Similarly, the presence of soot within flames can act both positively and negatively. Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand soot formation and develop control strategies for soot emission/formation, measurements of soot concentration in both practical devices such as engines and controlled laboratory flames are necessary. Laser-induced incandescence (LII) has been developed and characterized to address this need, as described here.

  14. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study.

    PubMed Central

    Kinney, P L; Aggarwal, M; Northridge, M E; Janssen, N A; Shepard, P

    2000-01-01

    Residents of the dense urban core neighborhoods of New York City (NYC) have expressed increasing concern about the potential human health impacts of diesel vehicle emissions. We measured concentrations of particulate matter [less than/equal to] 2.5 micro in aerodynamic diameter (PM(2.5)) and diesel exhaust particles (DEP) on sidewalks in Harlem, NYC, and tested whether spatial variations in concentrations were related to local diesel traffic density. Eight-hour (1000-1800 hr) air samples for PM(2.5 )and elemental carbon (EC) were collected for 5 days in July 1996 on sidewalks adjacent to four geographically distinct Harlem intersections. Samples were taken using portable monitors worn by study staff. Simultaneous traffic counts for diesel trucks, buses, cars, and pedestrians were carried out at each intersection on [Greater/equal to] 2 of the 5 sampling days. Eight-hour diesel vehicle counts ranged from 61 to 2,467 across the four sites. Mean concentrations of PM(2.5) exhibited only modest site-to-site variation (37-47 microg/m(3)), reflecting the importance of broader regional sources of PM(2.5). In contrast, EC concentrations varied 4-fold across sites (from 1.5 to 6 microg/m(3)), and were associated with bus and truck counts on adjacent streets and, at one site, with the presence of a bus depot. A high correlation (r = 0.95) was observed between EC concentrations measured analytically and a blackness measurement based on PM(2.5) filter reflectance, suggesting the utility of the latter as a surrogate measure of DEP in future community-based studies. These results show that local diesel sources in Harlem create spatial variations in sidewalk concentrations of DEP. The study also demonstrates the feasibility of a new paradigm for community-based research involving full and active partnership between academic scientists and community-based organizations. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10706526

  15. Research Spotlight: What are the effects of controlling fossil fuel soot?

    NASA Astrophysics Data System (ADS)

    Ofori, Leslie; Tretkoff, Ernie

    Fossil fuel soot, emitted during combustion of diesel fuel, jet fuel, and coal, and biofuel soot, emitted mainly through burning of wood and organic waste for heating and cooking, can affect climate and air quality. How much does each of these contribute to global warming? What would be the effects of limiting fossil fuel and biofuel soot emissions? To find out, Jacobson used climate model simulations to investigate and compare the short-term effects of controlling fossil fuel and biofuel soot, as well as methane and carbon dioxide.

  16. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Image of soot (smoke) plume made for the Laminar Soot Processes (LSP) experiment during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2002. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  17. Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Kim, C. H.; Krishnan, S. S.; Lin, K.-C.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering the structure and the soot surface reaction properties of laminar nonpremixed (diffusion) flames. The study was limited to ground-based measurements of buoyant laminar jet diffusion flames at pressures of 0.1-1.0 atm. The motivation for the research is that soot formation in flames is a major unresolved problem of combustion science that influences the pollutant emissions, durability and performance of power and propulsion systems, as well as the potential for developing computational combustion. The investigation was divided into two phases considering the structure of laminar soot-containing diffusion flames and the soot surface reaction properties (soot surface growth and oxidation) of these flames, in turn. The first phase of the research addressed flame and soot structure properties of buoyant laminar jet diffusion flames at various pressures. The measurements showed that H, OH and O radical concentrations were generally in superequilibrium concentrations at atmospheric pressure but tended toward subequilibrium concentrations as pressures decreased. The measurements indicated that the original fuel decomposed into more robust compounds at elevated temperatures, such as acetylene (unless the original fuel was acetylene) and H, which are the major reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. The second phase of the research addressed soot surface reaction properties, e.g., soot surface growth and surface oxidation. It was found that soot surface growth rates in both laminar premixed and diffusion flames were in good agreement, that these rates were relatively independent of fuel type, and that these rates could be correlated by the Hydrogen-Abstraction/Carbon-Addition (HACA) mechanisms of Colket and Hall (1994), Frenklach et al. (1990,1994), and Kazakov et al. (1995). It was also

  18. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  19. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  20. Catalytic combustion of soot over ceria-zinc mixed oxides catalysts supported onto cordierite.

    PubMed

    Nascimento, Leandro Fontanetti; Martins, Renata Figueredo; Silva, Rodrigo Ferreira; Serra, Osvaldo Antonio

    2014-03-01

    Modified substrates as outer heterogeneous catalysts was employed to reduce the soot generated from incomplete combustion of diesel or diesel/biodiesel blends, a process that harms the environment and public health. The unique storage properties of ceria (CeO2) makes it one of the most efficient catalysts available to date. Here, we proposed that ceria-based catalysts can lower the temperature at which soot combustion occurs; more specifically, from 610°C to values included in the diesel exhausts operation range (300-450°C). The sol-gel method was used to synthesize mixed oxide-based catalysts (CeO2:ZnO); the resulting catalysts were deposited onto cordierite substrates. In addition, the morphological and structural properties of the material were evaluated by XRD, BET, TPR-H2, and SEM. Thermogravimetric (TG/DTA) analysis revealed that the presence of the catalyst decreased the soot combustion temperature by 200°C on average, indicating that the oxygen species arise at low temperatures in this situation, promoting highly reactive oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy (DRS) showed that catalyst-impregnated cordierite samples efficiently oxidized soot in a diesel/biodiesel stationary motor: soot emission decreased by more than 70%. PMID:25079283

  1. MODELING OF THERMOPHORETIC SOOT DEPOSITION ANDHYDROCARBON CONDENSATION IN EGR COOLERS

    SciTech Connect

    Abarham, Mehdi; Hoard, John W.; Assanis, Dennis; Styles, Dan; Curtis, Eric W.; Ramesh, Nitia; Sluder, Scott; Storey, John Morse

    2009-01-01

    EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40-90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature. Thermal properties of fouled layer are calculated based on mass fraction of deposited soot and hydrocarbons. The experiments with the same conditions ran to validate the model. Hot EGR gases flow through the inner pipe and the coolant circulates around it in the outer pipe to keep a constant wall temperature. Effectiveness, deposited soot mass, condensed hydrocarbon mass, and pressure drop across the cooler are the parameters that have been compared. The results of the model are in a reasonably good agreement with the experimental results although there are some fields that need to be studied in future to improve the model.

  2. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact

    PubMed Central

    2014-01-01

    As morphology plays a relevant role in solid/solid catalysis, where the number of contact points is a critical feature in this kind of reaction, three different ceria morphologies have been investigated in this work as soot oxidation catalysts: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m2/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m2/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m2/g) and a high availability of contact points. A high microporous volume of 0.03 cm3/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  3. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact.

    PubMed

    Miceli, Paolo; Bensaid, Samir; Russo, Nunzio; Fino, Debora

    2014-01-01

    AS MORPHOLOGY PLAYS A RELEVANT ROLE IN SOLID/SOLID CATALYSIS, WHERE THE NUMBER OF CONTACT POINTS IS A CRITICAL FEATURE IN THIS KIND OF REACTION, THREE DIFFERENT CERIA MORPHOLOGIES HAVE BEEN INVESTIGATED IN THIS WORK AS SOOT OXIDATION CATALYSTS: ceria nanofibers, which can become organized as a catalytic network inside diesel particulate filter channels and thus trap soot particles at several contact points but have a very low specific surface area (4 m(2)/g); solution combustion synthesis ceria, which has an uncontrolled morphology but a specific surface area of 31 m(2)/g; and three-dimensional self-assembled (SA) ceria stars, which have both high specific surface area (105 m(2)/g) and a high availability of contact points. A high microporous volume of 0.03 cm(3)/g and a finer crystallite size compared to the other morphologies suggested that self-assembled stars could improve their redox cycling capability and their soot oxidation properties. In this comparison, self-assembled stars have shown the best tendency towards soot oxidation, and the temperature of non-catalytic soot oxidation has dropped from 614°C to 403°C in tight and to 552°C in loose contact conditions, respectively. As far as the loose contact results are concerned, this condition being the most realistic and hence the most significant, self-assembled stars have exhibited the lowest T 10% onset temperature of this trio (even after ageing), thus proving their higher intrinsic activity. Furthermore, the three-dimensional shape of self-assembled stars may involve more of the soot cake layer than the solution combustion synthesis or nanofibers of ceria and thus enhance the total number of contact points. The results obtained through this work have encouraged our efforts to understand soot oxidation and to transpose these results to real diesel particulate filters. PMID:24940178

  4. Discrimination of airborne material particles from light scattering (TAOS) patterns

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Pan, Yong-Le; Videen, Gorden; Aptowicz, Kevin B.; Chang, Richard K.

    2013-05-01

    Two-dimensional angle-resolved optical scattering (TAOS) is an experimental method which collects the intensity pattern of monochromatic light scattered by a single, micron-sized airborne particle. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. The solution proposed herewith relies on a learning machine (LM): rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified. The LM consists of two interacting modules: a feature extraction module and a linear classifier. Feature extraction relies on spectrum enhancement, which includes the discrete cosine Fourier transform and non-linear operations. Linear classification relies on multivariate statistical analysis. Interaction enables supervised training of the LM. The application described in this article aims at discriminating the TAOS patterns of single bacterial spores (Bacillus subtilis) from patterns of atmospheric aerosol and diesel soot particles. The latter are known to interfere with the detection of bacterial spores. Classification has been applied to a data set with more than 3000 TAOS patterns from various materials. Some classification experiments are described, where the size of training sets has been varied as well as many other parameters which control the classifier. By assuming all training and recognition patterns to come from the respective reference materials only, the most satisfactory classification result corresponds to ≍ 20% false negatives from Bacillus subtilis particles and <= 11% false positives from environmental and diesel particles.

  5. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    EPA Science Inventory

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  6. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Interior of the Equipment Module for the Laminar Soot Processes (LSP-2) experiment that fly in the STS-107 Research 1 mission in 2002 (LSP-1 flew on Microgravity Sciences Lab-1 mission in 1997). The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner (yellow ellipse), similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a radiometer or heat sensor (blue circle), and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  7. Laminar Soot Processes

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Laminar Soot Processes (LSP) experiment under way during the Microgravity Sciences Lab-1 mission in 1997. LSP-2 will fly in the STS-107 Research 1 mission in 2001. The principal investigator is Dr. Gerard Faeth of the University of Michigan. LSP uses a small jet burner, similar to a classroom butane lighter, that produces flames up to 60 mm (2.3 in) long. Measurements include color TV cameras and a temperature sensor, and laser images whose darkness indicates the quantity of soot produced in the flame. Glenn Research in Cleveland, OH, manages the project.

  8. Quantitative investigation of soot distribution by laser-induced incandescence.

    PubMed

    Bryce, D J; Ladommatos, N; Zhao, H

    2000-09-20

    Strategies employed for quantitative measurement by laser-induced incandescence are detailed. Data are obtained for several laminar diffusion flames formed from blended Diesel fuels of known composition. A tomographic procedure is developed to scale the two-dimensional data to soot volume fraction and to correct for the trapping of signal by the soot field. Scaling is achieved by use of laser extinction along the measurement plane. The findings are used in discussions of measurement issues within turbulent environments. Data are augmented with elastic scattering measurements, allowing particle-size and number-density distributions to be inferred. A degree of axial and radial similarity among various flames suggests that the processes of soot formation and oxidation occur over similar time scales for each fuel. PMID:18350100

  9. Conductometric soot sensor for automotive exhausts: initial studies.

    PubMed

    Hagen, Gunter; Feistkorn, Constanze; Wiegärtner, Sven; Heinrich, Andreas; Brüggemann, Dieter; Moos, Ralf

    2010-01-01

    In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction. PMID:22294888

  10. Forensics of Soot: Nanostructure as a Diagnostic of In-Cylinder Chemistry

    SciTech Connect

    Vander Wal, Dr. Randy; Strzelec, Dr. Andrea; Toops, Todd J; Daw, C Stuart

    2012-01-01

    We report observations of changes in the microstructure of soot from an experimental light-duty diesel engine, produced with varying levels of biodiesel fuel blending. Based on these changes, we propose a hypothesis for how these changes relate to in-cylinder combustion chemistry. Our hypothesis centers on the assumption that fullerenic lamellar structures in soot trace their origin to 5-membered rings (C5s) formed early in the combustion process from gas-phase reaction intermediates. We also speculate that fullerenic microstructures may be a general feature of soot produced with oxygenated fuels and might be useful for diagnosing important changes in combustion trajectories.

  11. Tackling a Hot Paradox: Laminar Soot Processes-2 (LSP-2)

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.; Urban, David L.; Over, Ann (Technical Monitor)

    2002-01-01

    The last place you want to be in traffic is behind the bus or truck that is belching large clouds of soot onto your freshly washed car. Besides looking and smelling bad, soot is a health hazard. Particles range from big enough to see to microscopic and can accumulate in the lungs, potentially leading to debilitating or fatal lung diseases. Soot is wasted energy, and therein lies an interesting paradox: Soot forms in a flame's hottest regions where you would expect complete combustion and no waste. Soot enhances the emissions of other pollutants (carbon monoxide and polyaromatic hydrocarbons, etc.) from flames and radiates unwanted heat to combustion chambers (a candle's yellowish glow is soot radiating heat), among other effects. The mechanisms of soot formation are among the most important unresolved problems of combustion science because soot affects contemporary life in so many ways. Although we have used fire for centuries, many fundamental aspects of combustion remain elusive, in part because of limits imposed by the effects of gravity on Earth. Hot or warm air rises quickly and draws in fresh cold air behind it, thus giving flames the classical teardrop shape. Reactions occur in a very small zone, too fast for scientists to observe, in detail, what is happening inside the flame. The Laminar Soot Processes (LSP-2) experiments aboard STS-107 will use the microgravity environment of space to eliminate buoyancy effects and thus slow the reactions inside a flame so they can be more readily studied. 'Laminar' means a simple, smooth fuel jet burning in air, somewhat like a butane lighter. This classical flame approximates combustion in diesel engines, aircraft jet propulsion engines, and furnaces and other devices. LSP-2 will expand on surprising results developed from its first two flights in 1997. The data suggest the existence of a universal relationship, the soot paradigm, that, if proven, will be used to model and control combustion systems on Earth. STS-107

  12. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect

    Strzelec, Andrea; Bilheux, Hassina Z; FINNEY, Charles E A; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.; Schillinger, Burkhard; Schulz, Michael

    2009-01-01

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  13. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  14. Soot Structure and Reactivity Analysis by Raman Microspectroscopy, Temperature-Programmed Oxidation, and High-Resolution Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Knauer, Markus; Schuster, Manfred E.; Su, Dangsheng; Schlögl, Robert; Niessner, Reinhard; Ivleva, Natalia P.

    2009-11-01

    Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV) soot, and graphite powder upon oxidation by oxygen at increasing temperatures. GfG soot and graphite powder represent the higher and lower reactivity limits. Raman microspectroscopic analysis was conducted by determination of spectral parameters using a five band fitting procedure (G, D1-D4) as well as by evaluation of the dispersive character of the D mode. The analysis of spectral parameters shows a higher degree of disorder and a higher amount of molecular carbon for untreated GfG soot samples than for samples of untreated EURO VI and EURO IV soot. The structural analysis based on the dispersive character of the D mode revealed substantial differences in ordering descending from graphite powder, EURO IV, VI to GfG soot. HRTEM images and EELS analysis of EURO IV and VI samples indicated a different morphology and a higher structural order as compared to GfG soot in full agreement with the Raman analysis. These findings are also confirmed by the reactivity of soot during oxidation (TPO), where GfG soot was found to be the most reactive and EURO IV and VI soot samples exhibited a moderate reactivity.

  15. The Laminar Soot Processes (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Laminar Soot Processes (LSP) Experiment Mounting Structure (EMS) was used to conduct the LSP experiment on Combustion Module-1. The EMS was inserted into the nozzle on the EMS and ignited by a hot wire igniter. The flame and its soot emitting properties were studied.

  16. Photoacoustic sensor system for the quantification of soot aerosols (abstract)

    NASA Astrophysics Data System (ADS)

    Haisch, C.; Beck, H.; Niessner, R.

    2003-01-01

    The influence of soot particles on human health as well as global and local climate is well established by now. Hence, the need for fast and sensitive soot detection in urban and remote areas is obvious. The state of the art thermochemical detection methods for soot analysis is based on filter sampling and subsequent wet chemical analysis and combustion, which requires laborious and time consuming sample preparation. Due to the integration on a filter, a time-resolved analysis is not possible. The presented photoacoustic sensor system is optimized for a highly sensitive and fast on-line and in situ quantification of soot. Soot particles, as classical "black absorbers," absorb electromagnetic radiation over the whole spectrum. Two similar systems are introduced. The first system is designed for the development and testing of combustion engines, mainly the next generation of diesel engines. In the next decade, legal thresholds for extremely low particle emissions are foreseen. Their implementation will be only possible if a time-resolved soot detection with sufficient sensitivity can be realized as the highest particle emissions from diesel engines are generated only for seconds during load changes. During a load change, the emitted soot concentrations can rise several orders of magnitude for only a period of few seconds. The system combines a time resolution of 1 s (sampling rate 1 Hz) with an aerosol mass sensitivity better than 10 μg m-3. Up to a maximum dimension of about 800 nm the signal is independent of the particle size. The systems consist of two photoacoustic cells, which are operated in a differential mode to avoid cross sensitivities. The cells are built as acoustical resonators to increase sensitivity. A diode laser with a wavelength of 810 nm and an output power of 1.1 W is employed for excitation. Its collimated beam passes first through the reference cell and then through the measurement cell. To avoid condensation of water, the cells are heated to

  17. Soot formation and burnout in flames

    NASA Technical Reports Server (NTRS)

    Prado, B.; Bittner, J. D.; Neoh, K.; Howard, J. B.

    1980-01-01

    The amount of soot formed when burning a benzene/hexane mixture in a turbulent combustor was examined. Soot concentration profiles in the same combustor for kerosene fuel are given. The chemistry of the formation of soot precursors, the nucleation, growth and subsequent burnout of soot particles, and the effect of mixing on the previous steps were considered.

  18. Discriminating bacterial spores from inert airborne particles by classification of optical scattering patterns

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni F.; Pan, Yongle; Videen, Gorden

    2014-05-01

    Scattering patterns are made available by the TAOS (Two-dimensional Angle-resolved Optical Scattering) method, which consists of detecting micrometer-sized single airborne aerosol particles and collecting the intensity of the light they scatter from a pulsed, monochromatic laser beam. TAOS patterns have been classified by a learning machine, the training stage of which depends on many control parameters. Patterns due to single bacterial spores (Bq class) have to be discriminated from those produced by outdoor aerosol particles (Kq set) and diesel soot aggregates (sq set), where both Kq and sq are assumed not to contain patterns of bacterial origin. This work describes two directions along which classification continues to develop: the enlargement of the control parameter set and the simultaneous processing of two areas (sectors) selected from the TAOS pattern. The latter algorithm is meant to make the classifier sensitive to simmetry exhibited by some patterns. The available classification scheme is summarized, as well as the rule by which discrimination is rated off-line. Discrimination based on one pattern sector alone scores fewer than 15% false negatives (misclassified Bq patterns) and false positives from Kq and sq. Discrimination based on the symmetry of two pattern sectors fails to recognize 30% of the Bq (bacterial) patterns, whereas < 5% Kq (environmental) patterns are assigned to the Bq class; false positives from sq (diesel) patterns drop to zero. The issue of false positives is briefly discussed in relation to the fraction of airborne bacteria found in aerosols.

  19. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  20. Optimizing electro-thermo Helds for soot oxidation using microwave heating and metal

    NASA Astrophysics Data System (ADS)

    Al-Wakeel, Haitham B.; Karim, Z. A. Abdul; Al-Kayiem, Hussain H.

    2015-04-01

    Soot is produced by incomplete combustion of various carbon-containing compounds. Soot is one of the main environmental pollutants and has become an important environmental and specific objective. To reduce soot from exhaust emission of diesel engine, a new technique is proposed and implemented by using metal inserted in the soot exposed to electromagnetic radiation. This paper presents a simulation to obtain optimum metal length and shape that give optimum electric field for attaining temperature enough for soot oxidation using microwave heating and a thin metal rod. Four cases were numerically examined to investigate the electric field and temperature distributions in a mono-mode TE10 microwave cavity having closed surfaces of perfect electric conductors. The operating frequency is 2.45 GHz, and power supply is 1500 W. The simulation methodology is coupling the absorbed electromagnetic energy with heat transfer energy. The absorbed electromagnetic energy is found from the electric field within the soot. The simulation was run using ANSYS based on finite element method. The results of the four simulation cases show that the optimum simulation is represented by case 2 where the value of electric field is 39000 V/m and heating time to arrive at the oxidation temperature (873 K) is 35 s using cylindrical metal rod of 8 mm length. It is revealed that the concept of achieving high temperature for soot oxidation by using thin metal rod inside a microwave cavity can be applied.

  1. Effects of soot deposition on particle dynamics and microbial processes in marine surface waters

    NASA Astrophysics Data System (ADS)

    Mari, Xavier; Lefèvre, Jérôme; Torréton, Jean-Pascal; Bettarel, Yvan; Pringault, Olivier; Rochelle-Newall, Emma; Marchesiello, Patrick; Menkes, Christophe; Rodier, Martine; Migon, Christophe; Motegi, Chiaki; Weinbauer, Markus G.; Legendre, Louis

    2014-07-01

    Large amounts of soot are continuously deposited on the global ocean. Even though significant concentrations of soot particles are found in marine waters, the effects of these aerosols on ocean ecosystems are currently unknown. Using a combination of in situ and experimental data, and results from an atmospheric transport model, we show that the deposition of soot particles from an oil-fired power plant impacted biogeochemical properties and the functioning of the pelagic ecosystem in tropical oligotrophic oceanic waters off New Caledonia. Deposition was followed by a major increase in the volume concentration of suspended particles, a change in the particle size spectra that resulted from a stimulation of aggregation processes, a 5% decrease in the concentration of dissolved organic carbon (DOC), a decreases of 33 and 23% in viral and free bacterial abundances, respectively, and a factor ~2 increase in the activity of particle-attached bacteria suggesting that soot introduced in the system favored bacterial growth. These patterns were confirmed by experiments with natural seawater conducted with both soot aerosols collected in the study area and standard diesel soot. The data suggest a strong impact of soot deposition on ocean surface particles, DOC, and microbial processes, at least near emission hot spots.

  2. Asymptotic analysis soot model and experiment for a directed injection engine

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Pei, Pucheng; Xiong, Qinghui; Lu, Yong

    2012-09-01

    The existing soot models are either too complex and can not be applied to the internal combustion engine, or too simple to make calculation errors. Exploring the soot model becomes the pursuit of the goal of many researchers within the error range in the current computer speed. On the basis of the latest experimental results, TP (temperature phases) model is presented as a new soot model to carry out optimization calculation for a high-pressure common rail diesel engine. Temperature and excess air factor are the most important two parameters in this model. When zone temperature T<1 500 K and excess air factor Φ>0.6, only the soot precursors—polycyclic aromatic hydrocarbons(PAH) is created and there is no soot emission. When zone temperature T ⩾ 1 500 K and excess air factor Φ<0.6, PAHs and soot source terms (particle inception, surface growth, oxidation, coagulation) are calculated. The TP model is then implemented in KIVA code instead of original model to carry out optimizing. KIVA standard model and experimental data are analyzed for the results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP models. The experimental results indicate that the TP model can carry out optimization and computational fluid dynamics can be a tool to calculate for a high-pressure common rail directed injection diesel engine. The TP model result is closer than the use of the original KIVA-3V results of soot model accuracy by about 50% and TP model gives a new method for engine researchers.

  3. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.

    PubMed

    Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall

    2012-06-15

    Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. PMID:22551935

  4. Soot in the atmosphere

    SciTech Connect

    Novakov, T.

    1980-10-01

    The principal goal of the research described is to assess quantitatively the relative amounts of primary and secondary carbonaceous material in atmospheric aerosols and to differentiate between secondary carbonaceous species produced by photochemical and nonphotochemical reactions. The approach used most extensively involves the use of an optical attenuation technique, combined with total particulate carbon determination. The black component of soot, which is an unambiguous tracer for primary emissions, can be conveniently monitored because of its large and uniform optical absorptivity. The black carbon content of the particles can easily be determined by an optical attenuation method. Determination of total particulate carbon mass enables the study of the relations between the black and the total carbon content.

  5. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  6. An Inverted Co-Flow Diffusion Flame for Producing Soot

    SciTech Connect

    Stipe, Christopher B.; Higgins, Brian S.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2005-06-21

    We developed an inverted, co-flow, methane/air/nitrogen burner that generates a wide range of soot particles sizes and concentrations. By adjusting the flow rates of air, methane, and nitrogen in the fuel, the mean electric mobility diameter and number concentration are varied. Additional dilution downstream of the flame allows us to generate particle concentrations spanning those produced by spark-ignited and diesel engines: particles with mean diameters between 50 and 250 nm and number concentrations from 4.7 {center_dot} 10{sup 4} to 10{sup 7} cm{sup -3}. The range of achievable number concentrations, and therefore volume concentrations, can be increased by a factor of 30 by reducing the dilution ratio. These operating conditions make this burner valuable for developing and calibrating diagnostics as well as for other studies involving soot particles.

  7. SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I

    EPA Science Inventory

    Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...

  8. Environmental implications of iron fuel borne catalysts and their effects on diesel particulate formation and composition

    EPA Science Inventory

    Metal fuel borne catalysts can be used with diesel fuels to effectively reduce engine out particle mass emissions. Mixed with the fuel, the metals become incorporated as nanometer-scale occlusions with soot during its formation and are available to promote in-cylinder soot oxida...

  9. Diesel oil

    MedlinePlus

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  10. Impact of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance

    SciTech Connect

    Lance, Michael J; Walker, Larry R; Yapaulo, Renato A; Orita, Tetsuo; Wirojsakunchai, Ekathai; Foster, David; Akard, Michael

    2009-01-01

    The impact of different types of diesel particulate matter (PM) and different sampling conditions on the wall deposition and early soot cake build up within diesel particulate filters has been investigated. The measurements were made possible by a newly developed Diesel Exhaust Filtration Analysis (DEFA) system in which in-situ diesel exhaust filtration can be reproduced with in small cordierite wafer disks, which are essentially thin sections of a Diesel Particulate Filter (DPF) wall. The different types of PM were generated from selected engine operating conditions of a single-cylinder heavy-duty diesel engine. Two filtration velocities 4 and 8 cm/s were used to investigate PM deep-bed filtration processes. The loaded wafers were then analyzed in a thermal mass analyzer that measures the Soluble Organic Fraction (SOF) as well as soot and sulfate fractions of the PM. In addition, the soot residing in the wall of the wafer was examined under an optical microscope illuminated with Ultraviolet light and an Environmental Scanning Electron Microscope (E-SEM) to determine the bulk soot penetration depth for each loading condition. It was found that higher filtration velocity results in higher wall loading with approximately the same penetration depth into the wall. PM characteristics impacted both wall loading and soot cake layer characteristics. Results from imaging analysis indicate that soot the penetration depth into the wall was affected more by PM size (which changes with engine operating conditions) rather than filtration velocity.

  11. Aircraft engine soot as contrail nuclei

    NASA Astrophysics Data System (ADS)

    Popovicheva, O. B.; Persiantseva, N. M.; Lukhovitskaya, E. E.; Shonija, N. K.; Zubareva, N. A.; Demirdjian, B.; Ferry, D.; Suzanne, J.

    2004-06-01

    The physico-chemical properties of aircraft engine soot are characterized with respect to their ability to act as CCN. Comparison with laboratory-generated kerosene soot shows a significant influence of combustion conditions on the morphology, microstructure, chemical composition, surface nature, and hygroscopicity of soot. Engine soot particles separate into two components based on composition and structural heterogeneities: a main soot fraction and a fraction of impurities containing an appreciable amount of metal and sulfur. The high concentration of soluble sulfates, of inorganics and of organics in the fraction that contains impurities, explains the engine soot hygroscopicity and its ability to act as CCN at threshold conditions for contrail formation. Laboratory-generated kerosene soot is not able to reproduce the hygroscopicity of engine soot, but we show that it is a good surrogate for the insoluble black carbon fraction of aircraft soot in the upper troposphere.

  12. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.

    PubMed

    Snelling, David R; Smallwood, Gregory J; Liu, Fengshan; Gülder, Omer L; Bachalo, William D

    2005-11-01

    Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame. PMID:16270566

  13. Pb, Sr and Nd isotopic composition and trace element characteristics of coarse airborne particles collected with passive samplers

    NASA Astrophysics Data System (ADS)

    Hoàng-Hòa, Thi Bich; Stille, Peter; Dietze, Volker; Guéguen, Florence; Perrone, Thierry; Gieré, Reto

    2015-09-01

    Passive samplers for collection of coarse airborne particulate matter have been installed in and around the coal-mining town of Cam Pha, Quang Ninh Province (Vietnam). Analysis of Pb, Sr, and Nd isotope ratios and of major and trace element distribution patterns in atmospheric particulates collected at three stations allowed for the identification of four important dust components: (1) coal dust from an open-pit mine and fly ash particles from a coal-fired power station, (2) diesel soot, (3) traffic dust from metal, tire and pavement abrasion, and (4) limestone-derived dust. Outside of the coal-mining area, traffic-derived dust defines the atmospheric baseline composition of the studied environment.

  14. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  15. The importance of an extensive elemental analysis of single-walled carbon nanotube soot

    PubMed Central

    Braun, Elizabeth I.; Pantano, Paul

    2014-01-01

    Few manufacturers provide elemental analysis information on the certificates of analysis of their single-walled carbon nanotube (SWCNT) soot products, and those who do primarily perform surface sensitive analyses that may not accurately represent the bulk properties of heterogeneous soot samples. Since the accurate elemental analysis of SWCNT soot is a requisite for exacting assessments of product quality and environmental health and safety (EH&S) risk, the purpose of this work was to develop a routine laboratory procedure for an extensive elemental analysis of SWCNT soot using bulk methods of analyses. Herein, a combination of carbon, hydrogen, nitrogen, sulfur, and oxygen (CHNS/O) combustion analyses, oxygen flask combustion/anion chromatography (OFC/AC), graphite furnace-atomic absorption spectroscopy (GF-AAS), and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to generate a 77-element analysis of two as-received CoMoCAT® SWCNT soot products. Fourteen elements were detected in one product, nineteen in the other, and each data set was compared to its respective certificate of analysis. The addition of the OFC/AC results improved the accuracy of elements detected by GF-AAS and ICP-MS, and an assessment was performed on the results that concluded that the trace elemental impurities should not pose an EH&S concern if these soot products became airborne. PMID:25110357

  16. Soot microphysical effects on liquid clouds, a multi-model investigation

    NASA Astrophysics Data System (ADS)

    Koch, D.; Balkanski, Y.; Bauer, S. E.; Easter, R. C.; Ferrachat, S.; Ghan, S. J.; Hoose, C.; Iversen, T.; Kirkevåg, A.; Kristjansson, J. E.; Liu, X.; Lohmann, U.; Menon, S.; Quaas, J.; Schulz, M.; Seland, Ø.; Takemura, T.; Yan, N.

    2011-02-01

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <±0.06 Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.

  17. Soot microphysical effects on liquid clouds, a multi-model investigation

    NASA Astrophysics Data System (ADS)

    Koch, D.; Balkanski, Y.; Bauer, S. E.; Easter, R. C.; Ferrachat, S.; Ghan, S. J.; Hoose, C.; Iversen, T.; Kirkevâg, A.; Kristjansson, J. E.; Liu, X.; Lohmann, U.; Menon, S.; Quaas, J.; Schulz, M.; Seland, Ø.; Takemura, T.; Yan, N.

    2010-10-01

    We use global models to explore the microphysical effects of carbonaceous aerosols on clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a~positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <±0.06 Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes.

  18. Soot microphysical effects on liquid clouds, a multi-model investigation

    SciTech Connect

    Koch, D; Balkanski, Y; Bauer, S; Easter, Richard C; Ferrachat, S; Ghan, Steven J; Hoose, C; Iversen, T; Kirkevag, A; Kristjansson, J E; Liu, Xiaohong; Lohmann, U; Menon, Surabi; Quaas, J; Schulz, M; Seland, O; Takemura, T; Yan, N

    2011-02-10

    We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five Correspondence to: D. Koch (dorothy.koch@science.doe.gov) of the models <±0.06Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experimen

  19. Combustion energy of fullerene soot

    SciTech Connect

    Man, Naoki; Nagano, Yatsuhisa; Kiyobayashi, Tetsu; Sakiyama, Minoru )

    1995-02-23

    The standard energy of combustion of fullerene soot generated in arc discharge was determined to be [minus]36.0 [+-] 0.5 kJ g[sup [minus]1] by oxygen-bomb combustion calorimetry. The value was much closer to those of C[sub 60] and C[sub 70] than that of graphite. This result provides an energetic reason for the remarkable yield of fullerenes in arc discharge and supports the mechanism of fullerene formation, where fullerenes are the lowest energy products. Fullerene onion formation is interpreted in terms of energy relaxation of the fullerene soot. 20 refs., 1 tab.

  20. Diesel Engine Light Truck Application

    SciTech Connect

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  1. Morphological characterization of carbonaceous aggregates in soot and free fall aerosol samples

    NASA Astrophysics Data System (ADS)

    Sachdeva, Kamna; Attri, Arun K.

    The morphological characteristics of BC aggregates present in the soot and carbonaceous aerosol (CA) samples were investigated. The process of soot formation under laboratory conditions took into account the commonly used practice of burning fuel in the households in India. The fractal morphology was determined by using box counting algorithm and maximum projected area of the aggregates by using their digital electron microscopic images. Former provided the estimates of perimeter fractal dimension (PD f) of each aggregate, and later estimated the average density fractal dimension (DD f) of aggregate groups. Numbers of particles constituting the aggregates, using projected area approach, were significantly higher than the estimates based on pixel counting. The measured average diameter of the primary particles in aggregates, ranged between 24 and 57 nm. The fractal dimensions, PD f, for the laboratory-generated soot aggregates varied from 1.36 to 1.88. The PD f for aggregates derived from diesel-vehicles and biomass burning showed significant variation: biomass, 1.27; diesel vehicle, 1.82 and 1.7. The size and the dimensions estimated for the free fall CA samples showed large deviation. The ratio L/ Rg (length/radius of gyration) for soot aggregates (gasoline, kerosene, diesel, mustard oil and hexane) ranged from 3.5 to 4.8. Surface morphology of these aggregates, using scanning electron microscope (SEM), showed the presence of spherical "charred cenosphere" like particles in gasoline and free fall aerosol aggregates. FTIR investigations revealed the presence of a large number of organic groups (OC) associated with carbonaceous aggregates present in soot and free fall aerosol samples.

  2. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  3. Laser-induced incandescence measurements in a fired diesel engine at 3 kHz

    NASA Astrophysics Data System (ADS)

    Boxx, I. G.; Heinold, O.; Geigle, K. P.

    2015-01-01

    Laser-induced incandescence (LII) was performed at 3 kHz in an optically accessible cylinder of a fired diesel engine using a commercially available diode-pumped solid-state laser and an intensified CMOS camera. The resulting images, acquired every 3° of crank angle, enabled the spatiotemporal tracking of soot structures during the expansion/exhaust stroke of the engine cycle. The image sequences demonstrate that soot tends to form in thin sheets that propagate and interact with the in-cylinder flow. These sheets tend to align parallel to the central axis of the cylinder and are frequently wrapped into conical spirals by aerodynamic swirl. Most of the soot is observed well away from the cylinder walls. Quantitative soot measurements were beyond the scope of this study but the results demonstrate the practical utility of using kHz-rate LII to acquire ensemble-averaged statistical data with high crank angle resolution over a complete engine cycle. Based on semi-quantitative measures of soot distribution, it was possible to identify soot dynamics related to incomplete charge exchange. This study shows that long-duration, multi-kHz acquisition rate LII measurements are viable in a fired diesel engine with currently available laser and camera technology, albeit only in the expansion and exhaust phase of the cycle at present. Furthermore, such measurements yield useful insight into soot dynamics and therefore constitute an important new tool for the development and optimization of diesel engine technology.

  4. Effect of fuel aromaticity on diesel emissions

    SciTech Connect

    Barbella, R.; Ciajolo, A.; D'Anna, A. ); Bertoli, C. )

    1989-09-01

    The effect of the fuel aromatic content on soot and heavy hydrocarbon emissions from a single-cylinder direct-injection diesel engine has been investigated burning a pure paraffinic fuel (n-tetradecane), a tetradecane-toluene mixture (70-30 vol%) and two diesel oils with different aromatic content. All experiments were at various air-fuel ratios with constant engine speed and injection timing advance. The detailed chemical analysis of exhaust heavy hydrocarbons in terms of mass percentage of paraffins, monoaromatics, polyaromatics and polar compounds, and the gas chromatography-mass spectrometry of each hydrocarbon class have been compared with the original fuel analyses in order to discriminate the unburned fuel compounds from the combustion-formed products. The soot emission rate has been found to be independent of the fuel aromatic content, but the fuel affects the quality and quantity of heavy hydrocarbon emission. Low amounts of heavy hydrocarbons, mainly partially oxidized compounds, are emitted from tetradecane combustion, whereas diesel fuel oils produced high emissions of heavy hydrocarbons, mainly unburned fuel compounds. The emission of polynuclear aromatic hydrocarbons (PAH) from tetradecane and tetradecane-toluene diesel combustion indicates that these compounds are combustion-formed products, but unburned fuel PAH are the main components of PAH emitted by the diesel fuel oils.

  5. Chemical characterization and toxicologic evaluation of airborne mixtures: inhalation toxicology of diesel fuel obscurant aerosol in Spargue-Dawley rats. Final report, phase 2, repeated exposures

    SciTech Connect

    Dalbey, W.; Lock, S., Schmoyer, R.

    1982-07-01

    A series of repeated exposures of rats to aerosolized diesel fuel was performed to help establish indices of potential toxicity resulting from aerosol exposure and the relative importance of duration of exposures, the frequence of exposures, and aerosol concentration in the induction of observed lesions. Body weight and food consumption were recorded on a weekly basis. Assays were performed on selected animals within 1-2 days after the last exposure or after 2 weeks without exposure. Endpoints included number and phagocytic activity of pulmonary free cells, pulmonary function tests, neurotoxicity assays, clinical chemistry, organ weights, and histopathology. Data were analyzed by analysis of variance. After exposure, the primary target organ was the lungs. Focal accumulations of pulmonary free cells were observed in the lung parenchyma, associated with thickening and hypercellularity of alveolar walls. The number of lavaged pulmonary free cells correlated well with histologic observations, remaining elevated after two weeks without exposure. Lung volumes were altered by exposure, including increased FRC, decreased TLC, and decreased VC. Carbon monoxide diffusing capacity was decreased in several exposed groups also. None of the more systemic changes observed were considered to be of biologic significance, even though the exposure conditions were considered to result in a maximum tolerated dose. Frequency of exposure was the dominant variable over the range of parameters used in this study, 3 exposures/wk being more deleterious than 1/week. Variation in duration of exposure appeared to have very little effect and a dose-response was often not apparent with differences in concentration. 12 references, 13 figures, 18 tables.

  6. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves

    NASA Astrophysics Data System (ADS)

    Hwang, Hee-Jae; Yook, Se-Jin; Ahn, Kang-Ho

    2011-12-01

    Soot particles emitted from vehicles are one of the major sources of air pollution in urban areas. In this study, five kinds of trees were selected as Pinus densiflora, Taxus cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba, and the removal of submicron (<1 μm) and ultrafine (<0.1 μm) soot particles by tree leaves was quantitatively compared in terms of deposition velocity. Soot particles were produced by a diffusion flame burner using acetylene as the fuel. The sizes of monodisperse soot particles classified with the Differential Mobility Analyzers (DMA) were 30, 55, 90, 150, 250, 400, and 600 nm. A deposition chamber was designed to simulate the omni-directional flow condition around the tree leaves. Deposition velocities onto the needle-leaf trees were higher than those onto the broadleaf trees. P. densiflora showed the greatest deposition velocity, followed by T. cuspidata, Platanus occidentalis, Zelkova serrata, and Ginkgo biloba. In addition, from the comparison of deposition velocity between two groups of Platanus occidentalis leaves, i.e. one group of leaves with front sides only and the other with back sides only, it was supposed in case of the broadleaf trees that the removal of airborne soot particles of submicron and ultrafine sizes could be affected by the surface roughness of tree leaves, i.e. the veins and other structures on the leaves.

  7. Mathematical Model For Deposition Of Soot

    NASA Technical Reports Server (NTRS)

    Makel, Darby B.

    1991-01-01

    Semiempirical mathematical model predicts deposition of soot in tubular gas generator in which hydrocarbon fuel burned in very-fuel-rich mixture with pure oxygen. Developed in response to concern over deposition of soot in gas generators and turbomachinery of rocket engines. Also of interest in terrestrial applications involving fuel-rich combustion or analogous process; e.g., purposeful deposition of soot to manufacture carbon black pigments.

  8. Soot formation in unstrained diffusion flames

    NASA Astrophysics Data System (ADS)

    Robert, Etienne; Olofsson, Nils-Erik; Johnsson, Jonathan; Bladh, Henrik; Bengtsson, Per-Erik

    2011-11-01

    The formation of soot particles has been investigated in CH4/O2 diffusion flames using a burner which allows the creation of a nearly unstrained planar reaction sheet. The sooting limits, soot volume fraction and particle size were measured as a function of bulk flow across the flame mixture strength and transport properties of the reactants. Mass spectrometry was used to measure the effective mixture composition close to the flame and Laser Induced Incandescence (LII)for the soot volume fraction and particle size. The parameter space was mapped as follows: Starting from a stable non-sooting baseline flame, the mixture strength was progressively increased by raising the fuel volume fraction while keeping other parameters constant (bulk flow across the flame, oxidant and inert composition). As the mixture strength was increased, the soot volume fraction and particle size increased up to a point where very big soot particle aggregates became visible to the naked eye on the flame side of the sooting layer. The exact mechanism by which these super aggregates arise is unknown but it is postulated that the absence of strain in the flow field and the thermophoretic effect allows soot particles to remain in a region of the burning chamber suitable for growth for an extended period of time.

  9. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    EPA Science Inventory

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  10. Structural group analysis for soot reduction tendency of oxygenated fuels

    SciTech Connect

    Pepiot-Desjardins, P.; Pitsch, H.; Malhotra, R.; Kirby, S.R.; Boehman, A.L.

    2008-07-15

    Oxygenated additives are known to reduce soot formation in diesel engines. Numerous studies, both experimental and numerical, have reported that the reduction of particulate emissions depends on the molecular structure of the additives. In this paper, a structural group contribution approach is proposed to interpret experimental observations on the effect of oxygenated additives on the sooting propensities of hydrocarbon fuels. The statistically based method makes it possible to distinguish between chemical effects caused by the presence of oxygenated groups in the fuel mixture and mere dilution of the original fuel by the additive. The analysis was carried out on several experimental databases encompassing both premixed and nonpremixed configurations that include a new extensive set of smoke point measurements for mixtures of a given fuel with several oxygenated molecules. The current approach unifies the conclusions on the relative efficiency of the various oxygenated functionalities such as alcohols, esters, ethers, and carbonyl groups and provides a potential explanation for the seemingly contradictory trends exhibited by some raw experimental data. (author)

  11. Soot formation during pyrolysis of aromatic hydrocarbons

    SciTech Connect

    Clary, D.W.

    1985-01-01

    A study combining experimental, empirical modeling, and detailed modeling techniques has been conducted to develop a better understanding of the chemical reactions involved in soot formation during the high-temperature pyrolysis of aromatic and other unsaturated hydrocarbons. The experiments were performed behind reflected shock waves in a conventional shock-tube with soot formation monitored via attenuation of a laser beam at 633 nm. Soot-formation measurements were conducted with toluene-argon and benzene-argon mixtures. Detailed kinetic models of soot formation were developed for pyrolyzing acetylene, butadiene, ethylene and benzene. The computational results indicate the importance of compact, fused polycyclic aromatic hydrocarbons as soot intermediates and the importance of the reactivation of these intermediates by hydrogen atoms to form aromatic radicals. The overshoot by hydrogen atoms of their equilibrium concentration provides a driving kinetic force for soot formation. The results with ethylene and butadiene indicate that acetylene is an important growth species for soot formation for these fuels. The benzene model suggests that reactions between aromatic species may be important for soot formation from aromatic fuels.

  12. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  13. T-Matrix Modeling of Linear Depolarization by Morphologically Complex Soot and Soot-Containing Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with groundbased, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  14. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  15. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust.

    PubMed

    Mauderly, J L; Bice, D E; Cheng, Y S; Gillett, N A; Henderson, R F; Pickrell, J A; Wolff, R K

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance. The elastase treatment resulted in pulmonary emphysema that was manifested by enlarged alveoli and alveolar ducts, and by ruptured alveolar septa. There was no accompanying inflammation and no

  16. Comparative Soot Diagnostics: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.

    1997-01-01

    The motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. The nonbuoyant structure of most flames of practical interest makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In the earliest missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was considered reasonable that the astronauts would rapidly detect any fire. The Skylab module, however, included approximately 20 UV-sensing fire detectors. The Space Shuttle has 9 particle-ionization smoke detectors in the mid-deck and flight deck and Spacelab has six additional particle-ionization smoke detectors. The designated detectors for the ISS are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISS call for two detectors in the open area of the module, and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from incipient and fully developed low-g fires, all three of these detector systems were designed based upon l-g test data and experience. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew-independent, fire detection grows significantly. To provide this level of protection, more knowledge is needed concerning low-gravity fire phenomena and, in particular, how they might be

  17. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The 0-g flame soot measurements reported in previous studies are extended by adding new 0-g data for different fuel flow rates and burner diameters. The new flame conditions allow more conclusive comparisons regarding the effect of characteristic flow residence times on soot field structure, the influence of fuel preheat on fuel pyrolysis rates near the flame centerline, and the premature cessation of soot growth along the soot annulus in 0-g when the fuel is preheated. The paper also reports on the implementation of thermophoretic soot sampling in a specific 0-g flame featuring burner exit velocities typical of buoyant flames and presents quantitative data on the radial variation of soot microstructure at a fixed height above the burner mouth.

  18. Oxidation kinetics and soot formation

    NASA Technical Reports Server (NTRS)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  19. Electrically heated particulate matter filter soot control system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  20. Soot Aerosol Properties in Laminar Soot-Emitting Microgravity Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Konsur, Bogdan; Megaridis, Constantine M.; Griffin, Devon W.

    1999-01-01

    The spatial distributions and morphological properties of the soot aerosol are examined experimentally in a series of 0-g laminar gas-jet nonpremixed flames. The methodology deploys round jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Full-field laser-light extinction is utilized to determine transient soot spatial distributions within the flames. Thermophoretic sampling is employed in conjunction with transmission electron microscopy to define soot microstructure within the soot-emitting 0-g flames. The microgravity tests indicate that the 0-g flames attain a quasi-steady state roughly 0.7 s after ignition, and sustain their annular structure even beyond their luminous flame tip. The measured peak soot volume fractions show a complex dependence on burner exit conditions, and decrease in a nonlinear fashion with decreasing characteristic flow residence times. Fuel preheat by approximately 140 K appears to accelerate the formation of soot near the flame axis via enhanced fuel pyrolysis rates. The increased soot presence caused by the elevated fuel injection temperatures triggers higher flame radiative losses, which may account for the premature suppression of soot growth observed along the annular region of preheated-fuel flames. Electron micrographs of soot aggregates collected in 0-g reveal the presence of soot precursor particles near the symmetry axis at midflame height, The observations also verify that soot primary particle sizes are nearly uniform among aggregates present at the same flame location, but vary considerably with radius at a fixed distance from the burner. The maximum primary size in 0-g is found to be by 40% larger than in 1-g, under the same burner exit conditions. Estimates of the number concentration of primary particles and surface area of soot particulate phase per unit volume of the combustion gases are also made for selected in-flame locations.

  1. Diesel oil

    MedlinePlus

    Various hydrocarbons ... Empyema Many of the most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to ... PA: Elsevier Saunders; 2016:chap 75. Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ...

  2. A MICRO-VARIABLE CIRCULAR ORIFICE (MVCO) FUEL INJECTOR WITH VARIABLE SPRAY ANGLES AND PATTERNS FOR REDUCING NOX EMISSIONS FROM DIESEL ENGINES - PHASE I

    EPA Science Inventory

    Diesel engines are widely used due to their high fuel efficiency. However, conventional diesel engines have high NOx and soot emissions. Selective catalytic reduction (SCR) for NOx reduction is less accepted by the construction industry due to complexity ...

  3. Conductivity for soot sensing: possibilities and limitations.

    PubMed

    Grob, Benedikt; Schmid, Johannes; Ivleva, Natalia P; Niessner, Reinhard

    2012-04-17

    In this study we summarize the possibilities and limitations of a conductometric measurement principle for soot sensing. The electrical conductivity of different carbon blacks (FW 200, lamp black 101, Printex 30, Printex U, Printex XE2, special black 4, and special black 6), spark discharge soot (GfG), and graphite powder was measured by a van der Pauw arrangement. Additionally the influence of inorganic admixtures on the conductivity of carbonaceous materials was proven to follow the percolation theory. Structural and oxidation characteristics obtained with Raman microspectroscopy and temperature programmed oxidation, respectively, were correlated with the electrical conductivity data. Moreover, a thermophoretic precipitator has been applied to deposit soot particles from the exhaust stream between interdigital electrodes. This combines a controlled and size independent particle collection method with the conductivity measurement principle. A test vehicle was equipped with the AVL Micro Soot Sensor (photoacoustic soot sensor) to prove the conductometric sensor principle with an independent and reliable technique. Our results demonstrate promising potential of the conductometric sensor for on-board particle diagnostic. Furthermore this sensor can be applied as a simple, rapid, and cheap analytical tool for characterization of soot structure. PMID:22455449

  4. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  5. Progress towards diesel combustion modeling

    SciTech Connect

    Rutland, C.J.; Ayoub, N.; Han, Z.

    1995-12-31

    Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG {kappa}-{var_epsilon} turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented. Model validation experiments have been performed using a single-cylinder heavy duty truck engine that features state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In addition to cylinder pressure, heat release, and emissions measurements, new combustion visualization experiments have also been performed using an endoscope system that takes the place of one of the exhaust valves. Modifications to the engine geometry for optical access were minimal, thus ensuring that the results represent the actual engine. The intake flow CFD modeling results show that the details of the intake flow process influence the engine performance. Comparisons with the measured engine cylinder pressure, heat release, soot and NOx emission data, and the combustion visualization flame images show that the CFD model results are generally in good agreement with the experiments. In particular, the model is able to correctly predict the soot-NOx trade-off trend as a function of injection timing. 44 refs., 21 figs., 6 tabs.

  6. A study of jet fuel sooting tendency using the threshold sooting index (TSI) model

    SciTech Connect

    Yang, Yi; Boehman, Andre L.; Santoro, Robert J.

    2007-04-15

    Fuel composition can have a significant effect on soot formation during gas turbine combustion. Consequently, this paper contains a comprehensive review of the relationship between fuel hydrocarbon composition and soot formation in gas turbine combustors. Two levels of correlation are identified. First, lumped fuel composition parameters such as hydrogen content and smoke point, which are conventionally used to represent fuel sooting tendency, are correlated with soot formation in practical combustors. Second, detailed fuel hydrocarbon composition is correlated with these lumped parameters. The two-level correlation makes it possible to predict soot formation in practical combustors from basic fuel composition data. Threshold sooting index (TSI), which correlates linearly with the ratio of fuel molecular weight and smoke point in a diffusion flame, is proposed as a new lumped parameter for sooting tendency correlation. It is found that the TSI model correlates excellently with hydrocarbon compositions over a wide range of fuel samples. Also, in predicting soot formation in actual combustors, the TSI model produces the best results overall in comparison with other previously reported correlating parameters, including hydrogen content, smoke point, and composite predictors containing more than one parameter. (author)

  7. Soot Deposit Properties in Practical Flames

    SciTech Connect

    Preciado, Ignacio; Eddings, Eric G.; Sarofim, Adel F.; Dinwiddie, Ralph Barton; Porter, Wallace D; Lance, Michael J

    2009-01-01

    Soot deposition from hydrocarbon flames was investigated in order to evaluate the evolution of the deposits during the transient process of heating an object that starts with a cold metal surface that is exposed to a flame. The study focused on the fire/metal surface interface and the critical issues associated with the specification of the thermal boundaries at this interface, which include the deposition of soot on the metal surface, the chemical and physical properties of the soot deposits and their subsequent effect on heat transfer to the metal surface. A laboratory-scale device (metallic plates attached to a water-cooled sampling probe) was designed for studying soot deposition in a laminar ethylene-air premixed flame. The metallic plates facilitate the evaluation of the deposition rates and deposit characteristics such as deposit thickness, bulk density, PAH content, deposit morphology, and thermal properties, under both water-cooled and uncooled conditions. Additionally, a non-intrusive Laser Flash Technique (in which the morphology of the deposit is not modified) was used to estimate experimental thermal conductivity values for soot deposits as a function of deposition temperature (water-cooled and uncooled experiments), location within the flame and chemical characteristics of the deposits. Important differences between water-cooled and uncooled surfaces were observed. Thermophoresis dominated the soot deposition process and enhanced higher deposition rates for the water-cooled experiments. Cooler surface temperatures resulted in the inclusion of increased amounts of condensable hydrocarbons in the soot deposit. The greater presence of condensable material promoted decreased deposit thicknesses, larger deposit densities, different deposit morphologies, and higher thermal conductivities.

  8. Droplet Combustion and Soot Formation in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1994-01-01

    One of the most complex processes involved in the combustion ot liquid fuels is the formation of soot. A well characterized flow field and simplified flame structure can improve considerably the understanding of soot formation processes. The simplest flame shape to analyze for a droplet is spherical with its associated one-dimensional flow field. It is a fundamental limit and the oldest and most often analyzed configuration of droplet combustion. Spherical symmetry in the droplet burning process will arise when there is no relative motion between the droplet and ambience or uneven heating around the droplet periphery, and buoyancy effects are negligible. The flame and droplet are then concentric with each other and there is no liquid circulation within the droplet. An understanding of the effect of soot on droplet combustion should therefore benefit from this simplified configuration. Soot formed during spherically symmetric droplet combustion, however, has only recently drawn attention and it appears to be one of the few aspects associated with droplet combustion which have not yet been thoroughly investigated. For this review, the broad subject of droplet combustion is narrowed considerably by restricting attention specifically to soot combined with spherically symmetric droplet burning processes that are promoted.

  9. Series of Laminar Soot Processes Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (189KB JPEG, 1350 x 1517 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300183.html.

  10. Aromatic site description of soot particles

    SciTech Connect

    Celnik, Matthew; Raj, Abhijeet; West, Richard; Patterson, Robert; Kraft, Markus

    2008-10-15

    A new, advanced soot particle model is developed that describes soot particles by their aromatic structure, including functional site descriptions and a detailed surface chemistry mechanism. A methodology is presented for the description of polyaromatic hydrocarbon (PAH) structures by their functional sites. The model is based on statistics that describe aromatic structural information in the form of easily computed correlations, which were generated using a kinetic Monte Carlo algorithm to study the growth of single PAH molecules. A comprehensive surface reaction mechanism is presented to describe the growth and desorption of aromatic rings on PAHs. The model is capable of simulating whole particle ensembles which allows bulk properties such as soot volume fraction and number density to be found, as well as joint particle size and surface area distributions. The model is compared to the literature-standard soot model [J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136] in a plug-flow reactor and is shown to predict well the experimental results of soot mass, average particle size, and particle size distributions at different flow times. Finally, the carbon/hydrogen ratio and the distribution of average PAH sizes in the ensemble, as predicted by the model, are discussed. (author)

  11. Scattering and radiative properties of complex soot and soot-containing particles

    NASA Astrophysics Data System (ADS)

    Liu, L.; Mishchenko, M. I.; Mackowski, D. W.; Dlugach, J.

    2012-12-01

    Tropospheric soot and soot containing aerosols often exhibit nonspherical overall shapes and complex morphologies. They can externally, semi-externally, and internally mix with other aerosol species. This poses a tremendous challenge in particle characterization, remote sensing, and global climate modeling studies. To address these challenges, we used the new numerically exact public-domain Fortran-90 code based on the superposition T-matrix method (STMM) and other theoretical models to analyze the potential effects of aggregation and heterogeneity on light scattering and absorption by morphologically complex soot containing particles. The parameters we computed include the whole scattering matrix elements, linear depolarization ratios, optical cross-sections, asymmetry parameters, and single scattering albedos. It is shown that the optical characteristics of soot and soot containing aerosols very much depend on particle sizes, compositions, and aerosol overall shapes. The soot particle configurations and heterogeneities can have a substantial effect that can result in a significant enhancement of extinction and absorption relative to those computed from the Lorenz-Mie theory. Meanwhile the model calculated information combined with in-situ and remote sensed data can be used to constrain soot particle shapes and sizes which are much needed in climate models.

  12. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  13. Soot precursor measurements in benzene and hexane diffusion flames

    SciTech Connect

    Kobayashi, Y.; Furuhata, T.; Amagai, K.; Arai, M.

    2008-08-15

    To clarify the mechanism of soot formation in diffusion flames of liquid fuels, measurements of soot and its precursors were carried out. Sooting diffusion flames formed by a small pool combustion equipment system were used for this purpose. Benzene and hexane were used as typical aromatic and paraffin fuels. A laser-induced fluorescence (LIF) method was used to obtain spatial distributions of polycyclic aromatic hydrocarbons (PAHs), which are considered as soot particles. Spatial distributions of soot in test flames were measured by a laser-induced incandescence (LII) method. Soot diameter was estimated from the temporal change of LII intensity. A region of transition from PAHs to soot was defined from the results of LIF and LII. Flame temperatures, PAH species, and soot diameters in this transition region were investigated for both benzene and hexane flames. The results show that though the flame structures of benzene and hexane were different, the temperature in the PAHs-soot transition region of the benzene flame was similar to that of the hexane flame. Furthermore, the relationship between the PAH concentrations measured by gas chromatography in both flames and the PAH distributions obtained from LIF are discussed. It was found that PAHs with smaller molecular mass, such as benzene and toluene, remained in both the PAHs-soot transition and sooting regions, and it is thought that molecules heavier than pyrene are the leading candidates for soot precursor formation. (author)

  14. Chemical composition of urban airborne particulate matter in Ulaanbaatar

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masataka; Matsui, Ichiro; Batdorj, Dashdondog; Jugder, Dulam; Mori, Ikuko; Shimizu, Atsushi; Sugimoto, Nobuo; Takahashi, Katsuyuki

    2011-10-01

    Atmospheric pollution caused by airborne particulate matter in the winter season in Ulaanbaatar, Mongolia is a very serious problem. However, there is a complete lack of scientific observation data to define the situation prior to any remediation. PM10 and PM2.5 average monthly values obtained by continuous monitoring showed the concentrations of particles of both size categories exceeded 100 μg m-3 during November to February (winter). PM10 particles were sampled with filters in January (i.e. during the heating period) and June (i.e.non-heating period) of 2008 in central Ulaanbaatar. To determine the composition of urban airborne particulate matter we analyzed a range of ionic components, multiple elements including heavy metals, and organic and inorganic carbon (soot). We also measured the stable carbon isotope ratio of the soot. Total carbon (sum of organic carbon and inorganic carbon) accounted for 47% of the mass of the PM10 during the heating period and 33% during the non-heating period, and was the largest component of urban airborne particulate matter in Ulaanbaatar. Stable isotope ratios (δ13C) of soot generated during the heating period (-23.4 ± 0.2‰) approximated the ratios for coal used in Ulaanbaatar (-21.3 to -24.4‰), while the ratios during the non-heating period (-27.1 ± 0.4‰) were clearly different from the coal values. In the heating period, a very high correlation was observed between soot and organic carbon, SO42-, NO3-, F-, Zn, As, and Pb, and we concluded that they were derived from coal combustion along with soot. In addition, the concentrations and their ratios relative to each other of Al, Fe, Ca, K, Na, Mg, and Mn hardly differed between the heating period and the non-heating period, and it was concluded that they were derived from soil dust.

  15. Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation

    SciTech Connect

    Akinyami, O C; Dec, J E; Durrett, R P; Flynn, P F; Hunter, G L; Loye, A O; Westbrook, C

    1999-02-01

    This paper proposes a structure for the diesel combustion process based on a combination of previously published and new results. Processes are analyzed with proven chemical kinetic models and validated with data from production-like direct injection diesel engines. The analysis provides new insight into the ignition and particulate formation processes, which combined with laser diagnostics, delineates the two-stage nature of combustion in diesel engines. Data are presented to quantify events occurring during the ignition and initial combustion processes that form soot precursors. A framework is also proposed for understanding the heat release and emission formation processes.

  16. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  17. The many faces of soot: characterization of soot nanoparticles produced by engines.

    PubMed

    Niessner, Reinhard

    2014-11-10

    Soot nanoparticles produced by engines constitute a threat to human health. For the analytical chemist, soot is a hard nut to crack as the released particles undergo rapid changes in their size, shape, and number concentration. The complete characterization of soot will be essential to meet future low-emission standards. Besides measuring the light extinction, modern analytical chemistry can determine a variety of less-known effects, such as condensation properties, immune response in vertebrates, and impact on the cardiovascular function of a beating heart. Photon emission and in particular Raman spectroscopy provides information on the nanocrystallinity, while thermoelectron emission allows the number of electrical particles to be counted. Even the "simple" combustion of soot nanoparticles offers potential for the characterization of the particles. PMID:25196472

  18. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  19. Soot profiles in boundary-layer flames

    SciTech Connect

    Beier, R.A.; Pagni, P.J.

    1981-12-01

    Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.

  20. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    DOEpatents

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  1. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  2. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  3. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  4. Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation.

    PubMed

    Mauderly, J L; Jones, R K; Griffith, W C; Henderson, R F; McClellan, R O

    1987-08-01

    Male and female F344 rats were exposed 7 hr/day, 5 day/week for up to 30 months to automotive diesel engine exhaust at soot concentrations of 0.35, 3.5, or 7.0 mg/m3 or were sham-exposed to clean air. Rats were terminated at 6-month intervals to measure lung burdens of diesel soot and for histopathology. Other rats either died or were terminated after 30 months of exposure. Lungs were fixed, sectioned into 3-mm slices, and examined by a dissecting microscope to detect tumors. Lesions were stained and examined by light microscopy. Survival and body weight were unaffected by exposure. Focal fibrotic and proliferative lung disease accompanied a progressive accumulation of soot in the lung. The prevalence of lung tumors was significantly increased at the high (13%) and medium (4%) dose levels above the control prevalence (1%). Four tumor types, all of epithelial origin, were observed: adenoma, adenocarcinoma, squamous cyst, and squamous cell carcinoma. Logistic regression modeling demonstrated a significant relationship between tumor prevalence and both exposure concentration and soot lung burden. These results demonstrate that diesel exhaust, inhaled chronically at a high concentration, is a pulmonary carcinogen in the rat. PMID:2443412

  5. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones

  6. Carbon stardust: From soot to diamonds

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.

    1990-01-01

    The formation of carbon dust in the outflow from stars and the subsequent evolution of this so called stardust in the interstellar medium is reviewed. The chemical and physical processes that play a role in carbon stardust formation are very similar to those occurring in sooting flames. Based upon extensive laboratory studies of the latter, the structure and physical and chemical properties of carbon soot are reviewed and possible chemical pathways towards carbon stardust are discussed. Grain-grain collisions behind strong interstellar shocks provide the high pressures required to transform graphite and amorphous carbon grains into diamond. This process is examined and the properties of shock-synthesized diamonds are reviewed. Finally, the interrelationship between carbon stardust and carbonaceous meteorites is briefly discussed.

  7. The optical properties of hygroscopic soot aggregates with water coating

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan

    2014-05-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as scattering matrices, the cross sections of extinction, absorption and scattering, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimensions of the soot aggregates, as well as different size of water coating for these concentric spherical monomers. The results have shown that SSA, cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5, at 0.670μm) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the morphological features, such as the

  8. Structure and Early Soot Oxidation Properties of Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot is an important unsolved problem of combustion science because it is present in most hydrocarbon-fueled flames and current understanding of the reactive and physical properties of soot in flame environments is limited. This lack of understanding affects progress toward developing reliable predictions of flame radiation properties, reliable predictions of flame pollutant emission properties and reliable methods of computational combustion, among others. Motivated by these observations, the present investigation extended past studies of soot formation in this laboratory, to consider soot oxidation in laminar diffusion flames using similar methods. Early work showed that O2 was responsible for soot oxidation in high temperature O2-rich environments. Subsequent work in high temperature flame environments having small O2 concentrations, however, showed that soot oxidation rates substantially exceeded estimates based on the classical O2 oxidation rates of Nagle and Strickland-Constable and suggests that radicals such as O and OH might be strong contributors to soot oxidation for such conditions. Neoh et al. subsequently made observations in premixed flames, supported by later work, that showed that OH was responsible for soot oxidation at these conditions with a very reasonable collision efficiency of 0.13. Subsequent studies in diffusion flames, however, were not in agreement with the premixed flame studies: they agreed that OH played a dominant role in soot oxidation in flames, but found collision efficiencies that varied with flame conditions and were not in good agreement with each other or with Neoh et al. One explanation for these discrepancies is that optical scattering and extinction properties were used to infer soot structure properties for the studies that have not been very successful for representing the optical properties of soot. Whatever the source of the problem, however, these differences among observations of soot oxidation in premixed and

  9. Sooting characteristics of surrogates for jet fuels

    SciTech Connect

    Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A.; Lee, S.-Y.

    2010-06-15

    Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

  10. Soot and radiation in combusting boundary layers

    SciTech Connect

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  11. Production Of Fullerenic Soot In Flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  12. Influence of preexisting pulmonary emphysema on susceptibility of rats to inhaled diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Griffith, W.C.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. )

    1990-05-01

    The susceptibilities of normal rats and rats with preexisting pulmonary emphysema to chronically inhaled diesel exhaust were compared. Rats were exposed 7 h/day, 5 days/wk for 24 months to diesel exhaust at 3.5 mg soot/m3, or to clean air as controls. Emphysema was induced in one-half of the rats by intratracheal instillation of elastase 6 wk before exhaust exposure. Measurements included lung burdens of diesel soot, respiratory function, bronchoalveolar lavage, clearance of radiolabeled particles, pulmonary immune responses, lung collagen, excised lung weight and volume, histopathology, and mean linear intercept of terminal air spaces. Parameters indicated by analysis of variance to exhibit significant interactions between the influences of emphysema and exhaust were examined to determine if the effects were more than additive (indicating increased susceptibility). Although 14 of 63 parameters demonstrated emphysema-exhaust interactions, none indicated increased susceptibility. Less soot accumulated in lungs of emphysematous rats than in those of nonemphysematous rats, and the reduced accumulation had a sparing effect in the emphysematous rats. The results did not support the hypothesis that emphysematous lungs are more susceptible than are normal lungs to chronic exposure to high levels of diesel exhaust. The superimposition of effects of emphysema and exhaust, however, might still warrant special concern for heavy exposures of emphysematous subjects.

  13. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  14. Comparative Soot Diagnostics: 1 Year Report

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, DeVon W.; Gard, Melissa Y.

    1998-01-01

    The motivation for the Comparative Soot Diagnostics (CSD) experiment lies in the broad practical importance of understanding combustion generated particulate. Depending upon the circumstances, particulate matter can affect the durability and performance of combustion equipment, can be a pollutant, can be used to detect fires and, in the form of soot, can be the dominant source of radiant energy from flames. Bright sooty fires are desirable for efficient energy extraction in furnaces and power equipment. In contrast, soot-enhanced radiation is undesirable in many propulsion systems (e.g. jet engines). The non-buoyant structure of most flames of practical interest (turbulent) makes understanding of soot processes in low gravity flames important to our ability to predict fire behavior on earth. These studies also have direct applications to fire safety in human-crew spacecraft, since smoke is the indicator used for automated detection in current spacecraft. In addition, recent tests conducted on MIR showed that a candle in a truly quiescent spacecraft environment can burn for tens of minutes. Consequently, this test and many earlier tests have demonstrated that fires in spacecraft can be considered a credible risk. In anticipation of this risk, NASA has included fire detectors on Skylab, smoke detectors on the Space Shuttle (STS), and smoke detectors in the design for the International Space Station (ISS). In the CSD experiment, these smoke detectors were tested using, quasi-steady, low-gravity, particulate generating materials. Samples of the particulate were also obtained from these low-gravity sources. This experiment provides the first such measurements aimed toward understanding of soot processes here on earth and for the testing and design of advanced spacecraft smoke detection systems. This paper describes the operation and preliminary results of the CSD experiment which was was conducted in the Middeck Glovebox Facility (MGBX) on USMP-3. The objectives of CSD

  15. Soot Formation in Freely-Propagating Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  16. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  17. 18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS, AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  18. Atmospheric Aging and Its Impacts on Physical Properties of Soot Aerosols: Results from the 2009 SHARP/SOOT Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Khalizov, A. F.; Zheng, J.; Reed, C. C.; Collins, D. R.; Olaguer, E. P.

    2009-12-01

    Atmospheric aerosols impact the Earth energy balance directly by scattering solar radiation back to space and indirectly by changing the albedo, frequency, and lifetime of clouds. Carbon soot (or black carbon) produced from incomplete combustion of fossil fuels and biomass burning represents a major component of primary aerosols. Because of high absorption cross-sections over a broad range of the electromagnetic spectra, black carbon contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. In areas identified as aerosol hotspots, which include many megacities, solar heating by soot-containing aerosols is roughly comparable to heating due to greenhouse gases. In addition, light absorbing soot aerosols may reduce photolysis rates at the surface level, producing a noticeable impact on photochemistry. Enhanced light absorption and scattering by soot can stabilize the atmosphere, retarding vertical transport and exacerbating accumulation of gaseous and particulate matter (PM) pollutants within the planetary boundary layer. Less surface heating and atmospheric stabilization may decrease formation of clouds, and warming in the atmosphere can evaporate existing cloud droplets by lowering relative humidity. Furthermore, soot-containing aerosols represent a major type of PM that has adverse effects on human health. When first emitted, soot particles are low-density aggregates of loosely connected primary spherules. Freshly emitted soot particles are typically hydrophobic, but may become cloud condensation nuclei (CCN) during atmospheric aging by acquiring hydrophilic coatings. Hygroscopic soot particles, being efficient CCN, can exert indirect forcing on climate. In this talk, results will be presented on measurements of soot properties during the 2009 SHARP/SOOT Campaign. Ambient aerosols and fresh soot particles injected into a captured air chamber were monitored to

  19. Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

    SciTech Connect

    Curran, H J; Fisher, E M; Glaude, P-A; Marinov, N M; Pitz, W J; Westbrook, C K; Flynn, P F; Durrett, R P; zur Loye, A O; Akinyemi, O C; Dryer, F L

    2000-01-11

    Emission standards for diesel engines in vehicles have been steadily reduced in recent years, and a great deal of research and development effort has been focused on reducing particulate and nitrogen oxide emissions. One promising approach to reducing emissions involves the addition of oxygen to the fuel, generally by adding an oxygenated compound to the normal diesel fuel. Miyamoto et al. [1] showed experimentally that particulate levels can be significantly reduced by adding oxygenated species to the fuel. They found the Bosch smoke number (a measure of the particulate or soot levels in diesel exhaust) falls from about 55% for conventional diesel fuel to less than 1% when the oxygen content of the fuel is above about 25% by mass, as shown in Figure 1. It has been well established that addition of oxygenates to automotive fuel, including both diesel fuel as well as gasoline, reduces NOx and CO emissions by reducing flame temperatures. This is the basis for addition of oxygenates to produce reformulated gasoline in selected portions of the country. Of course, this is also accompanied by a slight reduction in fuel economy. A new overall picture of diesel combustion has been developed by Dec [2], in which laser diagnostic studies identified stages in diesel combustion that had not previously been recognized. These stages are summarized in Figure 2. The evolution of the diesel spray is shown, starting as a liquid jet that vaporizes and entrains hot air from the combustion chamber. This relatively steady process continues as long as fuel is being injected. In particular, Dec showed that the fuel spray vaporizes and mixes with air and products of earlier combustion to provide a region in which a gas phase, premixed fuel-rich ignition and burn occurs. The products of this ignition are then observed experimentally to lead rapidly to formation of soot particles, which subsequently are consumed in a diffusion flame. Recently, Flynn et al. [3] used a chemical kinetic and

  20. Understanding soot particle size evolution in laminar ethylene/air diffusion flames using novel soot coalescence models

    NASA Astrophysics Data System (ADS)

    Veshkini, Armin; Dworkin, Seth B.; Thomson, Murray J.

    2016-07-01

    Two coalescence models based on different merging mechanisms are introduced. The effects of the soot coalescence process on soot particle diameter predictions are studied using a detailed sectional aerosol dynamic model. The models are applied to a laminar ethylene/air diffusion flame, and comparisons are made with experimental data to validate the models. The implementation of coalescence models significantly improves the agreement of prediction of particle diameters with the experimental data. Sensitivity of the soot prediction to the coalescence parameters is analysed. Finally, an update to the coalescence model based on experimental observations of soot particles in the flame oxidation regions has been introduced to improve its predicting capabilities.

  1. Structure and Soot Formation Properties of Laminar Flames

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Faeth, G. M.

    2001-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science for several reasons: soot emissions are responsible for more deaths than any other combustion-generated pollutant, thermal loads due to continuum radiation from soot limit the durability of combustors, thermal radiation from soot is mainly responsible for the growth and spread of unwanted fires, carbon monoxide emissions associated with soot emissions are responsible for most fire deaths, and limited understanding of soot processes in flames is a major impediment to the development of computational combustion. Motivated by these observations, soot processes within laminar premixed and nonpremixed (diffusion) flames are being studied during this investigation. The study is limited to laminar flames due to their experimental and computational tractability, noting the relevance of these results to practical flames through laminar flamelet concepts. Nonbuoyant flames are emphasized because buoyancy affects soot processes in laminar diffusion flames whereas effects of buoyancy are small for most practical flames. This study involves both ground- and space-based experiments, however, the following discussion will be limited to ground-based experiments because no space-based experiments were carried out during the report period. The objective of this work was to complete measurements in both premixed and nonpremixed flames in order to gain a better understanding of the structure of the soot-containing region and processes of soot nucleation and surface growth in these environments, with the latter information to be used to develop reliable ways of predicting soot properties in practical flames. The present discussion is brief, more details about the portions of the investigation considered here can be found in refs. 8-13.

  2. An Analysis of Direct-injection spark-ignition (DISI) soot morphology

    SciTech Connect

    Barone, Teresa L; Storey, John Morse; Youngquist, Adam D; Szybist, James P

    2012-01-01

    We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing.

  3. Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry.

    PubMed

    Happold, Joachim; Grotheer, Horst-Henning; Aigner, Manfred

    2007-01-01

    Samples were drawn from sooting premixed low-pressure ethylene oxygen flames and investigated through photoionization mass spectrometry using either KrF or ArF lasers as the radiation source. With the former, mass spectra were obtained as described in the literature and characterized through a series of signal groups, one for each C-number and extending to about m/z 1000, assigned as a PAH series. When the ArF laser was used the same series was observed with a somewhat higher sensitivity. In addition, a new series was observed overlaid on the PAH series and starting at about m/z 680. The new series exhibited abundant ions and it completely dominated the spectrum beyond m/z 1000. This series was identified as being the spectrum of soot precursor particles. Through measurement of the ionization order it was concluded that at least two photons are needed for ionization of PAHs whereas the particles need only one photon. Consequently, they can be measured with high sensitivity when an ArF laser is used as the radiation source. Furthermore, the discrimination of soot precursor molecules and soot precursor particles becomes possible through photoionization and this enables an improved understanding of the mass spectra. This should allow a particle growth mechanism to be deduced in the near future. PMID:17342787

  4. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  5. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  6. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  7. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    SciTech Connect

    Dubey, M; Springston, S; Koontz, A; Aiken, A

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  8. Aromatics oxidation and soot formation in flames

    SciTech Connect

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  9. Black soot and the survival of Tibetan glaciers.

    PubMed

    Xu, Baiqing; Cao, Junji; Hansen, James; Yao, Tandong; Joswia, Daniel R; Wang, Ninglian; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei; Liu, Xianqin; He, Jianqiao

    2009-12-29

    We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. PMID:19996173

  10. Black soot and the survival of Tibetan glaciers

    PubMed Central

    Xu, Baiqing; Cao, Junji; Hansen, James; Yao, Tandong; Joswia, Daniel R.; Wang, Ninglian; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei; Liu, Xianqin; He, Jianqiao

    2009-01-01

    We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. PMID:19996173

  11. RELATIONSHIP BETWEEN PCB PLANERITY AND INTERACTIONS WITH SOOT CARBON

    EPA Science Inventory

    There is increasing interest in the role of soot carbon in the strong partitioning of organic contaminants to sediments. Primary interest has been focused on PAHs which have been shown to be affected by the presence of soot carbon in both their geochemical and bioavailability beh...

  12. Fluxes of Soot Carbon to South Atlantic Sediments

    EPA Science Inventory

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ 13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04–0.17% dry weight), but ...

  13. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

  14. Using Laser-Induced Incandescence To Measure Soot in Exhaust

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.; Sankar, Subramanian V.

    2005-01-01

    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable.

  15. Ice nucleation efficiency of soot from biomass combustion

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; O'Sullivan, D.; Baeza-Romero, M. T.; Plane, J. C.

    2013-05-01

    Do Soot aerosols in the atmosphere indirectly influence the radiative budget of the Earth by modifying cloud properties, either by acting as cloud condensation nuclei (CCN) or as ice nuclei (IN). The ice nucleation activity of soot remains poorly quantified and there is a need to parameterise its impact for use in cloud-aerosol models. Here, we investigate the ice nucleation activity of eugenol soot in the immersion mode at conditions relevant to mixed-phase clouds. Eugenol is used as a proxy for a biomass combustion source. The efficiency of soot as an IN was quantified using droplet freezing techniques with droplet volumes ranging from nanolitre (˜100 μm diameter) to microliter (˜1 mm diameter). We show that soot nucleates ice in our experiments at temperatures up to -14°C, although the efficiency with which it does so is less than for mineral dust on a per surface area basis. An estimation of the IN number concentration that could result from our eugenol soot showed that, on a global average basis, IN from soot is secondary in importance to mineral dust below about -20°C. However, it may be important as IN in some locations which are deficient in dust, but rich in soot particles. We conclude that its overall impact can be significant considering its relative regional and global abundance.

  16. Evaluation of catalyzed and electrically heated filters for removal of particulate emissions from diesel-A- and JP-8-fueled engines.

    PubMed

    Kelly, Kerry E; Wagner, David A; Lighty, JoAnn S; Sarofim, Adel F; Bretecher, Brad; Holden, Bruce; Helgeson, Norm; Sahay, Keshav; Nardi, Zack

    2004-01-01

    In-service diesel engines are a significant source of particulate matter (PM) emissions, and they have been subjected to increasingly strict emissions standards. Consequently, the wide-scale use of some type of particulate filter is expected. This study evaluated the effect of an Engelhard catalyzed soot filter (CSF) and a Rypos electrically heated soot filter on the emissions from in-service diesel engines in terms of PM mass, black carbon concentration, particle-bound polycyclic aromatic hydrocarbon concentration, and size distribution. Both filters capture PM. The CSF relies on the engine's exhaust to reach the catalyst regeneration temperature and oxidize soot, whereas the electrically heated filter contains a heating element to oxidize soot. The filters were installed on several military diesel engines. Particle concentrations and compositions were measured before and after installation of the filter and again after several months of operation. Generally, the CSF removed at least 90% of total PM, and the removal efficiency improved or remained constant after several months of operation. In contrast, the electrical filters removed 44-69% of PM mass. In addition to evaluating the soot filters, the sampling team also compared the results of several real-time particle measurement instruments to traditional filter measurements of total mass. PMID:14871016

  17. New concept for soot removal from a syngas mixture

    NASA Astrophysics Data System (ADS)

    Raimondi, A.; Fino, D.; Saracco, G.

    A new concept for soot removal from inside a syngas environment has been studied. Particulate emissions are retained in a soot trap downstream from a thermal partial oxidation (TPOX) reformer, while the syngas atmosphere itself is utilized as a gasification agent to achieve continuous and passive trap regeneration. This work analyses the performances of the loading and the regenerating phases of a wall flow soot trap in a syngas environment in an ad hoc developed test rig. A balance point between filtered and removed soot was actually reached at trap temperatures in the 800-1000 °C range with soot abatement efficiencies above 95 wt%. The particulate is obtained from a TPOX reactor operating in very rich fuel conditions, using methane as fuel. The final application of the reactor and trap assembly is a micro CHP system, based on an SOFC fed by a TPOX reformer. However, application to larger contexts (e.g. biomass gasification plants) can be envisaged.

  18. Liquid fuel reformer development: Autothermal reforming of Diesel fuel

    SciTech Connect

    Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

    2000-07-24

    Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

  19. An Investigation into the Effect of Hydrodynamic Cavitation on Diesel using Optical Extinction

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Fatmi, Z.; Kuti, O.; Price, R.

    2015-12-01

    A conventional diesel and paraffinic-rich model diesel fuel were subjected to sustained cavitation in a custom-built high-pressure recirculation flow rig. Changes to the spectral extinction coefficient at 405 nm were measured using a simple optical arrangement. The spectral extinction coefficient at 405 nm for the conventional diesel sample was observed to increase to a maximum value and then asymptotically decrease to a steady-state value, while that for the paraffinic-rich model diesel was observed to progressively decrease. It is suggested that this is caused by the sonochemical pyrolysis of mono-aromatics to form primary soot-like carbonaceous particles, which then coagulate to form larger particles, which are then trapped by the filter, leading to a steady-state spectral absorbance.

  20. Diesel Vehicle Maintenance Competencies.

    ERIC Educational Resources Information Center

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  1. The effects of sooting in droplet combustion

    NASA Technical Reports Server (NTRS)

    Lee, Kyeong-Ook; Jensen, Kirk; Choi, Mun Young

    1995-01-01

    The study of the burning of a single droplet is an ideal problem from which to gain fundamental understanding of diffusion flame characteristics. Droplet combustion is a complex physico-chemical process that involves a chemically-reacting two-phase flow with phase changes and yet simple experiments and analysis can be used to attain important insights into the burning rate, flame dynamics, kinetic extinction and disruption processes. It is a subject that has been actively studied for the past 40 years with most of the fundamental experiments being performed under reduced-gravity conditions for direct comparisons with theoretical/computational analyses that invoke spherical symmetry assumptions. In the earlier studies, the effects of sooting on the overall burning characteristics were not considered. However, recent microgravity investigations performed at the NASA-LeRC droptowers (Droplet Combustion Experiment) and others indicate that effects of soot and sootcloud formation may be significant during the lifetime of the droplet and therefore must be included in the analysis.

  2. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  3. A study on the human ability to detect soot deposition onto works of art

    SciTech Connect

    Bellan, L.M.; Salmon, L.G.; Cass, G.R.

    2000-05-15

    Works of art can become soiled due to the deposition of airborne black soot particles within museums and art galleries. The soot particle deposition rates are already known for many environments, but knowing the levels of carbon particle coverage at which humans can detect image darkening is also important. Therefore, in this work, human subjects have been tested to determine their ability to detect soiling by black carbon particles deposited onto specially prepared samples having colored backgrounds. The results show that certain observers are able to detect that a sample is becoming soiled once surface coverage by black carbon particles has reached 2.4% if the soiled samples and clean samples are placed directly adjacent to each other, producing a sharp dividing line (an ``edge-to-edge'' comparison). Observers can detect the presence of soiling with greater than 90% accuracy during an edge-to-edge comparison on most backgrounds when soiling levels reach approximately 3.6% surface coverage by black particles. If the comparison between soiled and clean samples must be made with samples that are separated from each other by a neutral gray area, soiling is only detected with 100% accuracy once coverage by black particles has reached 12.0% surface coverage. These results show that a greater accumulation of black carbon than was previously thought is required to produce a visibly soiled surface.

  4. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial

  5. Diesel emissions in Vienna

    NASA Astrophysics Data System (ADS)

    Horvath, H.; Kreiner, I.; Norek, C.; Preining, O.; Georgi, B.

    The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult. A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m -3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012-0.07 g g -1 of collected dust. A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m -3. This value increases by 5.5 μg m -3 per 500 diesel vehicles h -1 passing near the sampling location. The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily

  6. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  7. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  8. Particulate Emissions from the Combustion of Diesel Fuel with a Fuel-Borne Nanoparticulate Cerium Catalyst

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Weinstein, J. P.; Krantz, T.; King, C.

    2013-12-01

    To address the adverse impacts on health and climate from the use of diesel-fueled vehicles, a number of technological solutions have been developed for reducing diesel soot emissions and to improve fuel economy. One such solution is the use fuel-borne metal oxide catalysts. Of current interest are commercially-available fuel additives consisting of nanoparticulate cerium oxide (CeO2). In response to the possible use of CeO2-containing fuels in on-road vehicles in the U.S., the Environmental Protection Agency is conducting research to address the potential toxicity and environmental effects of particulate CeO2 emitted with diesel soot. In this study, emissions from a diesel-fueled electric generator were size-segregated on polished silicon wafers in a nanoparticle cascade impactor. The diesel fuel contained 10 ppm Ce by weight in the form of crystalline CeO2 nanoparticles 4 nm to 7.5 nm in size. Primary CeO2 nanoparticles were observed in the diesel emissions as well as CeO2 aggregates encompassing a broad range of sizes up to at least 200 nm. We report the characterization of individual particles from the size-resolved samples with focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy. Results show a dependency between the impactor size range and CeO2 agglomeration state: in the larger size fractions of the impactor (e.g., 560 nm to 1000 nm) CeO2 nanoparticles were predominantly attached to soot particles. In the smaller size fractions of the impactor (e.g., 100 nm to 320 nm), CeO2 aggregates tended to be larger and unattached to soot. The result is important because the deposition of CeO2 nanoparticles attached to soot particles in the lung or on environmental surfaces such as plant tissue will likely present different consequences than the deposition of unagglomerated CeO2 particles. Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described

  9. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 μm) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 μm, exceptionally 13 μm), rarely <0.5 μm, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 μm in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere. PMID:24274188

  10. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels

    NASA Astrophysics Data System (ADS)

    Wu, Fujia; Wang, Jianxin; Chen, Wenmiao; Shuai, Shijin

    As an alternative and renewable fuel, biodiesel can effectively reduce diesel engine emissions, especially particulate matter and dry soot. However, the biodiesel effects on emissions may vary as the source fuel changes. In this paper, the performance of five methyl esters with different sources was studied: cottonseed methyl ester (CME), soybean methyl ester (SME), rapeseed methyl ester (RME), palm oil methyl ester (PME) and waste cooking oil methyl ester (WME). Total particulate matter (PM), dry soot (DS), non-soot fraction (NSF), nitrogen oxide (NO x), unburned hydrocarbon (HC), and carbon monoxide (CO) were investigated on a Cummins ISBe6 Euro III diesel engine and compared with a baseline diesel fuel. Results show that using different methyl esters results in large PM reductions ranging from 53% to 69%, which include the DS reduction ranging from 79% to 83%. Both oxygen content and viscosity could influence the DS emission. Higher oxygen content leads to less DS at high load while lower viscosity results in less DS at low load. NSF decreases consistently as cetane number increases except for PME. The cetane number could be responsible for the large NSF difference between different methyl esters.

  11. Modification of soot by volatile species in an urban atmosphere.

    PubMed

    Shi, Zongbo; Zhang, Daizhou; Ji, Hezhe; Hasegawa, Shuichi; Hayashi, Masahiro

    2008-01-15

    Aerosol samples in the urban atmosphere of Kumamoto (32 degrees 48'N, 134 degrees 45'E) in southwestern Japan were collected onto aluminum foil strips. Parts of the samples were heated to 550 degrees C in pure helium gas, and oxygen (2%)-helium (98%) mixture gas. Particles in unheated and heated parts were characterized individually by their morphology and elemental composition using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. There were mainly two types of soot-containing particles according to the morphology: chain-like and sub-round. Chain-like particles were likely young soot particles because such particles in heated specimens showed similar morphology to those in unheated specimen. In contrast, the sub-round particles were composed of volatile species encapsulated with soot. The heating caused partial evaporation of such particles, and the soot inclusions could be identified only after the heating. The volatile species frequently contained sulfur compounds, but sulfur was not detected in the residues, suggesting that the volatile species were mainly produced on soot particles in the atmosphere. The sub-round soot-containing particles were approximately 3 times larger in diameter than the inclusions. These results suggest that soot particles could be substantially modified in size and composition by volatile species in the urban atmosphere. PMID:17897704

  12. Cermet Filters To Reduce Diesel Engine Emissions

    SciTech Connect

    Kong, Peter

    2001-08-05

    Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon

  13. Modelling the internal structure of nascent soot particles

    SciTech Connect

    Totton, Tim S.; Sander, Markus; Kraft, Markus; Chakrabarti, Dwaipayan; Wales, David J.; Misquitta, Alston J.

    2010-05-15

    In this paper we present studies of clusters assembled from polycyclic aromatic hydrocarbon (PAH) molecules similar in size to small soot particles. The clusters studied were comprised of coronene (C{sub 24}H{sub 12}) or pyrene (C{sub 16}H{sub 10}) molecules and represent the types of soot precursor molecule typically found in flame environments. A stochastic 'basin-hopping' global optimisation scheme was used to locate low-lying local minima on the potential energy surface of the molecular clusters. TEM-style projections of the resulting geometries show similarities with those observed experimentally in TEM images of soot particles. The mass densities of these clusters have also been calculated and are lower than bulk values of the pure crystalline PAH structures. They are also significantly lower than the standard value of 1.8 g/cm{sup 3} used in our soot models. Consequently we have varied the mass density between 1.0 g/cm{sup 3} and 1.8 g/cm{sup 3} to examine the effects of varying soot density on our soot model and observed how the shape of the particle size distribution changes. Based on similarities between nascent soot particles and PAH clusters a more accurate soot density is likely to be significantly lower than 1.8 g/cm{sup 3}. As such, for modelling purposes, we recommend that the density of nascent soot should be taken to be the value obtained for our coronene cluster of 1.12 g/cm{sup 3}. (author)

  14. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro- and nano-scales

    SciTech Connect

    Liati, Anthi; Dimopoulos Eggenschwiler, Panayotis

    2010-09-15

    Multi-scale analytical investigations of particulate matter (soot and ash) of two loaded diesel particulate filters (DPF) from (a) a truck (DPF1) and (b) a passenger car (DPF2) reveal the following: in DPF1 (without fuel-borne additives), soot aggregates form an approximately 130-270 {mu}m thick, homogeneous porous cake with pronounced orientation. Soot aggregates consist of 15-30 nm large individual particles exhibiting relatively mature internal nanostructures, however, far from being graphite. Ash aggregates largely accumulate at the outlet part of DPF1, while minor amounts are deposited directly on the channel walls all along the filter length. They consist of crystalline phases with individual particles of sizes down to the nanoscale range. Chemically, the ash consists mainly of Mg, S, Ca, Zn and P, elements encountered in lubricating oil additives. In the passenger car DPF2 (with fuel-borne additives), soot aggregates form an approximately 200-500 {mu}m thick, inhomogeneous porous cake consisting of several superposed layers corresponding to different soot generations. The largest part of the soot cake is composed of unburned, oriented soot aggregates left behind despite repeated regenerations, while a small part constitutes a loose layer with randomly oriented aggregates, which was deposited last and has not seen any regeneration. Fe-oxide particles of micro- to nano-scale sizes, originating from the fuel-borne additive, are often dispersed within the part of the soot cake composed of the unburned soot leftovers. The individual soot nanoparticles in DPF2 are approximately 15-40 nm large and generally less mature than in the truck DPF1. The presence of soot leftovers in DPF2 indicates that the addition of fuel-borne material does not fully compensate for the temperatures needed for complete soot removal. Ash in DPF2 is filling up more than half of the filter volume (at the downstream part) and is dominated by Fe-oxide aggregates, due to the Fe-based fuel

  15. LES study of intermittency in soot formation in a model aircraft combustor

    NASA Astrophysics Data System (ADS)

    Koo, Heeseok; Raman, Venkat; Mueller, Michael; Geigle, Klaus Peter

    2015-11-01

    Intermittent soot formation is one of the modeling challenges that prevent accurate predictions of soot concentration in a turbulent reacting flow. Due to the highly unsteady and irregular sooting behavior, formation of soot is acutely sensitive to the flow and gas phase history. Therefore, we need to accurately capture interactions between soot chemistry, particle dynamics, and turbulent flame as well as the turbulent reacting flow. In this study, large eddy simulation (LES) is used to understand the model sensitivity to the soot prediction. Hybrid method of moment (HMOM) soot model is used that accommodates detailed process of soot particle and soot precursor evolution. Gas phase chemistry uses flamelet progress variable approach with an additional enthalpy dimension to include soot radiation effect. The developed numerical model is tested on the DLR swirl combustor that emulates the rich-quench-lean (RQL) configuration using secondary oxidation air injection.

  16. Finding synergies in fuels properties for the design of renewable fuels--hydroxylated biodiesel effects on butanol-diesel blends.

    PubMed

    Sukjit, E; Herreros, J M; Piaszyk, J; Dearn, K D; Tsolakis, A

    2013-04-01

    This article describes the effects of hydroxylated biodiesel (castor oil methyl ester - COME) on the properties, combustion, and emissions of butanol-diesel blends used within compression ignition engines. The study was conducted to investigate the influence of COME as a means of increasing the butanol concentration in a stable butanol-diesel blend. Tests were compared with baseline experiments using rapeseed methyl esters (RME). A clear benefit in terms of the trade-off between NOX and soot emissions with respect to ULSD and biodiesel-diesel blends with the same oxygen content was obtained from the combination of biodiesel and butanol, while there was no penalty in regulated gaseous carbonaceous emissions. From the comparison between the biodiesel fuels used in this work, COME improved some of the properties (for example lubricity, density and viscosity) of butanol-diesel blends with respect to RME. The existence of hydroxyl group in COME also reduced further soot emissions and decreased soot activation energy. PMID:23452309

  17. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2010-07-01

    This study examines the short-term (˜15 year) effects of controlling fossil-fuel soot (FS) (black carbon (BC), primary organic matter (POM), and S(IV) (H2SO4(aq), HSO4-, and SO42-)), solid-biofuel soot and gases (BSG) (BC, POM, S(IV), K+, Na+, Ca2+, Mg2+, NH4+, NO3-, Cl- and several dozen gases, including CO2 and CH4), and methane on global and Arctic temperatures, cloudiness, precipitation, and atmospheric composition. Climate response simulations were run with GATOR-GCMOM, accounting for both microphysical (indirect) and radiative effects of aerosols on clouds and precipitation. The model treated discrete size-resolved aging and internal mixing of aerosol soot, discrete size-resolved evolution of clouds/precipitation from externally and internally mixed aerosol particles, and soot absorption in aerosols, clouds/precipitation, and snow/sea ice. Eliminating FS, FS+BSG (FSBSG), and CH4 in isolation were found to reduce global surface air temperatures by a statistically significant 0.3-0.5 K, 0.4-0.7 K, and 0.2-0.4 K, respectively, averaged over 15 years. As net global warming (0.7-0.8 K) is due mostly to gross pollutant warming from fossil-fuel greenhouse gases (2-2.4 K), and FSBSG (0.4-0.7 K) offset by cooling due to non-FSBSG aerosol particles (-1.7 to -2.3 K), removing FS and FSBSG may reduce 13-16% and 17-23%, respectively, of gross warming to date. Reducing FS, FSBSG, and CH4 in isolation may reduce warming above the Arctic Circle by up to ˜1.2 K, ˜1.7 K, and ˜0.9 K, respectively. Both FS and BSG contribute to warming, but FS is a stronger contributor per unit mass emission. However, BSG may cause 8 times more mortality than FS. The global e-folding lifetime of emitted BC (from all fossil sources) against internal mixing by coagulation was ˜3 h, similar to data, and that of all BC against dry plus wet removal was ˜4.7 days. About 90% of emitted FS BC mass was lost to internal mixing by coagulation, ˜7% to wet removal, ˜3% to dry removal, and a residual

  18. Aggregates and Superaggregates of Soot with Four Distinct Fractal Morphologies

    NASA Technical Reports Server (NTRS)

    Sorensen, C. M.; Kim, W.; Fry, D.; Chakrabarti, A.

    2004-01-01

    Soot formed in laminar diffusion flames of heavily sooting fuels evolves through four distinct growth stages which give rise to four distinct aggregate fractal morphologies. These results were inferred from large and small angle static light scattering from the flames, microphotography of the flames, and analysis of soot sampled from the flames. The growth stages occur approximately over four successive orders of magnitude in aggregate size. Comparison to computer simulations suggests that these four growth stages involve either diffusion limited cluster aggregation or percolation in either three or two dimensions.

  19. Chemical and morphological characterization of soot and soot precursors generated in an inverse diffusion flame with aromatic and aliphatic fuels

    SciTech Connect

    Santamaria, Alexander; Mondragon, Fanor; Yang, Nancy; Eddings, Eric

    2010-01-15

    Knowledge of the chemical and physical structure of young soot and its precursors is very useful in understanding the paths leading to soot particle inception. This paper presents chemical and morphological characterization of the products generated in ethylene and benzene inverse diffusion flames (IDF) using different analytical techniques. The trend in the data indicates that the soot precursor material and soot particles generated in the benzene IDF have a higher degree of complexity than the samples obtained in the ethylene IDF, which is reflected by an increase in the aromaticity of the chloroform extracts observed by {sup 1}H NMR and FT-IR, and shape and size of soot particles obtained by TEM and HR-TEM. It is important to highlight that the soot precursor material obtained at the lower positions in the ethylene IDF has a significant contribution of aliphatic groups, which play an important role in the particle inception and mass growth processes during the early stages of soot formation. However, these groups progressively disappear in the samples taken at higher positions in the flame, due to thermal decomposition processes. (author)

  20. Modeling pollution formation in diesel engines

    SciTech Connect

    Brown, N.

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  1. SUPPRESSION OF BASAL AND CYTOKINE INDUCED EXPRESSION OF ANTIGEN PRESENTATION MARKERS ON MOUSE LUNG EPITHELIAL CELLS EXPOSED TO DIESEL EXHAUST PARTICLES.

    EPA Science Inventory

    Diesel exhaust particles (DEP) constitute a significant component of airborne particulates in urban environment. Exposure to DEP is known to enhance susceptibility to viral and bacterial infections. We hypothesized that DEP could partially exert its effect on disease susceptibili...

  2. Brief Communication: Buoyancy-Induced Differences in Soot Morphology

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Griffin, Devon W.; Greenberg, Paul S.; Roma, John

    1995-01-01

    Reduction or elimination of buoyancy in flames affects the dominant mechanisms driving heat transfer, burning rates and flame shape. The absence of buoyancy produces longer residence times for soot formation, clustering and oxidation. In addition, soot pathlines are strongly affected in microgravity. We recently conducted the first experiments comparing soot morphology in normal and reduced-gravity laminar gas jet diffusion flames. Thermophoretic sampling is a relatively new but well-established technique for studying the morphology of soot primaries and aggregates. Although there have been some questions about biasing that may be induced due to sampling, recent analysis by Rosner et al. showed that the sample is not biased when the system under study is operating in the continuum limit. Furthermore, even if the sampling is preferentially biased to larger aggregates, the size-invariant premise of fractal analysis should produce a correct fractal dimension.

  3. Neutrons for probing the ice nucleation on atmospheric soot particles

    NASA Astrophysics Data System (ADS)

    Demirdjian, B.; Tishkova, V.; Ferry, D.

    2012-11-01

    Soot resulting from combustion of kerosene in aircraft engines can act as condensation nuclei for water/ice in the atmosphere and promote the formation of contrails that turn into artificial cirrus clouds and affect the climate. The mechanisms of nucleation of water/ice particles are not well identified. Studies "in situ" are difficult to realize, so we try to determine by neutron diffraction the nucleation of water/ice adsorbed on soot collected at the outlet of an aircraft engine combustor within the conditions of the upper troposphere. The results are compared with those obtained on model laboratory soot. The comparison highlights the role of chemical impurities and structural defects of original aircraft engine soot on the nucleation of water/ice in atmospheric conditions.

  4. Soot blower using fuel gas as blowing medium

    DOEpatents

    Tanca, Michael C.

    1982-01-01

    A soot blower assembly (10) for use in combination with a coal gasifier (14). The soot blower assembly is adapted for use in the hot combustible product gas generated in the gasifier as the blowing medium. The soot blower lance (20) and the drive means (30) by which it is moved into and out of the gasifier is housed in a gas tight enclosure (40) which completely surrounds the combination. The interior of the enclosure (40) is pressurized by an inert gas to a pressure level higher than that present in the gasifier so that any combustible product gas leaking from the soot blower lance (20) is forced into the gasifier rather than accumulating within the enclosure.

  5. HETEROGENEOUS SOOT NANOSTRUCTURE IN ATMOSPHERIC AND COMBUSTION SOURCE AEROSOLS

    EPA Science Inventory

    Microscopic images of soot emissions from wildfire and a wide range of anthropogenic combustion sources show that the nanostructures of individual particles in these emissions are predominantly heterogeneous, decidedly influenced by the fuel composition and by the particular comb...

  6. Strain rate effects on soot evolution in turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.; Mahmoud, Saleh; Alwahabi, Zeyad T.; Dally, Bassam B.; Nathan, Graham J.

    2015-11-01

    Large Eddy Simulations (LES) of turbulent nonpremixed ethylene/hydrogen/nitrogen (2/2/1 by volume) jet flames are conducted to investigate the effects of global strain rate on soot evolution. The exit strain rate is varied by fixing the Reynolds number as the burner diameter and exit velocity are altered. A detailed integrated LES approach is employed that includes a nonpremixed flamelet model that accounts for heat losses from radiation, a transport equation model to account for unsteadiness in polycyclic aromatic hydrocarbon (PAH) evolution, a detailed soot model based on the Hybrid Method of Moments, and a novel presumed subfilter PDF model for soot-turbulence interactions. As the strain rate increases, the maximum soot volume fraction decreases due to the suppression of PAH formation. This trend with increasing strain rate is validated against experimental measurements conducted at The University of Adelaide.

  7. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  8. Low emissions diesel fuel

    DOEpatents

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  9. Low emissions diesel fuel

    DOEpatents

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  10. Towards a detailed soot model for internal combustion engines

    SciTech Connect

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus; Zhang, Hongzhi R.; Kubo, Shuichi; Kim, Kyoung-Oh

    2009-06-15

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot

  11. Fuel Property Effects on Emissions from High Efficiency Clean Combustion in a Diesel Engine (SAE Paper Number 2006-01-0080)

    SciTech Connect

    Sluder, Scott; Wagner, Robert M; Lewis Sr, Samuel Arthur; Storey, John Morse

    2006-01-01

    High-efficiency clean combustion (HECC) modes provide simultaneous reductions in diesel particulate matter and nitrogen-oxides emissions while retaining efficiencies characteristic of normal diesel engines. Fuel parameters may have significant impacts on the ability to operate in HECC modes and on the emissions produced in HECC modes. In this study, 3 diesel-range fuels and 2 oxygenated blends are burned in both normal and HECC modes at 3 different engine conditions. The results show that fuel effects play an important role in the emissions of hydrocarbons, particulate matter, and carbon monoxide but do not significantly impact NOX emissions in HECC modes. HECC modes are achievable with 5% biodiesel blends in addition to petroleum-based and oil-sands derived fuels. Soot precursor and oxygenated compound concentrations in the exhaust were observed to generally increase with the sooting tendency of the fuel in HECC modes.

  12. Durable superhydrophobic carbon soot coatings for sensor applications

    NASA Astrophysics Data System (ADS)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  13. Analytic modeling of soot nucleation under fuel rich conditions

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1983-01-01

    The objective of the present research is to construct a soot nucleation model according to a proposed chemical kinetic scheme to delineate quantitatively the nucleation mechanism in the soot formation process. Instead of following the traditional views which generally associate sooting with the homogeneous nucleation process in phase transformation or polymerization, we choose a chemical kinetic approach. In our proposed scheme the number of carbon atoms in the intermediate species between the fuel molecule and soot nuclei is continuously increased by radical additions. The number of hydrogen atoms in the intermediate species on the other hand is steadily decreased by radical dehydrogenation. When the number of carbon atoms in each of the intermediate molecules has exceeded a certain limit and the number of hydrogen atoms has fallen below a certain level, they may coagulate with one and another to form a larger molecule which is regarded as the initial soot nuclei in the present theory. Further coagulation and surface growth of the nuclei will lead to observable soot particles.

  14. Large Eddy Simulation of a Sooting Jet Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Blanquart, Guillaume; Pitsch, Heinz

    2007-11-01

    The understanding of soot particle dynamics in combustion systems is a key issue in the development of low emission engines. Of particular importance are the processes shaping the soot particle size distribution function (PSDF). However, it is not always necessary to represent exactly the full distribution, and often information about its moments only is sufficient. The Direct Quadrature Method of Moments (DQMOM) allows for an efficient and accurate prediction of the moments of the soot PSDF. This method has been validated for laminar premixed and diffusion flames with detailed chemistry and is now implemented in a semi-implicit low Mach-number Navier-Stokes solver. A Large Eddy Simulation (LES) of a piloted sooting jet diffusion flame (Delft flame) is performed to study the dynamics of soot particles in a turbulent environment. The profiles of temperature and major species are compared with the experimental measurements. Soot volume fraction profiles are compared with the recent data of Qamar et al. (2007). Aggregate properties such as the diameter and the fractal shape are studied in the scope of DQMOM.

  15. Direct Numerical Simulation of Soot Particle Dynamics using DQMOM

    NASA Astrophysics Data System (ADS)

    Blanquart, Guillaume; Pitsch, Heinz; Fox, Rodney

    2006-11-01

    The understanding of soot particle dynamics in combustion systems is a key issue in the development of low emission engines. Of particular importance are the processes shaping the soot particle size distribution function (PSDF). However, it is not always necessary to represent exactly the full distribution but rather some of its moments. The Direct Quadrature Method of Moments (DQMOM) allows for a very accurate prediction of the moments of the soot PSDF without the cost of expensive methods like Direct Simulation Monte-Carlo (DSMC). This method has been validated for laminar premixed and diffusion flames with detailed chemistry and is now implemented in a semi-implicit low Mach number Navier-Stokes solver. A Direct Numerical Simulation (DNS) of an ethylene jet diffusion flame is performed to study the dynamics of soot particles in a turbulent environment. Soot particles are formed in very rich regions of the flames and are then transported to lean regions where they get oxidized. The time evolution of the soot PSDF will be analyzed and compared to similar distributions from laminar simulations.

  16. Darkness after the K-T impact: Effects of soot

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Anders, Edward; Orth, Charles J.

    1988-01-01

    Dust from the K-T impact apparently settled from the atmosphere in less than 6 months, restoring sunlight to minimum photosynthesis levels in about 4 months. However, the discovery of a global soot component in the boundary clay makes it necessary to reconsider the problem, as soot particles not only are smaller (0.1 vs. about 0.5 micrometer) and thus settle more slowly, but also are better light absorbers (optical depth of 13 mg soot cm(-2) about 1800; and are more resistant to rainout. Still, the darkness cannot have lasted very much longer than 6 months, else no larger animals would have survived. Perhaps the soot coagulated with the rock dust and fell out with it. Evidence on this point may be sought at a relatively undisturbed K-T boundary site, such as Woodside Creek, N.Z. There the boundary clay and lowermost Tertiary strata are finely laminated and show large chemical and isotopic differences on a millimeter scale, apparently representing a detailed time sequence. Researchers studied a 3 m section across the boundary at this site, analyzing the principal forms of carbon (soot, elemental C, kerogen, and carbonate) as well as 33 elements. Correlations among the elements were sought. Apparently soot came early and coagulated with the ejecta, staying with them for the primary fallout and in the next 5 cm, but then parting company, perhaps due to size sorting.

  17. Why make premium diesel?

    SciTech Connect

    Pipenger, G.G.

    1997-01-01

    In the last issue of Hart`s Fuel Technology & Management (Vol. 6, No. 6, pp. 62-64), a discussion of the evolution of premium diesel fuels in the US and Europe was begun. Cetane and ignition improvers were discussed. In this concluding article, different additive components such as fuel stabilizers, corrosion inhibitors and lubricity additives are reviewed--all of which are key components of any top-quality diesel fuel today. An excerpt from {open_quotes}The Making of Premium Diesel,{close_quotes} which categorizes (costs, benefits, dosage rates) the additives necessary to improve diesel quality is presented.

  18. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  19. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  20. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  1. Turning soot into diamonds with microwaves

    SciTech Connect

    Gruen, D.M.; Krauss, A.R.; Luo, J.; Pan, X.; Liu, S.

    1994-06-01

    Growth of diamond films using fullerene precursors in an argon microwave plasma without the addition of hydrogen or oxygen has recently been accomplished. Microwave discharges (2.45 GHz) were generated in C{sub 60}-containing Ar. The gas mixtures were produced by flowing Ar over fullerene-containing soot at a variety of temperatures. Optical spectroscopy shows that the spectrum is dominated by the d{sup 3}{Pi}{minus}a{sup 3}{Pi}{sub u}. Swan bands of C{sub 2} and particularly the {Delta}{nu} = {minus}2, {minus}1.0, +1, and +2 sequences, that C{sub 2} is one of the products of C{sub 60} fragmentation brought about, at least in part, by collisionally-induced dissociation. The nanocrystalline films were characterized with scanning and high-resolution transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Assuming a linear dependence on carbon concentration, a growth rate at least six times higher than commonly observed using methane as a precursor would be predicted at a carbon content of 1% based on C{sub 60}. Energetic and mechanistic arguments are advanced to rationalize this result based on C{sub 2} as the growth species.

  2. Shock tube studies of soot formation

    NASA Technical Reports Server (NTRS)

    Kern, R. D.

    1983-01-01

    The objective of this research is to record the time histories of the major and minor species which appear in the pyrolysis of toluene, benzene, butadiene, allene, and acetylene; to develop a set of reactions that will model the observed profiles over a wide temperature and concentration range; to identify the critical reactions that influence the pre-particle soot formation process. Toluene and benzene were chosen as two key aromatic compounds which are representative of the pyrolytic process. Butadiene, allene, and acetylene were selected to investigate the formation of aromatic compounds from non-cyclic species. The experimental apparatus used for the study consists of a shock tube coupled to a time-of-flight mass spectrometer Spectra are recorded at 30 microsecond intervals for a total observation time of 0.50 - 1.20 milliseconds. Peak heights of the species of interest in the m/e range 12-300 are measured as a function of reaction time. Calibration curves are constructed which aid the conversion of peak heights to concentrations. The mixtures range from 1 percent-6 percent fuel; the balance is neon diluent.

  3. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  4. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  5. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  6. Diesel Mechanics: Electrical Systems.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the second in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to electricity and circuitry in a diesel trade. The text contains nine units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested…

  7. Diesel Mechanics: Fundamentals.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the first in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the basic concepts related to employment in a diesel trade. Six sections contain 29 units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities for…

  8. Biodiesel and renewable diesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel produced from vegetable oil, animal fats or waste oils. The process used in its production is known as transesterification. If vegetable oils or animal fats are subjected to a process similar for making diesel fuel derived from petroleum, a fuel called renew...

  9. Diesel engine exhaust oxidizer

    SciTech Connect

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  10. DIESEL EMISSIONS SYMPOSIUM PROCEEDINGS

    EPA Science Inventory

    The high fuel efficiency of diesel engines is expected to result in a significant increase in the production of diesel-powered passenger cars. Major research programs were initiated in the late 1970s by governments, industry, and the academic community in order to understand the ...

  11. Cosmic: Carbon Monoxide And Soot In Microgravity Inverse Combustion

    NASA Technical Reports Server (NTRS)

    Mikofski, M. A.; Blevins, L. G.; Davis, R. W.; Moore, E. F.; Mulholland, G. W.; Sacksteder, Kurt (Technical Monitor)

    2003-01-01

    Almost seventy percent of fire related deaths are caused by the inhalation of toxins such as CO and soot that are produced when fires become underventilated.(1) Although studies have established the importance of CO formation during underventilated burning,(2) the formation processes of CO (and soot) in underventilated fires are not well understood. The goal of the COSMIC project is to study the formation processes of CO and soot in underventilated flames. A potential way to study CO and soot production in underventilated flames is the use of inverse diffusion flames (IDFs). An IDF forms between a central air jet and a surrounding fuel jet. IDFs are related to underventilated flames because they may allow CO and soot to escape unoxidized. Experiments and numerical simulations of laminar IDFs of CH4 and C2H4 were conducted in 1-g and micro-g to study CO and soot formation. Laminar flames were studied because turbulent models of underventilated fires are uncertain. Microgravity was used to alter CO and soot pathways. A IDF literature survey, providing background and establishing motivation for this research, was presented at the 5th IWMC.(3) Experimental results from 1-g C2H4 IDFs and comparisons with simulations, demonstrating similarities between IDFs and underventilated fires, were presented at the 6th IWMC.(4) This paper will present experimental results from micro-g and 1-g IDFs of CH4 and C2H4 as well as comparisons with simulations, further supporting the relation between IDFs and underventilated flames.

  12. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    PubMed

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. PMID:25499491

  13. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. PMID:24316811

  14. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good

  15. Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor

    SciTech Connect

    Sappok, Alex; Prikhodko, Vitaly Y; Parks, II, James E

    2010-01-01

    Accurate knowledge of diesel particulate filter (DPF) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) based sensing techniques to accurately measure DPF soot levels and the spatial distribution of the accumulated material. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based soot emission measurement instrument (TEOM). Comparison with pressure drop measurements show the RF technique is unaffected by exhaust flow variations and exhibits a high degree of sensitivity to DPF soot loading and good dynamic response. Additional computational and experimental work further illustrates the spatial resolution of the RF measurements. Based on the experimental results, the RF technique shows significant promise for improving DPF control enabling optimization of the combined engine-aftertreatment system for improved fuel economy and extended DPF service life.

  16. Soot superaggregates from flaming wildfires and their direct radiative forcing

    PubMed Central

    Chakrabarty, Rajan K.; Beres, Nicholas D.; Moosmüller, Hans; China, Swarup; Mazzoleni, Claudio; Dubey, Manvendra K.; Liu, Li; Mishchenko, Michael I.

    2014-01-01

    Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension Df ≈ 1.8 mobility diameter Dm ≤ 1 μm, and aerodynamic diameter Da ≤ 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic Df ≈ 2.6, Dm > 1 μm, and Da ≤ 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (Df ≈ 1.8) aggregates, and ≈90% more warming than the volume-equivalent spherical soot particles simulated in climate models. PMID:24981204

  17. Agglomeration of soot particles in diffusion flames under microgravity

    SciTech Connect

    Ito, H.; Fujita, O.; Ito, K.

    1994-11-01

    Experiments have been conducted to investigate the behavior of soot particles in diffusion flames under microgravity conditions using a 490-m drop shaft (10-s microgravity duration) in Hokkaido, Japan. Flames from the combustion of paper sheets and butane jet diffusion flames are observed under microgravity. The oxygen concentration of the surroundings, the butane flow rate,and the burner diameter are varied as experimental parameters. The generated soot particles are sampled under microgravity and observed using scanning electron and transmission electron microscopes. The flames with a residual convection or forced convection are also observed to examine the influence of flow field on soot particle generation under microgravity. From these results, it is found that a number of large luminous spots appear in diffusion flames under microgravity. From the observation of TEM images, the luminous spots are the result of agglomerated soot particles and the growth of their diameters to a discernible level. The diameter of the agglomerated particles measure about 0.1 mm, 200 to 500 times as large as those generated under normal gravity. It is suggested that these large soot particles are generated in the limited areas where the conditions for the formation of these particles, such as gas velocity (residence time) and oxygen concentration, are satisfied.

  18. Soot Superaggregates from Flaming Wildfires and Their Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Rajan K.; Beres, Nicholas D.; Moosmuller,Hans; China, Swarup; Mazzoleni, Claudio; Dubey, Manvendra K.; Liu, Li; Mishchenko, Michael I.

    2014-01-01

    Wildfires contribute significantly to global soot emissions, yet their aerosol formation mechanisms and resulting particle properties are poorly understood and parameterized in climate models. The conventional view holds that soot is formed via the cluster-dilute aggregation mechanism in wildfires and emitted as aggregates with fractal dimension D(sub f) approximately equals 1.8 mobility diameter D(sub m) (is) less than or equal to 1 micron, and aerodynamic diameter D(sub a) (is) less than or equal to 300 nm. Here we report the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs are porous, low-density aggregates of cluster-dilute aggregates with characteristic D(sub f) approximately equals 2.6,D(sub m) (is) greater than 1 micron, and D(sub a) is less than or equal to 300 nm that form via the cluster-dense aggregation mechanism.We present additional observations of soot SAs in wildfire smoke-laden air masses over Northern California, New Mexico, and Mexico City. We estimate that SAs contribute, per unit optical depth, up to 35% less atmospheric warming than freshly-emitted (D(sub f) approximately equals 1.8) aggregates, and approximately equals 90% more warming than the volume-equivalent spherical soot particles simulated in climate models.

  19. Shock-tube pyrolysis of chlorinated hydrocarbons - Formation of soot

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Hsu, J. P.; Miller, D. L.; Matula, R. A.

    1986-01-01

    Soot formation in pyrolysis of chlorinated methanes, their mixtures with methane, and chlorinated ethylenes were studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. An additional single-pulse shock-tube study was conducted for the pyrolysis of methane, methyl chloride, and dichloromethane. The experiments were performed at temperatures 1300-3000 K, pressures of 0.4-3.6 bar, and total carbon atom concentrations of 1-5 x 10 to the 17th atoms cu cm. The amounts of soot produced in the pyrolysis of chlorinated hydrocarbons are larger than that of their nonchlorinated counterparts. The sooting behavior and product distribution can be generally explained in terms of chlorine-catalyzed chemical reaction mechanisms. The pathway to soot from chlorinated methanes and ethylenes with high H:Cl ratio proceeds via the formation of C2H, C2H2, and C2H3 species. For chlorinated hydrocarbons with low H:Cl ratio, the formation of C2 and its contribution to soot formation at high temperatures becomes significant. There is evidence for the importance of CHCl radical and its reactions in the pyrolysis of dichloromethane.

  20. Laminar Soot Processes (LSP) Experiment: Findings From Space Flight Measurements

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Yuan, Z. G.; Aalburg, C.; Diez, F. J.; Faeth, G. M.

    2003-01-01

    The present experimental study of soot processes in hydrocarbon-fueled laminar nonbuoyant and nonpremixed (diffusion) flames at microgravity within a spacecraft was motivated by the relevance of soot to the performance of power and propulsion systems, to the hazards of unwanted fires, and to the emission of combustion-generated pollutants. Soot processes in turbulent flames are of greatest practical interest, however, direct study of turbulent flames is not tractable because the unsteadiness and distortion of turbulent flames limit available residence times and spatial resolution within regions where soot processes are important. Thus, laminar diffusion flames are generally used to provide more tractable model flame systems to study processes relevant to turbulent diffusion flames, justified by the known similarities of gas-phase processes in laminar and turbulent diffusion flames, based on the widely-accepted laminar flamelet concept of turbulent flames. Unfortunately, laminar diffusion flames at normal gravity are affected by buoyancy due to their relatively small flow velocities and, as discussed next, they do not have the same utility for simulating the soot processes as they do for simulating the gas phase processes of turbulent flames.

  1. Chinese Soot on a Vietnamese Soup

    NASA Astrophysics Data System (ADS)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  2. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae.

    PubMed

    Schwab, Fabienne; Camenzuli, Louise; Knauer, Katja; Nowack, Bernd; Magrez, Arnaud; Sigg, Laura; Bucheli, Thomas D

    2014-09-01

    Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 10(5.79)-10(6.24) μg/kgCNT·(μg/L)(-n) and 0.62-0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15-20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but - particularly in presence of algae - partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment. PMID:24949853

  3. Photoacoustic analyzer for the artifact-free parallel detection of soot and NO2 in engine exhaust.

    PubMed

    Haisch, Christoph; Niessner, Reinhard

    2012-09-01

    Soot particles and NO(2) are among the most hazardous emissions from diesel combustion engines. Currently, no analytical system exists which allows for the simultaneous, time-resolved online analysis of these two components. Furthermore, state-of-the-art NO(2) analyzers for exhaust gas require particle filtration prior to the analysis, which may induce artifacts and measurement errors. We present a photoacoustic instrument which overcomes these drawbacks. The sensitivity of the instrument (LOD(NO(2)) = 0.3 ppm, LOD(soot) = 0.54 μg m(-3), limit of detection/quantification) as well as the temporal resolutions are dictated by the needs of typical automotive applications. Also required for this specific application, we developed PA cells which can be heated to 80 °C, while the microphones maintain a temperature of 45 °C. Setup and specific parameters of the instrument are discussed, and the results of typical engine tests are compared to reference analytical instrumentation. PMID:22881217

  4. Physico-chemical properties and biological effects of diesel and biomass particles.

    PubMed

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. PMID:27194366

  5. Measurement of naphthalene uptake by combustion soot particles.

    PubMed

    Liscinsky, David S; Yu, Zhenhong; True, Bruce; Peck, Jay; Jennings, Archer C; Wong, Hsi-Wu; Franklin, Jon; Herndon, Scott C; Miake-Lye, Richard C

    2013-05-01

    In this study, we designed and constructed an experimental laboratory apparatus to measure the uptake of volatile organic compounds (VOCs) by soot particles. Results for the uptake of naphthalene (C10H8) by soot particles typical of those found in the exhaust of an aircraft engine are reported in this paper. The naphthalene concentration in the gas phase and naphthalene attached to the particles were measured simultaneously by a heated flame ionization detector (HFID) and a time-of-flight aerosol mass spectrometer (ToF AMS), respectively. The uptake coefficient for naphthalene on soot of (1.11 ± 0.06) × 10(-5) at 293 K was determined by fitting the HFID and AMS measurements of gaseous and particulate naphthalene to a kinetic model of uptake. When the gaseous concentration of naphthalene is kept below the saturation limit during these experiments, the uptake of naphthalene can be considered the dry mass accommodation coefficient. PMID:23550777

  6. Soot blower control system upgrade provides WIN/WIN opportunities

    SciTech Connect

    Robinette, D.N.; Piccirillo, D.P.

    1995-10-01

    This paper discusses Diamond Power`s BOS{reg_sign} soot blower control systems installed and operating at Detroit Edison`s Belle River Power Plant since early 1992. The plant now has the capability of multiple sequences that provide the soot-blowing flexibility to minimize thermal cycling and boiler tube erosion. The plant realized considerable cost savings in reducing wasted steam due to previously undetectable feed tube packing leaks and incorrectly adjusted blowing pressures. This joint effort by the utility and Diamond Power Specialty Company led to the development of additional programs to closely monitor individual soot blower performance, reducing hidden costs caused by wasted steam and boiler tube erosion. Considerable cost savings for the utility and an enhanced control system product offering for the OEM were the major benefits of this initiative.

  7. Connecting the oxidation of soot to its redox cycling abilities

    PubMed Central

    Antiñolo, María; Willis, Megan D.; Zhou, Shouming; Abbatt, Jonathan P.D.

    2015-01-01

    Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol. PMID:25873384

  8. Experimental and analytical investigation for diesel smoke elimination

    SciTech Connect

    Lin, C.H.

    1989-01-01

    Increasingly stringent control of the fugitive diesel particulate will be required by EPA in the 1990'8. Diesel smoke elimination via electrostatic precipitation was studied. A diesel smoke eliminator with corona charging and particle collection sections was developed, built, and tested. This device appears to be the most promising one to counter the challenging requirements in the future. Electrohydrodynamic analysis was conducted by solving the mass, momentum conservation equations, the k-{epsilon} turbulence model, and the electric as well as the particle diffusion governing equations. Tests have been conducted on an International Harvester 4-stroke, 6-cylinder diesel engine with a through flow of 25 to 85 liter/s and soot concentration of 0.1 to 0.3 mg/liter determined by a photometer calibrated by an isokinetic sampler. Results show that the conductivity of the exhaust varies from 20 times that of clean air at low smoke condition and more than 200 times at high smoke condition without arcing. The charge-to mass ratio of 0.1 coul/kg was measured by a high-temperature charge to-mass ratio probe, which was devised in the present study, and an electrometer. Particle size distribution with respect to particle number concentration was also determined, the dominant size span was 0.5- 1.4 {mu}m due to agglomeration in the exhaust piping. A commercialized high voltage power source with automatic feedback control circuitry was successfully adapted to the current system. The three-dimensional flow field, the particle mass concentration, and the electrical potential, and the electric field distributions in the corona charging chamber were obtained, which provide a means for design optimization and determination of electrical conductivity of diesel smoke by combining the experimentally measured voltage/current characteristics.

  9. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    PubMed Central

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292

  10. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  11. New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Andrews, Mark J.; Stevenson, Keith J.

    2012-01-01

    Carbon soot has been known since antiquity, but has recently been finding new uses as a robust, inexpensive nanomaterial. This paper describes the superhydrophobic properties of carbon soot films prepared by combustion of candle wax or propane gas and introduces some of the optical absorption and fluorescence properties of carbon soot particles.…

  12. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  13. Diesel Exhaust Modulates Ozone-induced Lung Function Decrements in Healthy Human Volunteers

    EPA Science Inventory

    The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (03), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min...

  14. NASAL RESPONSES OF ASTHMATIC AND NON-ASTHMATIC VOLUNTEERS TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal respons...

  15. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  16. DIESEL EXHAUST ACTIVATES REDOX-SENSITIVE TRANSCRIPTION FACTORS AND KINASES IN HUMAN AIRWAYS

    EPA Science Inventory

    Diesel exhaust (DE) is a major component of airborne particulate matter. In previous studies we have described the acute inflammatory response of the human airway to inhaled DE. This was characterized by neutrophil, mast cell, and lymphocyte infiltration into the bronchial mucosa...

  17. NASAL RESPONSES IN ASTHMATIC AND NONASTHMATIC SUBJECTS FOLLOWING EXPOSURE TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal responses hav...

  18. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  19. [Direct-action mutagens in exhausts of vehicles with diesel engines].

    PubMed

    Makhover, M S; Khitrovo, I A; Khesina, A Ia; Belitskiĭ, G A

    1990-01-01

    The genotoxic activity of exhausts from one-shaft gas-turbine GTE-5 engine (30 kW) and a standard D-54A diesel (40 kW) have been studied. Thus, the extracts of soot from GTE-5 and D-54A induced reversions in Salmonella typhimurium both with and without metabolic activation: furthermore, extracts of soot from GTE-5 demonstrated a higher mutagenic activity. The direct mutagenic effect of the exhausts depended neither on the presence of BP nor on the other polycyclic aromatic hydrocarbons (PAHs). Most probably, it was connected with the presence of nitro-PAHs. The need for studying the PAH content in vehicle engines' exhausts and for taking into account their effect in the control and standardization is established. PMID:1696198

  20. Application of the discrete ordinates method to compute radiant heat loss in a diesel engine

    SciTech Connect

    Abraham, J.; Magi, V.

    1997-05-09

    A three-dimensional model for computing flows, sprays, and combustion in internal combustion engines is modified to include radiant heat loss. Radiant heat loss is computed by solving the radiative transport equation using a discrete ordinates approximation method. Such a method solves the radiative transport equation for a set of discrete directions spanning the range of 4{pi} solid angle. Angular integrals of intensity are discretized by numerical quadrature. The resulting discrete ordinates equations are numerically solved by using a finite volume approach in contravariant formulation. Computations are made with and without radiant heat loss in a diesel engine, and the effects of the radiant heat loss on the computed temperature and NO and soot concentrations are discussed. Inclusion of radiant heat loss reduces the peak temperature by about 10%. As a result, the predicted frozen NO concentrations are found to be lowered. However, the soot concentrations are not significantly altered.

  1. Making premium diesel fuel

    SciTech Connect

    Pipenger, G.

    1997-02-01

    For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

  2. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  3. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945

  4. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  5. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  6. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and use shall meet the following minimum requirements: (a) Respirators approved by NIOSH under 42 CFR... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and... airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by...

  7. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    NASA Technical Reports Server (NTRS)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  8. Soot particle disintegration and detection using two laserELFFS

    SciTech Connect

    Stipe, Christopher B.; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-11-17

    A two laser technique is used to study laser-particle interactions and the disintegration of soot by high power UV light. Two separate 20 ns laser pulses irradiate combustion generated soot nanoparticles with 193 nm photons. The first laser pulse, from 0 to 14.7 J/cm{sup 2}, photofragments the soot particles and electronically excites the liberated carbon atoms. The second laser pulse, held constant at 13 J/cm{sup 2}, irradiates the remaining particle fragments and other products of the first laser pulse. The atomic carbon fluorescence at 248 nm produced by the first laser pulse increases linearly with laser fluence from 1 to 6 J/cm{sup 2}. At higher fluences, the signal from atomic carbon signal saturates. The carbon fluorescence from the second laser pulse decreases as the fluence from the first laser increases, ultimately approaching zero as first laser fluence approaches 10 J/cm{sup 2}, suggesting that the particles fully disintegrate at high laser fluences. We use an energy balance parameter, called the photon-atom ratio (PAR), to aid in understanding laser-particle interactions. These results help define the regimes where photofragmentation fluorescence methods quantitatively measure total soot concentrations.

  9. EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS

    EPA Science Inventory

    An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...

  10. Cavity ringdown and laser-induced incandescence measurements of soot.

    PubMed

    Vander Wal, R L; Ticich, T M

    1999-03-20

    Currently laser-induced incandescence (LII) is widely used for the measurement of soot volume fraction. A particularly important aspect of the technique that has received less attention, however, is calibration. The applicability of cavity ringdown (CRD) for measurement of soot volume fraction f(v) is assessed, and the calibration of LII by means of CRD is demonstrated. The accuracy of CRD for f(v) determination is validated by comparison with traditional light extinction and path-integrated LII. By use of CRD, the quantification of LII for parts in 10(9) (ppb) f(v) levels is demonstrated. Results are presented that demonstrate the accuracy of CRD for a single laser pulse to be better than ?5% for measurement of ppb soot volume-fraction levels over a 1-cm path length. By use of CRD, spatially resolved LII signals from soot within methane-air diffusion flames are calibrated for ppb f(v) levels, thereby avoiding the extrapolation required of less sensitive methods in current use. PMID:18305765

  11. Sooting flame thermometry using emission/absorption tomography.

    PubMed

    Hall, R J; Bonczyk, P A

    1990-11-01

    A sooting flame temperature measurement technique has been demonstrated based on emission-absorption tomography. The approach applies the algorithms of Fourier transform tomography to deconvolve local soot absorption coefficient and Planck function (temperature) from sets of parallel line-of-sight measurements. The technique has the advantage that it is experimentally simple and does not require involved data reduction. For small particles, there is also no sensitivity of the inferred temperature to possibly uncertain medium parameters. Its main limitation seems to be that it will not work well for vanishingly small absorption, but this could be overcome in practice by seeding and then performing all work at the wavelength of a seed resonance. While in principle limited to optically thin flames, accurate corrections for moderate optical thickness can often be made. A self-consistent comparison of measured global radiation from a sooting ethylene flame with a radiative transfer calculation based on measured temperature and soot absorption parameters has been performed. PMID:20577438

  12. Soot and short-lived pollutants provide political opportunity

    NASA Astrophysics Data System (ADS)

    Victor, David G.; Zaelke, Durwood; Ramanathan, Veerabhadran

    2015-09-01

    Cutting levels of soot and other short-lived pollutants delivers tangible benefits and helps governments to build confidence that collective action on climate change is feasible. After the Paris climate meeting this December, actually reducing these pollutants will be essential to the credibility of the diplomatic process.

  13. Optimal determination of soot-blowing and condenser cleaning schedule

    SciTech Connect

    Alag, S.; Chatterjee, J.; Jeyarasasingam, K.; Jain, P.

    1998-07-01

    The authors describe an approach for determining the optimal schedule for soot-blowing and condenser cleaning in a power plant. The soot blower optimizer minimizes a configurable optimization function consisting of loss due to degraded operation, increased emissions, and permanent damage to the component. It used deposition factor, an integral term that is dependent on the history of the plant operation since the last soot blowing and is a non-linear function of parameters that lead to an accumulation of soot on the component. The condenser cleaning optimization process is formulated into a dynamic programming formulation where a decision is made between carrying out a short, long, or no cleaning. Their implementation has several advantages over previous approaches, due to access to an enhanced plant model that enables one to carry out detailed what-if analysis, estimation of missing measurements, availability of a plant equipment performance diagnosis system, the use of emissions in analysis, analysis of all plant components in unison, and access to plant operation history.

  14. Copper catalysts for soot oxidation: alumina versus perovskite supports.

    PubMed

    López-Suárez, F E; Bueno-López, A; Illán-Gómez, M J; Adamski, A; Ura, B; Trawczynski, J

    2008-10-15

    Copper catalysts prepared using four supports (Mg- and Sr-modified Al2O3 and MgTiO3 and SrTiO3 perovskites) have been tested for soot oxidation by 02 and NOx/O2. Among the catalysts studied, Cu/SrTiO3 is the most active for soot oxidation by NOx/O2 and the support affects positively copper activity. With this catalyst, and under the experimental conditions used, the soot combustion by NOx/O2 presents a considerable rate from 500 degrees C (100 degrees C below the uncatalysed reaction). The Cu/ SrTiO3 catalyst is also the most effective for NOx chemisorption around 425 degrees C. The best activity of Cu/SrTiO3 can be attributed to the improved redox properties of copper originated by Cu-support interactions. This seems to be related to the presence of weakly bound oxygen on this sample. The copper species present in the catalyst Cu/SrTiO3 can be reduced more easily than those in other supports, and for this reason, this catalyst seems to be the most effective to convert NO into NO2, which explains its highest activity for soot oxidation. PMID:18983091

  15. Combustion Module-1 with Laminar Soot Process (LSP)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Technicians install the Laminar Soot Processes (LSP) experiment into the combustion chamber of Combustion Module-1. CM-1 was one of the most complex and technologically sophisticated pieces of hardware ever to be included as a part of a Spacelab mission.

  16. Soot Combustion over Nanostructured Ceria with Different Morphologies.

    PubMed

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-01-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions. PMID:27353143

  17. Kinetics of Elementary Processes Relevant to Incipient Soot Formation

    SciTech Connect

    Lin, M C; Heaven, M C

    2008-04-30

    Soot formation and abatement processes are some of the most important and challenging problems in hydrocarbon combustion. The key reactions involved in the formation of polycyclic aromatic hydrocarbons (PAH's), the precursors to soot, remain elusive. Small aromatic species such as C5H5, C6H6 and their derivatives are believed to play a pivotal role in incipient soot formation. The goal of this project is to establish a kinetic database for elementary reactions relevant to soot formation in its incipient stages. In the past year, we have completed by CRDS the kinetics for the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 +O2 reaction and the formation of C10H7O2 in the C10H7 + O2 reaction by directly monitoring C6H5C2H2O2 and C10H7O2 radicals in the visible region; their mechanisms have been elucidated computationally by quantum-chemical calculations. The O + C2H5OH reaction has been studied experimentally and computationally and the OH + HNCN reaction has been investigated by ab initio molecular orbital calculation. In addition, a new pulsed slit molecular beam system has been constructed and tested for spectroscopic studies of aromatic radicals and their derivatives by the cavity ringdown technique (CRDS).

  18. Soot Combustion over Nanostructured Ceria with Different Morphologies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-06-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions.

  19. Nanoparticle production by UV irradiation of combustion generated soot particles

    SciTech Connect

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-07-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm{sup 2} with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process.

  20. Soot Combustion over Nanostructured Ceria with Different Morphologies

    PubMed Central

    Zhang, Wen; Niu, Xiaoyu; Chen, Liqiang; Yuan, Fulong; Zhu, Yujun

    2016-01-01

    In this study, nano-structure ceria with three different morphologies (nanorod, nanoparticle and flake) have been prepared by hydrothermal and solvothermal methods. The ceria samples were deeply characterized by XRD, SEM, TEM, H2-TPR, XPS and in-situ DRIFTS, and tested for soot combustion in absence/presence NO atmospheres under loose and tight contact conditions. The prepared ceria samples exhibit excellent catalytic activities, especially, the CeO2 with nanorod (Ce-R) shows the best catalytic activity, for which the peak temperature of soot combustion (Tm) is about 500 and 368 °C in loose and tight contact conditions, respectively. The catalytic activity for Ce-R is higher than that of the reported CeO2 catalysts and reaches a level that of precious metals. The characterization results reveal that the maximal amounts of adsorbed oxygen species on the surface of the nanostructure Ce-R catalyst should be the crucial role to decide the catalytic soot performance. High BET surface area may also be a positive effect on soot oxidation activity under loose contact conditions. PMID:27353143

  1. Soot climate forcing via snow and ice albedos

    PubMed Central

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The “efficacy” of this forcing is ∼2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. PMID:14699053

  2. Characteristics of soot emitted from combustion of municipal waste fuels

    SciTech Connect

    Levendis, Y.A.; Shemwell, B.E.

    2000-07-01

    This manuscript reports on particulate emissions (mainly soot) from laboratory combustion of typical municipal waste plastics, such as poly(styrene)(PS), poly(propylene)(PP), poly(methylmethacrylate)(PMMA), and poly(vinyl chloride)(PVC). In this experimental study combustion took place in a laboratory-scale, electrically-heated, drop-tube furnace at a gas temperature of 1,500 K, in air. The bulk (global) equivalence ratio, {phi}, was varied in the range of 0.5--1.5 and the gas residence time in the nearly-isothermal radiation zone of the furnace was {approximately}1 sec. The particle emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. Substantial amounts of soot agglomerates were larger than 10 {micro}m. At this temperature <35% of the soot mass was PM{sub 2.5} (2.5 {micro}m or smaller). Soot yields increased with increasing bulk equivalence ratio in the furnace. The emissions from PE and PP were remarkably similar to each other, but strikingly different than those from PS. These polymers produced very low emissions at {phi} {le} 0.5, but emissions increased drastically with {phi}, and most of the soot was very fine (70--97% of the mass was PM{sub 2.5} depending on {phi}). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk {phi}; 80--95% of the emissions were PM{sub 2.5}. Combustion of PVC yielded relatively low amounts of soot; moreover, only 13--34% of the mass was PM{sub 2.5}. Hence, comparatively, PS produced the highest amounts of fine particulates followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduced the particulate emissions from PE and PP, substantially reduced those from PS, and mildly reduced those from PMMA and PVC.

  3. A numerical study of soot aggregate formation in a laminar coflow diffusion flame

    SciTech Connect

    Zhang, Q.; Thomson, M.J.; Guo, H.; Liu, F.; Smallwood, G.J.

    2009-03-15

    Soot aggregate formation in a two-dimensional laminar coflow ethylene/air diffusion flame is studied with a pyrene-based soot model, a detailed sectional aerosol dynamics model, and a detailed radiation model. The chemical kinetic mechanism describes polycyclic aromatic hydrocarbon formation up to pyrene, the dimerization of which is assumed to lead to soot nucleation. The growth and oxidation of soot particles are characterized by the HACA surface mechanism and pyrene-soot surface condensation. The mass range of the solid soot phase is divided into thirty-five discrete sections and two equations are solved in each section to model the formation of the fractal-like soot aggregates. The coagulation model is improved by implementing the aggregate coagulation efficiency. Several physical processes that may cause sub-unitary aggregate coagulation efficiency are discussed. Their effects on aggregate structure are numerically investigated. The average number of primary soot particles per soot aggregate n{sub p} is found to be a strong function of the aggregate coagulation efficiency. Compared to the available experimental data, n{sub p} is well reproduced with a constant 20% aggregate coagulation efficiency. The predicted axial velocity, OH mole fraction, and C{sub 2}H{sub 2} mole fraction are validated against experimental data in the literature. Reasonable agreements are obtained. Finally, a sensitivity study of the effects of particle coalescence on soot volume fraction and soot aggregate nanostructure is conducted using a coalescence cutoff diameter method. (author)

  4. Soot topography in a planar diffusion flame wrapped by a line vortex

    SciTech Connect

    Cetegen, B.M.; Basu, S.

    2006-09-15

    An experimental study of the interaction of a planar diffusion flame with a line vortex is presented. A planar diffusion flame is established between two coflowing, equal velocity streams of acetylene diluted with nitrogen and air. A line vortex is generated on demand by momentarily pulsing one of the flow streams by way of electromagnetic actuation of a piston in the flow apparatus. The flame-vortex interactions are diagnosed by planar laser-induced incandescence for soot yield and by particle image velocimetry for vortex flow characterization. The results show that soot formation and distribution are influenced by the reactant streams from which vortices are initiated. The vortices interacting with the flame from the air side produce more soot and soot is distributed in and around the vortex core in diffuse layers. In contrast, topography of soot in vortices interacting from the fuel side is such that soot is confined to thinner layers around the vortex core which does not contain any soot. The flame curvature is found to influence the local soot production with the flame regions convex to the fuel side containing more soot locally. It is also found that the overall soot yield is less sensitive to the vortex strength and is of lower magnitude when vortex is spun from the fuel side. The knowledge of this type of asymmetry in soot yield in flame-vortex interactions is useful for combustion engineering and design of practical devices. (author)

  5. Development of wear-resistant ceramic coatings for diesel engine components

    SciTech Connect

    Naylor, M.G.S. )

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  6. Structural Effects of Biodiesel on Soot Volume Fraction in a Laminar Co-Flow Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Weingarten, Jason

    An experimental study was performed to determine the structural effects of biodiesel on soot volume fraction in a laminar co-flow diffusion flame. These include the effects of the ester function group, the inclusion of a double bond, and its positional effect. The soot volume fraction and temperature profiles of a biodiesel surrogate, n-Decane, 1-Decene, and 5-Decene fuels were measured. Improvements were made to existing laser extinction and rapid thermocouple insertion apparatus and were used to measure soot volume fraction and temperature profiles respectively. Flow rates of each fuel were determined in order to keep the temperature effects on soot negligible. Using n-Decane as a baseline, the double bond increased soot production and was further increased with a more centrally located double bond. The ester function group containing oxygen decreased soot production. The order of most to least sooting fuels were as follows 5-Decene > 1-Decene > n-Decane > Biodiesel Surrogate.

  7. Soot Particle Studies - Instrument Inter-Comparison – Project Overview

    SciTech Connect

    Cross, E.; Sedlacek, A.; Onasch, T. B.; Ahern, A.; Wrobel, W.; Slowik, J. G.; Olfert, J.; Lack, D. A.; Massoli, P.; Cappa, C. D.; Schwarz, J.; Spackman, J. R.; Fahey, D. W.; Trimborn, A.; Jayne, J. T.; Freedman, A.; Williams, L. R.; Ng, N. L.; Mazzoleni, C.; Dubey, M.; Brem, B.; Kok, G.; Subramanian, R.; Freitag, S.; Clarke, A.; Thornhill, D.; Marr, L.; Kolb, C. E.; Worsnop, D. R.; Davidovits, P.

    2010-03-06

    An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer - Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratio (1.8 {le} {phi} {le} 5), particle shape (mass-mobility exponent (D{sub f m}), 2.0 {le} D{sub f m} {le} 3.0), particle mobility size (30 {le} d{sub m} {le} 300 nm), black carbon mass (0.07 {le} m{sub BC} {le} 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 {le} {Delta}r{sub ve} {le} 201 nm) where {Delta}r{sub ve} is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.

  8. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction

    SciTech Connect

    Michiel T.O. Jonker; Steven B. Hawthorne; Albert A. Koelmans

    2005-10-15

    Combustion-derived PAHs are strongly sorbed to their particulate carrier (i.e., soot, charcoal), and therefore, very slow desorption kinetics of the chemicals might be anticipated. Measurements are however lacking, because conventional methods (Tenax, XAD, gas-purging) fail to accurately determine desorption kinetics due to practical problems. In this study, we used a mild supercritical fluid extraction (SFE) method, which mimics desorption into water and circumvents these problems, to quantify desorption kinetics of 13 native PAHs from pure charcoal, coal, and four types of soot. The results show that generally only very small PAH fractions are released. Desorption behavior was, however, not related to common sorbent/sorbate characteristics. Two-site model-derived 'fast desorbing fractions' were {lt}0.01 in the majority of cases, and for the dominant 'slow sites', the calculated rate constants for desorption into water measured from 10{sup -7} to 10{sup -5} h{sup -1}. These data suggest that desorption of coal and combustion-derived PAHs can be even slower than the 'very slow' desorption observed in sediments. Estimated time scales required for removal of pyrogenic PAHs from these extremely slow sites into water amount to several millennia. Our results imply reduced chemical risks for soot and soot-like materials, casting doubts on current risk assessment procedures and environmental quality standards of pyrogenic PAHs. 41 refs., 1 fig., 3 tabs.

  9. Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process.

    PubMed

    Zimmermann, R; Ferge, T; Gälli, M; Karlsson, R

    2003-01-01

    Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed. PMID:12672141

  10. NOx reduction in diesel fuel flames by additions of water and CO{sub 2}

    SciTech Connect

    Li, S.C.

    1997-12-31

    Natural gas has the highest heating value per unit mass (50.1 MJ/kg, LHV) of any of the hydrocarbon fuels (e.g., butane, liquid diesel fuel, gasoline, etc.). Since it has the lowest carbon content per unit mass, combustion of natural gas produces much less carbon dioxide, soot particles, and oxide of nitrogen than combustion of liquid diesel fuel. In view of anticipated strengthening of regulations on pollutant emissions from diesel engines, alternative fuels, such as compressed natural gas (CNG) and liquefied natural gas (LNG) have been experimentally introduced to replace the traditional diesel fuels in heavy-duty trucks, transit buses, off-road vehicles, locomotives, and stationary engines. To help in applying natural gas in Diesel engines and increasing combustion efficiency, the emphasis of the present paper is placed on the detailed flame chemistry of methane-air combustion. The present work is the continued effort in finding better methods to reduce NO{sub x}. The goal is to identify a reliable chemical reaction mechanism for natural gas in both premixed and diffusion flames and to establish a systematic reduced mechanism which may be useful for large-scale numerical modeling of combustion behavior in natural gas engines.

  11. AUTOMOTIVE DIESEL MAINTENANCE. PROGRAM OUTLINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    INFORMATIONAL TOPICS COVERED IN THE TEXT MATERIALS AND SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILMS FOR A 2-YEAR, 55 MODULE PROGRAM IN AUTOMOTIVE DIESEL MAINTENANCE ARE GIVEN. THE 30 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 1" ARE AVAILABLE AS VT 005 655 - VT 005 684, AND THE 25 MODULES FOR "AUTOMOTIVE DIESEL MAINTENANCE 2" ARE AVAILABLE…

  12. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  13. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames

    SciTech Connect

    Lee, Seong-Young; Turns, Stephen R.; Santoro, Robert J.

    2009-12-15

    This paper presents results from an investigation of soot formation in turbulent, non-premixed, C{sub 2}H{sub 4}/air jet flames. Tests were conducted using a H{sub 2}-piloted burner with fuel issuing from a 2.18 mm i.d. tube into quiescent ambient air. A range of test conditions was studied using the initial jet velocity (16.2-94.1 m/s) as a parameter. Fuel-jet Reynolds numbers ranged from 4000 to 23,200. Planar laser-induced incandescence (LII) was employed to determine soot volume fractions, and laser-induced fluorescence (LIF) was used to measure relative hydroxyl radical (OH) concentrations and polycyclic aromatic hydrocarbons (PAHs) concentrations. Extensive information on the structure of the soot and OH fields was obtained from two-dimensional imaging experiments. Quantitative measurements were obtained by employing the LII and LIF techniques independently. Imaging results for soot, OH, and PAH show the existence of three soot formation/oxidation regions: a rapid soot growth region, in which OH and soot particles lie in distinctly different radial locations; a mixing-dominated region controlled by large-scale motion; and a soot-oxidation region in which the OH and soot fields overlap spatially, resulting in the rapid oxidation of soot particles. Detailed quantitative analyzes of soot volume fractions and OH and soot zone thicknesses were performed along with the temperature measurement using the N{sub 2}-CARS system. Measurements of OH and soot zone thicknesses show that the soot zone thickness increases linearly with axial distance in the soot formation region, whereas the OH zone thickness is nearly constant in this region. The OH zone thickness then rapidly increases with downstream distance and approximately doubles in the soot-oxidation region. Probability density functions also were obtained for soot volume fractions and OH concentrations. These probability density functions clearly define the spatial relationships among the OH, PAH concentrations, the

  14. Optical properties of soot particles: measurement - model comparison

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower

  15. Diagnosing diesel engines

    SciTech Connect

    O'Connor, L.

    1992-03-01

    This paper reports that problems with diesel engines that have reciprocating parts have long defied a systematic approach to analysis. Engine phenomena such as combustion pressures, valve seating impacts, and piston vibrations reflect directly on how an engine is performing and would be useful to measure. However, these occur inside an engine block and for the most part are not possible to measure directly with sensors. Diesel engine manufacturers are finding new ways to troubleshoot machinery by using sophisticated signal-processing techniques that detect combustion anomalies and high-speed data-acquisition units that sample multiple measurement parameters.

  16. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  17. Response of rodents to inhaled diluted diesel exhaust: biochemical and cytological changes in bronchoalveolar lavage fluid and in lung tissue

    SciTech Connect

    Henderson, R.F.; Pickrell, J.A.; Jones, R.K.; Sun, J.D.; Benson, J.M.; Mauderly, J.L.; McClellan, R.O.

    1988-10-01

    The effect of long-term (24 months) inhalation of diesel exhaust on the bronchoalveolar region of the respiratory tract of rodents was assessed by serial (every 6 months) analysis of bronchoalveolar lavage fluid (BALF) and of lung tissue from F344/Crl rats and CD-1 mice (both sexes) exposed to diesel exhaust diluted to contain 0, 0.35, 3.5, or 7.0 mg soot/m3. The purpose of the study was twofold. One was to assess the potential health effects of inhaling diluted exhaust from light-duty diesel engines. The second was to determine the usefulness of BALF analysis in detecting the early stages in the development of nononcogenic lung disease and differentiating them from the normal repair processes. No biochemical or cytological changes in BALF or in lung tissue were noted in either species exposed to the lowest, and most environmentally relevant, concentration of diesel exhaust. In the two higher levels of exposure, a chronic inflammatory response was measured in both species by dose-dependent increases in inflammatory cells, cytoplasmic and lysosomal enzymes, and protein in BALF. Histologically, after 1 year of exposure, the rats had developed focal areas of fibrosis associated with the deposits of soot, while the mice, despite a higher lung burden of soot than the rats, had only a fine fibrillar thickening of an occasional alveolar septa in the high-level exposure group. Higher increases in BALF beta-glucuronidase activity and in hydroxyproline content accompanied the greater degree of fibrosis in the rat. BALF levels of glutathione (GSH) and glutathione reductase activity increased in a dose-dependent fashion and were higher in mice than in rats. Lung tissue GSH was depleted in a dose-dependent fashion in rats but was slightly increased in mice.

  18. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames

    SciTech Connect

    Singh, Jasdeep; Patterson, Robert I.A.; Kraft, Markus; Wang, Hai

    2006-04-15

    In this paper, the prediction of a soot model [J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122-136] is compared to a recently published set of highly detailed soot particle size distributions [B. Zhao, Z. Yang, Z. Li, M.V. Johnston, H. Wang, Proc. Combust. Inst. 30 (2005)]. A stochastic approach is used to obtain soot particle size distributions (PSDs). The key features of the measured and simulated particle size distributions are identified and used as a simple way of comparing PSDs. The sensitivity of the soot PSDs to the parameters defining parts of the soot model, such as soot inception, particle and PAH collision efficiency and enhancement, and surface activity is investigated. Incepting soot particle size is found to have a very significant effect on the small-size end of the PSDs, especially the position of the trough for a bimodal soot PSDs. A new model for the decay in the surface activity is proposed in which the activity of the soot particle depends only on the history of that particle and the local temperature in the flame. This is a first attempt to use local flame variables to define the surface aging which has major impact on the prediction of the large-size end of the PSDs. Using these modifications to the soot model it is possible to improve the agreement between some of the points of interest in the simulated and measured PSDs. The paper achieves the task to help advance the soot models to predict soot PSD in addition to soot volume fraction and number density, which has been the focus of the literature. (author)

  19. The effect of temperature on soot properties in premixed methane flames

    SciTech Connect

    Alfe, M.; Apicella, B.; Tregrossi, A.; Ciajolo, A.; Rouzaud, J.-N.

    2010-10-15

    The effect of flame temperature on soot properties was studied in premixed methane/oxygen flames burning at a constant mixture composition (C/O = 0.60, {phi} = 2.4) and different cold-gas flow velocities (4 and 5 cm s{sup -1}). Temperature and concentration profiles of stable gases and condensed phases combustion products were measured along the flame axis. It was found that the high flame temperature conditions cause a larger decomposition of methane into hydrogen and C{sub 2}-C{sub 4} hydrocarbons, thereby reducing the formation of benzene and condensed phases including condensed species and soot. Soot properties were studied by UV-Visible absorption spectroscopy, thermogravimetry and H/C elemental analysis. A description of soot nanostructural organization was also performed by means of high-resolution transmission electron microscopy. Different properties and nanostructures were found to develop in the soot, depending on the temperature and on soot aging associated. Soot dehydrogenation occurred to a larger extent in the high flame temperature conditions. As soot dehydrogenates the mass absorption coefficients of soot exhibited an increasing trend along the flame axis. However, mature soot retained a relatively high H/C ratio and low absorption coefficients with respect to other less hydrogenated fuels even in high temperature conditions. This indicates that the aromatization/dehydrogenation of soot in premixed flames is more dependent on the fuel characteristics rather than on the flame temperature. Generally, it was assessed that mature soot produced from diverse hydrocarbon fuels with similar flame temperatures and flame types possess a different chemical composition and structure. To this regard the H/C atomic ratio and mass absorption coefficients appeared to be signatures of soot properties and structural evolution. (author)

  20. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. PMID:22119306

  1. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  2. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  3. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  4. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE PAGESBeta

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  5. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  6. Fuel for diesel engine

    SciTech Connect

    Mori, M.

    1983-09-20

    A fuel is disclosed for a diesel engine which comprises a mixture of (A) an alcohol, (B) gas oil and (C) castor oil, wherein the contents of the respective components satisfy requirements represented by the following formulae: 0% by volume < A 80% by volume, 10% by volume B < 50% by volume, and 10% by volume C < 50% by volume.

  7. Diesel Engine Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  8. Diesel Engine Alternatives

    SciTech Connect

    Ryan, T

    2003-08-24

    There are basically three different modes of combustion possible for use in reciprocating engines. These include, diffusion burning, as occurs in current diesel engines, flame propagation combustion such as used in conventional SI engines, and homogeneous combustion such as is used in the SwRI HCCI engine. Diesel engines currently offer significant fuel consumption benefits relative to other powerplants for on and off road applications; however, costs and efficiency may become problems as the emissions standards become even more stringent. This presentation presents a discussion of the potentials of HCCI and flame propagation engines as alternatives to the diesel engines. It is suggested that as the emissions standards become more and more stringent, the advantages of the diesel may disappear. The potential for HCCI is limited by the availability of the appropriate fuel. The potential of flame propagation engines is limited by several factors including knock, EGR tolerance, high BMEP operation, and throttling. These limitations are discussed in the context of potential for improvement of the efficiency of the flame propagation engine.

  9. DIESEL NOX CONTROL APPLICATION

    EPA Science Inventory

    The paper gives results of a project to design, develop, and demonstrate a diesel engine nitrogen oxide (NOx) and particulate matter (PM) control package that will meet the U.S. Navy's emission control requirements. (NOTE: In 1994, EPA issued a Notice for Proposed Rule Making (NP...

  10. Diesel Engine Idling Test

    SciTech Connect

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  11. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  13. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  14. Diesel engine fuel systems

    SciTech Connect

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  15. Diesel engine fuel systems

    SciTech Connect

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  16. The single scattering properties of hygroscopic soot aggregates with water coated monomers

    NASA Astrophysics Data System (ADS)

    YU, W.; Tianhai, C.; Hao, C.; Lijuan, Z.

    2013-12-01

    Anthropogenic aerosols, such as soot, have modified the Earth's radiation balance by scattering and absorbing solar and long-wave radiative transmission, which have largely influenced the global climate change since the industrial era. Based on transmission electron microscope images (TEM), soot particles are shown as the complex, fractal-like aggregate structures. In humid atmospheric environments, these soot aggregates tend to acquire a water coating, which introduces further complexity to the problem of determining the optical properties of the aggregates. The hygroscopic growth of soot aggregates is important for the aging of these absorbing aerosols, which can significantly influence the optical properties of these kinds of soot particles. In this paper, according to the specific volume fractions of soot core in the water coated soot particle, the monomers of fractal soot aggregates are modeled as semi-external mixtures (physical contact) with constant radius of soot core and variable size of water coating. The single scattering properties of these hygroscopic soot particles, such as phase function, the cross sections of extinction, absorption and scatting, single scattering albedo (SSA), and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The morphological effects are compared with different monomer numbers and fractal dimension of the soot aggregates, as well as different size of water coating for these spherical monomers. The results have shown that the extinction and absorption cross sections are decreased for the soot aggregates with more thick water coating on monomers, but the single scattering albedo is increased for the larger water coating. It is found that the SSA of aged soot aggregates with hygroscopic grown are remarkably (~50% for volume fraction of soot aggregates is 0.5) larger than fresh soot particles without the consideration of water coating, due to the size of water coating and the

  17. Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NO{sub x} adsorption, soot combustion and simultaneous NO{sub x}-soot removal

    SciTech Connect

    Wang, Zhongpeng; Yan, Xiaotong; Bi, Xinlin; Wang, Liguo; Zhang, Zhaoliang; Jiang, Zheng; Xiao, Tiancun; Umar, Ahmad; Wang, Qiang

    2014-03-01

    Graphical abstract: - Highlights: • The addition of La in Cu-based oxides increased the types of active oxygen. • NO{sub x} adsorption, soot oxidation and simultaneous NO{sub x}-soot removal were enhanced. • The possible catalytic mechanism was studied via in situ FTIR analysis. • Soot oxidation was promoted by the NO{sub 2} intermediate. - Abstract: La-promoted Cu-based hydrotalcites derived mixed oxides were prepared and their catalytic activities for NO{sub x} adsorption, soot oxidation, and simultaneous NO{sub x}-soot removal were investigated. The catalysts were characterized by XRD, DTG, BET, FTIR, H2-TPR, TPD and TPO techniques. The oxides catalysts exhibited mesoporous properties with specific surface area of 45–160 m{sup 2}/g. The incorporation of La and Cu decreased the amount of basic sites due to the large decrease in surface areas. Under O{sub 2} atmosphere, La incorporation is dominant for soot oxidation activity, while Cu favors high selectivity to CO{sub 2} formation. A synergetic effect between La and Cu for catalyzed soot oxidation lies in the improved redox property and suitable basicity. The presence of NO in O{sub 2} significantly promoted soot oxidation on the catalysts with the ignition temperature decreased to about 300 °C. In O{sub 2}/NO atmosphere, NO{sub 2} acts as an intermediate which oxidizes soot to CO{sub 2} at a lower temperature with itself reduced to NO or N{sub 2}, contributing to the high catalytic performance in simultaneous removal of NO{sub x} and soot.

  18. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation

    NASA Technical Reports Server (NTRS)

    Frenklach, M.

    1983-01-01

    Soot formation in toluene-, benzene-, and acetylene-oxygen-argon mixtures was investigated to study soot formation in a combustion environment. High concentrations of oxygen completely suppress soot formation. The addition of oxygen at relatively low concentrations uniformly suppresses soot formation at high pressures, while at relatively lower pressures it suppresses soot formation at higher temperatures while promoting soot production at lower temperatures. The observed behavior indicates that oxidation reactions compete with ring fragmentation. The main conclusion to be drawn from the results is that the soot formation mechanism is probably the same for the pyrolysis and oxidation of hydrocarbons. That is, the addition of oxygen does not alter the soot route but rather promotes or inhibits this route by means of competitive reactions. An approach to empirical modeling of soot formation during pyrolysis of aromatic hydrocarbons is also presented.

  19. COSMIC: Carbon Monoxide and Soot in Microgravity Inverse Combustion

    NASA Technical Reports Server (NTRS)

    Blevins, L. G.; Fernandez, M. G.; Mulholland, G. W.; Davis, R. W.; Moore, E. F.; Steel, E. B.; Scott, J. H. J.

    2001-01-01

    Almost seventy percent of deaths in accidental fires are caused by inhalation of toxins such as carbon monoxide (CO) and smoke (soot) that form during underventilated burning. The COSMIC project examines the formation mechanisms of CO and soot during underventilated combustion, achieved presently using laminar, inverse diffusion flames (IDFs) formed between an air jet and surrounding fuel. A major hypothesis of the project is that the IDF mimics underventilated combustion because carbon-containing species that form on the fuel side of the flame (such as CO and soot) can escape without passing through an oxidizing flame tip. An IDF literature review was presented at the last microgravity workshop, and a few additional IDF papers have appeared since that meeting. The COSMIC project is entering the third year of its four-year funding cycle. The first two years have been devoted to designing and constructing a rig for use in the NASA 2.2-second drop tower. A few computations and laboratory experiments have been performed. The goals of this paper are to discuss the use of numerical simulation during burner design, to present computational and experimental results that support the hypothesis that IDFs are similar to underventilated flames, and to delineate future plans.

  20. Multicomponent droplet combustion and soot formation in microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1995-01-01

    Most practical fuels which are burned in combustion-powered devices, stationary power plants, and incinerators are multicomponent in nature. The differing properties of fuels effects the combustion behavior of the blend. Blending can be useful to achieve desired ends, such as increasing burning rates and reducing extinction diameter and soot formation. Of these, particulate emissions is one of the most important concerns because of its impact on the environment. It is also the least understood and most complicated aspect of droplet combustion. Because of this fact, a well characterized flow field and simplified flame shape can improve the understanding of soot formation during droplet combustion. The simplest flame shape to analyze for a droplet, while still maintaining the integrity of the droplet geometry with its inherent unsteadiness, is spherical with its associated one-dimensional flow field. This project will concern soot formation in microgravity droplet flames and some parameters that effect it. Because the project has not yet begun, this paper will briefly review some related results on this subject.

  1. Single-Mach and double-Mach reflection - Its representation in Ernst Mach's historical soot method

    NASA Astrophysics Data System (ADS)

    Krehl, P.

    In 1875 Ernst Mach discovered the effect of irregular interaction of shock waves, the so-called single Mach reflection (SMR), which for symmetric geometry is characterized by two triple points. He recorded their two trajectories on a soot-covered glass plate. Appearing as two mirror-symmetric V-branches, they form the well-known Mach soot funnel. Combining this soot method with the schlieren technique facilitates the interpretation of soot-recorded interaction phenomena as well as allows to resolve the soot removal mechanism in time. Increasing the dynamic recording range of the soot layer in terms of reflected shock pressures even renders visualization of double-Mach reflection (DMR) which, in the case of symmetric shock interaction, is characterized by a second concentric, external 'double-Mach funnel'. At transition of DMR to SMR it merges into the ordinary 'single-Mach funnel'.

  2. Chromatic variation of soot soiling: a possible marker for gunshot wounds in burnt bone.

    PubMed

    Amadasi, Alberto; Merli, Daniele; Brandone, Alberto; Cattaneo, Cristina

    2014-01-01

    Soot soiling is a crucial forensic parameter around gunshot lesions. Carbonization, however, can severely alter human tissues and mimic such clues. This study aims at evaluating the survival of soot soiling even after carbonization in bone. A total of 36 bovine ribs (half fleshed and half defleshed) were shot with two types of bullet (both 9-mm; full metal-jacketed and unjacketed) with a near-contact range. With unjacketed bullets, the shot left in every case a clear, black, and roughly round soot stain around the entrance wound, whereas full metal-jacketed bullets left no signs of soot. Every specimen then underwent calcination in an oven at 800°C. The analysis of the charred samples clearly showed the survival of the soot soiling in both fleshed and bony samples, with a clear correspondence with the former position, but with a different color (yellow). Thus, soot soiling may survive, although with a different color, even after charring. PMID:24147992

  3. Investigation of Sooting in Microgravity Droplet Combustion: Fuel-Dependent Effects

    NASA Technical Reports Server (NTRS)

    Manzello, Samuel L.; Hua, Ming; Choi, Mun Young

    1999-01-01

    Kumagai and coworkers first performed microgravity droplet combustion experiments [Kumagai, 1957]. The primary goal of these early experiments were to validate simple 'd(sup 2)-law models [Spalding, 1954, Godsave, 1954] Inherent in the 'd(sup 2) -law' formulation and in the scope of the experimental observation is the neglect of sooting behavior. In fact, the influence of sooting has not received much attention until more recent works [Choi et al., 1990; Jackson et al., 1991; Jackson and Avedisian, 1994; Choi and Lee, 1996; Jackson and Avedisian, 1996; Lee et al., 1998]:. Choi and Lee measured soot volume fraction for microgravity droplet flames using full-field light extinction and subsequent tomographic inversion [Choi and Lee, 1996]. In this investigation, soot concentrations were measured for heptane droplets and it was reported that soot concentrations were considerably higher in microgravity compared to the normal gravity flame. It was reasoned that the absence of buoyancy and the effects of thermophoresis resulted in the higher soot concentrations. Lee et al. [1998] performed soot measurement experiments by varying the initial droplet diameter and found marked influence of sooting on the droplet burning behavior. There is growing sentiment that sooting in droplet combustion must no longer be neglected and that "perhaps one of the most important outstanding contributions of (micro)g droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized." [Law and Faeth, 1994]. One of the methods that we are exploring to control the degree of sooting in microgravity is to use different fuels. The effect of fuel structure on sooting propensity has been investigated for over-ventilated concentric coflowing buoyant diffusion flames. (Glassman, 1996]. In these

  4. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  5. Volatile nanoparticle formation and growth within a diluting diesel car exhaust.

    PubMed

    Uhrner, Ulrich; Zallinger, Michael; von Löwis, Sibylle; Vehkamäki, Hanna; Wehner, Birgit; Stratmann, Frank; Wiedensohler, Alfred

    2011-04-01

    A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric

  6. Diesel combustion and emissions formation using multiple 2-D imaging diagnostics

    SciTech Connect

    Dec, J.E.

    1997-12-31

    Understanding how emissions are formed during diesel combustion is central to developing new engines that can comply with increasingly stringent emission standards while maintaining or improving performance levels. Laser-based planar imaging diagnostics are uniquely capable of providing the temporally and spatially resolved information required for this understanding. Using an optically accessible research engine, a variety of two-dimensional (2-D) imaging diagnostics have been applied to investigators of direct-injection (DI) diesel combustion and emissions formation. These optical measurements have included the following laser-sheet imaging data: Mie scattering to determine liquid-phase fuel distributions, Rayleigh scattering for quantitative vapor-phase-fuel/air mixture images, laser induced incandescence (LII) for relative soot concentrations, simultaneous LII and Rayleigh scattering for relative soot particle-size distributions, planar laser-induced fluorescence (PLIF) to obtain early PAH (polyaromatic hydrocarbon) distributions, PLIF images of the OH radical that show the diffusion flame structure, and PLIF images of the NO radical showing the onset of NO{sub x} production. In addition, natural-emission chemiluminescence images were obtained to investigate autoignition. The experimental setup is described, and the image data showing the most relevant results are presented. Then the conceptual model of diesel combustion is summarized in a series of idealized schematics depicting the temporal and spatial evolution of a reacting diesel fuel jet during the time period investigated. Finally, recent PLIF images of the NO distribution are presented and shown to support the timing and location of NO formation hypothesized from the conceptual model.

  7. Optical properties of the semi-external mixture composed of sulfate particle and different quantities of soot aggregates

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-08-01

    The effects of soot aggregate quantities on the optical properties of their semi-external mixture with sulfate host particle were investigated. In this study, the individual soot-containing mixtures were simulated as sulfate host point-contact attached to a specified amount of soot aggregates with the same monomer numbers and fractal parameters. The total numbers and volumes of soot monomers were also constant. Optical properties of this type of aerosol mixture were calculated using the numerically exact superposition T-matrix method (STM). The random-orientation averaging results indicated that the optical properties of the soot-containing mixtures may be influenced by the soot aggregate quantities. In these simulations, the absorption Ångström exponent (AÅE) values ranged from 0.9 to 1.1, which agree with the observations. The relative deviations of scattering Ångström exponent (SÅE) values between different numbers of soot aggregates attached to the surface of a sulfate host were upwards of ~11%. The results showed that the greater number of attached soot aggregates may lead to smaller SÅE values in the soot-containing mixtures. For most cases of simulated mixtures, a more compact morphology of soot aggregates, larger soot monomer radii and smaller soot volume fractions (Fsoot) may also generate smaller SÅE values. Moreover, in the visible range, the simulated scattering cross sections of soot-containing mixtures with two, three, four, and six soot aggregates (Df=1.8) were ~5%, ~10%, ~15%, and ~30% larger than those with only one soot aggregate, respectively, on the condition that volumes of soot and sulfate are comparable. However, these relative deviations between different numbers of attached soot aggregates on the scattering cross sections of mixtures may be weakened for larger volume of non-absorbing sulfate particle (<5% for the cases of Fsoot=1/10, sulfate volume is 9 times of soot).

  8. The sequestration sink of soot black carbon in the Northern European Shelf sediments

    NASA Astrophysics Data System (ADS)

    SáNchez-GarcíA, Laura; Cato, Ingemar; Gustafsson, Örjan

    2012-03-01

    To test the hypothesis that ocean margin sediments are a key final repository in the large-scale biogeospheric cycling of soot black carbon (soot-BC), an extensive survey was conducted along the ˜2,000 km stretch of the Swedish Continental Shelf (SCS). The soot-BC content in the 120 spatially distributed SCS sediments was 0.180.130.26% dw (median with interquartile ranges), corresponding to ˜5% of total organic carbon. Using side-scan sonar constraints to estimate the areal fraction of postglacial clay sediments that are accumulation bottoms (15% of SCS), the soot-BC inventory in the SCS mixed surface sediment was estimated at ˜4,000 Gg. Combining this with radiochronological constraints on sediment mass accumulation fluxes, the soot-BC sink on the SCS was ˜300 Gg/yr, which yielded an area-extrapolated estimate for the Northern European Shelf (NES) of ˜1,100 Gg/yr. This sediment soot-BC sink is ˜50 times larger than the river discharge fluxes of soot-BC to these coastal waters, however, of similar magnitude as estimates of atmospheric soot-BC emission from the upwind European continent. While large uncertainties remain regarding the large-scale to global BC cycle, this study combines with two previous investigations to suggest that continental shelf sediments are a major final repository of atmospheric soot-BC. Future progress on the soot-BC cycle and how it interacts with the full carbon cycle is likely to benefit from14C determinations of the sedimentary soot-BC and similar extensive studies of coastal sediment in complementary regimes such as off heavily soot-BC-producing areas in S and E Asia and on the large pan-Arctic shelf.

  9. The sequestration sink of soot black carbon in the Northern European Shelf sediments

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Cato, I.; Gustafsson, Ö.

    2012-04-01

    The present study contributes to assess the role of marine sediments in removing soot black carbon (soot-BC) from the atmosphere and large-scale biogeospheric cycling, by constraining the inventory and sediment flux of soot-BC for both the Swedish Continental Shelf (SCS) and the entire Northern European Shelf (NES). An extensive survey was conducted along the ~2,000 km stretch of the SCS, where the soot-BC content in 120 spatially-distributed sediments showed a median value of 0.18 %dw (interquartile range of 0.13-0.26 %dw). The soot-BC concentrations corresponding to ~5% of total organic carbon (TOC) (interquartile range of 3-6 %TOC) were toward the high end of reports for other shelf surface sediments and attests to the substantial soot-BC influx from the highly industrialized and densely populated regions upwind of NES. Using side-scan sonar constraints to estimate the areal fraction of postglacial clay sediments that are accumulation bottoms (15% of SCS), the soot-BC inventory in the SCS mixed surface sediment was estimated at ~4,000 Gg. Combining this with radiochronological constraints on sediment mass accumulation fluxes, the soot-BC sink on the SCS was ~300 Gg/yr, which yielded an area-extrapolated estimate for the NES of ~1,100 Gg/yr. This sediment soot-BC sink is ~50 times larger than the river discharge fluxes of soot-BC to these coastal waters, however, of similar magnitude as estimates of atmospheric soot-BC emission from the upwind European continent. While large uncertainties remain regarding the large-scale to global BC cycle, this study combines with two previous investigations ([1, 2]) to suggest that continental shelf sediments are a major final repository of atmospheric soot-BC.

  10. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2011-10-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  11. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  12. Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.

    2005-01-01

    The dimensionless extinction coefficient (K{sub e}) of soot must be known to quantify laser extinction measurements of soot concentration and to predict optical attenuation through smoke clouds. Previous investigations have measured K{sub e} for post-flame soot emitted from laminar and turbulent diffusion flames and smoking laminar premixed flames. This paper presents the first measurements of soot K{sub e} from within laminar diffusion flames, using a small extractive probe to withdraw the soot from the flame. To measure K{sub e}, two laser sources (635 nm and 1310 nm) were coupled to a transmission cell, followed by gravimetric sampling. Coannular diffusion flames of methane, ethylene and nitrogen-diluted kerosene burning in air were studied, together with slot flames of methane and ethylene. K{sub e} was measured at the radial location of maximum soot volume fraction at several heights for each flame. Results for K{sub e} at both 635 nm and 1310 nm for ethylene and kerosene coannular flames were in the range of 9-10, consistent with the results from previous studies of post-flame soot. The ethylene slot flame and the methane flames have lower K{sub e} values, in some cases as low as 2.0. These lower values of K{sub e} are found to result from the contributions of (a) the condensation of PAH species during the sampling of soot, (b) the wavelength-dependent absorptivity of soot precursor particles, and, in the case of methane, (c) the negligible contribution of soot scattering to the extinction coefficient. RDG calculations of soot scattering, in combination with the measured K{sub e} values, imply that the soot refractive index is in the vicinity of 1.75-1.03i at 635 nm.

  13. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    PubMed Central

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  14. Effects of carbon dioxide on isolated droplet combustion for sooting and non-sooting fuels in microgravity

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Furuta, Tomoya; Nagashima, Yoshiaki; Segawa, Daisuke; Kadota, Toshikazu

    The combustion behavior of ethanol, n-buthanol and n-decane droplets in high concentration of CO2 was experimentally investigated at atmospheric pressure in microgravity. Experiments were performed during a fall of the experimental setup at 1 s drop tower with the total height of 9 m. The initial droplet diameter was ranged from about 0.3 to 0.8 mm. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. Effects of ambient carbon dioxide on unsteady behavior of the instantaneous burning rate for sooting and non-sooting droplet flames were investigated. The behavior of the instantaneous burning rate clearly showed events of the initial thermal expansion, ignition and subsequent burning of the fuel droplet, and it was different from the behavior predicted by d2 law. These fundamental behaviors for ethanol, n-buthanol and n-decane were shown in air and high concentrations of ambient carbon dioxide. In the case of n-decane (sooting fuel), the change in the burning rate after ignition was great while it was small in the case of ethanol. A stepwise increase in the burning rate after ignition could be clearly seen for n-decane droplet when initial droplet diameter was large although the tendency was not observed for ethanol. However, this stepwise behavior disappeared in high concentration of ambient carbon dioxide. In high concentration of ambient carbon dioxide, non-luminous flame was formed. The mitigation of soot production by ambient carbon dioxide was clearly observed and this effect was greater for the smaller droplet.

  15. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Blake, David F.; Kato, Katharine

    1995-01-01

    Black carbon soot from the upper troposphere and lower stratosphere has been systematically collected at latitudes from 90 deg N to 45 deg S. The measured latitudinal distribution of this soot at 10 to 11 km altitude is found to covary with commercial air traffic fuel use, suggesting that aircraft fuel combustion at altitude is the principal source. In addition, at latitudes where the commercial air traffic is high, measured black carbon soot values are high even at 20 km altitude, suggesting that aircraft-generated soot injected just above the tropopause may be transported to higher altitudes. During the volcanically influenced period in which these samples were collected, the number abundances, total mass, and calculated total surface area of black carbon soot are 2-3 orders of magnitude lower than similar measures of sulfuric acid aerosol. During volcanically quiescent periods, the calculated total surface area of black carbon soot aerosol is of the same order of magnitude as that of the background sulfuric acid aerosol. It appears from this comparison that black carbon soot is only capable of influencing lower stratosphere or upper troposphere chemistry during periods when the aerosol budget is not dominated by volcanic activity. It remains to determine the extent to which black carbon soot particles act as nuclei for sulfuric acid aerosol formation. However, mass balance calculations suggest that aircraft soot injected at altitude does not represent a significant source of condensation nuclei for sulfuric acid aerosols.

  16. Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere

    SciTech Connect

    Blake, D.F.; Kato, K.

    1995-04-20

    Black carbon soot from the upper troposphere and lower stratosphere has been systematically collected at latitudes from 90{degrees}N to 45{degrees}S. The measured latitudinal distribution of this soot at 10- to 11-km altitude is found to covary with commercial air traffic fuel use, suggesting that aircraft fuel combustion at altitude is the principal source. In addition, at latitudes where the commercial air traffic is high, measured black carbon soot values are high even at 20-km altitude, suggesting that aircraft-generated soot injected just above the tropopause may be transported to higher altitudes. During the volcanically influenced period in which these samples were collected, the number abundances, total mass, and calculated total surface area of black carbon soot are 2-3 orders of magnitude lower than similar measures of sulfuric acid aerosol. During volcanically quiescent periods, the calculated total surface area of black carbon soot aerosol is of the same order of magnitude as that of the background sulfuric acid aerosol. It appears from this comparison that black carbon soot is only capable of influencing lower stratosphere or upper troposphere chemistry during periods when the aerosol budget is not dominated by volcanic activity. It remains to determine the extent to which black carbon soot particles act as nuclei for sulfuric acid aerosol formation. However, mass balance calculations suggest that aircraft soot injected at altitude does not represent a significant source of condensation nuclei for sulfuric acid aerosols. 29 refs., 2 figs., 2 tabs.

  17. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  18. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed methanefoxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt; the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogenabstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames, for reasons that still must be explained.

  19. The Role of Biogenic and Anthropogenic Hydrocarbons in Aging of Atmospheric Soot

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Qiu, C.; Lin, Y.; Ma, Y.; Wang, L.; Zhang, R.

    2012-12-01

    Atmospheric soot is often found to be internally mixed with other aerosol constituents, yet the processes responsible for the soot aging are not well understood. We have conducted a systematic study on the role of several representative biogenic and anthropogenic volatile organic compounds (VOCs), including monoterpenes and aromatics, in atmospheric aging of combustion soot. Aging experiments were conducted in a fluoropolymer chamber on size-classified soot aerosols in the presence of a VOC and an oxidant, either ozone or photolytically generated hydroxyl radical (OH). The evolution in the aging state of soot was monitored from measurements of the particle mobility size and mass, which were used to derive information about particle effective density, dynamic shape factor, and coating thickness. When exposed to VOC and oxidant, soot particles promptly gain mass due to condensation of low-volatility and partitioning of semi-volatile VOC oxidation products. Depending on the VOC, the increase in the particle mass is accompanied by an increase or a decrease in the particle mobility diameter. In either case, the effective density of coated soot particles increases during aging because the condensed material fills in the voids of fractal soot aggregates, forcing their restructuring. The latter is confirmed by thermal denuding experiments, which show an increase in the effective density for soot that was first aged and then heated to remove the coating from the soot core. Hygroscopic and optical properties of soot are significantly altered by aging. Upon humidification, the coating absorbs water, increasing in volume and causing an additional restructuring of soot aggregates. Coated particles are sufficiently hygroscopic to activate to cloud droplets at atmospherically relevant water supersaturations. Aged soot shows stronger light absorption and scattering, with an enhancement magnitude depending on the coating thickness and nature of the coating precursor. The rate of

  20. Laminar Soot Processes (Lsp) Experiment: Findings From Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; El-Leathy, A. M.; Faeth, G. M.; Xu, F.

    2003-01-01

    Processes of soot formation and oxidation must be understood in order to achieve reliable computational combustion calculations for nonpremixed (diffusion) flames involving hydrocarbon fuels. Motivated by this observation, the present investigation extended earlier work on soot formation and oxidation in laminar jet ethylene/air and methane/oxygen premixed and acetylene-nitrogen/air diffusion flames at atmospheric pressure in this laboratory, emphasizing soot surface growth and early soot surface oxidation in laminar diffusion flames fueled with a variety of hydrocarbons at pressures in the range 0.1 - 1.0 atm.

  1. Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames

    SciTech Connect

    Kim, K.B.; Masiello, K.A.; Hahn, D.W.

    2008-07-15

    Light-scattering measurements, in situ laser-induced fluorescence, and thermophoretic sampling with transmission electron microscopy (TEM) analysis, were performed in laboratory isooctane diffusion flames seeded with 4000 ppm iron pentacarbonyl. These measurements allowed the determination of the evolution of the size, number density, and volume fraction of soot particles through the flame. Comparison to unseeded flame data provided a detailed assessment of the effects of iron addition on soot particle inception, growth, and oxidation processes. Iron was found to produce a minor soot-enhancing effect at early residence times, while subsequent soot particle growth was largely unaffected. It is concluded that primarily elemental iron is incorporated within the soot particles during particle inception and growth. However, iron addition was found to enhance the rate of soot oxidation during the soot burnout regime, yielding a two-thirds reduction in overall soot emissions. In situ spectroscopic measurements probed the transient nature of elemental iron throughout the flame, revealing significant loss of elemental iron, presumably to iron oxides, with increasing flame residence, suggesting catalysis of soot oxidation via iron oxide species. (author)

  2. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  3. Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation

    SciTech Connect

    Desgroux, P.; Mercier, X.; Lefort, B.; Lemaire, R.; Therssen, E.; Pauwels, J.F.

    2008-10-15

    Soot volume fraction (f{sub v}) profiles are recorded in low-pressure methane/oxygen/nitrogen flat flames using laser-induced incandescence (LII). Experiments are performed from 20 to 28 kPa in flames having the same equivalence ratio (2.32). Calibration is performed by cavity ring-down spectroscopy (CRDS) and indicates a very weak soot volume fraction (0.066 ppb at 21.33 kPa and 0.8 ppb at 26.66 kPa in the burnt gases). Soot volume fraction is found to increase continuously after a given distance above the burner (HAB) and tends to level off in the burnt gases. The reaction time resolution available in low-pressure flames makes it possible to examine the early steps of soot formation. The variation of the LII signal with laser energy before the LII ''plateau'' region is much weaker at the beginning of soot formation than after a given reaction time. The LII time decays are nearly constant within the first millimetres, whereas an increase in the decay, correlated with the growth of the primary soot particle, is observed later. The growth of soot volume fraction is then analysed by considering the variation of the derivative function df{sub v}/dt with f{sub v}. Three regimes having respectively a positive slope, a constant slope, and a negative slope are observed and are interpreted with respect to the soot inception process. Finally, a very important sensitivity of f{sub v} with pressure P (at 30 mm HAB) is observed, leading to a power law, f{sub v}=KP{sup 11}, confirmed by extinction measurements (by CRDS). The observed dependence of f{sub v} with pressure could be a result of the prominence of the early soot inception process in the investigated low-pressure flames. (author)

  4. Effect of oxygenated fuels on physicochemical and toxicological characteristics of diesel particulate emissions.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-12-16

    A systematic study was conducted to make a comparative evaluation of the effects of blending five different oxygenates (diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA), and butanol (Bu)) with ultralow sulfur diesel (ULSD) at 2% and 4% oxygen levels on physicochemical and toxicological characteristics of particulate emissions from a nonroad diesel engine. All blended fuels led to an overall decrease in the particulate mass concentration and elemental carbon (EC) emissions, which was strongly associated with the oxygen content in fuels and the specific type of fuels used. In general, the proportion of particulate-bound organic carbon (OC) and water-soluble organic carbon (WSOC) increased while using oxygenated fuel blends. Compared to ULSD, all fuel blends showed different emission factors of particle-phase PAHs and n-alkanes, slight alterations in soot nanostructure, lower soot ignition temperature, and lower activation energy. The total counts of particles (≤ 560 nm diameter) emitted decreased gradually for ULSD blended with DMC, DEA, and Bu, while they increased significantly for other fuel blends. The in vitro toxicity of particulates significantly increased with ULSD blended with DMC and DEA, while it decreased when ULSD was blended with PME, DGM, and Bu. PMID:25383974

  5. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect

    Wahiduzzaman, S.; Morel, T. )

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  6. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect

    Wahiduzzaman, S.; Morel, T.

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  7. Diesel particulate emissions

    SciTech Connect

    Abbass, M.K.; Andrews, G.E.; Williams, P.T.; Bartle, K.D.; Davies, I.L.; Tanui, L.K.

    1988-01-01

    The objective was to investigate combustion generated PAH in Diesel engine particulate emissions using a pure single component fuel, hexadecane, in a Perkins 4-236 engine in a single cylinder format. The results were compared with those using a conventional Diesel fuel and with the particulates collected by motoring the engine. To minimise any influence of contamination from the PAH in used lubricating oil, all the tests were carried out with fresh PAH free lubricating oil. The hexadecane particulates were found to contain 6-25% of the PAH and 5-9% of the n-alkanes for Diesel and the motoring tests were found to give 10% of the PAH and 50-200% of the n-alkane for hexadecane. It was concluded that there was an internal source of n-alkane and PAH in the engine and exhaust system, probably absorbed in engine deposits. It was therefore not possible to conclude that the PAH with hexadecane was pyrosynthesised.

  8. Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid.

    PubMed

    Khalizov, Alexei F; Xue, Huaxin; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-02-12

    Light absorption by carbon soot increases when the particles are internally mixed with nonabsorbing materials, leading to increased radiative forcing, but the magnitude of this enhancement is a subject of great uncertainty. We have performed laboratory experiments of the optical properties of fresh and internally mixed carbon soot aerosols with a known particle size, morphology, and the mixing state. Flame-generated soot aerosol is size-selected with a double-differential mobility analyzer (DMA) setup to eliminate multiply charged particle modes and then exposed to gaseous sulfuric acid (10(9)-10(10) molecule cm(-3)) and water vapor (5-80% relative humidity, RH). Light extinction and scattering by fresh and internally mixed soot aerosol are measured at 532 nm wavelength using a cavity ring-down spectrometer and an integrating nephelometer, respectively, and the absorption is derived as the difference between extinction and scattering. The optical properties of fresh soot are independent of RH, whereas soot internally mixed with sulfuric acid exhibits significant enhancement in light absorption and scattering, increasing with the mass fraction of sulfuric acid coating and relative humidity. For soot particles with an initial mobility diameter of 320 nm and a 40% H(2)SO(4) mass coating fraction, absorption and scattering are increased by 1.4- and 13-fold at 80% RH, respectively. Also, the single scattering albedo of soot aerosol increases from 0.1 to 0.5 after coating and humidification. Additional measurements with soot particles that are first coated with sulfuric acid and then heated to remove the coating show that both scattering and absorption are enhanced by irreversible restructuring of soot aggregates to more compact globules. Depending on the initial size and density of soot aggregates, restructuring acts to increase or decrease the absorption cross-section, but the combination of restructuring and encapsulation always results in an increased absorption for

  9. A Chamber Investigation of Nitric Acid-Soot Aerosol Chemistry at 298 K

    SciTech Connect

    Disselkamp, Robert S.; Carpenter, Michael A.; Cowin, James P.

    2000-10-02

    Long-pathlength infrared absorption spectroscopy was used to investigate nitric acid-soot aerosol chemistry at 298 K and 0.5 % relative humidity. Experiments were performed by introducing nitric acid vapor (PHNO3~3 Pa, Ptotal~40 kPa) into a teflon-coated chamber and initiating acquisition of infrared spectra at 3 minute time intervals. After 36 minutes of data collection, soot powder was rapidly expanded into nitric acid contained in the chamber to generate a soot-HNO3 aerosol. Infrared spectra collected before, and after, soot introduction to the chamber were used to characterize chamber wall reaction processes and soot aerosol chemistry, respectively. Three soot types were investigated (Degussa FW2, Cabot Monarch 1000, and crystalline graphite), each yielding similar chemistry. Upon soot introduction to the chamber both HNO3 uptake and NO2 production occurred, with the molar ratio of HNO3 uptake to NO2 production varying from 1.2 to 2.9 for the three soot types studied. Unreacted HNO3 was present at the conclusion of each of the aerosol experiments, indicating incomplete conversion of HNO3 into NO2. This observation suggested that "active" sites at the soot surface responsible for the reduction of HNO3 are not regenerated (i.e., formed) in the reaction process. In essence, a titration occurred between these active sites and HNO3. The NO2 concentrations produced, the soot mass concentrations used, and the BET measured specific surface area of the powders allowed computation of the surface density of active sites of ~4.0x10-18 m2/active site (describing all three powders studied). This is the first reported measurement of surface density of active sites for nitric acid chemistry on soot. Since atmospheric heterogeneous reactions that exhibit surface deactivation may, in principle, affect trace gas concentration, we perform an assessment in this regard.

  10. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts. PMID:25180674

  11. An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties

    NASA Technical Reports Server (NTRS)

    Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.

    2007-01-01

    The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.

  12. Characterization of soot properties in two-meter JP-8 pool fires.

    SciTech Connect

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurement of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.

  13. On the radiative properties of soot aggregates - Part 2: Effects of coating

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  14. Control of diesel engine emissions by dilute oxidizer injection

    SciTech Connect

    Duva, A.W.; Ibrahim, O.; Zhang, Z.

    1996-12-31

    The current diesel engine power systems have progressed to the point where significant reduction in emissions or fuel consumption are at the limit of the state of the art with the present fuels. It is proposed that overall system weight, power or efficiency must be traded to achieve reduced exhaust emission levels. Emission control through the injection of dilute oxidizers are explored to minimize the formation of noxious gases, emission of unburned hydrocarbons and soot in internal combustion diesel cycle engines. Relevant literature detailing the attempts to control exhaust emissions by altering the intake charge are reviewed and utilized as the foundation for the current study. Steady flow type combustion simulations utilizing low concentration hydrogen peroxide with available air in varying ratios are presented for trend comparison to experimental data developed during this investigation. The empirical portion of the study focused on the adaptation of proposed dilute hydrogen peroxide injection to a standard four cylinder marine diesel engine. The main thrust evaluated the impact of oxidizer injection on an aging engine without significant modifications to the existing auxiliary equipment. A simple spray apparatus delivered the dilute hydrogen peroxide to the air intake stream to minimize the alterations to the existing system. Water injection was performed as an experimental control for comparison to reference literature and to normalize the results obtained from the injection of the 5% and 10% concentration hydrogen peroxide. The injection of both concentrations of hydrogen peroxide showed an improvement relative to water injection for unburned hydrocarbon and oxides of nitrogen emissions. The improvements relative to water was greater with the higher concentration of hydrogen peroxide.

  15. Advanced diesel engineering and operation

    SciTech Connect

    Haddad, S.D.

    1988-01-01

    This state-of-the-art text/reference addresses advanced aspects of the design and operation of diesel engines. It is the only book to provide a comprehensive account of the adiabatic (or ceramic) diesel engine, aircraft and locomotive diesels (including both four-stroke and two-stroke configurations), an up-to-date analysis of torsional vibration shafts. Treats diesel engine vehicle noise, couplings and test instrumentation, and includes an excellent survey of fuel injection systems. All chapters are fully illustrated, most with supporting data. Contains an extensive, current bibliography.

  16. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  17. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  18. Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst.

    PubMed

    Batley, Graeme E; Halliburton, Brendan; Kirby, Jason K; Doolette, Casey L; Navarro, Divina; McLaughlin, Mike J; Veitch, Colin

    2013-08-01

    Nanoparticulate cerium dioxide (nano-CeO2 ), when combusted as an additive to diesel fuel, was transformed from 6 nm to 14 nm sizes into particles near 43 nm, with no obvious change in the unit cell dimensions or crystalline form. Cerium sulfate, if formed during combustion, was below detection limits. Ceria nanoparticles were agglomerated within the soot matrix, with a mean aerodynamic diameter near 100 nm. The dissolution of cerium from the dried ceria catalyst in synthetic soft water was extremely small (<0.0006% or <0.2 µg Ce/L), with particles being highly agglomerated (<450 nm). Agglomeration was reduced in the presence of humic acid. In the combusted samples, soot was dominant, and the solubility of cerium in soft water showed an almost 100-fold increase in the <1 nm fraction compared to that before combustion. It appeared that the nano-CeO2 remained agglomerated within the soot matrix and would not be present as dispersed nanoparticles in aquatic or soil environments. Despite the increased dissolution, the solubility was not sufficient for the combusted ceria to represent a risk in aquatic ecosystems. The predicted environmental concentrations were still orders of magnitude below the predicted no effects concentration of near 1 mg/L. In the soil environment, any cerium released from soot materials would interact with natural colloids, decreasing cerium concentrations in soil solutions and further minimizing the potential risk to soil organisms. PMID:23595783

  19. An in-cylinder study of the particulate/NO{sub x} trade-off in a DI Diesel Engine. Draft of final report

    SciTech Connect

    Litzinger, T.A.; Santavicca, D.A.; Santoro, R.J.

    1994-07-01

    The goal of the work performed during the contract period was to establish the ability to study soot and NO within the combustion chamber of a DI Diesel engine and to couple these measurements with actual exhaust emissions. This work was motivated by the need to obtain a more complete understanding of the particulate/NO{sub X} trade-off, observed in Diesel engines, to aid engine designers in meeting emissions limits. In order to achieve the desired goal, an optically accessible DI Diesel engine was designed and constructed. Also, planar imaging methods for imaging soot and NO were developed in laboratory flames and were then applied to the engine. For the study of soot, planar Mie scattering was used and a polarization ratio method was investigated to distinguish soot from fuel droplets. The Mie scattering technique proved to be well suited for the engine, and extensive results were obtained. In order to observe NO, planar laser induced fluorescence was used and it was successfully applied in the engine. In addition to these techniques, high speed combustion photography and shadowgraph photography were applied to obtain general characteristics of the combustion process. As a final diagnostic, actual engine emissions were measured. This report begins with a brief discussion of the problem under investigation and a summary of other studies of the NO{sub x}/particulate trade-off. Following these sections is a summary of the accomplishments and results from the present study. Finally, detailed results are presented through the six technical papers which were written during the contract period; these papers are appended to the report.

  20. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  1. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  2. Nitric Acid Uptake and Decomposition on Black Carbon (Soot) Surfaces: Its Implications for the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Choi, W.; Leu, M. T.

    1998-01-01

    Black carbon particles (soot) are formed as a result of incomplete combustion processes and are ubiquitous in the atmosphere. The lower troposphere contains plenty of soot particles whose principal sources are fossil fuel and biomass combustion at the ground level.

  3. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm).

    PubMed

    Wang, Zhongpeng; Zhu, Hongjian; Ai, Lijie; Liu, Xuhui; Lv, Min; Wang, Liguo; Ma, Zhenmin; Zhang, Zhaoliang

    2016-09-15

    Catalytic combustion is one of the most promising methods for diesel soot removal. Ln2Sn2O7 pyrochlores substituted with different rare-earth (RE) elements (Ln=La, Nd and Sm) were prepared through co-precipitation method for catalytic combustion of soot particulates. The structural, textural and redox properties, together with the oxygen vacancy of the catalysts were investigated systematically. Their catalytic activities were evaluated by both temperature-programmed oxidation and isothermal reaction techniques. With the increasing in RE ionic radius (r), the SnO bond strength in Ln2Sn2O7 pyrochlores evaluated from the stretching IR band was decreased, resulting in the improved reducibility and enhanced oxygen vacancies of catalysts. The increase of oxygen vacancy concentration was further confirmed by photoluminescence (PL) investigations wherein upon excitation with UV radiation, the pyrochlores nanoparticles exhibited strong and sharp transition at 408nm attributed to oxygen vacancies. Catalytic combustion and isothermal reactions revealed that the ignition activity (ignition temperature, T5) and the intrinsic activity (turnover frequency, TOF) were shown to depend correlatedly on redox properties and oxygen vacancy concentrations, both of which were influenced by the substitution of different RE elements. Among the pyrochlore oxides, the as-synthesized La2Sn2O7 sample displayed relatively the highest ignition activity and the largest intrinsic activity with TOF of 2.33×10(-3)s(-1). PMID:27295323

  4. Optical measurement of gas turbine engine soot particle effluents

    SciTech Connect

    Litchford, R.J.; Sun, F.; Few, J.D.; Lewis, J.W.L.

    1998-01-01

    This paper addresses optical-based techniques for measuring soot particulate loading in the exhaust stream of gas turbine engines. The multi-angle scattering and multi-wavelength extinction of light beams by ensembles of submicrometer soot particles was investigated as a diagnostic means of inferring particle field characteristics. That is, the particle size distribution function and particle number density were deduced using an innovative downhill simplex inversion algorithm for fitting the deconvolved Mie-based scattering/extinction integral to the measured scattering/extinction signals. In this work, the particle size distribution was characterized by the widely accepted two-parameter log-normal distribution function, which is fully defined with the specification of the mean particle diameter and the standard deviation of the distribution. The accuracy and precision of the algorithm were evaluated for soot particle applications by applying the technique to noise-perturbed synthetic data in which the signal noise component is obtained by Monte Carlo sampling of Gaussian distributed experimental errors of 4, 6, and 10%. The algorithm was shown to yield results having an inaccuracy of less than 10% for the highest noise levels and an imprecision equal to or less than the experimental error. Multi-wavelength extinction experiments with a laboratory bench-top burner yielded a mean particle diameter of 0.039 {micro}m and indicated that molecular absorption by organic vapor-phase molecules in the ultraviolet region should not significantly influence the measurements. A field demonstration test was conducted on one of the JT-12D engines of a Sabre Liner jet aircraft. This experiment yielded mean diameters of 0.040 {micro}m and 0.036 {micro}m and standard deviations of 0.032 {micro}m for scattering and extinction methods, respectively. The total particulate mass flow rate at idle was estimated to be 0.54 kg/h.

  5. Susceptibility to Inhaled Flame-Generated Ultrafine Soot in Neonatal and Adult Rat Lungs

    PubMed Central

    Chan, Jackie K. W.; Fanucchi, Michelle V.; Anderson, Donald S.; Abid, Aamir D.; Wallis, Christopher D.; Dickinson, Dale A.; Kumfer, Benjamin M.; Kennedy, Ian M.; Wexler, Anthony S.; Van Winkle, Laura S.

    2011-01-01

    Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth. PMID:21914721

  6. Carbon Monoxide and Soot Formation in Inverse Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Blevins, L. G.; Mulholland, G. W.; Davis, R. W.

    1999-01-01

    The objective of this project is to study carbon monoxide (CO) and soot formation in laminar, inverse diffusion flames (IDFs). The IDF is used because it is a special case of underventilated combustion. The microgravity environment is crucial for this study because buoyancy-induced instabilities impede systematic variation of IDF operating conditions in normal gravity. The project described in this paper is just beginning, and no results are available. Hence, the goals of this paper are to establish the motivation for the research, to review the IDF literature, and to briefly introduce the experimental and computational plan for the research.

  7. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities

  8. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years

    PubMed Central

    Han, Y. M.; Wei, C.; Huang, R.-J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.; Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W.

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People’s Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980–2012 relative to the period 1850–1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas. PMID:26750586

  9. Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method

    NASA Astrophysics Data System (ADS)

    Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria

    2016-03-01

    The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.

  10. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years.

    PubMed

    Han, Y M; Wei, C; Huang, R-J; Bandowe, B A M; Ho, S S H; Cao, J J; Jin, Z D; Xu, B Q; Gao, S P; Tie, X X; An, Z S; Wilcke, W

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People's Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980-2012 relative to the period 1850-1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas. PMID:26750586

  11. Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Zuberi, B.; Molina, L. T.; Molina, M. J.; Iedema, M. J.; Cowin, J. P.; Gaspar, D. J.; Wang, C.; Laskin, A.

    2005-08-01

    Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soot are neither well understood nor adequately represented in regional and global climate models. To investigate the effect of locality and residence time on properties of soot and mixing state in a polluted urban environment, particles of diameter 0.2-2.0 µm were collected in the Mexico City Metropolitan Area (MCMA) during the MCMA-2003 field campaign from various sites within the city. Individual particle analysis by different electron microscopy methods coupled with energy dispersed X-ray spectroscopy, and secondary ionization mass spectrometry show that freshly-emitted soot particles become rapidly processed in the MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely carbonaceous, consisting of soot aggregates with liquid coatings suggestive of unburned lubricating oil and water, ambient soot particles which have been processed for less than a few hours are heavily internally mixed, primarily with ammonium sulfate. Single particle analysis suggests that this mixing occurs through several mechanisms that require further investigation. In light of previously published results, the internally-mixed nature of processed soot particles is expected to affect heterogeneous chemistry on the soot

  12. Processing of soot in an urban environment: case study from the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Zuberi, B.; Molina, L. T.; Molina, M. J.; Iedema, M. J.; Cowin, J. P.; Gaspar, D. J.; Wang, C.; Laskin, A.

    2005-11-01

    Chemical composition, size, and mixing state of atmospheric particles are critical in determining their effects on the environment. There is growing evidence that soot aerosols play a particularly important role in both climate and human health, but still relatively little is known of their physical and chemical nature. In addition, the atmospheric residence times and removal mechanisms for soot are neither well understood nor adequately represented in regional and global climate models. To investigate the effect of locality and residence time on properties of soot and mixing state in a polluted urban environment, particles of diameter 0.2-2.0 μm were collected in the Mexico City Metropolitan Area (MCMA) during the MCMA-2003 Field Campaign from various sites within the city. Individual particle analysis by different electron microscopy methods coupled with energy dispersed x-ray spectroscopy, and secondary ionization mass spectrometry show that freshly-emitted soot particles become rapidly processed in the MCMA. Whereas fresh particulate emissions from mixed-traffic are almost entirely carbonaceous, consisting of soot aggregates with liquid coatings suggestive of unburned lubricating oil and water, ambient soot particles which have been processed for less than a few hours are heavily internally mixed, primarily with ammonium sulfate. Single particle analysis suggests that this mixing occurs through several mechanisms that require further investigation. In light of previously published results, the internally-mixed nature of processed soot particles is expected to affect heterogeneous chemistry on the soot surface, including interaction with water during wet-removal.

  13. Soot surface temperature measurements in pure and diluted flames at atmospheric and elevated pressures

    SciTech Connect

    Berry Yelverton, T.L.; Roberts, W.L.

    2008-10-15

    Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation. (author)

  14. Carbon Nanostructure: Its Evolution During its Impact Upon Soot Growth and Oxidation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The proposed work is a ground-based study to define and quantify soot nanostructural changes in response to growth conditions, thermal and oxidative treatments and to quantify their impact upon further oxidation and growth of highly ordered carbon materials. Experimental data relating soot oxidation rates to multiple oxidizing species concentrations will directly test for additive or synergistic soot oxidation rates. Such validation is central for assessing the applicability of individual soot oxidation rates and designing oxidative strategies for controlling soot loadings in and emissions from turbulent combustion processes. Through these experiments, new insights into soot nanostructure evolution during and its impact upon oxidation by O2 and OH will be realized. It is expected that the results of this effort will spawn new research directions in future microgravity and 1g environments. Issues raised by positive or even negative demonstration of the hypotheses of this proposal have direct bearing on modelling and controlling soot formation and its destruction in nearly every combustion process producing soot.

  15. Large eddy simulation of soot formation in a turbulent non-premixed jet flame

    SciTech Connect

    El-Asrag, Hossam; Menon, Suresh

    2009-02-15

    A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)

  16. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Wei, C.; Huang, R.-J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.; Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W.

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People’s Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980-2012 relative to the period 1850-1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas.

  17. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  18. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  19. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  20. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  1. Hygroscopic growth and activation of uncoated and coated soot particles and their relation to ice nucleation

    NASA Astrophysics Data System (ADS)

    Ziese, M.; Henning, S.; Mildenberger, K.; Stratmann, F.; Möhler, O.; Benz, S.; Buchholz, A.; Mentel, Th.; Aida/Lacis-Mobile-Team

    2009-04-01

    Measurements of the hygroscopic growth (HTDMA, LACIS-mobile), activation behavior (DMT-CCNC) - scope of this paper - and ice nucleation (AIDA chamber) were performed to estimate the cloud-forming potential of pure and coated soot particles. Globally, soot particles contribute up to 2.5 % to the atmospheric aerosol. In the framework of the investigations described here, soot particles were generated either applying a graphite-spark-generator (GFG1000) or a flame-soot-generator (Mini-CAST). With respect to the hygroscopic growth and activation behavior, the influences of the carrier-gas (GFG-soot), the OC-content (CAST-soot) and of different coating materials were investigated. Differences in the hygroscopic growth and activation behavior of GFG generated soot particles were found for the two carrier-gases considered. If nitrogen was used, neither hygroscopic growth nor activation were observed. In contrast, when argon was used, particles featured a slight hygroscopic growth and were easier to activate. Hygroscopic growth increases with decreasing OC-content of the CAST-soot, up to growth factor 1.04 at 98.4 % relative humidity. Lower OC-contents also result in the particles being activated more easily. Coating with sulfuric acid enhances the hygroscopic growth and activation behavior of CAST-soot for different OC-contents. If the soot (GFG & CAST) was coated with dicarboxylic acids (oxalic and succinic acid), no enhancement of hygroscopic growth and activation was observed. This is most likely due to evaporation of the coating material. In comparison to the hygroscopic growth and activation behavior, the same trends were observed in the ice-nucleation behavior. That is, the more active a particle is as cloud condensation nuclei, the better it functions as ice nuclei. GFG-soot with argon as carrier-gas acts as a better ice nuclei than GFG-soot with nitrogen. For the CAST-soot the ice-nucleation activity decreases with increasing OC-content. Coating with sulfuric acid

  2. Measurements of soot formation and hydroxyl concentration in near critical equivalence ratio premixed ethylene flame

    NASA Technical Reports Server (NTRS)

    Inbody, Michael Andrew

    1993-01-01

    The testing and development of existing global and detailed chemical kinetic models for soot formation requires measurements of soot and radical concentrations in flames. A clearer understanding of soot particle inception relies upon the evaluation and refinement of these models in comparison with such measurements. We present measurements of soot formation and hydroxyl (OH) concentration in sequences of flat premixed atmospheric-pressure C2H4/O2/N2 flames and 80-torr C2H4/O2 flames for a unique range of equivalence ratios bracketting the critical equivalence ratio (phi(sub c)) and extending to more heavily sooting conditions. Soot volume fraction and number density profiles are measured using a laser scattering-extinction apparatus capable of resolving a 0.1 percent absorption. Hydroxyl number density profiles are measured using laser-induced fluorescence (LIF) with broadband detection. Temperature profiles are obtained from Rayleigh scattering measurements. The relative volume fraction and number density profiles of the richer sooting flames exhibit the expected trends in soot formation. In near-phi(sub c) visibility sooting flames, particle scattering and extinction are not detected, but an LIF signal due to polycyclic aromatic hydrocarbons (PAH's) can be detected upon excitation with an argon-ion laser. A linear correlation between the argon-ion LIF and the soot volume fraction implies a common mechanistic source for the growth of PAH's and soot particles. The peak OH number density in both the atmospheric and 80-torr flames declines with increasing equivalence ratio, but the profile shape remains unchanged in the transition to sooting, implying that the primary reaction pathways for OH remain unchanged over this transition. Chemical kinetic modeling is demonstrated by comparing predictions using two current reaction mechanisms with the atmospheric flame data. The measured and predicted OH number density profiles show good agreement. The predicted benzene

  3. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  4. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  5. Soot formation in the methane oxygen and methane/oxygen/hydrogen flame

    NASA Technical Reports Server (NTRS)

    Dauerman, L.; Salser, G. E.

    1972-01-01

    The feasibility of using methane, recovered from carbon dioxide by the Sabatier-Senderens reaction, was investigated as a fuel in a reaction control engine. A problem to be avoided is the emission of soot particles. It is thought that such particles would remain in the environment of the spacecraft and, thereby, adversely affect optical sightings and possibly have an effect upon communications. The initial studies were of a practical nature. The first was the influence of the spatial arrangement of the fuel and oxygen injectors on soot formation. In the second study, inhibition of soot formation was considered. Considering the given situation, it was impractical to use an additive. However, since methanol combustion does not produce soot, and methanol can be produced from methane in situ, the possibility that methanol could act as an inhibitor was studied. In the third study, since these are restartable engines, the effect of shutdown on the rapidity of soot formation was studied.

  6. Effect of alcohol addition on shock-initiated formation of soot from benzene

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Yuan, Tony

    1988-01-01

    Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.

  7. Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence.

    PubMed

    Wartel, M; Pauwels, J-F; Desgroux, P; Mercier, X

    2011-12-15

    This paper presents in detail the study we carried out concerning the pyrene measurement by jet-cooled laser-induced fluorescence (JCLIF) in different sooting low pressure methane flames. The aim of this paper is both to demonstrate the potentialities of this technique for the measurement of such moderately sized polycyclic aromatic hydrocarbons under sooting flame conditions and to provide new experimental data for the understanding and the development of chemical models of the soot formation processes. Several concentration profiles of pyrene measured in different sooting flame (various pressure and equivalence ratio) are presented. The validation of the JCLIF method for pyrene measurements is explained in detail as well as the calibration procedure, based on the standard addition method, which has been implemented for the quantification of the concentration profiles. Sensitivity lower than 1 ppb was obtained for the measurement of this species under sooting flame conditions. PMID:22029528

  8. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles

    NASA Astrophysics Data System (ADS)

    Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.

    2007-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.

  9. Direct numerical simulation of temporally evolving luminous jet flames with detailed fuel and soot chemistry

    SciTech Connect

    Sankaran, Ramanan

    2011-01-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO{sub 2}, H{sub 2}O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  10. Soot formation during combustion of unsupported methanol/toluene mixture droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Jackson, G. S.; Avedisian, C. T.; Yang, J. C.

    1991-01-01

    Results are reported of an experimental study tracing the influence of liquid composition on soot formation and the burning rate of a droplet composed of a binary miscible mixture of liquids. The mixture components represented a highly sooting fuel, toluene, and a nonsooting fuel, methanol. The toluene concentration in methanol was shown to dramatically influence flame luminosity and soot production. Neither burning rates nor a propensity for flame extinction appeared to be significantly affected by toluene mixture fractions. Five-percent toluene mixture droplets behaved like pure methanol droplets in terms of burning rate, lack of flame luminosity, and extinction. Increasing the toluene concentration in the droplets to 25 percent increased flame luminosity, yet no visible soot agglomerates were observed. The 50-percent-mixture droplets burned with highly luminous flames and large amounts of soot agglomerates collecting inside the flame. All the mixture droplets showed burning rates similar to those of pure methanol and likewise exhibited flame extinction before complete droplet vaporization.

  11. Direct numerical simulation of temporally evolving turbulent luminous jet flames with detailed fuel and soot chemistry

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud

    2011-11-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  12. Scattering and propagation of terahertz pulses in random soot aggregate systems

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ying; Wu, Zhen-Sen; Bai, Lu; Li, Zheng-Jun

    2014-05-01

    Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution (GMM) and the pulse propagation theory. Soot aggregates are obtained by the diffusion-limited aggregation (DLA) model. For a soot aggregate in soot aggregate systems, scattering characteristics are analyzed by using the GMM. Scattering intensities versus scattering angles are given. The effects of different positions of the aggregate on the scattering intensities, scattering cross sections, extinction cross sections, and absorption cross sections are computed and compared. Based on pulse propagation in random media, the transmission of terahertz pulses in random soot aggregate systems is determined by the two-frequency mutual coherence function. Numerical simulations and analysis are given for terahertz pulses (0.7956 THz).

  13. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    NASA Technical Reports Server (NTRS)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  14. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  15. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  16. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  17. BIOMARKERS OF DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    The objective of this project is to examine the detectability of some chemical components of diesel exhaust particles (DEP) in human urine following controlled human diesel exposures (IRB-approved). Ultimately, and upon validation, we propose to apply these components as biomarke...

  18. Diesel Fundamentals. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Clark, Elton; And Others

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains 4 sections and 19 units. Section A--Orientation includes the following units: introduction to diesel mechanics and shop safety; basic shop tools; test equipment and service tools; fasteners; bearings; and seals. Section B--Engine Principles and…

  19. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  20. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  1. Microstructures and nanostructures for environmental carbon nanotubes and nanoparticulate soots.

    PubMed

    Murr, L E

    2008-12-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene "caps" and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes ( approximately 5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules ( approximately 8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  2. Wide-angle light scattering (WALS) for soot aggregate characterization

    SciTech Connect

    Oltmann, Hergen; Reimann, Joerg; Will, Stefan

    2010-03-15

    A novel set-up for the experimental determination of aggregate morphology in combustion processes based on elastic light scattering has been designed and realized. A key feature of this wide-angle light scattering (WALS) approach is an ellipsoidal mirror which is used to collect scattered light over a wide angular range of about 10-170 . The set-up employs a cw solid-state laser as light source and an intensified CCD-camera as detector. By means of the mirror the scattered light is imaged onto the detector allowing for a simultaneous acquisition of a full scattering diagram with a high angular resolution of about 0.6 . To demonstrate the performance of the approach, measurements for various sooting flames produced by premixed combustion in a flat flame burner were carried out, where the burner was operated with different equivalence ratios and fuels. It is shown that radii of gyration of soot particles may efficiently be obtained from an analysis of the scattering diagrams. (author)

  3. Changes in radiative properties of soot contaminated maize canopy

    NASA Astrophysics Data System (ADS)

    Illes, B.; Anda, A.

    2012-04-01

    The effect of particle (Black Carbon, BC) on certain radiative characteristics of maize plants was studied over 2011 growing season in a field experiment carried out in Keszthely Agrometeorological Research Station. As the main constituent of BC, the soot that is almost exclusively responsible for light absorption by particles in the atmosphere, thus changing the radiation balance of the Earth and contributing to global warming. Maize hybrid Perlona (FAO 340) with short-season was applied as test plant. Of the two water supply treatments, the rainfed variant was sown in field plots, while compensation evapotranspirometers of the Thornthwaite type were used for the "ad libitum" treatment. The BC applied as pollutant was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where it is used to improve the wear resistance of the tyres. The black carbon was chemically "pure", i.e. it is free of other contaminants (heavy metals etc.), so the reproducibility of the experiment is not problematic, unlike that of tests on other atmospheric air pollutants. Road traffic was simulated by using frequent low particle rates (3 g m-2 week-1) with a motorised sprayer of SP 415 type, during the season. The leaf area index was measured each week on the same 12 sample plants in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). The impact of black carbon on plant radiative properties were analysed in the field (about 0.3 ha/treatment). Pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala) were installed on columns of adjustable height in the centre of the 0.3 ha plots designated for albedo measurements. Data were collected using a Logbox SD (Kipp & Zonen, Vaisala) datalogger in the form of 10-minute means of samples taken every 6 seconds. BC pollution had no effect on maize growth and development. Compared with soot contaminated and control plants, we concluded that the LAI was a few percent higher in polluted plants, but this increment was not

  4. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  5. Emissions of submicron particles from a direct injection diesel engine by using biodiesel.

    PubMed

    Chen, Yen-Cho; Wu, Chung-Hsing

    2002-01-01

    Small airborne particles less than 1 microm in diameter have a high probability to deposit deeply in the respiratory tract and cause respiratory diseases such as lung cancer. In this study, emission characteristics of submicron particles from a direct injection diesel engine using biodiesel (provided by the American Soybean Association) and petroleum-diesel fuels were measured under different operation conditions. The results show that the emitted particle sizes for both fuels are about the same. But when fueled with biodiesel, the diesel engine can substantially reduce 24-42% emission of the total number concentration, and 40-49% of the total mass concentration of submicron particles, which indicates that the emission of submicron particles can be effectively approved. PMID:12049119

  6. The use of heterogeneous chemistry for the characterization of functional groups at the gas/particle interface of soot and TiO2 nanoparticles.

    PubMed

    Setyan, A; Sauvain, J-J; Rossi, M J

    2009-08-01

    Six gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, NO(2) and O(3)] were selected to probe the surface of seven different types of combustion aerosol samples (amorphous carbon, flame soot) and three types of TiO(2) nanoparticles using heterogeneous, i.e. gas-surface reactions. The gas uptake to saturation of the probes was measured under molecular flow conditions in a Knudsen flow reactor and expressed as a density of surface functional groups on a particular aerosol, namely acidic (carboxylic) and basic (conjugated oxides such as pyrone, N-heterocycle and amine) sites, carbonyl (R(1)-C(O)-R(2)) and oxidizable (olefinic, -OH) groups. The limit of detection was generally well below 1% of a formal monolayer of adsorbed probe gas. With few exceptions most investigated aerosol samples interacted with all probe gases to various extents which points to the coexistence of different functional groups on the same aerosol surface such as acidic and basic groups. Generally, the carbonaceous particles displayed significant differences in surface group density: Printex 60 amorphous carbon had the lowest density of surface functional groups throughout, whereas Diesel soot recovered from a Diesel particulate filter had the largest. The presence of basic oxides on carbonaceous aerosol particles was inferred from the ratio of uptakes of CF(3)COOH and HCl owing to the larger stability of the acetate compared to the chloride counterion in the resulting pyrylium salt. Both soots generated from a rich and a lean hexane diffusion flame had a large density of oxidizable groups similar to amorphous carbon FS 101. TiO(2) 15 had the lowest density of functional groups studied for all probe gases among the three TiO(2) nanoparticles despite the smallest size of its primary particles. The technique used enabled the measurement of the uptake probability of the probe gases on the various supported aerosol samples. The initial uptake probability, gamma(0), of the probe gas onto the supported

  7. Direct numerical simulation of soot formation and transport in turbulent nonpremixed ethylene flames

    NASA Astrophysics Data System (ADS)

    Lignell, David Owen

    Combustion is central to society and accounts for the majority of the world's energy production. Soot formation, transport, and emission from turbulent flames are an important process in nonpremixed combustion. Soot is a major air pollutant with adverse health effects; its emission reduces combustion efficiencies associated with unburned fuel; and soot interacts strongly with the composition and temperature fields of flames, contributing to the bulk of radiative heat transfer. Simulation of combustion is an important and emerging discipline that compliments theoretical and experimental investigations and can provide fundamental insight into turbulent combustion environments and aid in engineering design of practical equipment. Simulations of practical combustion environments cannot fully resolve all flow and chemical phenomena due to the wide range of timescales and lengthscales present and must rely on models to capture the effects of unresolved turbulent transport and turbulence-chemistry interactions. Very little is know about soot formation in turbulent flames due to the difficulty of experimental measurements and the computational cost of simulation. Direct numerical simulation (DNS) resolves all relevant flow and chemical structures in turbulent flames, requiring no turbulence closure models. DNS of soot formation with realistic combustion chemistry and soot formation is presented in this dissertation. A series of increasingly complex flow configurations is investigated including one-dimensional relaxing diffusion flames, two-dimensional mixing layers and decaying turbulence simulations, and a three-dimensional temporally evolving jet flame. A reduced ethylene mechanism consisting of 19 transported species is coupled to a four-step soot model using the method of moments. The DNS are used to quantify soot formation and transport in turbulent flames. The proximity of soot to a flame is important, as this impacts the soot reaction and radiation rates

  8. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  9. Emission, Structure and Optical Properties of Overfire Soot from Buoyant Turbulent Diffusion Flames

    NASA Astrophysics Data System (ADS)

    Koylu, Umit Ozgur

    The present study investigated soot and carbon monoxide emissions, and evaluated the optical properties of soot, in the overfire region of buoyant turbulent diffusion flames burning in still air. Soot and carbon monoxide emissions, and the corresponding correlation between these emissions, were studied experimentally. The optical properties of soot were investigated both experimentally and theoretically. The experiments involved gas (acetylene, propylene, ethylene, propane, methane) and liquid (toluene, benzene, n-heptane, iso-propanol, ethanol, methanol) fuels. The investigation was limited to the fuel-lean (overfire) region of buoyant turbulent diffusion flames burning in still air. Measurements included flame heights, characteristic flame residence times, carbon monoxide and soot concentrations, mixture fractions, ex-situ soot structure parameters (primary particle sizes, number of primary particles in aggregates, fractal dimensions), and in-situ optical cross sections (differential scattering, total scattering, and absorption) of soot in the overfire region of buoyant turbulent diffusion flames, emphasizing conditions in the long residence time regime where these properties are independent of position in the overfire region and flame residence time. The predictions of optical cross sections for polydisperse aggregates were based on Rayleigh-Debye-Gans theory for fractal aggregates; the predictions of this theory were evaluated by combining the TEM structure and the light scattering/extinction measurements. Carbon monoxide concentrations and mixture fractions were correlated in the overfire region of gas- and liquid -fueled turbulent diffusion flames. Soot volume fraction state relationships were observed for liquid fuels, supporting earlier observations for gas fuels. A strong correlation between carbon monoxide and soot concentrations was established in the fuel-lean region of both gas- and liquid-fueled turbulent diffusion flames. The structure and emission

  10. Diesel particulate emissions

    SciTech Connect

    Williams, P.T.; Abbass, M.K.; Andrews, G.E.; Bartle, K.D.

    1989-01-01

    The relationship between diesel fuel composition and that of the solvent organic fraction of diesel particulates was investigated for an old DI Petter engine and a modern DI Perkins engine. Polycyclic aromatic compounds (PAC) were identified using high-resolution capillary column chromatography with a parallel triple detector system for polycyclic aromatic hydrocarbons (PAH), nitrogen-containing PAH, and sulphur-containing PAH. Identification of the PAC using retention indexes was confirmed using an ion trap detector, which was also used to quantify the low-concentration (<1 ppm) benzo(a)pyrene. It was conclusively shown for both engines that the bulk of the particulate solvent organic fraction, including the PAH fraction, was unburned fuel. However, there was some evidence that high molecular weight five-ring PAH may have an in-cylinder formation contribution, and it is postulated that this could be due to pyrolysis of lower molecular weight unburned fuel PAH. The contribution of lubricating oil to the particulate PAC is discussed, and evidence is presented that shows the unburned fuel PAC accumulates in the lubricating oil and thus contributes to the particulate PAC via the large lubricating oil component of the particulate PAC.

  11. Designing CuOx Nanoparticle-Decorated CeO2 Nanocubes for Catalytic Soot Oxidation: Role of the Nanointerface in the Catalytic Performance of Heterostructured Nanomaterials.

    PubMed

    Sudarsanam, Putla; Hillary, Brendan; Mallesham, Baithy; Rao, Bolla Govinda; Amin, Mohamad Hassan; Nafady, Ayman; Alsalme, Ali M; Reddy, B Mahipal; Bhargava, Suresh K

    2016-03-01

    This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts. PMID:26886079

  12. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  13. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  14. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  15. Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro.

    PubMed

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Heeb, Norbert V; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2015-08-01

    Metal-containing fuel additives catalyzing soot combustion in diesel particle filters are used in a widespread manner, and with the growing popularity of diesel vehicles, their application is expected to increase in the near future. Detailed investigation into how such additives affect exhaust toxicity is therefore necessary and has to be performed before epidemiological evidence points towards adverse effects of their application. The present study investigates how the addition of an iron-based fuel additive (Satacen®3, 40 ppm Fe) to low-sulfur diesel affects the in vitro cytotoxic, oxidative, (pro-)inflammatory, and mutagenic activity of the exhaust of a passenger car operated under constant, low-load conditions by exposing a three-dimensional model of the human airway epithelium to complete exhaust at the air-liquid interface. We could show that the use of the iron catalyst without and with filter technology has positive as well as negative effects on exhaust toxicity compared to exhaust with no additives: it decreases the oxidative and, compared to a non-catalyzed diesel particle filter, the mutagenic potential of diesel exhaust, but increases (pro-)inflammatory effects. The presence of a diesel particle filter also influences the impact of Satacen®3 on exhaust toxicity, and the proper choice of the filter type to be used is of importance with regards to exhaust toxicity. Figure ᅟ. PMID:24880869

  16. Three-dimensional direct numerical simulation of soot formation and transport in a temporally evolving nonpremixed ethylene jet flame

    SciTech Connect

    Lignell, David O.; Chen, Jacqueline H.; Smith, Philip J.

    2008-10-15

    Three-dimensional direct numerical simulation of soot formation with complex chemistry is presented. The simulation consists of a temporally evolving, planar, nonpremixed ethylene jet flame with a validated, 19-species reduced mechanism. A four-step, three-moment, semiempirical soot model is employed. Previous two-dimensional decaying turbulence simulations have shown the importance of multidimensional flame dynamical effects on soot concentration [D.O. Lignell, J.H. Chen, P.J. Smith, T. Lu, C.K. Law, Combust. Flame 151 (1-2) (2007) 2-28]. It was shown that flame curvature strongly impacts the diffusive motion of the flame relative to soot (which is essentially convected with the flow), resulting in soot being differentially transported toward or away from the flame zone. The proximity of the soot to the flame directly influences soot reactivity and radiative properties. Here, the analysis is extended to three dimensions in a temporal jet configuration with mean shear. Results show that similar local flame dynamic effects of strain and curvature are important, but that enhanced turbulent mixing of fuel and oxidizer streams has a first-order effect on transport of soot toward flame zones. Soot modeling in turbulent flames is a challenge due to the complexity of soot formation and transport processes and the lack of detailed experimental soot-flame-flow structural data. The present direct numerical simulation provides the first step toward providing such data. (author)

  17. A comparison of experimental results of soot production in laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Caetano, Nattan R.; Soares, Diego; Nunes, Roger P.; Pereira, Fernando M.; Smith Schneider, Paulo; Vielmo, Horácio A.; van der Laan, Flávio Tadeu

    2015-05-01

    Soot emission has been the focus of numerous studies due to the numerous applications in industry, as well as the harmful effects caused to the environment. Thus, the purpose of this work is to analyze the soot formation in a flat flame burner using premixed compressed natural gas and air, where these quasi-adiabatic flames have one-dimensional characteristics. The measurements were performed applying the light extinction technique. The air/fuel equivalence ratiowas varied to assess the soot volume fractions for different flame configurations. Soot production along the flamewas also analyzed by measurements at different heights in relation to the burner surface. Results indicate that soot volume fraction increases with the equivalence ratio. The higher regions of the flamewere analyzed in order to map the soot distribution on these flames. The results are incorporated into the experimental database for measurement techniques calibration and for computational models validation of soot formation in methane premixed laminar flames, where the equivalence ratio ranging from 1.5 up to 8.

  18. Soot properties and species measurements in a two-meter diameter JP-8 pool fire.

    SciTech Connect

    Shaddix, Christopher R.; Murphy, Jeffrey J.

    2003-06-01

    A tunable diode laser absorption spectroscopy probe was used to measure in situ soot properties and species concentrations in two-meter diameter JP-8 pool fires. Twelve tests were performed at the Lurance Canyon Bum Site operated by Sandia in Albuquerque, New Mexico. Seven of the tests were conducted with the probe positioned close to the centerline at heights above the pool surface ranging from 0.5 m to 2.0 mm in 0.25 m increments. For the remaining five tests, the probe was positioned at two heights 0.3 m from the centerline and at three heights 0.5 m from the centerline. Soot concentration was determined using a soot absorption measurement based on the transmission of a solid-state red laser (635 nm) through the 3.7 cm long probe volume. Soot temperature and a second estimate of soot concentration were measured using two-color optical pyrometry at 850 nm and la00 nm. The effective data rate for these measurements was 10 Mz. Finally, tunable diode laser absorption spectroscopy was used to qualitatively estimate water concentration at a rate of 1 kHz. To improve signal-to-noise, these data were averaged to an effective rate of 2 Hz. The results presented include the statistics, probability density functions, and spectral density functions of soot concentration, soot temperature, and approximate water concentrations at the different measurement locations throughout the fire.

  19. Laser-induced incandescence measurements of soot in turbulent pool fires.

    PubMed

    Frederickson, Kraig; Kearney, Sean P; Grasser, Thomas W

    2011-02-01

    We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities. PMID:21283220

  20. Sky-scattered solar radiation based plume transmissivity measurement to quantify soot emissions from flares.

    PubMed

    Johnson, Matthew R; Devillers, Robin W; Yang, Chen; Thomson, Kevin A

    2010-11-01

    For gas flares typical of the upstream energy industry and similar point sources, most current methods for characterizing soot emissions are based on plume opacity rather than a quantitative measure of mass flux. The absence of more quantitative approaches is indicative of the inherent complexity of soot and the difficulties in characterizing emissions in an unbounded plume. A new experimental approach has been developed for the investigation of soot emissions in industrial plumes. Referred to as sky-LOSA, the diagnostic permits evaluation of 2D spatially resolved monochromatic sky-light transmissivity data over the width of a plume, where sky-light intensities behind the plume are obtained via an interpolation algorithm. By using Rayleigh-Debye-Gans Fractal Aggregate theory to relate transmissivity data to soot concentrations, and with knowledge of the velocity of the plume, it is possible to quantify mass flow rates of soot in a plume. Experiments on an unconfined lab-scale soot plume were used to support a detailed uncertainty analysis under a wide range of conditions and to estimate sensitivity limits of the technique. Results suggest field measurements of soot emission from flare plumes should be possible with overall uncertainties of less than 32%. This represents a significant advancement over existing techniques based on opacity measurements. PMID:20939575

  1. Role of OH-initiated oxidation of isoprene in aging of combustion soot.

    PubMed

    Khalizov, Alexei F; Lin, Yun; Qiu, Chong; Guo, Song; Collins, Don; Zhang, Renyi

    2013-03-01

    We have investigated the contribution of OH-initiated oxidation of isoprene to the atmospheric aging of combustion soot. The experiments were conducted in a fluoropolymer chamber on size-classified soot aerosols in the presence of isoprene, photolytically generated OH, and nitrogen oxides. The evolution in the mixing state of soot was monitored from simultaneous measurements of the particle size and mass, which were used to calculate the particle effective density, dynamic shape factor, mass fractal dimension, and coating thickness. When soot particles age, the increase in mass is accompanied by a decrease in particle mobility diameter and an increase in effective density. Coating material not only fills in void spaces, but also causes partial restructuring of fractal soot aggregates. For thinly coated aggregates, the single scattering albedo increases weakly because of the decreased light absorption and practically unchanged scattering. Upon humidification, coated particles absorb water, leading to an additional compaction. Aging transforms initially hydrophobic soot particles into efficient cloud condensation nuclei at a rate that increases in the presence of nitrogen oxides. Our results suggest that ubiquitous biogenic isoprene plays an important role in aging of anthropogenic soot, shortening its atmospheric lifetime and considerably altering its impacts on air quality and climate. PMID:23379649

  2. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.; Blevins, Linda Gail; Kearney, Sean Patrick; Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  3. Simultaneous Remediation of NOx and Oxidation of Soot Using Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Dorai, Rajesh; Kushner, Mark J.; Hassouni, Khaled

    2000-10-01

    Plasma remediation of atmospheric pressure gases is being investigated as a means to remove nitrogen oxides (NO_x) from automobilie exhaust. In actual exhausts, unburned hydrocarbons (UHCs) and soot are unavoidably present which impacts the plasma chemistry of NOx removal. In this regard, the feasibility of using a dielectric barrier discharge to simultaneously oxidize soot particles and remove NOx from simulated exhausts has been computationally investigated. The model system is a mixture of N_2/O_2/CO_2/H_2O with ppm levels of CO, H_2, NO, C_3H_6, C_3H8 and soot particles. The model is a global kinetics simulation modified to account for diffusive transport to and from the soot and reactions on the soot surface. Charging of soot due to electrons and ions is also included. Significant changes in gas-phase NOx chemistry occur when including surface reactions due to reduction of NO2 and deactivation of oxidizing radicals generated from the UHCs. Oxidation of the soot particles produces significant increases in CO.

  4. Implementation of two-equation soot flamelet models for laminar diffusion flames

    SciTech Connect

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D.

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  5. Formation of nascent soot and other condensed-phase materials in flames

    SciTech Connect

    Wang, Hai

    2011-01-01

    Over the last two decades, our understanding of soot formation has evolved from an empirical, phenomenological description to an age of quantitative modeling for at least small fuel compounds. In this paper, we review the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth. The discussion shows that though much progress has been made, critical gaps remain in many areas of our knowledge. We propose the roles of certain aromatic radicals resulting from localized π electron structures in particle nucleation and subsequent mass growth. The existence of these free radicals provides a rational explanation for the strong binding forces needed for forming initial clusters of polycyclic aromatic hydrocarbons. They may also explain a range of currently unexplained sooting phenomena, including the large amount of aliphatics observed in nascent soot formed in laminar premixed flames and the mass growth of soot in the absence of gas-phase H atoms. While the above suggestions are inspired, to an extent, by recent theoretical findings from the materials research community, this paper also demonstrates that the knowledge garnered through our longstanding interest in soot formation may well be carried over to flame synthesis of functional nanomaterials for clean and renewable energy applications. In particular, work on flame-synthesized thin films of nanocrystalline titania illustrates how our combustion knowledge might be useful for developing advanced yet inexpensive thin-film solar cells and chemical sensors for detecting gaseous air pollutants.

  6. Laser-induced incandescence measurements of soot in turbulent pool fires

    SciTech Connect

    Frederickson, Kraig; Kearney, Sean P.; Grasser, Thomas W.

    2011-02-01

    We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10{sup -5} cm{sup 3}. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.

  7. Development and validation of a new soot formation model for gas turbine combustor simulations

    SciTech Connect

    Di Domenico, Massimiliano; Gerlinger, Peter; Aigner, Manfred

    2010-02-15

    In this paper a new soot formation model for gas turbine combustor simulations is presented. A sectional approach for the description of Polycyclic Aromatic Hydrocarbons (PAHs) and a two-equation model for soot particle dynamics are introduced. By including the PAH chemistry the formulation becomes more general in that the soot formation is neither directly linked to the fuel nor to C{sub 2}-like species, as it is the case in simpler soot models currently available for CFD applications. At the same time, the sectional approach for the PAHs keeps the required computational resources low if compared to models based on a detailed description of the PAH kinetics. These features of the new model allow an accurate yet affordable calculation of soot in complex gas turbine combustion chambers. A careful model validation will be presented for diffusion and partially premixed flames. Fuels ranging from methane to kerosene are investigated. Thus, flames with different sooting characteristics are covered. An excellent agreement with experimental data is achieved for all configurations investigated. A fundamental feature of the new model is that with a single set of constants it is able to accurately describe the soot dynamics of different fuels at different operating conditions. (author)

  8. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  9. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  10. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine. PMID:12708502

  11. Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Hadwin, Paul J.; Sipkens, T. A.; Thomson, K. A.; Liu, F.; Daun, K. J.

    2016-01-01

    Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional "nuisance" model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.

  12. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  13. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  14. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  15. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  16. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased

  17. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  18. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  19. Structure and Soot Properties of Non-Buoyant Laminar Round-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Mortazavi, Saeed; Sunderland, Peter B.; Jurng, Jongsoo; Faeth, Gerard M.

    1993-01-01

    The structure and soot properties of nonbuoyant laminar diffusion flames are being studied experimentally and theoretically in order to better understand the soot and thermal radiation emissions from luminous flames. The measurements involve weakly-buoyant flames at low pressure in normal gravity (ng) and nonbuoyant flames at normal pressures in microgravity (micro g). The objectives of the present investigation are to study the differences of soot properties between nonbuoyant and buoyant diffusion flames, and to evaluate predictions based on the laminar flamelet approach.

  20. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  1. Effect of aging on morphology, hygroscopicity, and optical properties of soot aerosol

    NASA Astrophysics Data System (ADS)

    Khalizov, A. F.; Xue, H.; Pagels, J.; McMurry, P. H.; Zhang, R.

    2009-12-01

    Soot from incomplete combustion represents one of the major forms of particulate matter pollution, profoundly impacting human health, air quality, and climate. The direct and indirect radiative effects of soot aerosol depend on particle composition and morphology, which may vary significantly when aerosol is subjected to atmospheric aging. We will present an overview of a comprehensive set of experimental measurements performed in our laboratory at Texas A&M to study the effect of internal mixing with atmospheric species on morphology, hygroscopicity, and optical properties of combustion soot. In our experiments, size-classified soot aerosol was exposed to 0.1 - 1000 ppb (part per billion) mixing ratios of sulfuric acid and dicarboxylic organic acids and resulting changes particle morphology and mixing state under dry and humid conditions were characterized through mass-mobility measurements by aerosol particle mass analyzer (APM) and tandem differential mobility analyzer (TDMA). Light absorption and scattering cross-sections for well-characterized fresh and coated soot aerosol were derived using a cavity ring-down spectrometer and an integrating nephelometer in order to assess the effect of atmospheric processing on the radiative properties of atmospheric soot. Internally mixed soot shows significant changes in particle morphology, increasing with the mass fraction of the coating material and relative humidity. Restructuring was the strongest for aggregates coated by sulfuric and glutaric acids whereas succinic acid coating did not result in observable morphology change. Sulfuric acid - coated particles experienced large hygroscopic growth at sub-saturated conditions and activated to cloud droplets at atmospherically relevant supersaturations. Furthermore, coating and subsequent hygroscopic growth considerably altered the optical properties of soot aerosol, increasing light scattering and absorption cross-sections. We found that irreversible restructuring of soot

  2. NEW CORDIERITE DIESEL PARTICULATE FILTERS FOR CATALYZED AND NON-CATALYZED APPLICATIONS

    SciTech Connect

    Merkel, G; Cutler, W; Tao, T Chiffey, A; Phillips, P; Twigg, M; Walker, A

    2003-08-24

    Cordierite diesel particulate filters provide an economical approach to diesel emissions control. However, further reduction in the pressure drop of catalyzed and non-catalyzed cordierite filters is desirable. In order to derive a fundamental understanding of the relationship between clean and sootloaded pressure drop and the pore microstructure of the ceramic, and to optimize the microstructure for filter performance, cordierite filters have been fabricated spanning an extended range in porosity, pore size distribution, and pore connectivity. Analysis of the results has been applied to the development of several new cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop. Furthermore, catalyst systems have been developed that result in a minimal pressure drop increase of the catalyzed filter. Optimization of porosity and cell geometry has enabled fabrication o f filters with either high or low thermal mass appropriate to the regeneration strategy employed for a given engine management system.

  3. Particle emissions from diesel passenger cars equipped with a particle trap in comparison to other technologies.

    PubMed

    Mohr, Martin; Forss, Anna-Maria; Lehmann, Urs

    2006-04-01

    Tail pipe particle emissions of passenger cars, with different engine and aftertreatment technologies, were determined with special focus on diesel engines equipped with a particle filter. The particle number measurements were performed, during transient tests, using a condensation particle counter. The measurement procedure complied with the draft Swiss ordinance, which is based on the findings of the UN/ECE particulate measurement program. In addition, particle mass emissions were measured by the legislated and a modified filter method. The results demonstrate the high efficiency of diesel particle filters (DPFs) in curtailing nonvolatile particle emissions over the entire size range. Higher emissions were observed during short periods of DPF regeneration and immediately afterward, when a soot cake has not yet formed on the filter surface. The gasoline vehicles exhibited higher emissions than the DPF equipped diesel vehicles but with a large variation depending on the technology and driving conditions. Although particle measurements were carried out during DPF regeneration, it was impossible to quantify their contribution to the overall emissions, due to the wide variation in intensity and frequency of regeneration. The numbers counting method demonstrated its clear superiority in sensitivity to the mass measurement. The results strongly suggest the application of the particle number counting to quantify future low tailpipe emissions. PMID:16646477

  4. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  5. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  6. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  7. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  8. Effects of airborne black carbon pollution on maize

    NASA Astrophysics Data System (ADS)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  9. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    The chemical and physical transformation between gaseous fuel pyrolysis products and solid carbonaceous soot represents a critical step in soot formation. In this paper, simultaneous two-dimensional LIF-LII (laser-induced fluorescence - laser-induced incandescence) images identify the spatial location where the earliest identifiable chemical and physical transformation of material towards solid carbonaceous soot occurs along the axial streamline in a normal diffusion flame. The identification of the individual LIF and LII signals is achieved by examining both the excitation wavelength dependence and characteristic temporal decay of each signal. Spatially precise thermophoretic sampling measurements are guided by the LIF-LII images with characterization of the sampled material accomplished via both bright and dark field TEM. Both bright and dark field TEM measurements support the observed changes in photophysical properties which account for conversion of fluorescence to incandescence as fuel pyrolysis products evolve towards solid carbonaceous soot.

  10. Facile preparation of superhydrophobic candle soot coating and its wettability under condensation

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Huang, Juan; Peng, Chaoyi; Wang, Menglei; Wang, Xian; Bin, Jiping; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Xiao, Ximei; Fu, Xin; Gong, Huifang; Zhao, Dejian; Chen, Hong

    2016-02-01

    A facile method was developed to prepare a superhydrophobic candle soot coating by burning candle and simple deposition on a low-density polyethylene substrate. The water contact angle and sliding angle of the as-prepared superhydrophobic candle soot coating were, respectively, 160 ± 2° and 1° under common condition. ESEM images showed that the superhydrophobic candle soot coating was comprised of many nanoparticles with the size range of about 30-50 nm. After condensation for 30 min, the average contact angle of the condensed water droplets was 150° ± 2°, showing excellent superhydrophobicity under condensation. The mechanism of the candle soot coating remaining superhydrophobicity under condensation was analyzed. This work is helpful for the design and preparation of superhydrophobic surface which can remain superhydrophobicity in future.

  11. Soot formation in shock-tube pyrolysis and oxidation of vinylacetylene

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Yuan, T.; Ramachandra, M. K.

    1990-01-01

    Soot formation in vinylacetylene, and vinylacetylene-oxygen argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of a 632.8-nm He-Ne laser beam. The experiments were performed at temperatures of 1600-2500 K, pressures of 2.08-3.09 bar, and total carbon atom concentrations of (1.99-2.05) x 10 to the 17th atoms/cu cm. The experimental results obtained in pyrolysis of vinylacetylene are similar to those of acetylene, both in the order of magnitude of the soot yield and the shape of its temperature dependence. The addition of oxygen to vinylacetylene shifts the soot bell to lower temperature and, distinct from all other hydrocarbons studied in this laboratory, accelerates the production of soot with reaction time. The experimental results are interpreted in terms of possible chemical reaction.

  12. Soot in the stratosphere: The impact of current and HSCT aircraft emissions

    SciTech Connect

    Hansen, A.D.A. ); Pueschel, R.F.; Snetsinger, K.G. . Ames Research Center)

    1991-08-01

    One of the trace components of emissions from aircraft engines and other combustion sources are soot particles. These particles are strongly absorbing in the visible and IR spectra, may act as condensation nuclei, and may provide a large surface area for the catalytic promotion of gas-phase chemical reactions. Soot if found throughout the troposphere, even at remote locations, and also in the stratosphere. Present techniques do not allow an unambiguous identification of the sources. This paper discusses the emission of soot from existing and proposed aircraft and the contribution of this soot to concentrations observed in the troposphere and stratosphere. We consider the implications of these emissions for issues in stratospheric physics and chemistry. 11 refs.

  13. Enhanced soot formation in flickering CH{sub 4}/air diffusion flames

    SciTech Connect

    Shaddix, C.R.; Harrington, J.E.; Smyth, K.C.

    1994-12-31

    Optical methods are used to examine soot production in a co-flowing, axisymmetric CH{sub 4}/air diffusion flame in which the fuel flow rate is acoustically forc