Sample records for airborne field studies

  1. Providing Data Management Support to NASA Airborne Field Studies through Streamlined Usability Design

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Northup, E. A.; Early, A. B.; Chen, G.

    2016-12-01

    Airborne field studies are an effective way to gain a detailed understanding of atmospheric processes for scientific research on climate change and air quality relevant issues. One major function of airborne project data management is to maintain seamless data access within the science team. This allows individual instrument principal investigators (PIs) to process and validate their own data, which requires analysis of data sets from other PIs (or instruments). The project's web platform streamlines data ingest, distribution processes, and data format validation. In May 2016, the NASA Langley Research Center (LaRC) Atmospheric Science Data Center (ASDC) developed a new data management capability to help support the Korea U.S.-Air Quality (KORUS-AQ) science team. This effort is aimed at providing direct NASA Distributed Active Archive Center (DAAC) support to an airborne field study. Working closely with the science team, the ASDC developed a scalable architecture that allows investigators to easily upload and distribute their data and documentation within a secure collaborative environment. The user interface leverages modern design elements to intuitively guide the PI through each step of the data management process. In addition, the new framework creates an abstraction layer between how the data files are stored and how the data itself is organized(i.e. grouping files by PI). This approach makes it easy for PIs to simply transfer their data to one directory, while the system itself can automatically group/sort data as needed. Moreover, the platform is "server agnostic" to a certain degree, making deployment and customization more straightforward as hardware needs change. This flexible design will improve development efficiency and can be leveraged for future field campaigns. This presentation will examine the KORUS-AQ data portal as a scalable solution that applies consistent and intuitive usability design practices to support ingest and management of airborne

  2. Data System for HS3 Airborne Field Campaign

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Mceniry, M.; Berendes, T.; Bugbee, K.; Conover, H.; Ramachandran, R.

    2014-12-01

    Hurricane and Severe Storm Sentinel (HS3) is a NASA airborne field campaign aimed at better understanding the physical processes that control hurricane intensity change. HS3 will help answer questions related to the roles of environmental conditions and internal storm structures to storm intensification. Due to the nature of the questions that HS3 mission is addressing, it involves a variety of in-situ, satellite observations, airborne data, meteorological analyses, and simulation data. This variety of datasets presents numerous data management challenges for HS3. The methods used for airborne data management differ greatly from the methods used for space-borne data. In particular, metadata extraction, spatial and temporal indexing, and the large number of instruments and subsequent variables are a few of the data management challenges unique to airborne missions. A robust data system is required to successfully help HS3 scientist achieve their mission goals. Furthermore, the data system also needs to provide for data management that assists in broader use of HS3 data to enable future research activities. The Global Hydrology Resource Center (GHRC) is considering all these needs and designing a data system for HS3. Experience with past airborne field campaign puts GHRC in a good position to address HS3 needs. However, the scale of this mission along with science requirements separates HS3 from previous field campaigns. The HS3 data system will include automated services for geo-location, metadata extraction, discovery, and distribution for all HS3 data. To answer the science questions, the data system will include a visual data exploration tool that is fully integrated into the data catalog. The tool will allow visually augmenting airborne data with analyses and simulations. Satellite data will provide contextual information during such data explorations. All HS3 tools will be supported by an enterprise service architecture that will allow scaling, easy integration

  3. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  4. Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements.

    PubMed

    Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny

    2011-06-01

    In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.

  5. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  6. Wide-field airborne laser diode array illuminator: demonstration results

    NASA Astrophysics Data System (ADS)

    Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.

    2005-06-01

    The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.

  7. From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L. (Editor)

    1992-01-01

    This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.

  8. Final Report on the Airborne Field Mill Project (ABFM) 2000-2001 Field Campaign

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Lewis, Sharon; Bateman, Monte, G.; Mach, Douglas M.; Merceret, Francis J.; Ward, Jennifer G.; Grainger, Cedric A.

    2004-01-01

    The Airborne Field Mill (ABFM) research program conducted under the direction of the John F. Kennedy Space Center during 2000 and 2001 is described. The purpose, methodology and initial results from the program are presented. Extensive appendices detailing the instrumentation used to collect the data are provided.

  9. Self-organization of granular media in airborne ultrasonic fields

    NASA Astrophysics Data System (ADS)

    Bobrovskaya, A. I.; Stepanenko, D. A.; Minchenya, V. T.

    2012-05-01

    The article presents results of experimental and theoretical studies of behaviour of granular media (powder materials) in airborne ultrasonic field created by flexurally-vibrating ring-shaped waveguide with resonant frequency in the range 20-40 kHz. Experiments show that action of acoustic radiation forces results in formation of ordered structures in the form of ultrathin walls (monolayers) with number corresponding to the number of ring nodal points. Action of secondary radiation forces (König forces) results in formation of collateral (secondary) walls situated nearby primary walls. Experimental observations are compared with results of modelling of acoustic radiation force field inside the ring by means of COMSOL Multiphysics and MathCad software. Results of the studies can be used in development of devices for ultrasonic separation and concentration of particles as well as for formation of ordered monolayers from spherical particles.

  10. Airborne water vapor DIAL research: System development and field measurements

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.; Ponsardin, Patrick; Chyba, Thomas H.; Grossmann, Benoist E.; Butler, Carolyn F.; Fenn, Marta A.; Mayor, Shane D.; Ismail, Syed; Grant, William B.

    1992-01-01

    This paper describes the airborne differential absorption lidar (DIAL) system developed at the NASA Langley Research Center for remote measurement of water vapor (H2O) and aerosols in the lower atmosphere. The airborne H2O DIAL system was flight tested aboard the NASA Wallops Flight Facility (WFF) Electra aircraft in three separate field deployments between 1989 and 1991. Atmospheric measurements were made under a variety of atmospheric conditions during the flight tests, and several modifications were implemented during this development period to improve system operation. A brief description of the system and major modifications will be presented, and the most significant atmospheric observations will be described.

  11. Thermal Infrared Airborne Field Studies: Applications to the Mars Global Surveyor Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Herr, K.; Kirkland, L.; Keim, E.; Hackwell, J.

    2002-12-01

    A primary goal of the Mars exploration program is to reconnoiter the planet from orbit using infrared remote sensing. Currently the Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer THEMIS provide this capability. Landing site selection and modeling of the geologic and climate history depend on accurate interpretations of these data sets. Interpretations use terrestrial analog remote sensing and laboratory studies. Until recently, there have been no airborne thermal infrared spectrometer ("hyspectral") data sets available to NASA researchers that are comparable to TES. As a result, studies relied on airborne multi-channel radiometer ("multispectral") measurements (e.g. TIMS, MASTER). A radiometer has the advantage that measurement of broad bands makes it easier to measure with higher sensitivity. However, radiometers lack the spectral resolution to investigate details of spectral signatures. This gap may be partially addressed using field samples collected and measured in the laboratory. However, that leaves questions unanswered about the field environment and potentially leaves important complicating issues undiscovered. Two questions that haunt thermal infrared remote sensing investigations of Mars are: (1) If a mineral is not detected in a given data set, how definitively should we state that it is not there? (2) When does the method provide quantitative mineral mapping? In order to address these questions, we began collaborating with Department of Defense (DoD) oriented researchers and drawing on the unique instrumentation they developed. Both Mars and DoD researchers have a common need to identify materials without benefit of ground truth. Such collaborations provide a fresh perspective as well as unique data. Our work addresses uncertainties in stand-off identification of solid phase surface materials when the identification must proceed without benefit of ground truth. We will report on the results applied to TES

  12. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  13. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    NASA Technical Reports Server (NTRS)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  14. CO2 Budget and Rectification Airborne Study

    NASA Technical Reports Server (NTRS)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  15. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Geraint

    The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics (CAST) campaign. This campaign was a collaboration between the National Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and the United Kingdom’s (UK) Natural Environment Research Council (NERC) to study the composition of the Tropical Tropopause Layer (TTL) and the impact of deep convection on this composition. There are three main areas of interest: i)more » transport of trace gases in the tropical atmosphere (especially short-lived halogenated compounds that can be lifted rapidly into the TTL, where they augment the stratospheric loading of these species); ii) formation of cirrus and its impact on the TTL; and iii) the upper-atmosphere water vapor budget. Overall, the aim was to improve understanding of the dynamical, radiative, and chemical role of the TTL. The Manus operation was a joint experiment between the Universities of Manchester and Cambridge and the UK National Centre for Atmospheric Science (NCAS). It consisted of two elements: an ozonesonde campaign to measure ozone vertical profiles through the TTL, and ground-based monitoring of ozone, halogenated hydrocarbons, and greenhouse gases to determine the composition of lower-boundary-layer air in the Warm Pool region. Thanks to the support from the ARM Climate Research Facility and the exemplary collaboration of ARM staff in the region, the campaign was very successful.« less

  16. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  17. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.

    2011-12-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  18. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt

    2011-01-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  19. AIRBORNE BACTERIA IN THE ATMOSPHERIC SURFACE LAYER: TEMPORAL DISTRIBUTION ABOVE A GRASS SEED FIELD

    EPA Science Inventory

    Temporal airborne bacterial concentrations and meteorological conditions were measured above a grass seed field in the Willamette River Valley, near Corvallis, Oregon, in the summer of 1993. he report describes the changes in the atmospheric surface layer over a grass seed field ...

  20. Air-borne shape measurement of parabolic trough collector fields

    NASA Astrophysics Data System (ADS)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  1. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  2. Infrared spectrometry studies. Phase 4: Emittance spectra of selected targets from mission 108 airborne data

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1971-01-01

    Infrared radiance measurements from geological materials were studied. These involved laboratory and field spectroscopic measurements, both on the ground and airborne. A proven, feasible system is presented for airborne use over terrains with minimal vegetation. It has been shown that the spectral emittance concepts can be utilized in emittance ratio imagery which depicts the silicate composition of the terrain.

  3. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas.

    PubMed

    Colgan, Matthew S; Asner, Gregory P; Swemmer, Tony

    2013-07-01

    Tree biomass is an integrated measure of net growth and is critical for understanding, monitoring, and modeling ecosystem functions. Despite the importance of accurately measuring tree biomass, several fundamental barriers preclude direct measurement at large spatial scales, including the facts that trees must be felled to be weighed and that even modestly sized trees are challenging to maneuver once felled. Allometric methods allow for estimation of tree mass using structural characteristics, such as trunk diameter. Savanna trees present additional challenges, including limited available allometry and a prevalence of multiple stems per individual. Here we collected airborne lidar data over a semiarid savanna adjacent to the Kruger National Park, South Africa, and then harvested and weighed woody plant biomass at the plot scale to provide a standard against which field and airborne estimation methods could be compared. For an existing airborne lidar method, we found that half of the total error was due to averaging canopy height at the plot scale. This error was eliminated by instead measuring maximum height and crown area of individual trees from lidar data using an object-based method to identify individual tree crowns and estimate their biomass. The best object-based model approached the accuracy of field allometry at both the tree and plot levels, and it more than doubled the accuracy compared to existing airborne methods (17% vs. 44% deviation from harvested biomass). Allometric error accounted for less than one-third of the total residual error in airborne biomass estimates at the plot scale when using allometry with low bias. Airborne methods also gave more accurate predictions at the plot level than did field methods based on diameter-only allometry. These results provide a novel comparison of field and airborne biomass estimates using harvested plots and advance the role of lidar remote sensing in savanna ecosystems.

  4. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...

  5. An Assessment of the Need for Standard Variable Names for Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Chen, G.; Northup, E. A.; Kusterer, J.; Quam, B. M.

    2017-12-01

    The NASA Earth Venture Program has led to a dramatic increase in airborne observations, requiring updated data management practices with clearly defined data standards and protocols for metadata. An airborne field campaign can involve multiple aircraft and a variety of instruments. It is quite common to have different instruments/techniques measure the same parameter on one or more aircraft platforms. This creates a need to allow instrument Principal Investigators (PIs) to name their variables in a way that would distinguish them across various data sets. A lack of standardization of variables names presents a challenge for data search tools in enabling discovery of similar data across airborne studies, aircraft platforms, and instruments. This was also identified by data users as one of the top issues in data use. One effective approach for mitigating this problem is to enforce variable name standardization, which can effectively map the unique PI variable names to fixed standard names. In order to ensure consistency amongst the standard names, it will be necessary to choose them from a controlled list. However, no such list currently exists despite a number of previous efforts to establish a sufficient list of atmospheric variable names. The Atmospheric Composition Variable Standard Name Working Group was established under the auspices of NASA's Earth Science Data Systems Working Group (ESDSWG) to solicit research community feedback to create a list of standard names that are acceptable to data providers and data users This presentation will discuss the challenges and recommendations of standard variable names in an effort to demonstrate how airborne metadata curation/management can be improved to streamline data ingest, improve interoperability, and discoverability to a broader user community.

  6. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Remote Sensing of Wind Fields and Aerosol Distribution with Airborne Scanning Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Johnson, Steven C.; Jazembski, Maurice; Arnold, James E. (Technical Monitor)

    2001-01-01

    The coherent Doppler laser radar (lidar), when operated from an airborne platform, is a unique tool for the study of atmospheric and surface processes and features. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are typically at a disadvantage. The atmospheric lidar remote sensing groups of several US institutions, led by Marshall Space Flight Center, have developed an airborne coherent Doppler lidar capable of mapping the wind field and aerosol structure in three dimensions. The instrument consists of an eye-safe approx. 1 Joule/pulse lidar transceiver, telescope, scanner, inertial measurement unit, and flight computer system to orchestrate all subsystem functions and tasks. The scanner is capable of directing the expanded lidar beam in a variety of ways, in order to extract vertically-resolved wind fields. Horizontal resolution is approx. 1 km; vertical resolution is even finer. Winds are obtained by measuring backscattered, Doppler-shifted laser radiation from naturally-occurring aerosol particles (of order 1 micron diameter). Measurement coverage depends on aerosol spatial distribution and composition. Velocity accuracy has been verified to be approx. 1 meter per second. A variety of applications have been demonstrated during the three flight campaigns conducted during 1995-1998. Examples will be shown during the presentation. In 1995, boundary layer winds over the ocean were mapped with unprecedented resolution. In 1996, unique measurements were made of. flow over the complex terrain of the Aleutian Islands; interaction of the marine boundary layer jet with the California coastal mountain range; a weak dry line in Texas - New Mexico; the angular dependence of sea surface scattering; and in-flight radiometric calibration using the surface of White Sands National Monument. In 1998, the first measurements of eyewall and boundary layer winds within a

  8. Assessment of Airborne Instrument Uncertainty via Measurement Comparisons Conducted During the DC3 and SEAC4RS Field Campaigns

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Chen, G.; Shook, M.

    2016-12-01

    Airborne field campaigns have long understood the importance of well-defined measurement uncertainties and their impact on scientific research. Measurement comparisons are an effective way to assess the uncertainty of different techniques as well as gain insight into instrument performance. As part of the NASA DC3 (Deep Convective Clouds and Chemistry) airborne field campaign, there were several wing-tip-to-wing-tip formation flight segments designed for measurement comparison of the instruments onboard the NASA DC-8 and NSF/NCAR Gulfstream-V aircraft. This provides the opportunity to evaluate the consistency between multiple measurements of the same species/parameters on different platforms and based on different measurement techniques. The DC-8 aircraft was also instrumented with duplicate measurements of the same species, allowing for intraplatform comparisons. The NASA DC-8 was also used during the NASA SEAC4RS (Studies of Emission and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys) airborne field campaign. While no wing-tip to wing-tip flights were flown, several instruments measuring the same species were aboard the DC-8 providing intraplatform comparisons. Time series and correlations are produced to show the relative agreement between the measurements both on a daily basis and over the course of the five inter-comparison days. We have also used a data-driven approach to analyze the instrument precisions as an important part of measurement uncertainty assessment. By conducting these analyses we provide insight to users on the quality of the measurements.

  9. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  10. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  11. Mapping the gravity field in coastal areas: feasibility and interest of a new airborne planar gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel

    2014-05-01

    Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high

  12. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    PubMed

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  13. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  14. Airborne Nanostructured Particles and Occupational Health

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew D.; Kuempel, Eileen D.

    2005-12-01

    Nanotechnology is leading to the development in many field, of new materials and devices in many fields that demonstrate nanostructure-dependent properties. However, concern has been expressed that these same properties may present unique challenges to addressing potential health impact. Airborne particles associated with engineered nanomaterials are of particular concern, as they can readily enter the body through inhalation. Research into the potential occupational health risks associated with inhaling engineered nanostructured particles is just beginning. However, there is a large body of data on occupational and environmental aerosols, which is applicable to developing an initial assessment of potential risk and risk reduction strategies. Epidemiological and pathological studies of occupational and environmental exposures to airborne particles and fibers provide information on the aerosol-related lung diseases and conditions that have been observed in humans. Toxicological studies provide information on the specific disease mechanisms, dose-response relationships, and the particle characteristics that influence toxicity, including the size, surface area, chemistry or reactivity, solubility, and shape. Potential health risk will depend on the magnitude and nature of exposures to airborne nanostructured particles, and on the release, dispersion, transformation and control of materials in the workplace. Aerosol control methods have not been well-characterized for nanometer diameter particles, although theory and limited experimental data indicate that conventional ventilation, engineering control and filtration approaches should be applicable in many situations. Current information supports the development of preliminary guiding principles on working with engineered nanomaterials. However critical research questions remain to be answered before the potential health risk of airborne nanostructured particles in the workplace can be fully addressed.

  15. Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.

    2000-01-01

    During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.

  16. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    NASA Astrophysics Data System (ADS)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  17. Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.

    2014-12-01

    Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper

  18. EUFAR training opportunities to advance European airborne research

    NASA Astrophysics Data System (ADS)

    Reusen, I.; Brenguier, J.-L.; Brown, P.; Wendish, M.

    2009-04-01

    EUFAR, EUropean Facilities for Airborne Research, is an FP7 project (http://www.eufar.net) funded by the European Commission with 33 partners that aims at providing and improving the access to European airborne facilities (i.e. aircraft, airborne instruments, data processing centres) for researchers in environmental and geo-sciences through Networking Activities, Transnational Access and Joint Research Activities. This paper reports on the training opportunities within EUFAR for European researchers. In EUFAR three types of training opportunities are offered: 1) Participate in training courses (ET-TC) 2) Join an existing field campaign (ET-EC) 3) Participate in the design of a new field campaign (ET-TA), in the frame of EUFAR Transnational Access and tutored by more experienced researchers. During the 4-year EUFAR project (2008-2012), 4 training courses covering the complete chain from acquisition to interpretation of airborne data and images will be organised during spring/summer for early-stage researchers as well as university lecturers (new in FP7 EUFAR) in airborne research. The training courses will have an equal focus on theory and practical training/demonstration and each training course will be accompanied by a "student" airborne field campaign. Participants will be trained by top-class scientists, aircraft and/or instrument operators and each participant will get the opportunity to design his/her own experiment and to participate to that flight experiment. Furthermore, researchers have the opportunity to join an existing field campaign and work with more experienced researchers, aircraft and/or instrument operators. The list of airborne field campaigns open to join and the eligibility criteria, can be consulted at the EUFAR website. Finally, researchers have the opportunity to participate in the design of a new field campaign in the frame of EUFAR Transnational Access (TA). TA provides access to either aircraft or instrumentation that are not otherwise

  19. Observation of wind field over heterogeneous terrain by the French-German airborne Doppler lidar WIND

    NASA Astrophysics Data System (ADS)

    Dabas, A.; Werner, C.; Delville, P.; Reitebuch, O.; Drobinski, P.; Cousin, F.

    2003-04-01

    In summer 2001, the French-German airborne Doppler lidar WIND participated to field campaign ESCOMPTE. ESCOMPTE was carried out in the region of Marseille along the Mediterranean coast of France. It was dedicated to the observation of heavy pollution events in this industrialized, densely populated region of nearly 4 million inhabitants. The aim was to gather a data base as comprehensive as possible on several pollution events and use them to check the ability of several regional forecast models to predict such events. The specific mission devoted to WIND was the characterization at mesoscale of the wind field and the topography of the planetary boundary layer. Both are complex around Marseille due the heterogeneity of the surface with a transition sea/land to the south, the fore-Alps to the North, the Rhône valley to the North-West etc... Seven, 3-hr flights were carried out and gave excellent results. In 2002, first comparisons were made with mesoscale models. They will be shown during the presentation. They are good examples of the usefulness of airborne Doppler lidar for validating and improving atmospheric model simulations.

  20. Airborne UV DIAL Measurements of Ozone and Aerosols

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    2000-01-01

    The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.

  1. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE PAGES

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won; ...

    2018-06-01

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  2. On the use of high-gradient magnetic force field in capturing airborne particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Murphy, Bart L.; Moon, Ji Won

    Airborne particles in the environment are generally smaller than a couple of microns. Use of magnetic force to collect aerosol particles thus has not been popular as the other means. There are billions of airborne particles emitted by a host of man-made sources with the particle size smaller than 1 µm and possess some magnetic susceptibility. We are thus interested in the use of high-gradient magnetic collection to extract the magnetic fraction in an aerosol population. Here in this study, we reported that the magnetic force is the dominant force in collection of ferromagnetic particles of mobility equivalent size largermore » than or equal to 50 nm in a high-gradient permanent-magnetic aerosol collector, while the diffusiophoretic force is responsible for particles smaller than 10 nm. Both forces compete for particles in between these two sizes in the magnetic aerosol collector designed for this study. To enable a wide-range effective collection of aerosol particles across entire size spectrum from a few nanometers to tens of a micron, the ORNL-designed high-gradient magnetic collector would require the use of an engineered matrix. Thus, the matrix design for a specific application becomes application specific. Irrespective of the collection efficiency, the use of permanent magnets to collect magnetic particles is feasible and also highly selective because it tunes into the magnetic susceptibility of the particles as well as the size. Lastly, the use of permanent magnets enables the collector to be operated at a minimal power requirement, which is a critical factor in long-term field operation.« less

  3. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  4. Field campaigns of the autonomous, closed-path, airborne TDLAS Hygrometer SEALDH-II and traceability to the German Primary Humidity Standards.

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2014-05-01

    Airborne hygrometry is often demanded in scientific flight campaigns to provide datasets for environmental modeling or to correct for water vapor dilution or cross sensitivity effects in other gas analytical techniques. Water vapor measurements, however, are quite challenging due to the large dynamic range in the atmosphere (between 2 and 40000 ppmv) and the high spatio-temporal variability. Airborne hygrometers therefore need to combine a large measurement range with high temporal resolution to resolve - at typical airspeeds of 500 to 900 km/h - atmospheric gradients of several 1000 ppmv/s. Especially during the ascent into the upper troposphere, hygrometers need to work at high gas exchange rates to minimize water vapor adsorption effects. On the other hand, water vapor sensors are difficult to calibrate due to the strong water adsorption and the lack of bottled reference gas standards, which requires pre- or/and post-flight field calibrations. Recently in-flight calibration using an airborne H2O generator was demonstrated, which minimizes calibration drift but still imposes a lot of additional work and hardware to the experiments, since these kind of calibrations just transfer the accuracy level issues to the in-flight calibration-source. To make things worse, the low gas flow (1-5 std l/min, compared with up to 100 std l/min in flight for fast response instruments) adheres critical questions of wall absorption/desorption of the source and instrument even during the calibration process. The national metrological institutes (NMIs) maintain a global metrological water vapor scale which is defined via national primary humidity generators. These provide for calibration purposes well-defined, accurate water vapor samples of excellent comparability and stability traced back to the SI-units. The humidity calibration chain is maintained via high accuracy (but rather slow) Dew-Point-Mirror-Hygrometers as transfer standards. These provide a traceable performance and

  5. Source Identification Of Airborne Antimony On The Basis Of The Field Monitoring And The Source Profiling

    NASA Astrophysics Data System (ADS)

    Iijima, A.; Sato, K.; Fujitani, Y.; Fujimori, E.; Tanabe, K.; Ohara, T.; Shimoda, M.; Kozawa, K.; Furuta, N.

    2008-12-01

    The results of the long-term monitoring of airborne particulate matter (APM) in Tokyo indicated that APM have been extremely enriched with antimony (Sb) compared to crustal composition. This observation suggests that the airborne Sb is distinctly derived from human activities. According to the material flow analysis, automotive brake abrasion dust and fly ash from waste incinerator were suspected as the significant Sb sources. To clarify the emission sources of the airborne Sb, elemental composition, particle size distribution, and morphological profiles of dust particles collected from two possible emission sources were characterized and compared to the field observation data. Brake abrasion dust samples were generated by using a brake dynamometer. During the abrasion test, particle size distribution was measured by an aerodynamic particle sizer spectrometer. Concurrently, size- classified dust particles were collected by an Andersen type air sampler. Fly ash samples were collected from several municipal waste incinerators, and the bulk ash samples were re-dispersed into an enclosed chamber. The measurement of particle size distribution and the collection of size-classified ash particles were conducted by the same methodologies as described previously. Field observations of APM were performed at a roadside site and a residential site by using an Andersen type air sampler. Chemical analyses of metallic elements were performed by an inductively coupled plasma atomic emission spectrometry and an inductively coupled plasma mass spectrometr. Morphological profiling of the individual particle was conducted by a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. High concentration of Sb was detected from both of two possible sources. Particularly, Sb concentrations in a brake abrasion dust were extremely high compared to that in an ambient APM, suggesting that airborne Sb observed at the roadside might have been largely derived from

  6. Subsetting Tools for Enabling Easy Access to International Airborne Chemistry Data

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Chen, G.; Quam, B. M.; Beach, A. L., III; Silverman, M. L.; Early, A. B.

    2017-12-01

    In response to the Research Opportunities in Earth and Space Science (ROSES) 2015 release announcement for Advancing Collaborative Connections for Earth System Science (ACCESS), researchers at NASA Langley Research Center (LaRC) proposed to extend the capabilities of the existing Toolsets for Airborne Data (TAD) to include subsetting functionality to allow for easier access to international airborne field campaign data. Airborne field studies are commonly used to gain a detailed understanding of atmospheric processes for scientific research on international climate change and air quality issues. To accommodate the rigorous process for manipulating airborne field study chemistry data, and to lessen barriers for researchers, TAD was created with the ability to geolocate data from various sources measured on different time scales from a single flight. The analysis of airborne chemistry data typically requires data subsetting, which can be challenging and resource-intensive for end users. In an effort to streamline this process, new data subsetting features and updates to the current database model will be added to the TAD toolset. These will include two subsetters: temporal and spatial, and vertical profile. The temporal and spatial subsetter will allow users to both focus on data from a specific location and/or time period. The vertical profile subsetter will retrieve data collected during an individual aircraft ascent or descent spiral. These new web-based tools will allow for automation of the typically labor-intensive manual data subsetting process, which will provide users with data tailored to their specific research interests. The system has been designed to allow for new in-situ airborne missions to be added as they become available, with only minor pre-processing required. The development of these enhancements will be discussed in this presentation.

  7. A metagenomic framework for the study of airborne microbial communities.

    PubMed

    Yooseph, Shibu; Andrews-Pfannkoch, Cynthia; Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B; Fadrosh, Douglas; Glass, John; Adams, Mark D; Friedman, Robert; Venter, J Craig

    2013-01-01

    Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.

  8. A Metagenomic Framework for the Study of Airborne Microbial Communities

    PubMed Central

    Tenney, Aaron; McQuaid, Jeff; Williamson, Shannon; Thiagarajan, Mathangi; Brami, Daniel; Zeigler-Allen, Lisa; Hoffman, Jeff; Goll, Johannes B.; Fadrosh, Douglas; Glass, John; Adams, Mark D.; Friedman, Robert; Venter, J. Craig

    2013-01-01

    Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria. PMID:24349140

  9. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  10. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  11. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  12. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  13. Modeling Airborne Gravity Data with Local Functions for Regional Geoid Enhancement ---- A Case Study in Puerto Rico Area

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2016-04-01

    Airborne gravimetry has been used as the primary method to quickly and economically obtain updated gravity field information over a region, targeted specifically. Thus, unlike the satellite missions that provide global or near global data coverage, the observables from airborne campaigns are apparently space limited. Moreover, they are also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques have to be applied to overcome the low signal to noise ratio problem that are presented in the airborne systems due to mechanical and mathematical limitations in computing the accelerations, both the kinematic one and the dynamic one. As a result, in this study, a band-limited local function system based on the point mass model is used to process these airborne gravity data that have both a limited frequency domain and a limited space domain in the target area: Puerto Rico Island and its nearby ocean areas. The resulting geoid model show obvious middle to short wavelength geoid changes due to airborne gravity data contribution. In the land area, these changes improved the geoid precision from 3.27cm to 2.09cm at the local GNSS/Leveling bench marks. More importantly, the error trend in the geoid models is largely reduced if not completely removed. Various oceanographic models will be used to validate the geoid changes in the nearby open sea areas.

  14. Phenotyping Drought Tolerance and Yield Potential of Warm-Season Legumes Through Field- and Airborne-Based Hyperspectral VSWIR Sensing

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Berny-Mier y Teran, J. C.; Dutta, D.; Gepts, P.

    2017-12-01

    Hyperspectral sensing in the visible through shortwave infrared (VSWIR) portion of the spectrum has been demonstrated to provide significant information on the structural and functional properties of vegetation, resulting in powerful techniques to discern species differences, characterize crop nutrient or water stress, and quantify the density of foliage in agricultural fields. Modern machine-learning techniques allow for the entire set of spectral bands, on the order of hundreds with modern field and airborne spectrometers, to be used to develop models that can simultaneously retrieve a variety of foliar chemical compounds and hydrological and structural states. The application of these techniques, in the context of leaf-level measurements of VSWIR reflectance, or more complicated remote airborne surveys, has the potential to revolutionize high-throughput methods to phenotype germplasm that optimizes yield, resource-use efficiencies, or alternate objectives related to disease resistance or biomass accumulation, for example. Here we focus on breeding trials for a set of warm-season legumes, conducted in both greenhouse and field settings, and spanning a set of diverse genotypes providing a range of adaptation to drought and yield potential in the context of the semi-arid climate cultivation. At the leaf-level, a large set of spectral reflectance measurements spanning 400-2500 nanometers were made for plants across various growth stages in field experiments that induced severe drought, along with sampling for relevant trait values. Here we will discuss the development and performance of algorithms for a range of leaf traits related to gas exchange, leaf structure, hydrological status, nutrient contents and stable isotope discrimination, along with their relationships to drought resistance and yield. We likewise discuss the effectiveness of quantifying relevant foliar and canopy traits through airborne imaging spectroscopy from small unmanned vehicles (sUAVs), and

  15. Airborne Sunphotometer Studies of Aerosol Properties and Effects, Including Closure Among Satellite, Suborbital Remote, and In situ Measurements

    NASA Technical Reports Server (NTRS)

    Russlee, Philip B.; Schmid, B.; Redemann, J.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne sunphotometry has been used to measure aerosols from North America, Europe, and Africa in coordination with satellite and in situ measurements in TARFOX (1996), ACE-2 (1997), PRIDE (2000), and SAFARI 2000. Similar coordinated measurements of Asian aerosols are being conducted this spring in ACE-Asia and are planned for North American aerosols this summer in CLAMS. This paper summarizes the approaches used, key results, and implications for aerosol properties and effects, such as single scattering albedo and regional radiative forcing. The approaches exploit the three-dimensional mobility of airborne sunphotometry to access satellite scenes over diverse surfaces (including open ocean with and without sunglint) and to match exactly the atmospheric layers sampled by airborne in situ measurements and other radiometers. These measurements permit tests of the consistency, or closure, among such diverse measurements as aerosol size-resolved chemical composition; number or mass concentration; light extinction, absorption, and scattering (total, hemispheric back and 180 deg.); and radiative fluxes. In this way the airborne sunphotometer measurements provide a key link between satellite and in situ measurements that helps to understand any discrepancies that are found. These comparisons have led to several characteristic results. Typically these include: (1) Better agreement among different types of remote measurements than between remote and in situ measurements. (2) More extinction derived from transmission measurements than from in situ measurements. (3) Larger aerosol absorption inferred from flux radiometry than from in situ measurements. Aerosol intensive properties derived from these closure studies have been combined with satellite-retrieved fields of optical depth to produce fields of regional radiative forcing. We show results for the North Atlantic derived from AVHRR optical depths and aerosol intensive properties from TARFOX and ACE-2. Companion papers

  16. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  17. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  18. Detecting trends in regional ecosystem functioning: the importance of field data for calibrating and validating NEON airborne remote sensing instruments and science data products

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Kuester, M. A.; Johnson, B. R.; Krause, K.; Kampe, T. U.; Moore, D. J.

    2011-12-01

    The National Ecological Observatory Network (NEON) is a research facility under development by the National Science Foundation to improve our understanding of and ability to forecast the impacts of climate change, land-use change, and invasive species on ecology. The infrastructure, designed to operate over 30 years or more, includes site-based flux tower and field measurements, coordinated with airborne remote sensing observations to observe key ecological processes over a broad range of temporal and spatial scales. NEON airborne data on vegetation biochemical, biophysical, and structural properties and on land use and land cover will be captured at 1 to 2 meter resolution by an imaging spectrometer, a small-footprint waveform-LiDAR and a high-resolution digital camera. Annual coverage of the 60 NEON sites and capacity to support directed research flights or respond to unexpected events will require three airborne observation platforms (AOP). The integration of field and airborne data with satellite observations and other national geospatial data for analysis, monitoring and input to ecosystem models will extend NEON observations to regions across the United States not directly sampled by the observatory. The different spatial scales and measurement methods make quantitative comparisons between remote sensing and field data, typically collected over small sample plots (e.g. < 0.2 ha), difficult. New approaches to developing temporal and spatial scaling relationships between these data are necessary to enable validation of airborne and satellite remote sensing data and for incorporation of these data into continental or global scale ecological models. In addition to consideration of the methods used to collect ground-based measurements, careful calibration of the remote sensing instrumentation and an assessment of the accuracy of algorithms used to derive higher-level science data products are needed. Furthermore, long-term consistency of the data collected by all

  19. On error sources during airborne measurements of the ambient electric field

    NASA Technical Reports Server (NTRS)

    Evteev, B. F.

    1991-01-01

    The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.

  20. Comparison of Precision of Biomass Estimates in Regional Field Sample Surveys and Airborne LiDAR-Assisted Surveys in Hedmark County, Norway

    NASA Technical Reports Server (NTRS)

    Naesset, Erik; Gobakken, Terje; Bollandsas, Ole Martin; Gregoire, Timothy G.; Nelson, Ross; Stahl, Goeran

    2013-01-01

    Airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool to provide auxiliary data for sample surveys aiming at estimation of above-ground tree biomass (AGB), with potential applications in REDD forest monitoring. For larger geographical regions such as counties, states or nations, it is not feasible to collect airborne LiDAR data continuously ("wall-to-wall") over the entire area of interest. Two-stage cluster survey designs have therefore been demonstrated by which LiDAR data are collected along selected individual flight-lines treated as clusters and with ground plots sampled along these LiDAR swaths. Recently, analytical AGB estimators and associated variance estimators that quantify the sampling variability have been proposed. Empirical studies employing these estimators have shown a seemingly equal or even larger uncertainty of the AGB estimates obtained with extensive use of LiDAR data to support the estimation as compared to pure field-based estimates employing estimators appropriate under simple random sampling (SRS). However, comparison of uncertainty estimates under SRS and sophisticated two-stage designs is complicated by large differences in the designs and assumptions. In this study, probability-based principles to estimation and inference were followed. We assumed designs of a field sample and a LiDAR-assisted survey of Hedmark County (HC) (27,390 km2), Norway, considered to be more comparable than those assumed in previous studies. The field sample consisted of 659 systematically distributed National Forest Inventory (NFI) plots and the airborne scanning LiDAR data were collected along 53 parallel flight-lines flown over the NFI plots. We compared AGB estimates based on the field survey only assuming SRS against corresponding estimates assuming two-phase (double) sampling with LiDAR and employing model-assisted estimators. We also compared AGB estimates based on the field survey only assuming two-stage sampling (the NFI

  1. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  2. Comparisons of Wind Speed Retrievals from an Airborne Microwave Radiometer (AMPR) with Satellite-Based Observations During the OLYMPEX/RADEX Field Campaign

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Biswas, Sayak

    2017-01-01

    AMPR is an airborne instrument that flew aboard the NASA ER-2 during the OLYMPEX/RADEX field campaign in late 2015. This poster's goal is to explore how well the instrument can retrieve near-surface wind speed over the ocean.

  3. Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity

    NASA Technical Reports Server (NTRS)

    Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.

    1989-01-01

    Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.

  4. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    PubMed Central

    2014-01-01

    Background Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. Methods The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Results Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. Conclusion This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that

  5. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  6. NASA's Student Airborne Research Program (2009-2013)

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  7. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    DTIC Science & Technology

    2015-06-01

    9 Kenneth Macksey, Guderian: Panzer General-revised EDITION (South Yorkshire, England: Greenhill Books, 2003), 1–20. 10 Dr. John Arquilla...Airborne Operations: Field Manual 90=26, 1–5. 14 The 1st Special Forces Regiment has five active Special Forces Groups (1st, 3rd, 5th , 7th, 10th...Oxford University Press, 1981). Headrick, in his book, describes the interplay between technology and imperialism. For the purposes of this research

  8. Airborne Precision Spacing for Dependent Parallel Operations Interface Study

    NASA Technical Reports Server (NTRS)

    Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter

    2012-01-01

    This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.

  9. Toolsets for Airborne Data (TAD): Enhanced Airborne Data Merging Functionality through Spatial and Temporal Subsetting

    NASA Astrophysics Data System (ADS)

    Early, A. B.; Chen, G.; Beach, A. L., III; Northup, E. A.

    2016-12-01

    NASA has conducted airborne tropospheric chemistry studies for over three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in Hampton Virginia originally developed the Toolsets for Airborne Data (TAD) web application in September 2013 to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. The analysis of airborne data typically requires data subsetting, which can be challenging and resource intensive for end users. In an effort to streamline this process, the TAD toolset enhancements will include new data subsetting features and updates to the current database model. These will include two subsetters: temporal and spatial, and vertical profile. The temporal and spatial subsetter will allow users to both focus on data from a specific location and/or time period. The vertical profile subsetter will retrieve data collected during an individual aircraft ascent or descent spiral. This effort will allow for the automation of the typically labor-intensive manual data subsetting process, which will provide users with data tailored to their specific research interests. The development of these enhancements will be discussed in this presentation.

  10. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields

    USGS Publications Warehouse

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  11. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  12. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  13. NASA Standard for Airborne Data: ICARTT Format ESDS-RFC-019

    NASA Astrophysics Data System (ADS)

    Thornhill, A.; Brown, C.; Aknan, A.; Crawford, J. H.; Chen, G.; Williams, E. J.

    2011-12-01

    Airborne field studies generate a plethora of data products in the effort to study atmospheric composition and processes. Data file formats for airborne field campaigns are designed to present data in an understandable and organized way to support collaboration and to document relevant and important meta data. The ICARTT file format was created to facilitate data management during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign in 2004 that involved government-agencies and university participants from five countries. Since this mission the ICARTT format has been used in subsequent field campaigns such as Polar Study Using Aircraft Remote Sensing, Surface Measurements and Models of Climates, Chemistry, Aerosols, and Transport (POLARCAT) and the first phase of Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). The ICARTT file format has been endorsed as a standard format for airborne data by the Standard Process Group (SPG), one of the Earth Science Data Systems Working Groups (ESDSWG) in 2010. The detailed description of the ICARTT format can be found at http://www-air.larc.nasa.gov/missions/etc/ESDS-RFC-019-v1.00.pdf. The ICARTT data format is an ASCII, comma delimited format that was based on the NASA Ames and GTE file formats. The file header is detailed enough to fully describe the data for users outside of the instrument group and includes a description of the meta data. The ICARTT scanning tools, format structure, implementations, and examples will be presented.

  14. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  15. GLM Post Launch Testing and Airborne Science Field Campaign

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Padula, F.; Koshak, W. J.; Blakeslee, R. J.

    2017-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. The Geostationary Lightning Mapper (GLM) is a wholly new instrument that provides a capability for total lightning detection (cloud and cloud-to-ground flashes). The first satellite in the GOES-R series, now GOES-16, was launched in November 2016 followed by in-orbit post launch testing for approximately 12 months before being placed into operations replacing the GOES-E satellite in December. The GLM will map total lightning continuously throughout day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, satellite imagery, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings, improve aviation safety and efficiency, and increase public safety. In this paper we present initial results from the post-launch in-orbit performance testing, airborne science field campaign conducted March-May, 2017 and assessments of the GLM instrument and science products.

  16. Airborne gamma radiation soil moisture measurements over short flight lines

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  17. The Australian National Airborne Field Experiment 2005: Soil Moisture Remote Sensing at 60 Meter Resolution and Up

    NASA Technical Reports Server (NTRS)

    Kim, E. J.; Walker, J. P.; Panciera, R.; Kalma, J. D.

    2006-01-01

    truth collection over a range of grid spacings, to provide a basis for examining the effects of subpixel variability. However, the native footprint size of the airborne L-band radiometers was always a few hundred meters. During the recently completed (November, 2005) National Airborne Field Experiment (NAFE) campaign in Australia, a compact L-band radiometer was deployed on a small aircraft. This new combination permitted routine observations at native resolutions as high as 60 meters, substantially finer than in previous airborne soil moisture campaigns, as well as satellite footprint areal coverage. The radiometer, the Polarimetric L-band Microwave Radiometer (PLMR) performed extremely well and operations included extensive calibration-related observations. Thus, along with the extensive fine-scale ground truth, the NAFE dataset includes all the ingredients for the first scaling studies involving very-high-native resolution soil moisture observations and the effects of vegetation, roughness, etc. A brief overview of the NAFE will be presented, then examples of the airborne observations with resolutions from 60 m to 1 km will be shown, and early results from scaling studies will be discussed.

  18. Study of cloud properties using airborne and satellite measurements

    NASA Astrophysics Data System (ADS)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  19. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  20. Composition and Morphology of Major Particle Types from Airborne Measurements during ICE-T and PRADACS Field Studies

    NASA Astrophysics Data System (ADS)

    Venero, I. M.; Mayol-Bracero, O. L.; Anderson, J. R.

    2012-12-01

    As part of the Puerto Rican African Dust and Cloud Study (PRADACS) and the Ice in Clouds Experiment - Tropical (ICE-T), we sampled giant airborne particles to study their elemental composition, morphology, and size distributions. Samples were collected in July 2011 during field measurements performed by NCAR's C-130 aircraft based on St Croix, U.S Virgin Island. The results presented here correspond to the measurements done during research flight #8 (RF8). Aerosol particles with Dp > 1 um were sampled with the Giant Nuclei Impactor and particles with Dp < 1 um were collected with the Wyoming Inlet. Collected particles were later analyzed using an automated scanning electron microscope (SEM) and manual observation by field emission SEM. We identified the chemical composition and morphology of major particle types in filter samples collected at different altitudes (e.g., 300 ft, 1000 ft, and 4500ft). Results from the flight upwind of Puerto Rico show that particles in the giant nuclei size range are dominated by sea salt. Samples collected at altitudes 300 ft and 1000 ft showed the highest number of sea salt particles and the samples collected at higher altitudes (> 4000 ft) showed the highest concentrations of clay material. HYSPLIT back trajectories for all samples showed that the low altitude samples initiated in the free troposphere in the Atlantic Ocean, which may account for the high sea salt content and that the source of the high altitude samples was closer to the Saharan - Sahel desert region and, therefore, these samples possibly had the influence of African dust. Size distribution results for quartz and unreacted sea-salt aerosols collected on the Giant Nuclei Impactor showed that sample RF08 - 12:05 UTM (300 ft) had the largest size value (mean = 2.936 μm) than all the other samples. Additional information was also obtained from the Wyoming Inlet present at the C - 130 aircraft which showed that size distribution results for all particles were smaller in

  1. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    NASA Astrophysics Data System (ADS)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  2. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  3. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    PubMed

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-02

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. Copyright © 2016. Published by Elsevier Inc.

  4. The Multi-Center Airborne Coherent Atmospheric Wind Sensor: Recent Measurements and Future Applications

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Cutten, Dean R.; Hardesty, R. Michael; Howell, James N.; Darby, Lisa S.; Tratt, David M.; Menzies, Robert T.

    1999-01-01

    The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general

  5. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-ampmore » mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.« less

  6. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  7. NASA's Student Airborne Research Program (SARP) 2009-2017

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  8. Impacts of airborne lidar pulse density on estimating biomass stocks and changes in a selectively logged tropical forest

    Treesearch

    Carlos Alberto Silva; Andrew Thomas Hudak; Lee Alexander Vierling; Carine Klauberg; Mariano Garcia; Antonio Ferraz; Michael Keller; Jan Eitel; Sassan Saatchi

    2017-01-01

    Airborne lidar has become a well-suited technology for predicting and mapping many tropical forest attributes, including aboveground biomass (AGB). However, trade-offs exist between lidar pulse density and acquisition cost. The aim of this study was to evaluate the influence of lidar pulse density on AGB change predictions using airborne lidar and field plot data in a...

  9. In Situ Soil Moisture and Thaw Depth Measurements Coincident with Airborne SAR Data Collections, Barrow and Seward Peninsulas, Alaska, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Wilson; Julian Dann; Robert Bolton

    The in-situ soil moisture and thaw depth measurements provided in this dataset were collected coincident with airborne overflights of L- and P-band SAR instruments at the NGEE Arctic study site near Barrow, on the North Slope, and at the three study sites on the Seward Peninsula, Alaska. Field measurements and flights were conducted during the summer of 2017 as a collaboration between the NASA ABoVE Project's Airborne SAR Campaign and the NGEE Arctic Project. ABoVE protocols for establishing field measurement plots were followed.

  10. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  11. Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-Asia Using Airborne Sunphotometer, Airborne In-Situ and Ship-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Hegg, A.; Wang, J.; Bates, D.; Redemann, J.; Russells, P. B.; Livingston, J. M.; Jonsson, H. H.; Welton, E. J.; Seinfield, J. H.

    2003-01-01

    We assess the consistency (closure) between solar beam attenuation by aerosols and water vapor measured by airborne sunphotometry and derived from airborne in-situ, and ship-based lidar measurements during the April 2001 Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The airborne data presented here were obtained aboard the Twin Otter aircraft. Comparing aerosol extinction o(550 nm) from four different techniques shows good agreement for the vertical distribution of aerosol layers. However, the level of agreement in absolute magnitude of the derived aerosol extinction varied among the aerosol layers sampled. The sigma(550 nm) computed from airborne in-situ size distribution and composition measurements shows good agreement with airborne sunphotometry in the marine boundary layer but is considerably lower in layers dominated by dust if the particles are assumed to be spherical. The sigma(550 nm) from airborne in-situ scattering and absorption measurements are about approx. 13% lower than those obtained from airborne sunphotometry during 14 vertical profiles. Combining lidar and the airborne sunphotometer measurements reveals the prevalence of dust layers at altitudes up to 10 km with layer aerosol optical depth (from 3.5 to 10 km altitude) of approx. 0.1 to 0.2 (500 nm) and extinction-to-backscatter ratios of 59-71 sr (523 nm). The airborne sunphotometer aboard the Twin Otter reveals a relatively dry atmosphere during ACE- Asia with all water vapor columns less than 1.5 cm and water vapor densities w less than 12 g/cu m. Comparing layer water vapor amounts and w from the airborne sunphotometer to the same quantities measured with aircraft in-situ sensors leads to a high correlation (r(sup 3)=0.96) but the sunphotometer tends to underestimate w by 7%.

  12. ASPIRE - Airborne Spectro-Polarization InfraRed Experiment

    NASA Astrophysics Data System (ADS)

    DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.

    2017-12-01

    Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.

  13. Method for the Study of Category III Airborne Procedure Reliability

    DOT National Transportation Integrated Search

    1973-03-01

    A method for the study of Category 3 airborne-procedure reliability is presented. The method, based on PERT concepts, is considered to have utility at the outset of a procedure-design cycle and during the early accumulation of actual performance data...

  14. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  15. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  16. SGA-WZ: A New Strapdown Airborne Gravimeter

    PubMed Central

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping; Zhang, Kaidong

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter taking full advantage of the inertial navigation system is described with improved mechanical design, high precision time synchronization, better thermal control and optimized sensor modeling. Apart from the general usage, the Global Positioning System (GPS) after differentiation is integrated to the inertial navigation system which provides not only more precise altitude information along with the navigation aiding, but also an effective way to calculate the vehicle acceleration. Design description and test results on the performance of the gyroscopes and accelerations will be emphasized. Analysis and discussion of the airborne field test results are also given. PMID:23012545

  17. A Comparison between Airborne and Mountaintop Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    David, R.; Lowenthal, D. H.; Hallar, A. G.; McCubbin, I.; Avallone, L. M.; Mace, G. G.; Wang, Z.

    2014-12-01

    Complex terrain has a large impact on cloud dynamics and microphysics. Several studies have examined the microphysical details of orographically-enhanced clouds from either an aircraft or from a mountain top location. However, further research is needed to characterize the relationships between mountain top and airborne microphysical properties. During the winter of 2011, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured cloud droplet, ice crystal, and aerosol size distributions at SPL, located on the west summit of Mt. Werner at 3220m MSL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes while small crystal concentrations were routinely higher at the surface, suggesting ice nucleation near cloud base. The effects of aerosol concentrations and upwind stability on mountain top and downwind microphysics are considered.

  18. An Overview of the Challenges with and Proposed Solutions for the Ingest and Distribution Processes For Airborne Data Management

    NASA Astrophysics Data System (ADS)

    Northup, E. A.; Beach, A. L., III; Early, A. B.; Kusterer, J.; Quam, B.; Wang, D.; Chen, G.

    2015-12-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable, and there lacks a standard variable naming convention among the many airborne measurement variables. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data. There also exists a substantial amount of airborne data distributed by websites designed for science team use that are less friendly to users unfamiliar with operations of airborne field studies. A number of efforts are underway to help overcome the issues with airborne data discovery and distribution. The ICARTT Refresh Earth Science Data Systems Working Group (ESDSWG) was established to enable a platform for atmospheric science data providers, users, and data managers to collaborate on developing new criteria for the file format in an effort to enhance airborne data usability. In addition, the NASA Langley Research Center Atmospheric Science Data Center (ASDC) has developed the Toolsets for Airborne Data (TAD) to provide web-based tools and centralized access to airborne in situ measurements of atmospheric composition. This presentation will discuss the aforementioned challenges and attempted solutions in an effort to demonstrate how airborne data management can be improved to streamline data ingest and discoverability to a broader user community.

  19. Airborne and food sensitization patterns in children and adults with eosinophilic esophagitis.

    PubMed

    He, Yu Ting; Christos, Paul J; Reisacher, William R

    2018-05-01

    The pathogenesis of eosinophilic esophagitis (EoE) is currently unknown, but evidence suggests that allergic sensitization to food and airborne allergens may play a key role. This retrospective study examines the rate of sensitization to both food and airborne allergens in EoE patients, and compares their sensitivity patterns to control groups. We identified 103 patients with a diagnosis of EoE via esophageal eosinophilia (≥15 eosinophils/high-power field [hpf]), who had undergone comprehensive food and/or airborne allergen testing through either skin or in vitro methods. Food and airborne allergen sensitization was defined as positive testing in at least 1 food subgroup (milk, peanut, tree nut, seafood/fish, soy, grain, egg) or airborne subgroup (tree, grass, weed, mite/cockroach, animal, mold), respectively. The same sensitization criterion was applied to allergic rhinitis (AR) patients, with and without a clinical suspicion of food allergy (FA), in order to create control groups. Sensitization in the EoE group to at least 1 subgroup of food allergen and airborne allergen was seen in 77.1% (64/83) and 71.7% (38/53), respectively (p = 0.82). There were significant differences in sensitization between EoE and control groups for tree nut, soy, grain, and egg, but no differences noted in any of the other food or airborne allergen subgroups, even after accounting for age and gender. EoE and control groups had similar airborne allergen sensitization patterns, yet dissimilar food allergen sensitization patterns, suggesting that specific allergens may play a more prominent role in the pathogenesis of EoE. The EoE group had a more uniform distribution pattern for food allergens, compared to controls. © 2018 ARS-AAOA, LLC.

  20. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  1. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): Common Variable Naming Schema

    NASA Astrophysics Data System (ADS)

    Chen, G.; Early, A. B.; Peeters, M. C.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. One particular issue is a lack of consistent variable naming across field campaigns, which makes cross-mission data discovery difficult. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. As part of this effort, a common naming system was developed to provide a link between variables from different aircraft field studies. This system covers all current and past airborne in-situ measurements housed at the ASDC, as well as select NOAA missions. The TAD common variable naming system consists of 6 categories and 3 sub-levels. The top-level category is primarily defined by the physical characteristics of the measurement: e.g., aerosol, cloud, trace gases. The sub-levels were designed to organize the variables according to nature of measurement (e.g., aerosol microphysical and optical properties) or chemical structures (e.g., carbon compound). The development of the TAD common variable naming system was in consultation with staff from the Global Change Master Directory (GCMD) and referenced/expanded the existing Climate and Forecast (CF) variable naming conventions. The detailed structure of the TAD common variable naming convention and its application in TAD development will be presented.

  2. Workflow with pitfalls to derive a regional airborne magnetic compilation

    NASA Astrophysics Data System (ADS)

    Brönner, Marco; Baykiev, Eldar; Ebbing, Jörg

    2017-04-01

    Today, large scale magnetic maps are usually a patchwork of different airborne surveys from different size, different resolution and different years. Airborne magnetic acquisition is a fast and economic method to map and gain geological and tectonic information for large areas, onshore and offshore. Depending on the aim of a survey, acquisition parameters like altitude and profile distance are usually adjusted to match the purpose of investigation. The subsequent data processing commonly follows a standardized workflow comprising core-field subtraction and line leveling to yield a coherent crustal field magnetic grid for a survey area. The resulting data makes it possible to correlate with geological and tectonic features in the subsurface, which is of importance for e.g. oil and mineral exploration. Crustal scale magnetic interpretation and modeling demand regional compilation of magnetic data and the merger of adjacent magnetic surveys. These studies not only focus on shallower sources, reflected by short to intermediate magnetic wavelength anomalies, but also have a particular interest in the long wavelength deriving from deep seated sources. However, whilst the workflow to produce such a merger is supported by quite a few powerful routines, the resulting compilation contains several pitfalls and limitations, which were discussed before, but still are very little recognized. The maximum wavelength that can be resolved of each individual survey is directly related to the survey size and consequently a merger will contribute erroneous long-wavelength components in the magnetic data compilation. To minimize this problem and to homogenous the longer wavelengths, a first order approach is the combination of airborne and satellite magnetic data commonly combined with the compilation from airborne data, which is sufficient only under particular preconditions. A more advanced approach considers the gap in frequencies between airborne and satellite data, which motivated

  3. Airborne or Fomite Transmission for Norovirus? A Case Study Revisited.

    PubMed

    Xiao, Shenglan; Tang, Julian W; Li, Yuguo

    2017-12-14

    Norovirus infection, a highly prevalent condition associated with a high rate of morbidity, comprises a significant health issue. Although norovirus transmission mainly occurs via the fecal-oral and vomit-oral routes, airborne transmission has been proposed in recent decades. This paper re-examines a previously described norovirus outbreak in a hotel restaurant wherein airborne transmission was originally inferred. Specifically, the original evidence that suggested airborne transmission was re-analyzed by exploring an alternative hypothesis: could this outbreak instead have occurred via fomite transmission? This re-analysis was based on whether fomite transmission could have yielded similar attack rate distribution patterns. Seven representative serving pathways used by waiters were considered, and the infection risk distributions of the alternative fomite transmission routes were predicted using a multi-agent model. These distributions were compared to the reported attack rate distribution in the original study using a least square methods approach. The results show that with some reasonable assumptions of human behavior patterns and parameter values, the attack rate distribution corresponded well with that of the infection risk via the fomite route. This finding offers an alternative interpretation of the transmission routes that underlay this particular norovirus outbreak and an important consideration in the development of infection control guidelines and the investigation of similar norovirus outbreaks in future.

  4. The 1979 Southeastern Virginia Urban Plume Study (SEV-UPS): Surface and airborne studies

    NASA Technical Reports Server (NTRS)

    White, J. H.; Eaton, W. C.; Saeger, M. L.; Strong, R. B.; Tommerdahl, J. B.

    1980-01-01

    The operation of two surface monitoring stations (one in downtown Norfolk, Virginia, one south of the city near the Great Dismal Swamp) and the collection of 40 hours of airborne measurements is described. Surface site measurements of ozone, oxides of nitrogen, sulfur dioxide, temperature, dew point, b sub seat, and condensation nuclei were made. Instrument calibrations, quality assurance audits, and preliminary data analysis in support of the Urban Plume Study were also made. The air pollution problems that were addressed are discussed. Data handling procedures followed for the surface stations are presented. The operation of the aircraft sampling platform is described. Aircraft sampling procedures are discussed. A preliminary descriptive analysis of the aircraft data is given along with data or plots for surface sites, airborne studies, hydrocarbon species, and instrument performance audits. Several of the aircraft flights clearly show the presence of an urban ozone plume downwind of Norfolk in the direction of the mean wind flow.

  5. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  6. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  7. NASA airborne Doppler lidar program: Data characteristics of 1981

    NASA Technical Reports Server (NTRS)

    Lee, R. W.

    1982-01-01

    The first flights of the NASA/Marshall airborne CO2 Doppler lidar wind measuring system were made during the summer of 1981. Successful measurements of two-dimensional flow fields were made to ranges of 15 km from the aircraft track. The characteristics of the data obtained are examined. A study of various artifacts introduced into the data set by incomplete compensation for aircraft dynamics is summarized. Most of these artifacts can be corrected by post processing, which reduces velocity errors in the reconstructed flow field to remarkably low levels.

  8. Airborne asbestos exposures associated with gasket and packing replacement: a simulation study and meta-analysis.

    PubMed

    Madl, Amy K; Hollins, Dana M; Devlin, Kathryn D; Donovan, Ellen P; Dopart, Pamela J; Scott, Paul K; Perez, Angela L

    2014-08-01

    Exposures to airborne asbestos during the removal and installation of internal gaskets and packing associated with a valve overhaul were characterized and compared to published data according to different variables (e.g., product, equipment, task, tool, setting, duration). Personal breathing zone and area samples were collected during twelve events simulating gasket and packing replacement, clean-up and clothing handling. These samples were analyzed using PCM and TEM methods and PCM-equivalent (PCME) airborne asbestos concentrations were calculated. A meta-analysis was performed to compare these data with airborne asbestos concentrations measured in other studies involving gaskets and packing. Short-term mechanic and assistant airborne asbestos concentrations during valve work averaged 0.013f/cc and 0.008f/cc (PCME), respectively. Area samples averaged 0.008f/cc, 0.005f/cc, and 0.003f/cc (PCME) for center, bystander, and remote background, respectively. Assuming a tradesman conservatively performs 1-3 gasket and/or packing replacements daily, an average 8-h TWA was estimated to be 0.002-0.010f/cc (PCME). Combining these results in a meta-analysis of the published exposure data showed that the majority of airborne asbestos exposures during work with gaskets and packing fall within a consistent and low range. Significant differences in airborne concentrations were observed between power versus manual tools and removal versus installation tasks. Airborne asbestos concentrations resulting from gasket and packing work during a valve overhaul are consistent with historical exposure data on replacement of asbestos-containing gasket and packing materials involving multiple variables and, in nearly all plausible scenarios, result in average airborne asbestos concentrations below contemporaneous occupational exposure limits for asbestos. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. SEALDH-II—An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design–Setup–Accuracy/Stability Stress Test

    PubMed Central

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-01-01

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal “housekeeping” data to nearly perfectly control SEALDH-II’s health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively. PMID:28042844

  10. SEALDH-II-An Autonomous, Holistically Controlled, First Principles TDLAS Hygrometer for Field and Airborne Applications: Design-Setup-Accuracy/Stability Stress Test.

    PubMed

    Buchholz, Bernhard; Kallweit, Sören; Ebert, Volker

    2016-12-30

    Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.

  11. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  12. The Arctic Boreal Vulnerability Experiment (ABoVE) 2017 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Goetz, S. J.; Griffith, P. C.; Hoy, E.; Larson, E. K.; Hodkinson, D. J.; Hansen, C.; Woods, J.; Kasischke, E. S.; Margolis, H. A.

    2017-12-01

    The 2017 ABoVE Airborne Campaign (AAC) was one of the largest airborne experiments ever conducted by NASA's Earth Science Division. It involved nine aircraft in 17 deployments - more than 100 flights - between April and October and sampled over 4 million km2in Alaska and northwestern Canada. Many of these flights were coordinated with detailed, same-day ground-based measurements to link field-based, process-level studies with geospatial data products derived from satellite remote sensing. A major goal of the 2017 AAC was to collect data that spanned the critical intermediate space and time scales that are essential for a comprehensive understanding of scaling issues across the ABoVE Study Domain and extrapolation to the pan-Arctic. Additionally, the 2017 AAC provided unique opportunities to validate satellite and airborne remote sensing data for northern high latitude ecosystems, develop and advance fundamental remote sensing science, and explore scientific insights from innovative sensor combinations. The 2017 AAC science strategy coupled domain-wide sampling with L-band and P-band synthetic aperture radar (SAR), imaging spectroscopy (AVIRIS-NG), full waveform lidar (LVIS) and atmospheric carbon dioxide and methane with more spatially and temporally focused studies using Ka-band SAR (Ka-SPAR) and solar induced chlorophyll fluorescence (CFIS). Additional measurements were coordinated with the NEON Airborne Observing Platform, the ASCENDS instrument development suite, and the ATOM EV-S2 investigation. Targets of interest included the array of field sites operated by the ABoVE Science Team as well as the intensive sites operated by the DOE NGEE-Arctic team on the Seward Peninsula and in Barrow, NSF's LTER sites at Toolik Lake (North Slope) and Bonanza Creek (Interior Alaska), the Canadian Cold Regions Hydrology sites in the Arctic tundra near Trail Valley Creek NT, the Government of the Northwest Territories Slave River/Slave Delta watershed time series and numerous

  13. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions

    PubMed Central

    Cheong, Chang Heon; Lee, Seonhye

    2018-01-01

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043

  14. Case Study of Airborne Pathogen Dispersion Patterns in Emergency Departments with Different Ventilation and Partition Conditions.

    PubMed

    Cheong, Chang Heon; Lee, Seonhye

    2018-03-13

    The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.

  15. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  16. A Reevaluation of Airborne HO(x) Observations from NASA Field Campaigns

    NASA Technical Reports Server (NTRS)

    Olson, Jennifer; Crawford, James H.; Chen, Gao; Brune, William H.; Faloona, Ian C.; Tan, David; Harder, Hartwig; Martinez, Monica

    2006-01-01

    In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.

  17. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  19. CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance

    NASA Technical Reports Server (NTRS)

    Targ, Russell

    1991-01-01

    The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.

  20. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  1. Airborne bacterial assemblage in a zero carbon building: A case study.

    PubMed

    Leung, M H Y; Tong, X; Tong, J C K; Lee, P K H

    2018-01-01

    Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day-to-day) and long-term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time-decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source-tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  3. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  4. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  5. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  6. Monitoring land use and degradation using satellite and airborne data

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Thomas G.; Blom, Ronald G.; Crippen, Robert E.

    1993-01-01

    In July 1990 AVIRIS and AIRSAR data were collected over the Manix Basin Area of the Mojave Desert to study land degradation in an arid area where centerpivot irrigation had been in use. The Manix Basin is located NE of Barstow, California, along Interstate-15 at 34 deg 57 min N 116 deg 35 min W. This region was covered by a series of lakes during the Late Pleistocence and Early Holocene. Beginning in the 1960's, areas were cleared of the native creosote bush-dominated plant community to be used for agricultural purposes. Starting in 1972 fields have been abandoned due to the increased cost of electricity needed to pump the irrigation water, with some fields abandoned as recently as 1988 and 1992. These circumstances provide a time series of abandoned fields which provide the possibility of studying the processes which act on agricultural fields in arid regions when they are abandoned. Ray et al. reported that polarimetric SAR (AIRSAR) could detect that the concentric circular planting furrows plowed on these fields persists for a few years after abandonment and then disappear over time and that wind ripples which form on these fields over time due to wind erosion can be detected with polarimetric radar. Ray et al. used Landsat Thematic Mapper (TM) bandpasses to generate NDVI images of the Manix Basin which showed that the fields abandoned for only a few years had higher NDVI's than the undisturbed desert while the fields abandoned for a longer time had NDVI levels lower than that of the undisturbed desert. The purpose of this study is to use a fusion of a time series of satellite data with airborne data to provide a context for the airborne data. The satellite data time series will additionally help to validate the observation and analysis of time-dependent processes observed in the single AVIRIS image of fields abandoned for different periods of time.

  7. Supplemental treatment of air in airborne infection isolation rooms using high-throughput in-room air decontamination units.

    PubMed

    Bergeron, Vance; Chalfine, Annie; Misset, Benoît; Moules, Vincent; Laudinet, Nicolas; Carlet, Jean; Lina, Bruno

    2011-05-01

    Evidence has recently emerged indicating that in addition to large airborne droplets, fine aerosol particles can be an important mode of influenza transmission that may have been hitherto underestimated. Furthermore, recent performance studies evaluating airborne infection isolation (AII) rooms designed to house infectious patients have revealed major discrepancies between what is prescribed and what is actually measured. We conducted an experimental study to investigate the use of high-throughput in-room air decontamination units for supplemental protection against airborne contamination in areas that host infectious patients. The study included both intrinsic performance tests of the air-decontamination unit against biological aerosols of particular epidemiologic interest and field tests in a hospital AII room under different ventilation scenarios. The unit tested efficiently eradicated airborne H5N2 influenza and Mycobacterium bovis (a 4- to 5-log single-pass reduction) and, when implemented with a room extractor, reduced the peak contamination levels by a factor of 5, with decontamination rates at least 33% faster than those achieved with the extractor alone. High-throughput in-room air treatment units can provide supplemental control of airborne pathogen levels in patient isolation rooms. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  8. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    PubMed Central

    2010-01-01

    Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC) generated during the tasks were measured using a direct reading instrument (DRI) with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred during mirror cleaning

  9. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. © 2013 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  10. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  11. REPORT OF THE NAEB STUDY ON THE PROPOSED EXPANSION OF THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION.

    ERIC Educational Resources Information Center

    BRONSON, VERNON; AND OTHERS

    A TECHNICAL REPORT WAS PREPARED COVERING THE IMPACT OF AIRBORNE TELEVISION TRANSMISSION ON LAND-BASED UHF TELEVISION ASSIGNMENT PLANS. THE REPORT RELATED TO THE PROPOSED EXPANSION PLANS OF THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION (MPATI). EARLIER STUDIES BY THE NATIONAL ASSOCIATION OF EDUCATIONAL BROADCASTERS (NAEB) HAD LED TO THE…

  12. Airborne laser scanning for high-resolution mapping of Antarctica

    NASA Astrophysics Data System (ADS)

    Csatho, Bea; Schenk, Toni; Krabill, William; Wilson, Terry; Lyons, William; McKenzie, Garry; Hallam, Cheryl; Manizade, Serdar; Paulsen, Timothy

    In order to evaluate the potential of airborne laser scanning for topographic mapping in Antarctica and to establish calibration/validation sites for NASA's Ice, Cloud and land Elevation Satellite (ICESat) altimeter mission, NASA, the U.S. National Science Foundation (NSF), and the U.S. Geological Survey (USGS) joined forces to collect high-resolution airborne laser scanning data.In a two-week campaign during the 2001-2002 austral summer, NASA's Airborne Topographic Mapper (ATM) system was used to collect data over several sites in the McMurdo Sound area of Antarctica (Figure 1a). From the recorded signals, NASA computed laser points and The Ohio State University (OSU) completed the elaborate computation/verification of high-resolution Digital Elevation Models (DEMs) in 2003. This article reports about the DEM generation and some exemplary results from scientists using the geomorphologic information from the DEMs during the 2003-2004 field season.

  13. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  14. Dual-polarization airborne lidar for freshwater fisheries management and research

    NASA Astrophysics Data System (ADS)

    Roddewig, Michael R.; Pust, Nathan J.; Churnside, James H.; Shaw, Joseph A.

    2017-03-01

    The design of a compact, dual-polarization, nonscanning lidar system intended to fly in a small, single-engine aircraft for airborne study of freshwater marine ecosystems and mapping of fish schools in mountain lakes is discussed. Design trade-offs are presented with special attention paid to selecting the field of view and telescope aperture diameter. Example results and a comparison with a similar existing lidar system are presented.

  15. Characterization of airborne transducers by optical tomography

    PubMed

    Bou Matar O; Pizarro; Certon; Remenieras; Patat

    2000-03-01

    This paper describes the application of an acousto-optic method to the measurement of airborne ultrasound. The method consists of a heterodyne interferometric probing of the pressure emitted by the transducer combined with a tomographic algorithm. The heterodyne interferometer measures the optical phase shift of the probe laser beam, proportional to the acoustic pressure integrated along the light path. A number of projections of the sound field, e.g. a set of ray integrals obtained along parallel paths, are made in moving the transducer to be tested. The main advantage of the method is its very high sensitivity in air (2 x 10(-4) Pa Hz-1/2), combined with a large bandwidth. Using the same principle as X-ray tomography the ultrasonic pressure in a plane perpendicular to the transducer axis can be reconstructed. Several ultrasonic fields emitted by wide-band home made electrostatic transducers, with operating frequencies between 200 and 700 kHz, have been measured. The sensitivities compared favorably with those of commercial airborne transducers.

  16. Initial Retrieval Validation from the Joint Airborne IASI Validation Experiment (JAIVEx)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Smith, WIlliam L.; Larar, Allen M.; Taylor, Jonathan P.; Revercomb, Henry E.; Mango, Stephen A.; Schluessel, Peter; Calbet, Xavier

    2007-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite, but also included a strong component focusing on validation of the Atmospheric InfraRed Sounder (AIRS) aboard the AQUA satellite. The cross validation of IASI and AIRS is important for the joint use of their data in the global Numerical Weather Prediction process. Initial inter-comparisons of geophysical products have been conducted from different aspects, such as using different measurements from airborne ultraspectral Fourier transform spectrometers (specifically, the NPOESS Airborne Sounder Testbed Interferometer (NAST-I) and the Scanning-High resolution Interferometer Sounder (S-HIS) aboard the NASA WB-57 aircraft), UK Facility for Airborne Atmospheric Measurements (FAAM) BAe146-301 aircraft insitu instruments, dedicated dropsondes, radiosondes, and ground based Raman Lidar. An overview of the JAIVEx retrieval validation plan and some initial results of this field campaign are presented.

  17. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  18. Airborne Sun photometry and Closure Studies in SAFARI-2000 Dry Season Campaign

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Russell, P. B.; Pilewskie, P.; Redemann, J.; Livingston, J. M.; Hobbs, P. V.; Welton, E. J.; Campbell, J.; Holben, B. N.; McGill, M.; hide

    2001-01-01

    From August 13 to September 25, the Southern African Regional Science Initiative's (SAFARI 2000) dry-season airborne campaign studied the complex interactions between the region's ecosystems, air pollution, atmospheric circulation, land-atmosphere interactions, and land use change. The field campaign was timed to coincide with the annual winter fire season in Southern Africa. This challenging campaign. which coordinated ground-based measurement teams, multiple research aircraft, and satellite overpasses across nine African nations, was head quartered at the Petersburg International Airport in South Africa's Northern Province. Among many others, unique coordinated observations were made of the evolution of massive, thick haze layers produced by industrial emissions, biomass burning, marine and biogenic sources. The NASA Ames Airborne Tracking 14-channel Sunphotometer (AATS-14) was operated successfully aboard the University of Washington CV-580 during 24 data flights. The AATS-14 instrument measures the transmission of the direct solar beam at 14 discrete wavelengths (3501558 nm) from which we derive spectral aerosol optical depths (AOD), columnar water vapor (CWV) and columnar ozone. Flying at different altitudes over a fixed location allows derivation of layer AOD and CWV. Data taken during feasible vertical profiles allows derivation of aerosol extinction and water vapor density. In the talk, we show comparisons with ground-based AERONET sun/sky photometer results, with ground based MPL-Net lidar data, and with measurements from a lidar aboard the high flying ER-2 aircraft. We will use measurements from the Ames Solar Spectral Flux Radiometer to derive estimates of solar spectral forcing as a function of aerosol thickness. Validations of TOMS and Terra satellite aerosol and water-vapor retrievals will also be discussed.

  19. Recent improvements in hydrometeor sampling using airborne holography

    NASA Astrophysics Data System (ADS)

    Stith, J. L.; Bansemer, A.; Glienke, S.; Shaw, R. A.; Aquino, J.; Fugal, J. P.

    2017-12-01

    Airborne digital holography provides a new technique to study the sizes, shapes and locations of hydrometeors. Airborne holographic cameras are able to capture more optical information than traditional airborne hydrometeor instruments, which allows for more detailed information, such as the location and shape of individual hydrometeors over a relatively wide range of sizes. These cameras can be housed in an anti-shattering probe arm configuration, which minimizes the effects of probe tip shattering. Holographic imagery, with its three dimensional view of hydrometeor spacing, is also well suited to detecting shattering events when present. A major problem with digital holographic techniques has been the amount of machine time and human analysis involved in analyzing holographic data. Here, we present some recent examples showing how holographic analysis can improve our measurements of liquid and ice particles and we describe a format we have developed for routine archiving of Holographic data, so that processed results can be utilized more routinely by a wider group of investigators. We present a side-by-side comparison of the imagery obtained from holographic reconstruction of ice particles from a holographic camera (HOLODEC) with imagery from a 3VCPI instrument, which utilizes a tube-based sampling geometry. Both instruments were carried on the NSF/NCAR GV aircraft. In a second application of holographic imaging, we compare measurements of cloud droplets from a Cloud Droplet Probe (CDP) with simultaneous measurements from HOLODEC. In some cloud regions the CDP data exhibits a bimodal size distribution, while the more local data from HOLODEC suggests that two mono-modal size distributions are present in the cloud and that the bimodality observed in the CDP is due to the averaging length. Thus, the holographic techniques have the potential to improve our understanding of the warm rain process in future airborne field campaigns. The development of this instrument has

  20. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  1. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  2. Air-borne and tissue-borne sensitivities of bioacoustic sensors used on the skin surface.

    PubMed

    Zañartu, Matías; Ho, Julio C; Kraman, Steve S; Pasterkamp, Hans; Huber, Jessica E; Wodicka, George R

    2009-02-01

    Measurements of body sounds on the skin surface have been widely used in the medical field and continue to be a topic of current research, ranging from the diagnosis of respiratory and cardiovascular diseases to the monitoring of voice dosimetry. These measurements are typically made using light-weight accelerometers and/or air-coupled microphones attached to the skin. Although normally neglected, air-borne sounds generated by the subject or other sources of background noise can easily corrupt such recordings, which is particularly critical in the recording of voiced sounds on the skin surface. In this study, the sensitivity of commonly used bioacoustic sensors to air-borne sounds was evaluated and compared with their sensitivity to tissue-borne body sounds. To delineate the sensitivity to each pathway, the sensors were first tested in vitro and then on human subjects. The results indicated that, in general, the air-borne sensitivity is sufficiently high to significantly corrupt body sound signals. In addition, the air-borne and tissue-borne sensitivities can be used to discriminate between these components. Although the study is focused on the evaluation of voiced sounds on the skin surface, an extension of the proposed methods to other bioacoustic applications is discussed.

  3. Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Sallenger, Asbury H.; Krabill, William B.; Swift, Robert N.

    2002-01-01

    This paper provides an overview of the basic principles of airborne laser altimetry for surveys of coastal topography, and describes the methods used in the acquisition and processing of NASA Airborne Topographic Mapper (ATM) surveys that cover much of the conterminous US coastline. This form of remote sensing, also known as "topographic lidar", has undergone extremely rapid development during the last two decades, and has the potential to contribute within a wide range of coastal scientific investigations. Various airborne laser surveying (ALS) applications that are relevant to coastal studies are being pursued by researchers in a range of Earth science disciplines. Examples include the mapping of "bald earth" land surfaces below even moderately dense vegetation in studies of geologic framework and hydrology, and determination of the vegetation canopy structure, a key variable in mapping wildlife habitats. ALS has also proven to be an excellent method for the regional mapping of geomorphic change along barrier island beaches and other sandy coasts due to storms or long-term sedimentary processes. Coastal scientists are adopting ALS as a basic method in the study of an array of additional coastal topics. ALS can provide useful information in the analysis of shoreline change, the prediction and assessment of landslides along seacliffs and headlands, examination of subsidence causing coastal land loss, and in predicting storm surge and tsunami inundation.

  4. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  5. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  6. Airborne soil organic particles generated by precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.

    Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less

  7. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    PubMed

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where

  8. Meeting Review: Airborne Aerosol Inlet Workshop

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Huebert, Barry; Wilson, Chuck

    1991-01-01

    Proceedings from the Airborne Aerosol Inlet Workshop are presented. The two central topics of discussion were the role of aerosols in atmospheric processes and the difficulties in characterizing aerosols. The following topics were discussed during the working sessions: airborne observations to date; identification of inlet design issues; inlet modeling needs and directions; objectives for aircraft experiments; and future laboratory and wind tunnel studies.

  9. Airborne laser altimetry and multispectral imagery for modeling Golden-cheeked Warbler (Setophaga chrysoparia) density

    Treesearch

    Steven E. Sesnie; James M. Mueller; Sarah E. Lehnen; Scott M. Rowin; Jennifer L. Reidy; Frank R. Thompson

    2016-01-01

    Robust models of wildlife population size, spatial distribution, and habitat relationships are needed to more effectively monitor endangered species and prioritize habitat conservation efforts. Remotely sensed data such as airborne laser altimetry (LiDAR) and digital color infrared (CIR) aerial photography combined with well-designed field studies can help fill these...

  10. Active matrix-based collection of airborne analytes: an analyte recording chip providing exposure history and finger print.

    PubMed

    Fang, Jun; Park, Se-Chul; Schlag, Leslie; Stauden, Thomas; Pezoldt, Jörg; Jacobs, Heiko O

    2014-12-03

    In the field of sensors that target the detection of airborne analytes, Corona/lens-based-collection provides a new path to achieve a high sensitivity. An active-matrix-based analyte collection approach referred to as "airborne analyte memory chip/recorder" is demonstrated, which takes and stores airborne analytes in a matrix to provide an exposure history for off-site analysis. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Towards SMOS: The 2006 National Airborne Field Experiment Plan

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Merlin, O.; Panciera, R.; Kalma, J. D.

    2006-05-01

    The 2006 National Airborne Field Experiment (NAFE) is the second in a series of two intensive experiments to be conducted in different parts of Australia. The NAFE'05 experiment was undertaken in the Goulburn River catchment during November 2005, with the objective to provide high resolution data for process level understanding of soil moisture retrieval, scaling and data assimilation. The NAFE'06 experiment will be undertaken in the Murrumbidgee catchment during November 2006, with the objective to provide data for SMOS (Soil Moisture and Ocean Salinity) level soil moisture retrieval, downscaling and data assimilation. To meet this objective, PLMR (Polarimetric L-band Multibeam Radiometer) and supporting instruments (TIR and NDVI) will be flown at an altitude of 10,000 ft AGL to provide 1km resolution passive microwave data (and 20m TIR) across a 50km x 50km area every 2-3 days. This will both simulate a SMOS pixel and provide the 1km soil moisture data required for downscale verification, allowing downscaling and near-surface soil moisture assimilation techniques to be tested with remote sensing data which is consistent with that from current (MODIS) and planned (SMOS) satellite sensors.. Additionally, two transects will be flown across the area to provide both 1km multi-angular passive microwave data for SMOS algorithm development, and on the same day, 50m resolution passive microwave data for algorithm verification. The study area contains a total of 13 soil moisture profile and rainfall monitoring sites for assimilation verification, and the transect fight lines are planned to go through 5 of these. Ground monitoring of surface soil moisture and vegetation for algorithm verification will be targeted at these 5 focus farms, with soil moisture measurements made at 250m spacing for 1km resolution flights and 50m spacing for 50m resolution flights. While this experiment has a particular emphasis on the remote sensing of soil moisture, it is open for collaboration

  12. Within-field and regional-scale accuracies of topsoil organic carbon content prediction from an airborne visible near-infrared hyperspectral image combined with synchronous field spectra for temperate croplands

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefevre, Josias; Chehdi, Kacem

    2016-04-01

    This study was carried out in the framework of the TOSCA-PLEIADES-CO of the French Space Agency and benefited data from the earlier PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME). It aimed at identifying the potential of airborne hyperspectral visible near-infrared AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with intensive annual crop cultivation and both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle images (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT4 image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites, which were sampled either at the regional scale or within one field, were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering those 75 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g. Kg-1 and were ~4 g. Kg-1 in median. The most performing models in terms of coefficient of determination (R²) and Residual Prediction Deviation (RPD) values were the

  13. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  14. Even Shallower Exploration with Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  15. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  16. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  17. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  18. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  19. Airborne multidimensional integrated remote sensing system

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  20. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    PubMed

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  1. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  2. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  3. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, K.L.

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  4. Once Out the Door: A Study of Division and Corps Level Airborne Assaults

    DTIC Science & Technology

    2016-05-26

    examine Operations Mercury, Dragoon, and Market Garden to extract lessons that will enable effective airborne assault planning at the division and...Dragoon and Operational Art........................................................................................ 38 Case Study 3: Operation Market ...Garden.................................................................................................... 43 The Importance of Operation Market

  5. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate

  6. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  7. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  8. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  9. Space-Wise approach for airborne gravity data modelling

    NASA Astrophysics Data System (ADS)

    Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.

    2017-05-01

    Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too

  10. Airborne Acoustic Perception by a Jumping Spider.

    PubMed

    Shamble, Paul S; Menda, Gil; Golden, James R; Nitzany, Eyal I; Walden, Katherine; Beatus, Tsevi; Elias, Damian O; Cohen, Itai; Miles, Ronald N; Hoy, Ronald R

    2016-11-07

    Jumping spiders (Salticidae) are famous for their visually driven behaviors [1]. Here, however, we present behavioral and neurophysiological evidence that these animals also perceive and respond to airborne acoustic stimuli, even when the distance between the animal and the sound source is relatively large (∼3 m) and with stimulus amplitudes at the position of the spider of ∼65 dB sound pressure level (SPL). Behavioral experiments with the jumping spider Phidippus audax reveal that these animals respond to low-frequency sounds (80 Hz; 65 dB SPL) by freezing-a common anti-predatory behavior characteristic of an acoustic startle response. Neurophysiological recordings from auditory-sensitive neural units in the brains of these jumping spiders showed responses to low-frequency tones (80 Hz at ∼65 dB SPL)-recordings that also represent the first record of acoustically responsive neural units in the jumping spider brain. Responses persisted even when the distances between spider and stimulus source exceeded 3 m and under anechoic conditions. Thus, these spiders appear able to detect airborne sound at distances in the acoustic far-field region, beyond the near-field range often thought to bound acoustic perception in arthropods that lack tympanic ears (e.g., spiders) [2]. Furthermore, direct mechanical stimulation of hairs on the patella of the foreleg was sufficient to generate responses in neural units that also responded to airborne acoustic stimuli-evidence that these hairs likely play a role in the detection of acoustic cues. We suggest that these auditory responses enable the detection of predators and facilitate an acoustic startle response. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Beacon Collision Avoidance System (BCAS) Airborne Antenna Diversity Study

    DOT National Transportation Integrated Search

    1978-04-01

    The potential need for antenna diversity on the intruding aircraft was examined. The BCAS system was used for determining airborne antenna diversity requirements for general aviation aircraft approaching a BCAS equipped aircraft from various angles. ...

  12. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  13. Efficient Feature Extraction and Likelihood Fusion for Vehicle Tracking in Low Frame Rate Airborne Video

    DTIC Science & Technology

    2010-07-01

    imagery, persistent sensor array I. Introduction New device fabrication technologies and heterogeneous embedded processors have led to the emergence of a...geometric occlusions between target and sensor , motion blur, urban scene complexity, and high data volumes. In practical terms the targets are small...distributed airborne narrow-field-of-view video sensor networks. Airborne camera arrays combined with com- putational photography techniques enable the

  14. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  15. Investigation of coal properties and airborne respirable dust generation. Report of investigations/1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Organiscak, J.A.; Page, S.J.

    1998-10-01

    Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated withmore » ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.« less

  16. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Rush, Kurt; Rabenhorst, Scott; Welch, Wayne; Cadirola, Martin; McIntire, Gerry; Russo, Felicita; Adam, Mariana; Venable, Demetrius; Connell, Rasheen; hide

    2010-01-01

    A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE

  17. Using Radial Basis Functions in Airborne Gravimetry for Local Geoid Improvement

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng

    2017-04-01

    Radial basis functions (RBF, Schmidt et al 2007, Klees and Wittwer 2007, Klees et al 2008) have been extensively used in satellite geodetic applications (Eicker 2008, Wittwer 2009, Naeimi 2013, among others). However, to date, to the author's knowledge, their roles in processing and modeling airborne gravity data have not been fully advocated or extensively investigated in detail, though compared with satellite missions, the airborne data is more suitable for this kind of localized basis functions especially considering the following facts: (1) Unlike the satellite missions that can provide global or near global data coverage, airborne gravity data is usually geographically limited. (2) It is also band limited in the frequency domain, considering that various filter banks and/or de-noising techniques (Li 2007) have to be applied to overcome the low signal-to-noise ratio problem that is present in airborne gravimetric systems. This is mainly due to the mechanical and mathematical limitations in computing the accelerations (both the kinematic and dynamic accelerations, Jekeli 2000). (3) It is much easier to formulate the RBF observation equations from an airborne gravimetric system (either a scalar one (Forsberg and Olesen 2010) or a vector one (Kwon and Jekeli 2001)) than from any satellite mission, especially compared with Gravity Recovery and Climate Experiment satellites (GRACE, Tapley et al. 2004) where many accurate background environmental models have to be used in order to separate out the gravity related functionals. As a result, in this study, a set of band-limited RBF is developed to model and downward continue the airborne gravity data for local geoid improvement. First, the algorithm is tested with synthesized data from global coefficient models such as EIGEN6c4 (Försteet al. 2014), during which the RBF not only successfully recovers a harmonic field but also presents filtering properties due to its particular design in the frequency domain. Then, the

  18. Assessing New GRAV-D Airborne Gravimetry Collected over the United States

    NASA Astrophysics Data System (ADS)

    Holmes, S. A.; Li, X.; Roman, D. R.

    2013-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is updating its terrestrial gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2020, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, the newly-collected airborne-gravimety is repeatedly evaluated by using it to support experimental gravitational models and gravimetric geoids, and then comparing these against independent data sets, such as ';satgrav' models (GRACE/GOCE), GPS/Leveling, astronomical vertical defections, and others. Here we show some results from these tests for GRAV-D airborne gravimetry collected over 2012/2013.

  19. The Effect of Air Density on Atmospheric Electric Fields Required for Lightning Initiation from a Long Airborne Object

    NASA Technical Reports Server (NTRS)

    Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. Pl.; Konchankov, A. M.

    2006-01-01

    The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.

  20. Characteristics of airborne bacteria in Mumbai urban environment.

    PubMed

    Gangamma, S

    2014-08-01

    Components of biological origin constitute small but a significant proportion of the ambient airborne particulate matter (PM). However, their diversity and role in proinflammatory responses of PM are not well understood. The present study characterizes airborne bacterial species diversity in Mumbai City and elucidates the role of bacterial endotoxin in PM induced proinflammatory response in ex vivo. Airborne bacteria and endotoxin samples were collected during April-May 2010 in Mumbai using six stage microbial impactor and biosampler. The culturable bacterial species concentration was measured and factors influencing the composition were identified by principal component analysis (PCA). The biosampler samples were used to stimulate immune cells in whole blood assay. A total of 28 species belonging to 17 genera were identified. Gram positive and spore forming groups of bacteria dominated the airborne culturable bacterial concentration. The study indicated the dominance of spore forming and human or animal flora derived pathogenic/opportunistic bacteria in the ambient air environment. Pathogenic and opportunistic species of bacteria were also present in the samples. TNF-α induction by PM was reduced (35%) by polymyxin B pretreatment and this result was corroborated with the results of blocking endotoxin receptor cluster differentiation (CD14). The study highlights the importance of airborne biological particles and suggests need of further studies on biological characterization of ambient PM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Monitoring individual tree-based change with airborne lidar.

    PubMed

    Duncanson, Laura; Dubayah, Ralph

    2018-05-01

    Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high-biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree-based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.

  2. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor

    Treesearch

    Marie-Louise Smith; Mary E. Martin; Lucie Plourde; Scott V. Ollinger

    2003-01-01

    Field studies among diverse biomes demonstrate that mass-based nitrogen concentration at leaf and canopy scales is strongly related to carbon uptake and cycling. Combined field and airborne imaging spectrometry studies demonstrate the capacity for accurate empirical estimation of forest canopy N concentration and other biochemical constituents at scales from forest...

  3. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  4. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  5. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  6. Airborne Chemical Sensing with Mobile Robots

    PubMed Central

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  7. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  8. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  9. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra

    NASA Astrophysics Data System (ADS)

    Vaudour, E.; Gilliot, J. M.; Bel, L.; Lefevre, J.; Chehdi, K.

    2016-07-01

    This study aimed at identifying the potential of Vis-NIR airborne hyperspectral AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with both contrasted soils and SOC contents, located in the western region of Paris, France. Soil types comprised haplic luvisols, calcaric cambisols and colluvic cambisols. Airborne AISA-Eagle data (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites sampled either in 2013 or in the 3 previous years and in 2015 were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to topsoil SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering 74 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g Kg-1 and were ∼4 g Kg-1 in median. The most performing models in terms of coefficient of determination (R2) and Residual Prediction Deviation (RPD) values were the calibration models derived either from Kennard-Stone or conditioned Latin Hypercube sampling on smoothed spectra. The most generalizable model leading to lowest RMSE value of 3.73 g Kg-1 at the regional scale and 1.44 g Kg-1 at the within-field scale and low bias was the cross-validated leave

  10. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    PubMed

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  11. MODIS airborne simulator visible and near-infrared calibration, 1992 ASTEX field experiment. Calibration version: ASTEX King 1.0

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.

  12. Airborne Laser Hydrography II

    NASA Astrophysics Data System (ADS)

    Philpot, W.; Wozencraft, J.

    2016-02-01

    In 1985, Dr. Gary Guenther assembled the text, "Airborne Laser Hydrography" which quickly became a heavily used manual and guide for any and all scientists and engineers involved with airborne lidar bathymetry (ALB). It was a remarkable book that captured a snapshot of the state of the art of ALB and included historical developments, theoretical and modeling efforts as well as design characteristics and constraints, ending with accuracy assessment and a discussion of design tradeoffs. Known familiarly as the "Blue Book" it served the community remarkably well for many years. At 30 years of age, it is still a valued reference, but unavoidably dated in a field that has developed rapidly and nonstop over the intervening years. It is time for an update. The new text is attempt by the ALB community to update and expand upon Guenther's text. Like the original, Blue Book II reviews the historical developments in ALB, extending them into the 21st century, considers basic environmental water optical properties, theoretical developments, data processing and performance evaluation. All have progressed dramatically in the past 30 years. This paper presents an outline of the new book, a description of the contents, with emphasis on the theoretical models of the lidar waveform and its propagation through, and interaction with the water.

  13. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  14. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  15. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  16. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  17. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  18. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study.

    PubMed

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan; Dirksen, Asger; Elberling, Jesper

    2011-06-01

    Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. The aetiology is unknown, but chemical related respiratory symptoms have been found associated with positive patch test. The purpose of this study was to investigate the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical sensitivity. Associations were controlled for the possible confounding effects of sex, age, asthma, eczema, atopic dermatitis, psychological and social factors, and smoking habits. In unadjusted analyses we found associations between allergic and non-allergic cutaneous reactions on patch testing and the two most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0.006). Our results suggest that individuals with self-reported chemical sensitivity show increased non-allergic cutaneous reactions based on day 2 readings of patch tests. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  20. CAROLS: a new airborne L-band radiometer for ocean surface and land observations.

    PubMed

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer-STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  1. Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit

    PubMed Central

    Virlet, Nicolas; Costes, Evelyne; Martinez, Sébastien; Kelner, Jean-Jacques; Regnard, Jean-Luc

    2015-01-01

    Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals. An apple tree population, grafted on the same rootstock, was submitted to contrasting summer water regimes over two years. Aerial images acquired in visible, near- and thermal-infrared at three dates each year allowed calculation of vegetation and water stress indices. Tree vigour and fruit production were also assessed. Linear mixed models were built accounting for date and year effects on several variables and including the differential response of genotypes between control and drought conditions. Broad-sense heritability of most variables was high and 18 quantitative trait loci (QTLs) independent of the dates were detected on nine linkage groups of the consensus apple genetic map. For vegetation and stress indices, QTLs were related to the means, the intra-crown heterogeneity, and differences induced by water regimes. Most QTLs explained 15−20% of variance. Airborne multispectral imaging proved relevant to acquire simultaneous information on a whole tree population and to decipher genetic determinisms involved in response to water deficit. PMID:26208644

  2. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade.

    PubMed

    Gao, Xin-Lei; Shao, Ming-Fei; Luo, Yi; Dong, Yu-Fang; Ouyang, Feng; Dong, Wen-Yi; Li, Ji

    2016-12-01

    Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry

  3. Vegetation canopy discrimination and biomass assessment using multipolarized airborne SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Held, D. N.

    1985-01-01

    Multipolarized airborne Synthetic Aperture Radar (SAR) data were acquired over a largely agricultural test site near Macomb, Illinois, in conjunction with the Shuttle Imaging Radar (SIR-B) experiment in October 1984. The NASA/JPL L-band SAR operating at 1.225 GHz made a series of daily overflights with azimuth view angles both parallel and orthogonal to those of SIR-B. The SAR data was digitally recorded in the quadpolarization configuration. An extensive set of ground measurements were obtained throughout the test site and include biophysical and soil measurements of approximately 400 agricultural fields. Preliminary evaluation of some of the airborne SAR imagery indicates a great potential for crop discrimination and assessment of canopy condition. False color composites constructed from the combination of three linear polarizations (HH, VV, and HV) were found to be clearly superior to any single polarization for purposes of crop classification. In addition, an image constructed using the HH return to modulate intensity and the phase difference between HH and VV returns to modulate chroma indicates a clear capability for assessment of canopy height and/or biomass. In particular, corn fields heavily damaged by infestations of corn borer are readily distinguished from noninfested fields.

  4. GRAV-D Part II : Examining Airborne Gravity Processing Assumptions With an Aim Towards Producing a Better Gravimetric Geoid

    NASA Astrophysics Data System (ADS)

    Theresa, D. M.; Vicki, C.; Dan, R.; Dru, S.

    2008-12-01

    The primary objective of the GRAV-D (Gravity for the Redefinition of the American Vertical Datum) project is to redefine the American vertical datum by using an improved gravimetric geoid. This will be partially accomplished through an extensive airborne gravity measurement campaign, focusing first on the land/water interface (and later on interior areas) of the US and its holdings. This airborne campaign is designed specifically to capture intermediate wavelength gravity information by flying at high altitudes (35,000 ft, ~10 km) with a 10 km line spacing. The intermediate wavelengths captured by airborne gravity data are complementary to ground and satellite gravity data. Combining the GRAV-D airborne gravity data with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity field will allow existing terrestrial data sets to be corrected for bias and trend problems. Ultimately, all three types of data can then be merged into a single accurate representation of the gravity field. Typically, the airborne gravity data reduction process is used to produce free-air anomalies for geological/geophysical applications that require more limited accuracy and precision than do geodetic applications. Thus we re-examine long-standing data reduction simplifications and assumptions with an aim toward improving both the accuracy and precision of airborne gravity data before their inclusion into a gravimetric geoid. The data reduction process is tested on a 400 km x 500 km airborne gravity survey in southern Alaska (in the vicinity of Anchorage) collected in the summer of 2008 as part of the GRAV-D project. Potential improvements in processing come from examining the impacts of various GPS processing schemes on free-air gravity results and re-considering all assumptions in standard airborne gravity processing methods, especially those that might introduce bias into absolute gravity levels.

  5. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of

  6. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  7. Research on Airborne SAR Imaging Based on Esc Algorithm

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Yue, X. J.; Zhao, Y. H.; Han, C. M.

    2017-09-01

    Due to the ability of flexible, accurate, and fast obtaining abundant information, airborne SAR is significant in the field of Earth Observation and many other applications. Optimally the flight paths are straight lines, but in reality it is not the case since some portion of deviation from the ideal path is impossible to avoid. A small disturbance from the ideal line will have a major effect on the signal phase, dramatically deteriorating the quality of SAR images and data. Therefore, to get accurate echo information and radar images, it is essential to measure and compensate for nonlinear motion of antenna trajectories. By means of compensating each flying trajectory to its reference track, MOCO method corrects linear phase error and quadratic phase error caused by nonlinear antenna trajectories. Position and Orientation System (POS) data is applied to acquiring accuracy motion attitudes and spatial positions of antenna phase centre (APC). In this paper, extend chirp scaling algorithm (ECS) is used to deal with echo data of airborne SAR. An experiment is done using VV-Polarization raw data of C-band airborne SAR. The quality evaluations of compensated SAR images and uncompensated SAR images are done in the experiment. The former always performs better than the latter. After MOCO processing, azimuth ambiguity is declined, peak side lobe ratio (PSLR) effectively improves and the resolution of images is improved obviously. The result shows the validity and operability of the imaging process for airborne SAR.

  8. Air-borne heavy metal contamination to dietary vegetables: a case study from India.

    PubMed

    Pandey, J; Pandey, Richa; Shubhashish, K

    2009-12-01

    Contamination of edible parts of three dietary vegetables, Spinach (Spinacia oleracea L.), Radish (Raphanus sativus L.), and Tomato (Lycopersicon esculentum Mill.) by air-borne cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) was determined using pot culture experiments at three sites in the city of Varanasi, India. The data revealed that although Cr and Cu in vegetables remained below their safe limits, about 68% of the total samples contained Cd, Ni, and Pb above their respective safe limits of 1.5, 1.5, and 2.5 μg g(-1). Site wise synchrony and air accumulation factor (AAF) indicated that atmospheric deposition was the main contributor of metal contamination to vegetables. The study suggests that if the present trends of atmospheric deposition are continued, air-borne heavy metals will contaminate the agricultural produce with long-term health implications.

  9. Field Investigation of the Surface-deposited Radon Progeny as a Possible Predictor of the Airborne Radon Progeny Dose Rate

    PubMed Central

    Sun, Kainan; Steck, Daniel J.; Field, R. William

    2009-01-01

    The quantitative relationships between radon gas concentration, the surface-deposited activities of various radon progeny, the airborne radon progeny dose rate, and various residential environmental factors were investigated through actual field measurements in 38 selected Iowa houses occupied by either smokers or nonsmokers. Airborne dose rate was calculated from unattached and attached potential alpha energy concentrations (PAECs) using two dosimetric models with different activity-size weighting factors. These models are labeled Pdose and Jdose, respectively. Surface-deposited 218Po and 214Po were found significantly correlated to radon, unattached PAEC, and both airborne dose rates (p < 0.0001) in nonsmoking environments. However, deposited 218Po was not significantly correlated to the above parameters in smoking environments. In multiple linear regression analysis, natural logarithm transformation was performed for airborne dose rate as the dependent variable, as well as for radon and deposited 218Po and 214Po as predictors. An interaction effect was found between deposited 214Po and an obstacle in front of the Retrospective Reconstruction Detector (RRD) in predicting dose rate (p = 0.049 and 0.058 for Pdose and Jdose, respectively) for nonsmoking environments. After adjusting for radon and deposited radon progeny effects, the presence of either cooking, usage of a fireplace, or usage of a ceiling fan significantly, or marginal significantly, reduced the Pdose to 0.65 (90% CI 0.42–0.996), 0.54 (90% CI 0.28–1.02) and 0.66 (90% CI 0.45–0.96), respectively. For Jdose, only the usage of a ceiling fan significantly reduced the dose rate to 0.57 (90% CI 0.39–0.85). In smoking environments, deposited 218Po was a significant negative predictor for Pdose (RR 0.68, 90% CI 0.55–0.84) after adjusting for long-term 222Rn and environmental factors. A significant decrease of 0.72 (90% CI 0.64–0.83) in the mean Pdose was noted, after adjusting for the radon and

  10. A study of airborne chrysotile concentrations associated with handling, unpacking, and repacking boxes of automobile clutch discs.

    PubMed

    Jiang, George C T; Madl, Amy K; Ingmundson, Kelsey J; Murbach, Dana M; Fehling, Kurt A; Paustenbach, Dennis J; Finley, Brent L

    2008-06-01

    Although automotive friction products (brakes and manual clutches) historically contained chrysotile asbestos, industrial hygiene surveys and epidemiologic studies of auto mechanics have consistently shown that these workers are not at an increased risk of developing asbestos-related diseases. Airborne asbestos levels during brake repair and brake parts handling have been well-characterized, but the potential exposure to airborne asbestos fibers during the handling of clutch parts has not been examined. In this study, breathing zone samples on the lapel of a volunteer worker (n=100) and area samples at bystander (n=50), remote area (n=25), and ambient (n=9) locations collected during the stacking, unpacking, and repacking of boxes of asbestos-containing clutches, and the subsequent cleanup and clothes handling, were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). In addition, fiber morphology and size distribution was evaluated using X-ray diffraction, polarized light microscopy, and ISO analytical methods. It was observed that the (1) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (2) repetitive stacking of unopened boxes of clutches resulted in higher asbestos concentrations than unpacking and repacking the boxes of clutches, (3) cleanup and clothes handling tasks yielded very low asbestos concentrations. Fiber size and morphology analyses showed that amphibole fibers were not detected in the clutches and that the vast majority (>95%) of the airborne chrysotile fibers were less than 20 microm in length. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, it was found that 30-min average airborne chrysotile concentrations (PCM adjusted) were 0.026+/-0.004 f/cc or 0.100+/-0.017 f/cc for a worker unpacking and repacking 1 or 2 boxes of clutches, respectively. The 30-min PCM adjusted average airborne asbestos

  11. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  12. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    NASA Astrophysics Data System (ADS)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  13. Inactivation of an enterovirus by airborne disinfectants

    PubMed Central

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 30 minutes at a concentration of 7.5 mL.m-3. Poliovirus inoculum, supplemented with 5%, heat inactivated non fat dry organic milk, were applied into the middle of the stainless steel disc and were dried under the air flow of a class II biological safety cabinet at room temperature. The Viral preparations were recovered by using flocked swabs and were titered on Vero cells using the classical Spearman-Kärber CPE reading method, the results were expressed as TCID50.ml-1. Results The infectious titer of dried poliovirus inocula was kept at 105 TCID50.mL-1 up to 150 minutes at room temperature. Dried inocula exposed to airborne peracetic acid containing disinfectants were recovered at 60 and 120 minutes post-exposition and suspended in culture medium again. The cytotoxicity of disinfectant containing medium was eliminated through gel filtration columns. A 4 log reduction of infectious titer of dried poliovirus inocula exposed to peracetic-based airborne disinfectant was obtained. Conclusion This study demonstrates that the virucidal activity of airborne disinfectants can be tested on dried poliovirus. PMID:23587047

  14. An Airborne Infrared Spectrometer for Solar Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, Jenna; DeLuca, Edward E.; Golub, Leon; Cheimets, Peter; Philip, Judge

    2016-05-01

    The airborne infrared spectrometer (AIR-Spec) is an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). AIR-Spec will image five infrared coronal emission lines to determine whether they may be useful probes of coronal magnetism.The solar magnetic field provides the free energy that controls coronal heating, structure, and dynamics. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections and ultimately drives space weather. Therefore, direct coronal field measurements have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind.While current instruments routinely observe only the photospheric and chromospheric magnetic fields, AIR-Spec will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. During the total solar eclipse of 2017, AIR-Spec will observe five magnetically sensitive coronal emission lines between 1.4 and 4 µm from the HIAPER Gulfstream V at an altitude above 14.9 km. The instrument will measure emission line intensity, width, and Doppler shift, map the spatial distribution of infrared emitting plasma, and search for waves in the emission line velocities.AIR-Spec consists of an optical system (feed telescope, grating spectrometer, and infrared detector) and an image stabilization system, which uses a fast steering mirror to correct the line-of-sight for platform perturbations. To ensure that the instrument meets its research goals, both systems are undergoing extensive performance modeling and testing. These results are shown with reference to the science requirements.

  15. Airborne Deployment of a High Resolution PTR-ToF-MS to Characterize Non-methane Organic Gases in Wildfire Smoke: A Pilot Study During WE-CAN Test Flights

    NASA Astrophysics Data System (ADS)

    Permar, W.; Hu, L.; Fischer, E. V.

    2017-12-01

    Despite being the second largest primary source of tropospheric volatile organic compounds (VOCs), biomass burning is poorly understood relative to other sources due in part to its large variability and the difficulty inherent to sampling smoke. In light of this, several field campaigns are planned to better characterize wildfire plume emissions and chemistry through airborne sampling of smoke plumes. As part of this effort, we will deploy a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) on the NSF/NCAR C-130 research aircraft during the collaborative Western wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) mission. PTR-ToF-MS is well suited for airborne measurements of VOC in wildfire smoke plumes due to its ability to collect real time, high-resolution data for the full mass range of ionizable organic species, many of which remain uncharacterized or unidentified. In this work, we will report on our initial measurements from the WE-CAN test flights in September 2017. We will also discuss challenges associated with deploying the instrument for airborne missions targeting wildfire smoke and goals for further study in WE-CAN 2018.

  16. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    NASA Astrophysics Data System (ADS)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  17. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

    PubMed

    Dalponte, Michele; Coomes, David A

    2016-10-01

    Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks ( r 2  = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.

  18. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    PubMed

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  19. Airborne Operations in World War II, European Theater

    DTIC Science & Technology

    1956-09-01

    GARDEN Gee Hamilcar HANDS UP Formation usually composed of two or more elements and roughly equivalent to a squadron Forward Visual Control Post Ground...USAF HISTORICAL STUDIES: NO. 97 AIRBORNE OPERATIONS IN WORLD WAR II, EUROPEAN THEATER By Dr. John C. Warren USAF Historical Division Research Studies...OMB control number. 1. REPORT DATE SEP 1956 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE Airborne Operations in World War II 5a

  20. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  1. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  2. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania.

    PubMed

    Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik

    2015-12-01

    Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.

  3. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.

    2009-09-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  4. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2009-05-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  5. Toolsets for Airborne Data (TAD): Customized Data Merging Function

    NASA Astrophysics Data System (ADS)

    Benson, A.; Peeters, M. C.; Perez, J.; Parker, L.; Chen, G.

    2013-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Prior to the actual toolset development, a comprehensive metadata database was created to compensate for the absence of standardization of the ICARTT data format in which the data is stored. This database tracks the Principal Investigator-provided metadata, and links the measurement variables to a common naming system that was developed as a part of this project. This database is used by the data merging module. Most aircraft data reported during a single flight is not on a consistent time base and is difficult to intercompare. This module provides the user with the ability to merge original data measurements from multiple data providers into a specified time interval or common time base. The database development, common naming scheme and data merge module development will be presented.

  6. Aerosol Properties Derived from Airborne Sky Radiance and Direct Beam Measurements in Recent NASA and DoE Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.; hide

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance

  7. Airborne tracking sunphotometer

    NASA Technical Reports Server (NTRS)

    Matsumoto, Tak; Russell, Philip; Mina, Cesar; Van Ark, William; Banta, Victor

    1987-01-01

    An airborne tracking sunphotometer, mounted on the outside top surface of an aircaft has been developed to provide unresricted viewing of the sun. This instrument will substantially increase the data that scientists can gather for atmospheric studies. The instrument has six wavelength channels and an automatic data gathering system. The instrument's optical features, tracking capability, mechanical features, and data gathering system are described.

  8. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  9. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  10. Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.

    PubMed

    Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che

    2014-01-15

    Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. © 2013.

  11. The NASA/NSERC Student Airborne Research Program Land Focus Group - a Paid Training Program in Multi-Disciplinary STEM Research for Terrestrial Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kefauver, S. C.; Ustin, S.; Davey, S. W.; Furey, B. J.; Gartner, A.; Kurzweil, D.; Siebach, K. L.; Slawsky, L.; Snyder, E.; Trammell, J.; Young, J.; Schaller, E.; Shetter, R. E.

    2011-12-01

    The Student Airborne Research Program (SARP) of the National Aeronautics and Space Administration (NASA) and the National Suborbital Education and Research Center (NSERC) is a unique six week multidisciplinary paid training program which directly integrates students into the forefront of airborne remote sensing science. Students were briefly trained with one week of lectures and laboratory exercises and then immediately incorporated into ongoing research projects which benefit from access to the DC-8 airborne platform and the MODIS-ASTER Airborne Simulator (MASTER) sensor. Students were split into three major topical categories of Land, Ocean, and Air for the data collection and project portions of the program. This poster details the techniques and structure used for the student integration into ongoing research, professional development, hypothesis building and results as developed by the professor and mentor of the Land focus group. Upon assignment to the Land group, students were issued official research field protocols and split into four field specialty groups with additional specialty reading assignments. In the field each group spent more time in their respective specialty, but also participated in all field techniques through pairings with UC Davis research team members using midday rotations. After the field campaign, each specialty group then gave summary presentations on the techniques, preliminary results, and significance to overall group objectives of their specialty. Then students were required to submit project proposals within the bounds of Land airborne remote sensing science and encouraging, but not requiring the use of the field campaign data. These proposals are then reviewed by the professor and mentor and students are met with one by one to discuss the skills of each student and objectives of the proposed research project. The students then work under the supervision of the mentor and benefit again from professor feedback in a formal

  12. Toward standardized test methods to determine the effectiveness of filtration media against airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tronville, Paolo

    2014-06-01

    The filtration of airborne nanoparticles is an important control technique as the environmental, health, and safety impacts of nanomaterials grow. A review of the literature shows that significant progress has been made on airborne nanoparticle filtration in the academic field in the recent years. We summarize the filtration mechanisms of fibrous and membrane filters; the air flow resistance and filter media figure of merit are discussed. Our review focuses on the air filtration test methods and instrumentation necessary to implement them; recent experimental studies are summarized accordingly. Two methods using monodisperse and polydisperse challenging aerosols, respectively, are discussed in detail. Our survey shows that the commercial instruments are already available for generating a large amount of nanoparticles, sizing, and quantifying them accurately. The commercial self-contained filter test systems provide the possibility of measurement for particles down to 15 nm. Current international standards dealing with efficiency test for filters and filter media focus on measurement of the minimum efficiency at the most penetrating particle size. The available knowledge and instruments provide a solid base for development of test methods to determine the effectiveness of filtration media against airborne nanoparticles down to single-digit nanometer range.

  13. Use of airborne gamma-ray spectrometry for kaolin exploration

    NASA Astrophysics Data System (ADS)

    Tourlière, B.; Perrin, J.; Le Berre, P.; Pasquet, J. F.

    2003-08-01

    Airborne gamma-ray spectrometry was used to define targets with kaolin potential in the Armorican Massif of Brittany, France. This exploration method is based on the principle that kaolinite, an aluminosilicate clay mineral constituting kaolin, is formed by the hydrolysis of potash feldspar with the elimination of potassium. Therefore, potassium contrast between favourable host-rock such as a leucogranite and kaolin occurrence is likely a significant pathfinder. As the relationship between the potassium-40 recorded by an airborne gamma-ray spectrometer and total potassium is constant, such data provide us a direct measurement of the potassium content of the ground flown over. Our study tested this by calculating, for each geological unit, the difference between the measured and average potassium content calculated for a given geological formation. The study was based on (i) a recent (1998) high-definition airborne geophysical survey over the Armorican Massif undertaken on behalf of the French Government, and (ii) new geological compilation maps covering the same region. Depleted zones, where the measured potassium is less than the average potassium content calculated target areas with high potential of containing kaolin, provided that the unit was originally rich in potash feldspar. By applying this method to the entire Armorican Massif, it was possible to identify 150 potassium-depleted zones, including 115 that were subjected to rapid field checks and 36 that contained kaolin (21 new discoveries). This method, which is both safe for the environment and easy to use, is therefore a good tool for rapidly defining targets with kaolin potential at a regional scale. The method may also have possibilities in exploring for other types of deposit characterised by an enrichment or depletion in U, K and/or Th.

  14. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    EPA Science Inventory

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  15. Laboratory Study of Airborne Fallout Particles and Their Time Distribution.

    ERIC Educational Resources Information Center

    Smith, H. A., Jr.; And Others

    1979-01-01

    Samples of filtered airborne particulate, collected daily for the first month after the September 18, 1977 Chinese nuclear detonation, showed fourteen fission products. Fluctuations in the daily fallout activity levels suggested a global fallout orbit time of approximately twenty days. (Author/BB)

  16. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  17. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  18. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data.

    PubMed

    Luo, Laiping; Zhai, Qiuping; Su, Yanjun; Ma, Qin; Kelly, Maggi; Guo, Qinghua

    2018-05-14

    Crown base height (CBH) is an essential tree biophysical parameter for many applications in forest management, forest fuel treatment, wildfire modeling, ecosystem modeling and global climate change studies. Accurate and automatic estimation of CBH for individual trees is still a challenging task. Airborne light detection and ranging (LiDAR) provides reliable and promising data for estimating CBH. Various methods have been developed to calculate CBH indirectly using regression-based means from airborne LiDAR data and field measurements. However, little attention has been paid to directly calculate CBH at the individual tree scale in mixed-species forests without field measurements. In this study, we propose a new method for directly estimating individual-tree CBH from airborne LiDAR data. Our method involves two main strategies: 1) removing noise and understory vegetation for each tree; and 2) estimating CBH by generating percentile ranking profile for each tree and using a spline curve to identify its inflection points. These two strategies lend our method the advantages of no requirement of field measurements and being efficient and effective in mixed-species forests. The proposed method was applied to a mixed conifer forest in the Sierra Nevada, California and was validated by field measurements. The results showed that our method can directly estimate CBH at individual tree level with a root-mean-squared error of 1.62 m, a coefficient of determination of 0.88 and a relative bias of 3.36%. Furthermore, we systematically analyzed the accuracies among different height groups and tree species by comparing with field measurements. Our results implied that taller trees had relatively higher uncertainties than shorter trees. Our findings also show that the accuracy for CBH estimation was the highest for black oak trees, with an RMSE of 0.52 m. The conifer species results were also good with uniformly high R 2 ranging from 0.82 to 0.93. In general, our method has

  19. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  20. Indoor airborne endotoxin assessment in homes of Paris newborn babies.

    PubMed

    Dassonville, C; Demattei, C; Vacquier, B; Bex-Capelle, V; Seta, N; Momas, I

    2008-12-01

    The aims of this study were first to assess airborne endotoxin levels in the dwellings of 162 newborns living in Paris twice during a 1-year period, and second, to identify predictors for endotoxin concentrations using questionnaire data in relation to housing factors and living conditions. Air samples were collected on a glass fiber filter in polystyrene filter holders, using a pump at a flow rate of 3.5 l/min for 24 h placed in the main room of the home. Endotoxin levels were measured using a chromogenic kinetic Limulus Amoebocyte Lysate test. Geometric means (geometric standard deviation) of airborne endotoxin levels at two different visits were respectively 0.509 (4.289) EU/m3 and 0.557 (3.029) EU/m3. Airborne endotoxin levels were significantly increased: (i) in cold season (P = 0.024), with (ii) the presence of visible cockroaches in the previous 12 months at home (P < 0.001), (iii) increased number of inhabitants per square meter (P = 0.012), (iv) the high frequency of cleaning with the floor cloths (P = 0.0014), and (v) the low frequency of vacuuming (P = 0.0045). This study provided for the first time airborne endotoxin levels issued from repeated measurements in Paris dwellings. PRACTICAL IMPLICATIONS This analysis contributed to identify a few factors that determined indoor airborne endotoxin levels. However, the predictive model including housing factors and living conditions poorly estimated endotoxin levels. Consequently, multiple samples and longer sampling periods might improve the estimate of long-term airborne endotoxin exposure especially its variability, in cohort studies.

  1. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  2. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  3. Factors contributing to airborne particle dispersal in the operating room.

    PubMed

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01). The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  4. Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    NASA Technical Reports Server (NTRS)

    Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.

    1993-01-01

    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall

  5. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints

    PubMed Central

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-01-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  6. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  7. Airborne allergic contact dermatitis caused by isothiazolinones in water-based paints: a retrospective study of 44 cases.

    PubMed

    Amsler, Emmanuelle; Aerts, Olivier; Raison-Peyron, Nadia; Debons, Michèle; Milpied, Brigitte; Giordano-Labadie, Françoise; Waton, Julie; Ferrier-Le Bouëdec, Marie C; Lartigau, Isabelle; Pecquet, Catherine; Assier, Haudrey; Avenel-Audran, Martine; Bernier, Claire; Castelain, Florence; Collet, Evelyne; Crépy, Marie-Noëlle; Genillier, Nathalie; Girardin, Pascal; Pralong, Pauline; Tetart, Florence; Vital-Durand, Dominique; Soria, Angele; Barbaud, Annick

    2017-09-01

    Airborne allergic contact dermatitis caused by paints containing isothiazolinones has been recognized as a health hazard. To collect epidemiological, clinical and patch test data on airborne allergic contact dermatitis caused by isothiazolinone-containing paints in France and Belgium. A descriptive, retrospective study was initiated by the Dermatology and Allergy Group of the French Society of Dermatology, including methylchloroisothiazolinone (MCI)/methylisothiazolinone (MI)- and/or MI-sensitized patients who developed airborne allergic contact dermatitis following exposure to isothiazolinone-containing paint. Forty-four cases were identified, with mostly non-occupational exposure (79.5%). Of the patients, 22.5% of also had mucosal symptoms. In several cases, the dermatitis required systemic corticosteroids (27.3%), hospitalization (9.1%), and/or sick leave (20.5%). A median delay of 5.5 weeks was necessary to enable patients to enter a freshly painted room without a flare-up of their dermatitis. Approximately one-fifth of the patients knew that they were allergic to MI and/or MCI/MI before the exposure to paints occurred. Our series confirms that airborne allergic contact dermatitis caused by paints containing isothiazolinones is not rare, and may be severe and long-lasting. Better regulation of isothiazolinone concentrations in paints, and their adequate labelling, is urgently needed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Airborne Polarimeter Intercomparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multi-angle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  9. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez

    2016-01-01

    Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection...

  11. NASA Langley Atmospheric Science Data Center Toolsets for Airborne Data (TAD): User Interface Design and Development

    NASA Astrophysics Data System (ADS)

    Beach, A. L., III; Early, A. B.; Chen, G.; Parker, L.

    2014-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Given the sheer volume of data variables across field campaigns and instruments reporting data on different time scales, this data is often difficult and time-intensive for researchers to analyze. The TAD web application is designed to provide an intuitive user interface (UI) to facilitate quick and efficient discovery from a vast number of airborne variables and data. Users are given the option to search based on high-level parameter groups, individual common names, mission and platform, as well as date ranges. Experienced users can immediately filter by keyword using the global search option. Once the user has chosen their required variables, they are given the option to either request PI data files based on their search criteria or create merged data, i.e. geo-located data from one or more measurement PIs. The purpose of the merged data feature is to allow users to compare data from one flight, as not all data from each flight is taken on the same time scale. Time bases can be continuous or based on the time base from one of the measurement time scales and intervals. After an order is submitted and processed, an ASDC email is sent to the user with a link for data download. The TAD user interface design, application architecture, and proposed future enhancements will be presented.

  12. Predictive models of control strategies involved in containing indoor airborne infections.

    PubMed

    Chen, S-C; Chang, C-F; Liao, C-M

    2006-12-01

    efficacies. If a newly emergent airborne infection should appear, the model could be quickly calibrated to data and intervention options at the early stage of the outbreak. Data could be provided from the field to estimate value of R0, the serial interval between cases, the distributions of the latent, incubation, and infectious periods, case fatality rates, and secondary spread within important mixing groups. The combination of enhanced engineering control measures and assigned effective public health interventions would have a high probability for containing airborne infection.

  13. EVALUATION OF AIRBORNE ASBESTOS CONCENTRATIONS BEFORE AND DURING AND O&M ACTIVITY: A CASE STUDY

    EPA Science Inventory

    The current lack of information regarding the impact of O&M activities on the potential for asbestos exposure to building staff and occupants prompted this study. This report presents a statistical evaluation of airborne asbestos data collected before and during an O&M activity i...

  14. Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study

    USDA-ARS?s Scientific Manuscript database

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  15. An update on airborne contact dermatitis.

    PubMed

    Huygens, S; Goossens, A

    2001-01-01

    This review is an update of 2 previously published articles on airborne contact dermatoses. Because reports in the literature often omit the term 'airborne', 18 volumes of Contact Dermatitis (April 1991-June 2000), 8 volumes of the American Journal of Contact Dermatitis (1992 1999) and 4 volumes of La Lettre du Gerda (1996-1999) were screened, and the cases cited were classified as to history, lesion locations, sensitization sources, and other factors. Reports on airborne dermatitis are increasingly being published, sometimes in relation to specific occupational areas.

  16. Materiel requirements for airborne minefield detection system

    NASA Astrophysics Data System (ADS)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  17. A study of personal and area airborne asbestos concentrations during asbestos abatement: a statistical evaluation of fibre concentration data.

    PubMed

    Lange, J H; Lange, P R; Reinhard, T K; Thomulka, K W

    1996-08-01

    Data were collected and analysed on airborne concentrations of asbestos generated by abatement of different asbestos-containing materials using various removal practices. Airborne concentrations of asbestos are dramatically variable among the types of asbestos-containing material being abated. Abatement practices evaluated in this study were removal of boiler/pipe insulation in a crawl space, ceiling tile, transite, floor tile/mastic with traditional methods, and mastic removal with a high-efficiency particulate air filter blast track (shot-blast) machine. In general, abatement of boiler and pipe insulation produces the highest airborne fibre levels, while abatement of floor tile and mastic was observed to be the lowest. A comparison of matched personal and area samples was not significantly different, and exhibited a good correlation using regression analysis. After adjusting data for outliers, personal sample fibre concentrations were greater than area sample fibre concentrations. Statistical analysis and sample distribution of airborne asbestos concentrations appear to be best represented in a logarithmic form. Area sample fibre concentrations were shown in this study to have a larger variability than personal measurements. Evaluation of outliers in fibre concentration data and the ability of these values to skew sample populations is presented. The use of personal and area samples in determining exposure, selecting personal protective equipment and its historical relevance as related to future abatement projects is discussed.

  18. Preliminary evaluation of the airborne imaging spectrometer for vegetation analysis

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1984-01-01

    The primary goal of the project was to provide ground truth and manual interpretation of data from an experimental flight of the Airborne Infrared Spectrometer (AIS) for a naturally vegetated test site. Two field visits were made; one trip to note snow conditions and temporally related vegetation states at the time of the sensor overpass, and a second trip following acquisition of prints of the AIS images for field interpretation. Unfortunately, the ability to interpret the imagery was limited by the quality of the imagery due to the experimental nature of the sensor.

  19. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  20. Relationship between airborne pollen count and treatment outcome in Japanese cedar pollinosis patients.

    PubMed

    Takasaki, Kenji; Enatsu, Kaori; Kumagami, Hidetaka; Takahashi, Haruo

    2009-05-01

    In Japan, information on daily Japanese cedar pollen counts is made public during pollen season. If symptom severity and treatment outcome are predictable according to these pollen counts, management of seasonal allergic rhinitis may become more precise. The aims of the study were to evaluate the relationship between airborne pollen counts, symptom severity and treatment outcome in Japanese cedar pollinosis patients. In the randomized study, patients with moderate to most severe Japanese pollinosis were treated with fexofenadine (60 mg BD) or fexofenadine and nasal corticosteroids for 2 weeks. During the same period daily airborne pollen counts were measured. A total of 105 adult patients were enrolled. No difference of treatment efficacy was seen among groups. Detailed results of efficacy and safety were previously described elsewhere. In univariate analysis, the mean cumulative amount of airborne pollen exposure for 4 days prior to the study tended to affect symptom severity (P = 0.053) and the mean cumulative amount of airborne pollen during the treatment period tended to show difference among five treatment outcome categories (P = 0.066). In multivariate analysis, the mean cumulative amount of airborne pollen exposure for 4 days prior to the study was identified as the only significant factor of symptom severity (P = 0.0327) and cumulative amount of airborne pollen during the treatment period (P = 0.027) and allergic history (P = 0.027) were significant factors of treatment outcomes. No serious adverse effect was reported during the study. The amount of airborne pollen may be predictive of both symptom severity and treatment outcome.

  1. EUFAR the unique portal for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2016-04-01

    Created in 2000 and supported by the EU Framework Programmes since then, EUFAR was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to research infrastructures, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geo-sciences. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 18 instrumented aircraft and 3 remote-sensing instruments through the 13 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and research activities focused on providing an enabling environment for and promoting airborne research. The EUFAR2 activities cover three objectives, supported by the internet website www.eufar.net: (I - Institutional) improvement of the access to the research infrastructures and development of the future fleet according to the strategic advisory committee (SAC) recommendations; (ii - Innovation) improvement of the scientific knowledge and promotion of innovating instruments, processes and services for the emergence of new industrial technologies, with an identification of industrial needs by the SAC; (iii - Service) optimisation and harmonisation of the use of the research infrastructures through the development of the community of young researches in airborne science, of the standards and protocols and of the airborne central database. With the launch of a brand new website (www.eufar.net) in mid-November 2015, EUFAR aims to improve user experience on the website, which serves as a source of information and a hub where users are able to collaborate, learn, share expertise and best practices, and apply for transnational access, and education and training funded opportunities within the network. With its newly designed eye-catching interface

  2. Instantaneous field of view and spatial sampling of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Green, Robert O.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures the upwelling radiance in 224 spectral bands. These data are required as images of approximately 11 by up to 100 km in extent at nominally 20 by 20 meter spatial resolution. In this paper we describe the underlying spatial sampling and spatial response characteristics of AVIRIS.

  3. Airborne lidar wind detection at 2 μm

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.

    1995-06-01

    NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.

  4. Modification of a Pollen Trap Design To Capture Airborne Conidia of Entomophaga maimaiga and Detection of Conidia by Quantitative PCR.

    PubMed

    Bittner, Tonya D; Hajek, Ann E; Liebhold, Andrew M; Thistle, Harold

    2017-09-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth ( Lymantria dispar ) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga , using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas. IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga , an important fungal pathogen affecting gypsy moth ( Lymantria dispar ) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions. Copyright © 2017 American Society for Microbiology.

  5. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  6. Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination.

    PubMed

    Torre, Michele; Digka, Nikoletta; Anastasopoulou, Aikaterini; Tsangaris, Catherine; Mytilineou, Chryssi

    2016-12-15

    Research studies on the effects of microlitter on marine biota have become more and more frequent the last few years. However, there is strong evidence that scientific results based on microlitter analyses can be biased by contamination from air transported fibres. This study demonstrates a low cost and easy to apply methodology to minimize the background contamination and thus to increase results validity. The contamination during the gastrointestinal content analysis of 400 fishes was tested for several sample processing steps of high risk airborne contamination (e.g. dissection, stereomicroscopic analysis, and chemical digestion treatment for microlitter extraction). It was demonstrated that, using our methodology based on hermetic enclosure devices, isolating the working areas during the various processing steps, airborne contamination reduced by 95.3%. The simplicity and low cost of this methodology provide the benefit that it could be applied not only to laboratory but also to field or on board work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aerosol Optical Thickness comparisons between NASA LaRC Airborne HSRL and AERONET during the DISCOVER-AQ field campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Hoff, R. M.; Holben, B. N.; Schafer, J.; McGill, M. J.; Yorks, J. E.; Lantz, K. O.; Michalsky, J. J.; Hodges, G.

    2013-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD and during January and February 2013 over the San Joaquin Valley (SJV) of California and also a scheduled deployment during September 2013 over Houston, TX. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the Mixing Layer Height (MLH). HSRL AOT is compared to AOT measured by the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) and long-term AERONET sites. For the 2011 campaign, comparisons of AOT at 532nm between HSRL-1 and AERONET showed excellent agreement (r = 0.98, slope = 1.01, intercept = 0.037) when the King Air flights were within 2.5 km of the ground site and 10 min from the retrieval time. The comparison results are similar for the 2013 DISCOVER-AQ campaign in the SJV. Additional ground-based (MPL) and airborne (CPL) lidar data were used to help screen for clouds in the AERONET observations during the SJV portion. AOT values from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) located at the Porterville, CA site during the SJV campaign are also compared to HSRL-2 AOT. Lastly, using the MLH retrieved from HSRL aerosol backscatter profiles, we describe the distribution of AOT relative to the MLH.

  8. EUFAR the key portal and network for airborne research in Europe

    NASA Astrophysics Data System (ADS)

    Gérard, Elisabeth; Brown, Philip

    2017-04-01

    Created in 2000 and supported by the EU Framework Programmes since then as an Integrating Activities' project, EUFAR (European Facility of Airborne Research in environmental and Geo-sciences) was born out of the necessity to create a central network and access point for the airborne research community in Europe. With the aim to support researchers by granting them access to aircraft and instrumentation most suited to the needs of researchers across Europe, not accessible in their home countries, EUFAR also provides technical support and training in the field of airborne research for the environmental and geosciences, and enables the sharing of expertise and harmonisation of research practices. Today, EUFAR2 (2014-2018) coordinates and facilitates transnational access to 19 instrumented aircraft and 5 remote-sensing instruments through the 14 operators who are part of EUFAR's current 24-partner European consortium. In addition, the current project supports networking and joint research activities focused on providing an enabling environment for and to promote airborne research. Examples of some of these recent activities will be shown EUFAR is currently seeking to establish itself as an AISBL (international non-profit association) to ensure its existence and operations beyond January 2018 when our present EC funding comes to an end. The objectives of the EUFAR AISBL will include continuing to develop the integration of the research aircraft community in Europe and also its links with other environmental research infrastructures, such as the community of research infrastructures under the umbrella of ENVRIplus. Another objective will be to continue to broaden access to research facilities beyond that supported solely by national funding streams so that EUFAR better approaches the status of a European open research infrastructure. Together with the implementation of an Open Access scheme by means of resource-sharing envisaged in late 2017, such a sustainable structure

  9. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  10. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  11. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  12. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  13. Modification of a pollen trap design to capture airborne conidia of Entomophaga maimaiga and detection of conidia by quantitative PCR

    Treesearch

    Tonya D. Bittner; Ann E. Hajek; Andrew M. Liebhold; Harold Thistle; Dan Cullen

    2017-01-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States...

  14. ERICA plans for winter storms field study

    NASA Astrophysics Data System (ADS)

    Hadlock, Ron

    The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study will be conducted between December 1, 1988, and February 28, 1989. The oceanic area that is approximately bounded by t he Gulf Stream and North America, from coastal Carolina to just east of Newfoundland, will be the region for special observations obtained by recently developed measurement systems, including high-resolution and safe Loran-C dropwindsondes, CLASS rawinsondes, an array of drifting data buoys, and multiple airborne Doppler radars. The special observations will be acquired within a framework of all conventional operational data available for the eastern United States and Canada, including that from the National Weather Service's land sites (plus supplemental rawinsonde observations), ocean platforms, U.S. Air Force WC-130 National Winter Storms Operations Plan reconnaissance flights, and civilian and military weather satellites. Satellite imagery and soundings willl be available in real time and archived through facilities of NOAA and the military.

  15. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  16. Near-Field Deformation Associated with the South Napa Earthquake (M 6.0) Using Differential Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Glennie, C. L.; Brooks, B. A.; Hauser, D. L.; Ericksen, T.; Boatwright, J.; Rosinski, A.; Dawson, T. E.; Mccrink, T. P.; Mardock, D. K.; Hoirup, D. F., Jr.; Bray, J.

    2014-12-01

    Pre-earthquake airborne LiDAR coverage exists for the area impacted by the M 6.0 South Napa earthquake. The Napa watershed data set was acquired in 2003, and data sets were acquired in other portions of the impacted area in 2007, 2010 and 2014. The pre-earthquake data are being assessed and are of variable quality and point density. Following the earthquake, a coalition was formed to enable rapid acquisition of post-earthquake LiDAR. Coordination of this coalition took place through the California Earthquake Clearinghouse; consequently, a commercial contract was organized by Department of Water Resources that allowed for the main fault rupture and damaged Browns Valley area to be covered 16 days after the earthquake at a density of 20 points per square meter over a 20 square kilometer area. Along with the airborne LiDAR, aerial imagery was acquired and will be processed to form an orthomosaic using the LiDAR-derived DEM. The 'Phase I' airborne data were acquired using an Optech Orion M300 scanner, an Applanix 200 GPS-IMU, and a DiMac ultralight medium format camera by Towill. These new data, once delivered, will be differenced against the pre-earthquake data sets using a newly developed algorithm for point cloud matching, which is improved over prior methods by accounting for scan geometry error sources. Proposed additional 'Phase II' coverage would allow repeat-pass, post-earthquake coverage of the same area of interest as in Phase I, as well as an addition of up to 4,150 square kilometers that would potentially allow for differential LiDAR assessment of levee and bridge impacts at a greater distance from the earthquake source. Levee damage was reported up to 30 km away from the epicenter, and proposed LiDAR coverage would extend up to 50 km away and cover important critical lifeline infrastructure in the western Sacramento River delta, as well as providing full post-earthquake repeat-pass coverage of the Napa watershed to study transient deformation.

  17. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  18. Alignment and Calibration of an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Vira, A.

    2017-12-01

    The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the

  19. Satellite (SWOT) and Airborne (AirSWOT) Wide-Swath Altimeters to Study the Garonne River

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Rodriguez, E.; Goutal, N.; Ricci, S.; Mognard, N.; Rogel, P.; Le Pape, E.

    2013-09-01

    The future NASA/CNES Surface Water and Ocean Topography (SWOT) satellite mission will provide global 2D maps of water elevations, water surface volume change and river discharge at an unprecedented resolution. To prepare this mission, airborne campaigns, called AirSWOT, will fly over the Garonne River (and other targets of interest) in 2014. To plan AirSWOT flights over the Garonne, 1D and 2D hydrodynamic models of the 50 km Garonne River reach between Tonneins and La Reole towns developed by the Laboratoire National d'Hydraulique et Environnement (LNHE) will be used. Models outputs will help to validate airborne measurements. After validation, AirSWOT measurements will be assimilated in the models to reduce model errors. Finally, potential algorithms to estimate discharge from AirSWOT and SWOT observations will be tested over this river reach. This paper presents the study domain, the hydrodynamic models and their use in the context of AirSWOT campaigns in France.

  20. Comparative study of airborne Alternaria conidia levels in two cities in Castilla-La Mancha (central Spain), and correlations with weather-related variables.

    PubMed

    Sabariego, Silvia; Bouso, Veronica; Pérez-Badia, Rosa

    2012-01-01

    Alternaria conidia are among the airborne biological particles known to trigger allergic respiratory diseases. The presented paper reports on a study of seasonal variations in airborne Alternaria conidia concentrations in 2 cities in the central Spanish region of Castilla-La Mancha, Albacete and Toledo. The influence of weather-related variables on airborne conidia levels and distribution was also analysed. Sampling was carried out from 2008-2010 using a Hirst sampler, following the methodology established by the Spanish Aerobiology Network. Annual airborne Alternaria conidia counts were higher in Toledo (annual mean 3,936 conidia) than in Albacete (annual mean 2,268 conidia). Conidia were detected in the air throughout the year, but levels peaked between May-September. Considerable year-on-year variations were recorded both in total annual counts and in seasonal distribution. A significant positive correlation was generally found between mean daily Alternaria counts and both temperature and hours of sunlight, while a significant negative correlation was recorded for relative humidity, daily and cumulative rainfall, and wind speed. Regression models indicated that between 31%-52% of the variation in airborne Alternaria conidia concentrations could be explained by weather-related variables.

  1. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  2. Airborne Detection and Tracking of Geologic Leakage Sites

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor

    2014-11-01

    Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.

  3. Short-range airborne transmission of expiratory droplets between two people.

    PubMed

    Liu, L; Li, Y; Nielsen, P V; Wei, J; Jensen, R L

    2017-03-01

    The occurrence of close proximity infection for many respiratory diseases is often cited as evidence of large droplet and/or close contact transmission. We explored interpersonal exposure of exhaled droplets and droplet nuclei of two standing thermal manikins as affected by distance, humidity, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes are different; their effective control methods also differ. Neither the current droplet precautions nor dilution ventilation prevents short-range airborne transmission, so new control methods are needed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Airborne EM survey in volcanoes : Application to a volcanic hazards assessment

    NASA Astrophysics Data System (ADS)

    Mogi, T.

    2010-12-01

    Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful

  5. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  6. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  7. Airborne Lidar Measurements of Surface Topography and Structure in Arctic-Boreal Ecosystems

    NASA Astrophysics Data System (ADS)

    Hofton, M. A.; Blair, J. B.; Rabine, D.; Cornejo, H.; Story, S.

    2017-12-01

    In June-July 2017, NASA's Land, Vegetation and Ice Sensor (LVIS) Facility was deployed to sites in northern Canada and Alaska as part of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE) 2017 airborne campaign. ABoVE is a large-scale, multi-year study of environmental change and its implications for social-ecological systems, and involves multiple airborne sensors flying both field-based and larger scale sampling sites. During the 4 week deployment of LVIS-F, a total of 15 flights were flown over diverse science targets based out of multiple airports in Canada and Alaska. LVIS-F is NASA's high-altitude airborne lidar sensor, collecting a nominal 2km wide swath of data from 10km altitude above the ground. Footprints are continguous both along and across track and for ABoVE operations, were 6m in diameter. Full waveform data are collected for every footprint and georeferenced to provide a true 3 dimensional view of overflown terrain. Along with precise positioning and pointing information, the LVIS laser range and waveform data are processed to provide high-quality measurements of surface structure including ground elevation, canopy height and canopy volume metrics. Information on data coverage and examples of level1b and level2 data products at science target sites will be shown along with initial results for data precision and accuracy. All AboVe LVIS data products will be available to investigators via a NASA DAAC.

  8. University of Washington Airborne Studies in Support of the CLAMS-2001 Field Study

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    The main activity under this grant was participation in the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field study from 10 July through 2 August 2001. The Cloud and Aerosol Research Group (CARG) from the University of Washington (UW) flew its Convair-580 research aircraft on thirteen occasions, for a total of 45 research flight hours, in support of CLAMS. Some of the main accomplishments of these flights were: 1) Aerosol and trace gas measurements and sunphotometer measurements of aerosol optical depth and column water vapor and ozone from close to Ocean surface to approx. 10,000 ft off Delmarva Peninsula on various occasions; 2) Measurements of aerosol properties on seven occasions beneath the Terra satellite, once beneath AVHRR, and five times beneath the ER-2 aircraft; 3) Measurements of aerosol properties in the vicinity of the (CERES instrumented) Chesapeake Bay lighthouse (COVE) on nine occasions; 4) Use of the NASA Goddard Cloud Absorption Radiometer (CAR) to obtain measurements of BRDF of the ocean surface on fifteen occasions and over Great Dismal Swamp on two occasions; 5) Measurements of aerosol properties over instrumented buoys 44014, 44004, and 41001. 6) On July 17 (a CLAMS 'Golden Day') six aircraft, including the Convair-580 and ER-2, were stacked above the Chesapeake Bay lighthouse under clear skies at the time of the Terra overpass.

  9. Airborne gravimetry for geoid, geopotential models and GOCE - Himalaya and Antarctica cases (Invited)

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2013-12-01

    DTU-Space has since many years carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redundancy. Typical gravity results are at the 2 mGal rms level, translating into 5-10 cm accuracy in geoid. However, in rough mountainous areas results can be more noisy, mainly due to long-period mountain waves and turbulence. In the paper we outline results of recent challenging campaigns in Nepal (2010) and Antarctica (Antarctic Peninsula and East Antarctica, 2010-13). The latest Antarctic campaign 2012/13, carried out in cooperation with the British Antarctic Survey, Norwegian Polar Institute, and the Argentine Antarctic Institute, involved air drops of fuel to a remote field camp in the Recovery Lakes region, one of the least explored region of deep interior Antarctica. The airborne data collected are validated by cross-over comparisons and comparisons to independent data (IceBridge), and serve at the same time as an independent validation of GOCE satellite gravity data, confirming the satellite data to contain information at half-wavelengths down to 80 km. With no bias between the airborne data and GOCE, airborne gravimetry is perfectly suited to cover the GOCE data gap south of 83 S. We recommend an international, coordinated airborne gravity effort should be carried out over the south polar gap as soon as possible, to ensure a uniform global accuracy of GOCE heritage future geopotential models.

  10. SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH

    EPA Science Inventory

    Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....

  11. MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION -- A REGIONAL EXPLORATION IN EDUCATION.

    ERIC Educational Resources Information Center

    IVEY, JOHN E.; AND OTHERS

    STARTING IN FEBRUARY 1961, THE MIDWEST PROGRAM ON AIRBORNE TELEVISION INSTRUCTION (MPATI) TRANSMITTED COURSES IN FOREIGN LANGUAGES, SCIENCE, ARITHMETIC, ART, THE HUMANITIES, MUSIC, SOCIAL STUDIES, AND INTERNATIONAL RELATIONS TO 18 SCHOOLS IN THE MIDWEST. THE AIRBORNE TELECAST OPERATED OVER NORTH CENTRAL INDIANA AND TRANSMITTED COURSES OVER AN AREA…

  12. Use of a new high-speed digital data acquisition system in airborne ice-sounding

    USGS Publications Warehouse

    Wright, David L.; Bradley, Jerry A.; Hodge, Steven M.

    1989-01-01

    A high-speed digital data acquisition and signal averaging system for borehole, surface, and airborne radio-frequency geophysical measurements was designed and built by the US Geological Survey. The system permits signal averaging at rates high enough to achieve significant signal-to-noise enhancement in profiling, even in airborne applications. The first field use of the system took place in Greenland in 1987 for recording data on a 150 by 150-km grid centered on the summit of the Greenland ice sheet. About 6000-line km were flown and recorded using the new system. The data can be used to aid in siting a proposed scientific corehole through the ice sheet.

  13. Mismatch in aeroallergens and airborne grass pollen concentrations

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Hernández-Ceballos, M. A.; Galán, C.

    2016-11-01

    An accurate estimation of the allergen concentration in the atmosphere is essential for allergy sufferers. The major cause of pollinosis all over Europe is due to grass pollen and Phl p 5 has the highest rates of sensitization (>50%) in patients with grass pollen-induced allergy. However, recent research has shown that airborne pollen does not always offer a clear indicator of exposure to aeroallergens. This study aims to evaluate relations between airborne grass pollen and Phl p 5 concentrations in Córdoba (southern Spain) and to study how meteorological parameters influence these atmospheric records. Monitoring was carried out from 2012 to 2014. Hirst-type volumetric spore trap was used for pollen collection, following the protocol recommended by the Spanish Aerobiology Network (REA). Aeroallergen sampling was performed using a low-volume cyclone sampler, and allergenic particles were quantified by ELISA assay. Besides, the influence of main meteorological factors on local airborne pollen and allergen concentrations was surveyed. A significant correlation was observed between grass pollen and Phl p 5 allergen concentrations during the pollen season, but with some sporadic discrepancy episodes. The cumulative annual Pollen Index also varied considerably. A significant correlation has been obtained between airborne pollen and minimum temperature, relative humidity and precipitation, during the three studied years. However, there is no clear relationship between allergens and weather variables. Our findings suggest that the correlation between grass pollen and aeroallergen Phl p 5 concentrations varies from year-to-year probably related to a complex interplay of meteorological variables.

  14. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  15. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  16. Distribution and identification of airborne fungi in railway stations in Tokyo, Japan.

    PubMed

    Kawasaki, Tamami; Kyotani, Takashi; Ushiogi, Tomoyoshi; Izumi, Yasuhiko; Lee, Hunjun; Hayakawa, Toshio

    2010-01-01

    The current study was performed to (1) understand the distribution of airborne fungi culturable on dichloran-glycerol agar (DG18) media over a one-year monitoring period, (2) identify the types of airborne fungi collected, and (3) compare and contrast under- and above-ground spaces, in two railway stations in Tokyo, Japan. Measurements of airborne fungi were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms whereas station B had spaces only above-ground. Airborne fungi at each measurement position were collected with an air sampler on DG18 media. After cultivation of the sample plates, the number of fungi colonies was counted on each agar plate. In station A, the underground platform was characterized as (1) having the highest humidity and (2) a high concentration of airborne fungi, with (3) a high proportion of non-sporulating fungi (NSF) and Aspergillus versicolor. There was a strong positive correlation between the concentrations of airborne particles and fungi in station A. Common aspects of the two stations were (1) that fungi were mostly detected in autumn, and (2) there was no correlation between the humidity and concentration of fungi throughout the year. The results of this study indicate that the distribution and composition of fungi differ depending on the structure of the station.

  17. Evaluation of the Potentials and Challenges of an Airborne InSAR System for Deformation Mapping: A Case Study over the Slumgullion Landslide

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Zaugg, E.; Shrestha, R. L.; Carter, W. E.; Glennie, C. L.; Wang, G.; Lu, Z.; Diaz, J. C. F.

    2016-12-01

    Synthetic aperture radar (SAR) interferometry (InSAR) is a technique which uses two or more SAR images of the same area to estimate landscape topography or ground surface displacement. Differential InSAR (DInSAR) is capable of measuring ground displacements at the millimeter level, but a major drawback of traditional DInSAR is that only the deformation along the line-of-sight direction can be detected. Because most of the current spaceborne SAR systems have near-polar, sun-synchronous orbits, deformation measurements in the South-North direction are limited (except for polar regions). Compared with spaceborne SAR, airborne SAR systems have the advantages of flexible scanning geometry and revisit time, high spatial resolution, and no ionospheric distortion. In this study, we present a case study of the Slumgullion landslide conducted in July 2015 to assess an airborne SAR system known as ARTEMIS SlimSAR, which is a compact, modular, and multi-frequency radar system. The Slumgullion landslide, located in the San Juan Mountains near Lake City, Colorado is a long-term slow moving landslide that moves downhill continuously. For this study, the L-band SlimSAR was installed and data were collected on July 3, 7, and 10 and processed using the time-domain backprojection algorithm. GPS surveys and spaceborne DInSAR analysis using COSMO-SkyMed images were also conducted to verify the performance of the airborne SAR system. The airborne DInSAR results showed satisfying agreement with the GPS and spaceborne DInSAR results. The root mean square of the differences between the SlimSAR, and GPS and satellite derived velocities, were 0.6 mm/day, and 0.9 mm/day, respectively. A 3-D deformation map over Slumgullion landslide was generated, which displayed distinct correlation between the landslide motion and topography. This study also indicated that the primary source of the error for the SlimSAR system is the trajectory turbulences of the aircraft. The effect of the trajectory

  18. Progress Report on the Airborne Composition Standard Variable Name and Time Series Working Groups of the 2017 ESDSWG

    NASA Astrophysics Data System (ADS)

    Evans, K. D.; Early, A. B.; Northup, E. A.; Ames, D. P.; Teng, W. L.; Olding, S. W.; Krotkov, N. A.; Arctur, D. K.; Beach, A. L., III; Silverman, M. L.

    2017-12-01

    The role of NASA's Earth Science Data Systems Working Groups (ESDSWG) is to make recommendations relevant to NASA's Earth science data systems from users' experiences and community insight. Each group works independently, focusing on a unique topic. Progress of two of the 2017 Working Groups will be presented. In a single airborne field campaign, there can be several different instruments and techniques that measure the same parameter on one or more aircraft platforms. Many of these same parameters are measured during different airborne campaigns using similar or different instruments and techniques. The Airborne Composition Standard Variable Name Working Group is working to create a list of variable standard names that can be used across all airborne field campaigns in order to assist in the transition to the ICARTT Version 2.0 file format. The overall goal is to enhance the usability of ICARTT files and the search ability of airborne field campaign data. The Time Series Working Group (TSWG) is a continuation of the 2015 and 2016 Time Series Working Groups. In 2015, we started TSWG with the intention of exploring the new OGC (Open Geospatial Consortium) WaterML 2 standards as a means for encoding point-based time series data from NASA satellites. In this working group, we realized that WaterML 2 might not be the best solution for this type of data, for a number of reasons. Our discussion with experts from other agencies, who have worked on similar issues, identified several challenges that we would need to address. As a result, we made the recommendation to study the new TimeseriesML 1.0 standard of OGC as a potential NASA time series standard. The 2016 TSWG examined closely the TimeseriesML 1.0 and, in coordination with the OGC TimeseriesML Standards Working Group, identified certain gaps in TimeseriesML 1.0 that would need to be addressed for the standard to be applicable to NASA time series data. An engineering report was drafted based on the OGC Engineering

  19. Progress Report on the Airborne Composition Standard Variable Name and Time Series Working Groups of the 2017 ESDSWG

    NASA Technical Reports Server (NTRS)

    Evans, Keith D.; Early, Amanda; Northup, Emily; Ames, Dan; Teng, William; Archur, David; Beach, Aubrey; Olding, Steve; Krotkov, Nickolay A.

    2017-01-01

    The role of NASA's Earth Science Data Systems Working Groups (ESDSWG) is to make recommendations relevant to NASA's Earth science data systems from users' experiences and community insight. Each group works independently, focusing on a unique topic. Progress of two of the 2017 Working Groups will be presented. In a single airborne field campaign, there can be several different instruments and techniques that measure the same parameter on one or more aircraft platforms. Many of these same parameters are measured during different airborne campaigns using similar or different instruments and techniques. The Airborne Composition Standard Variable Name Working Group is working to create a list of variable standard names that can be used across all airborne field campaigns in order to assist in the transition to the ICARTT Version 2.0 file format. The overall goal is to enhance the usability of ICARTT files and the search ability of airborne field campaign data. The Time Series Working Group (TSWG) is a continuation of the 2015 and 2016 Time Series Working Groups. In 2015, we started TSWG with the intention of exploring the new OGC (Open Geospatial Consortium) WaterML 2 standards as a means for encoding point-based time series data from NASA satellites. In this working group, we realized that WaterML 2 might not be the best solution for this type of data, for a number of reasons. Our discussion with experts from other agencies, who have worked on similar issues, identified several challenges that we would need to address. As a result, we made the recommendation to study the new TimeseriesML 1.0 standard of OGC as a potential NASA time series standard. The 2016 TSWG examined closely the TimeseriesML 1.0 and, in coordination with the OGC TimeseriesML Standards Working Group, identified certain gaps in TimeseriesML 1.0 that would need to be addressed for the standard to be applicable to NASA time series data. An engineering report was drafted based on the OGC Engineering

  20. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    comprised three airborne campaigns in Greenland from April to June 2012 separated by roughly one month and preliminary results showed the instrument capability to detect ice motion. CryoVEx 2012 was a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat. The aim of this large-scale Arctic campaign was to record sea-ice thickness and conditions of the ice exactly below the CryoSat-2 path. A range of sensors installed on different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Preliminary results reveal the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allow for the estimation of actual sea ice thickness. In support of two currently operating EE Missions: SMOS (Soil Moisture and Ocean Salinity) and GOCE (Gravity field and steady-state Ocean Circulation Explorer), DOMECair airborne campaign will take place in Antarctica, in the Dome C region during the middle of January 2013. The two main objectives are to quantify and document the spatial variability in the DOME C area, important to establish long-term cross-calibrated multi-mission L-band measurement time-series (SMOS) and fill in the gap in the high-quality gravity anomaly maps in Antarctica since airborne gravity measurements are sparse (GOCE). Key airborne instruments in the campaign are EMIRAD-2 L-band radiometer, designed and operated by DTU and a gravimeter from AWI. ESA campaigns have been fundamental and an essential part in the preparation of new Earth Observation missions, as well as in the independent validation of their measurements and quantification of error sources. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the

  1. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: results of a comparative study in an operating theater.

    PubMed

    Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun

    2015-01-01

    Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Very-High-Frequency Aerosat Airborne Terminal

    DOT National Transportation Integrated Search

    1977-12-01

    This report summarizes the result of a study aimed at defining the airborne VHF terminal for the experimental AEROSAT program. The system consists of a 22-channel VHF transceiver for full-duplex operation. Provisions are made for voice, data, and sur...

  3. Enhanced Army Airborne Forces: A New Joint Operational Capability

    DTIC Science & Technology

    2014-01-01

    that are trained to carry out airborne operations, including the 75th Ranger Regiment and Army special forces. Today’s airborne forces lack protected...Operation Just Cause Airborne units were used extensively in Panama, and the 82nd Air- borne’s 1st Brigade and the 75th Ranger Regiment were both...carry out airborne operations, including the 75th Ranger Regiment and Army special forces. The changes made to transition the Army into a force

  4. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  6. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  7. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  8. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  10. Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.

    PubMed

    Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam

    2017-07-01

    Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.

  11. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  12. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use.

  13. A universal airborne LiDAR approach for tropical forest carbon mapping.

    PubMed

    Asner, Gregory P; Mascaro, Joseph; Muller-Landau, Helene C; Vieilledent, Ghislain; Vaudry, Romuald; Rasamoelina, Maminiaina; Hall, Jefferson S; van Breugel, Michiel

    2012-04-01

    Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.

  14. Nepal and Papua Airborne Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.

    2011-12-01

    Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.

  15. The alpine Swiss-French airborne gravity survey

    NASA Astrophysics Data System (ADS)

    Verdun, Jérôme; Klingelé, Emile E.; Bayer, Roger; Cocard, Marc; Geiger, Alain; Kahle, Hans-Gert

    2003-01-01

    In February 1998, a regional-scale, airborne gravity survey was carried out over the French Occidental Alps within the framework of the GéoFrance 3-D research program.The survey consisted of 18 NS and 16 EW oriented lines with a spacing of 10 and 20 km respectively, covering the whole of the Western French Alps (total area: 50 000 km2; total distance of lines flown: 10 000 km). The equipment was mounted in a medium-size aircraft (DeHavilland Twin Otter) flowing at a constant altitude of 5100 m a.s.l, and at a mean ground speed of about 280 km h-1. Gravity was measured using a LaCoste & Romberg relative, air/sea gravimeter (type SA) mounted on a laser gyro stabilized platform. Data from 5 GPS antennae located on fuselage and wings and 7 ground-based GPS reference stations were used to determine position and aircraft induced accelerations.The gravimeter passband was derived by comparing the vertical accelerations provided by the gravimeter with those estimated from the GPS positions. This comparison showed that the gravimeter is not sensitive to very short wavelength aircraft accelerations, and therefore a simplified formulation for computing airborne gravity measurements was developed. The intermediate and short wavelength, non-gravitational accelerations were eliminated by means of digital, exponential low-pass filters (cut-off wavelength: 16 km). An important issue in airborne gravimetry is the reliability of the airborne gravity surveys when compared to ground surveys. In our studied area, the differences between the airborne-acquired Bouguer anomaly and the ground upward-continued Bouguer anomaly of the Alps shows a good agreement: the rms of these differences is equal to 7.68 mGal for a spatial resolution of 8 km. However, in some areas with rugged topography, the amplitudes of those differences have a striking correlation with the topography. We then argue that the choice of an appropriate density (reduction by a factor of 10 per cent) for computing the

  16. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  18. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  19. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  20. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  1. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  2. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  3. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  4. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  5. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  6. A Technique for Airborne Aerobiological Sampling

    ERIC Educational Resources Information Center

    Mill, R. A.; And Others

    1972-01-01

    Report of a study of airborne micro-organisms collected over the Oklahoma City Metropolitan area and immediate environments, to investigate the possibility that a cloud of such organisms might account for the prevalence of some respiratory diseases in and around urban areas. (LK)

  7. First results from the NASA WB-57 airborne observations of the Great American 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Tsang, Constantine; DeForest, Craig; Seaton, Daniel B.; Bryans, Paul; Tomczyk, Steven; Burkepile, Joan; Judge, Phil; DeLuca, Edward E.; Golub, Leon; Gallagher, Peter T.; Zhukov, Andrei; West, Matthew; Durda, Daniel D.; Steffl, Andrew J.

    2017-08-01

    Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations.Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near-IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more.We present the first results from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and near-IR (3-5 µm) cameras operating at high cadence (30 Hz) with ~3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft will fly along the eclipse path, separated by ~90 km, to observe a summed ~8 minutes of totality in both visible and

  8. New geological and tectonic map of Paleoproterozoic basement in western Burkina Faso: integrated interpretation of airborne geophysical and field data

    NASA Astrophysics Data System (ADS)

    Metelka, Vaclav; Baratoux, Lenka; Jessell, Mark; Naba, Seta

    2010-05-01

    The recent acquisition of regional scale airborne datasets over most of the West African craton sparked off a number of studies concentrating on their litho-tectonic interpretation. In such polydeformed terrains, where outcrop is very sparse or virtually nonexistent due to the presence of thick lateritic cover, geophysics and specifically geomagnetic surveying provide a wealth of information that facilitates the deciphering of regional litho-structural hierarchies. A revised geological and tectonic map of the Houndé and Boromo greenstone belts was derived by interpretation of aeromagnetic and gamma-ray spectrometric data constrained by field observations where available. Medium resolution geophysical data gridded at 250 meters acquired during the SYSMIN project served as a basis for the interpretation. This dataset was integrated with the SRTM digital elevation model and over 600 field observations. Furthermore, the BRGM/BUMIGEB SYSMIN project outcrops database (Castaing et al., 2003) as well as older outcrop maps, maintained by BUMIGEB, were used. Locally, outcrop maps and high resolution geophysics provided by mining companies (Orezone, SEMAFO, Volta Resources, Wega Mining) were employed. 2-D geophysical inversion modeling in GM-sys software using the ground gravity and airborne magnetic data was applied to three selected E-W profiles. Principal component analysis (PCA) of magnetic and radiometric data was a powerful tool for distinguishing different lithological units, in particular tholeiitic suites of basalts and gabbros and various volcano-sedimentary units. Some of the granite pluton limits can be traced as well using the PCA; however thick lateritic cover substantially hinders precise mapping. Magnetic data used on its own gave better results not only for granite limits but also for determining internal structures such as shear zones and concentric compositional zoning. Several major N-S to NNE-SSW oriented shear zones, representing most probably deep

  9. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport

    PubMed Central

    Shahan, M.R.; Seaman, C.E.; Beck, T.W.; Colinet, J.F.; Mischler, S.E.

    2017-01-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8. PMID:28936001

  10. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    PubMed

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  11. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  12. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  13. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  14. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  15. Release of Airborne Polychlorinated Biphenyls from New Bedford Harbor Results in Elevated Concentrations in the Surrounding Air.

    PubMed

    Martinez, Andres; Hadnott, Bailey N; Awad, Andrew M; Herkert, Nicholas J; Tomsho, Kathryn; Basra, Komal; Scammell, Madeleine K; Heiger-Bernays, Wendy; Hornbuckle, Keri C

    2017-04-11

    Qualitatively and quantitatively, we have demonstrated that airborne polychlorinated biphenyl (PCB) concentrations in the air surrounding New Bedford Harbor (NBH) are caused by its water PCB emissions. We measured airborne PCBs at 18 homes and businesses near NBH in 2015, with values ranging from 0.4 to 38 ng m -3 , with a very strong Aroclor 1242/1016 signal that is most pronounced closest to the harbor and reproducible over three sampling rounds. Using U.S. Environmental Protection Agency (U.S. EPA) water PCB data from 2015 and local meteorology, we predicted gas-phase fluxes of PCBs from 160 to 1200 μg m -2 day -1 . Fluxes were used as emissions for AERMOD, a widely applied U.S. EPA atmospheric dispersion model, to predict airborne PCB concentrations. The AERMOD predictions were within a factor of 2 of the field measurements. PCB emission from NBH (110 kg year -1 , average 2015) is the largest reported source of airborne PCBs from natural waters in North America, and the source of high ambient air PCB concentrations in locations close to NBH. It is likely that NBH has been an important source of airborne PCBs since it was contaminated with Aroclors more than 60 years ago.

  16. Risk factors for closed-head injuries during military airborne operations.

    PubMed

    Knapik, Joseph J; Steelman, Ryan; Hoedebecke, Kyle; Klug, Kevin L; Rankin, Shawn; Proctor, Stanley; Graham, Bria; Jones, Bruce H

    2014-02-01

    One of the more serious adverse outcomes of military airborne operations is closed-head injuries. This investigation examined risk factors for closed-head injuries in an Army airborne infantry unit. Closed-head injuries were defined as energy exchanges in which the head contacted the ground or an object and the soldier sought medical care for external trauma, headache, loss of consciousness, or altered mental state. Injury data were obtained by investigators in the drop zone and diagnoses were confirmed by a physician. Operational data on potential injury risk factors were obtained from routine reports published by the infantry unit. Weather data were obtained using a pocket weather tracker. There were 96,132 jumps resulting in 310 closed-head injuries for a crude incidence of 3.22/1000 jumps. In 98% of known cases the injury was associated with parachute landings. Multivariate logistic regression revealed that independent risk factors for closed-head injuries included night jumps, combat loads, higher wind speeds, higher temperatures, enlisted rank, and entanglements. This study identifies the current incidence and extrinsic risk factors for closed-head injuries during military airborne operations. Although it is necessary to conduct airborne training under realistic conditions, trainers and commanders should be aware of these risks and plan airborne operations accordingly.

  17. Microlens array for focusing airborne ultrasound using heated wire grid

    NASA Astrophysics Data System (ADS)

    Cai, Liang-Wu; Sánchez-Dehesa, José

    2007-10-01

    This letter reports on the focusing of airborne ultrasound by a simple grid of heated wires. The focusing is analogous to that of an array of optical microlenses. The focusing pattern is determined by the spacing between wires, and the focusing areas are tightly confined with a great "depth of field." Such acoustical microlens arrays have great potentials for shaping beams produced by ultrasonic transducers, in applications such as ultrasonic cleaning and nondestructive testing.

  18. Airborne Arctic Stratospheric Expedition II: An overview

    NASA Astrophysics Data System (ADS)

    Anderson, James G.; Toon, Owen B.

    1993-11-01

    The sudden onset of ozone depletion in the antarctic vortex set a precedent for both the time scale and the severity of global change. The Airborne Antarctic Ozone Experiment (AAOE), staged from Punta Arenas, Chile, in 1987, established that CFCs, halons, and methyl bromide, the dominant sources of chlorine and bromine radicals in the stratosphere, control the rate of ozone destruction over the Antarctic; that the vortex is depleted in reactive nitrogen and water vapor; and that diabatic cooling during the Antarctic winter leads to subsidence within the vortex core, importing air from higher altitudes and lower latitudes. This last conclusion is based on observed dramatic distortion in the tracer fields, most notably N2O.In 1989, the first Airborne Arctic Stratospheric Expedition (AASE-I), staged from Stavanger, Norway, and using the same aircraft employed for AAOE (the NASA ER-2 and the NASA DC-8), discovered that while NOx and to some degree NOy were perturbed within the arctic vortex, there was little evidence for desiccation. Under these (in contrast to the antarctic) marginally perturbed conditions, however, ClO was found to be dramatically enhanced such that a large fraction of the available (inorganic) chlorine resided in the form of ClO and its dimer ClOOCl.This leaves two abiding issues for the northern hemisphere and the mission of the second Airborne Arctic Stratospheric Expedition (AASE-II): (1) Will significant ozone erosion occur within the arctic vortex in the next ten years as chlorine loading in the stratosphere exceeds four parts per billion by volume? (2) Which mechanisms are responsible for the observed ozone erosion poleward of 30°N in the winter/spring northern hemisphere reported in satellite observations?

  19. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    NASA Technical Reports Server (NTRS)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  20. STATISTICAL ISSUES IN THE STUDY OF AIR POLLUTION INVOLVING AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Epidemiological research in the early 1990s focusing on health effects of airborne particulate matter pointed to a statistical association between increases in concentration of particulate in ambient air and increases in daily nonaccidental mortality, particularly among the eld...

  1. An update on airborne contact dermatitis: 2001-2006.

    PubMed

    Santos, Raquel; Goossens, An

    2007-12-01

    Reports on airborne dermatoses are mainly published in the context of occupational settings. Hence, in recent years, dermatologists and also occupational physicians have become increasingly aware of the airborne source of contact dermatitis, resulting mainly from exposure to irritants or allergens. However, their occurrence is still underestimated, because reports often omit the term 'airborne' in relation to dust or volatile allergens. For the present update, we screened the journals 'Contact Dermatitis' (July 2000 to December 2006); 'Dermatitis', formerly named 'American Journal of Contact Dermatitis'; 'La Lettre du Gerda' (January 2000 to December 2006); and also included relevant articles from other journals published during the same period. This resulted in an updated list of airborne dermatitis causes.

  2. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  3. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  4. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  5. Novel semi-airborne CSEM system for the exploration of mineral resources

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian; Cherevatova, Maria; Becken, Michael; Rochlitz, Raphael; Günther, Thomas; Martin, Tina; Matzander, Ulrich

    2017-04-01

    Within the DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration), a semi-airborne CSEM system for mineral exploration is developed which aims to achieve a penetration depth of 1 km with a large areal coverage. Harmonically Time-varying electrical currents are injected with a grounded transmitter in order to measure the electric field on the ground and induced magnetic fields with highly sensitive magnetic sensors in the air. To measure the magnetic field and its variations, three-axis induction coils (MFS-11e by Metronix) and fluxgate sensors (Bartington FGS-03) are mounted on the platform towed by a helicopter. In addition, there is a SQUID based magnetometer, developed by IPHT and Supracon AG, available for future measurements. We deploy the different magnetometer sensors to cover a broad frequency range of 1-10000Hz. During the flight, the sensors encounter a broad variety of motion/vibration which produces noise in the magnetic field sensors. Therefore, a high accuracy motion tracking system is installed within the bird and a low vibrating system design needs to be considered in the airborne sensor platform. We conducted several flights with different source positions in a test area in Germany, which is already covered by ground based measurements. Based on the data, we discuss possible calibration schemes which are needed to overcome orthogonality and scaling errors in the fluxgate data as well as orientation errors. We apply noise correction schemes to the data and calculate transfer functions between the magnetic field and the source current. First 1-D inversion models based on the estimated transfer functions are calculated and compared to existing conductivity models from DC geoelectrics and helicopter electromagnetic (HEM) measurements.

  6. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  7. An investigation of airborne allergenic pollen at different heights.

    PubMed

    Xiao, Xiaojun; Fu, Aixiang; Xie, Xiongjie; Kang, Minxiong; Hu, Dongsheng; Yang, Pingchang; Liu, Zhigang

    2013-01-01

    Airborne pollen is an important source of allergens in a number of allergic diseases. Data on the concentrations of pollen at different heights in the air are scarce. The aim of the present study was to investigate different types and numbers of airborne pollen and their seasonal variation at different heights in the urban area of Shenzhen (China) and their associations with meteorological factors. The concentration of airborne pollen at different heights was monitored with Burkard traps from July 1, 2006, to June 30, 2007, in Shenzhen; the results were analyzed with SAS 9.13 software. In total, 1,095 films (at 3 heights, 365 films at each height) were exposed throughout the year, and 48 families and 85 genera of pollen taxa were identified. The total pollen count was 55,830 grains (25,204 grains at 1.5 m; 16,218 grains at 35 m, and 14,408 grains at 70 m); pollen grains were present in the atmosphere throughout the year, with two peaks of airborne pollen: one peak in February to April and the other in September to November. On the basis of our local investigations, the pollen concentrations and the pollen types in the air decrease gradually with increasing height. The distribution and concentrations of airborne pollen at different heights in the atmosphere were influenced by composite factors such as the season and meteorological factors. Copyright © 2012 S. Karger AG, Basel.

  8. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  9. Airborne organophosphate pesticides drift in Mediterranean climate: The importance of secondary drift

    NASA Astrophysics Data System (ADS)

    Zivan, Ohad; Segal-Rosenheimer, Michal; Dubowski, Yael

    2016-02-01

    Pesticide application is a short-term air-pollution episode with near and far field effects due to atmospheric drift. In order to better evaluate resulting air concentrations in nearby communities following pesticide application, measurements of airborne pesticides were conducted at ∼70 m from field edge. This was done following three different application events of the organophosphate pesticide Chlorpyrifos in a persimmon orchard. Complementary information on larger spatial scale was obtained using CALPUFF modeling in which application and meteorological data was used to better evaluate dispersion patterns. Measurements indicated high airborne concentrations during application hours (few μg m-3 for 8 h average), which dropped to tens of ng m-3 in the following days. Measured atmospheric concentrations show that secondary drift (i.e., post-application drift) involves significant loads of pesticides and hence should not be ignored in exposure considerations. Furthermore, CALPUFF modeling revealed the complex dispersion pattern when weak winds prevailed, and showed that during the 24 h after application air concentrations reached levels above the hourly Texas effect screening level (0.1 μg m-3). Interestingly, weak winds on the night after application resulted in a secondary peak in measured and modeled air concentrations. Long exposure time (when secondary drift is considered) and concentrations measured following such common air-assisted orchard application, suggest pesticide drift may have health repercussions that are currently unknown, and emphasize the need for further epidemiological studies.

  10. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    NASA Astrophysics Data System (ADS)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  11. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    PubMed

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  12. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    PubMed

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer.

    PubMed

    Ancellet, G; Ravetta, F

    2003-02-01

    Ozone vertical profiling with a lidar is well adapted to the spatial and temporal O3 variability analysis either in the free troposphere, when studying the respective impact of chemical production and dynamical processes, or in the planetary boundary layer (PBL) when characterizing the diurnal evolution of ozone plumes during pollution episodes. Comparisons with other measuring techniques (ozonesonde and aircraft in-situ measurements) demonstrate the lidar ability to characterize narrow layers (< 500 m) with a good accuracy (deltaO3 < 5-10 ppb). Application of airborne or ground-based operation of the CNRS airborne ozone lidar show its ability (i) to observe O3 layering above the PBL during two field experiments held to study air pollution in the Po Valley, Northern Italy, and the city of Marseille, Southern France, (ii) to improve airborne campaign planning (real time information on position of O3 layers) and analysis (three-dimensional perspective for layers detected by in-situ measurements) when chemical characterization of narrow O3 layers in the free troposphere is sought, (iii) to map O3 inhomogeneity down to an horizontal scale of 10-20 km within or above the polluted PBL by airborne measurements. For O3 pollution studies, understanding the origin and the life cycle of O3 layering is the first priority, and in this case the optimum use of the lidar remains the continuous operation of a ground-based instrument.

  14. Human Occupancy as a Source of Indoor Airborne Bacteria

    PubMed Central

    Hospodsky, Denina; Qian, Jing; Nazaroff, William W.; Yamamoto, Naomichi; Bibby, Kyle; Rismani-Yazdi, Hamid; Peccia, Jordan

    2012-01-01

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments. PMID:22529946

  15. Airborne Optical Communications Demonstrator Design And Preflight Test Results

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Page, N.; Neal, J.; Zhu, D.; Wright, M.; Ovtiz, G.; Farr, W. H.; Hernnzati, H.

    2005-01-01

    A second generation optical communications demonstrator (OCD-2) intended for airborne applications like air-to-ground and air-to-air optical links is under development at JPL. This development provides the capability for unidirectional high data rate (2.5-Gbps) transmission at 1550-nm, with the ability to receive an 810-nm beacon to aid acquisition pointing and tracking. The transmitted beam width is nominally 200-(micro)rad. A 3x3 degree coarse field-of-view (FOV) acquisition sensor with a much smaller 3-mrad FOV tracking sensor is incorporated. The OCD-2 optical head will be integrated to a high performance gimbal turret assembly capable of providing pointing stability of 5- microradians from an airborne platform. Other parts of OCD-2 include a cable harness, connecting the optical head in the gimbal turret assembly to a rugged electronics box. The electronics box will house: command and control processors, laser transmitter, data-generation-electronics, power conversion/distribution hardware and state-of-health monitors. The entire assembly will be integrated and laboratory tested prior to a planned flight demonstrations.

  16. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    EPA Science Inventory

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  17. Assessment of chlorophyll-a concentration in the Gulf of Riga using hyperspectral airborne and simulated Sentinel-3 OLCI data

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Brauns, Agris; Filipovs, Jevgenijs; Taskovs, Juris; Fedorovicha, Dagnija; Paavel, Birgot; Ligi, Martin; Kutser, Tiit

    2016-08-01

    Remote sensing has proved to be an accurate and reliable tool in clear water environments like oceans or the Mediterranean Sea. However, the current algorithms and methods usually fail on optically complex waters like coastal and inland waters. The whole Baltic Sea can be considered as optically complex coastal waters. Remote assessment of water quality parameters (eg., chlorophyll-a concentration) is of interest for monitoring of marine environment, but hasn't been used as a routine approach in Latvia. In this study, two simultaneous hyperspectral airborne data and in situ measurement campaigns were performed in the Gulf of Riga near the River Daugava mouth in summer 2015 to simulate Sentinel-3 data and test existing algorithms for retrieval of Level 2 Water products. Comparison of historical data showed poor overall correlation between in situ measurements and MERIS chlorophyll-a data products. Better correlation between spectral chl-a data products and in situ water sampling measurements was achieved during simultaneous airborne and field campaign resulting in R2 up to 0.94 for field spectral data, R2 of 0.78 for airborne data. Test of all two band ratio combinations showed that R2 could be improved from 0.63 to 0.94 for hyperspectral airborne data choosing 712 and 728 nm bands instead of 709 and 666 nm, and R2 could be improved from 0.61 to 0.83 for simulated Sentinel-3 OLCI data choosing Oa10 and Oa8 bands instead of Oa11 and Oa8. Repeated campaigns are planned during spring and summer blooms 2016 in the Gulf of Riga to get larger data set for validation and evaluate repeatability. The main challenges remain to acquire as good data as possible within rapidly changing environment and often cloudy weather conditions.

  18. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  19. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  20. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    NASA Technical Reports Server (NTRS)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  1. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  2. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  3. An Overview of the Challenges With and Proposed Solutions for the Ingest and Distribution Processes for Airborne Data Management

    NASA Technical Reports Server (NTRS)

    Beach, Aubrey; Northup, Emily; Early, Amanda; Wang, Dali; Kusterer, John; Quam, Brandi; Chen, Gao

    2015-01-01

    The current data management practices for NASA airborne field projects have successfully served science team data needs over the past 30 years to achieve project science objectives, however, users have discovered a number of issues in terms of data reporting and format. The ICARTT format, a NASA standard since 2010, is currently the most popular among the airborne measurement community. Although easy for humans to use, the format standard is not sufficiently rigorous to be machine-readable. This makes data use and management tedious and resource intensive, and also create problems in Distributed Active Archive Center (DAAC) data ingest procedures and distribution. Further, most DAACs use metadata models that concentrate on satellite data observations, making them less prepared to deal with airborne data.

  4. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  5. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  6. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  7. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    PubMed

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  8. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p < 0.001). Detected concentrations of airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres.

    PubMed

    Dement, J M; Kuempel, E D; Zumwalde, R D; Smith, R J; Stayner, L T; Loomis, D

    2008-09-01

    To develop a method for estimating fibre size-specific exposures to airborne asbestos dust for use in epidemiological investigations of exposure-response relations. Archived membrane filter samples collected at a Charleston, South Carolina asbestos textile plant during 1964-8 were analysed by transmission electron microscopy (TEM) to determine the bivariate diameter/length distribution of airborne fibres by plant operation. The protocol used for these analyses was based on the direct transfer method published by the International Standards Organization (ISO), modified to enhance fibre size determinations, especially for long fibres. Procedures to adjust standard phase contrast microscopy (PCM) fibre concentration measures using the TEM data in a job-exposure matrix (JEM) were developed in order to estimate fibre size-specific exposures. A total of 84 airborne dust samples were used to measure diameter and length for over 18,000 fibres or fibre bundles. Consistent with previous studies, a small proportion of airborne fibres were longer than >5 microm in length, but the proportion varied considerably by plant operation (range 6.9% to 20.8%). The bivariate diameter/length distribution of airborne fibres was expressed as the proportion of fibres in 20 size-specific cells and this distribution demonstrated a relatively high degree of variability by plant operation. PCM adjustment factors also varied substantially across plant operations. These data provide new information concerning the airborne fibre characteristics for a previously studied textile facility. The TEM data demonstrate that the vast majority of airborne fibres inhaled by the workers were shorter than 5 mum in length, and thus not included in the PCM-based fibre counts. The TEM data were used to develop a new fibre size-specific JEM for use in an updated cohort mortality study to investigate the role of fibre dimension in the development of asbestos-related lung diseases.

  10. Infrared airborne spectroradiometer survey results in the western Nevada area

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1982-01-01

    The Mark II airborne spectroradiometer system was flown over several geologic test sites in western Nevada. The infrared mineral absorption bands were observed and recorded for the first time using an airborne system with high spectral resolution in the 2.0 to 2.5 micron region. The data show that the hydrothermal alteration zone minerals, carbonates, and other minerals are clearly visible in the airborne survey mode. The finer spectral features that distinguish the various minerals with infrared bands are also clearly visible in the airborne survey data. Using specialized computer pattern recognition methods, it is possible to identify mineralogy and map alteration zones and lithologies by airborne spectroradiometer survey techniques.

  11. Airborne environmental endotoxin: a cross-validation of sampling and analysis techniques.

    PubMed Central

    Walters, M; Milton, D; Larsson, L; Ford, T

    1994-01-01

    A standard method for measurement of airborne environmental endotoxin was developed and field tested in a fiberglass insulation-manufacturing facility. This method involved sampling with a capillary-pore membrane filter, extraction in buffer using a sonication bath, and analysis by the kinetic-Limulus assay with resistant-parallel-line estimation (KLARE). Cross-validation of the extraction and assay method was performed by comparison with methanolysis of samples followed by 3-hydroxy fatty acid (3-OHFA) analysis by gas chromatography-mass spectrometry. Direct methanolysis of filter samples and methanolysis of buffer extracts of the filters yielded similar 3-OHFA content (P = 0.72); the average difference was 2.1%. Analysis of buffer extracts for endotoxin content by the KLARE method and by gas chromatography-mass spectrometry for 3-OHFA content produced similar results (P = 0.23); the average difference was 0.88%. The source of endotoxin was gram-negative bacteria growing in recycled washwater used to clean the insulation-manufacturing equipment. The endotoxin and bacteria become airborne during spray cleaning operations. The types of 3-OHFAs in bacteria cultured from the washwater, present in the washwater and in the air, were similar. Virtually all of the bacteria cultured from air and water were gram negative composed mostly of two species, Deleya aesta and Acinetobacter johnsonii. Airborne countable bacteria correlated well with endotoxin (r2 = 0.64). Replicate sampling showed that results with the standard sampling, extraction, and Limulus assay by the KLARE method were highly reproducible (95% confidence interval for endotoxin measurement +/- 0.28 log10). These results demonstrate the accuracy, precision, and sensitivity of the standard procedure proposed for airborne environmental endotoxin. PMID:8161191

  12. β-(1,3)-Glucan Exposure Assessment by Passive Airborne Dust Sampling and New Sensitive Immunoassays▿

    PubMed Central

    Noss, Ilka; Wouters, Inge M.; Bezemer, Gillina; Metwali, Nervana; Sander, Ingrid; Raulf-Heimsoth, Monika; Heederik, Dick J. J.; Thorne, Peter S.; Doekes, Gert

    2010-01-01

    Associations between house dust-associated β-(1,3)-glucan exposure and airway inflammatory reactions have been reported, while such exposures in early childhood have been suggested to protect against asthma and wheezing. Most epidemiological studies have used reservoir dust samples and an inhibition enzyme immunoassay (EIA) for β-(1,3)-glucan exposure assessment. The objective of this study was to develop inexpensive but highly sensitive enzyme immunoassays to measure airborne β-(1,3)-glucans in low-exposure environments, like homes. Specificities of available anti-β-(1,3)-glucan antibodies were defined by direct and inhibition experiments. Three suitable antibody combinations were selected for sandwich EIAs. β-(1,3)-Glucans in passive airborne dust collected with an electrostatic dust fall collector (EDC) and floor dust from seven homes were measured with the three EIAs. Floor dust samples were additionally analyzed in the inhibition EIA. The sandwich EIAs were sensitive enough for airborne glucan measurement and showed different specificities for commercial glucans, while the β-(1,3)-glucan levels in house dust samples correlated strongly. The feasibility of measuring glucans in airborne dust with the recently introduced EDC method was further investigated by selecting the most suitable of the three EIAs to measure and compare β-(1,3)-glucan levels in the EDC and in floor and actively collected airborne dust samples of the previously performed EDC validation study. The EDC β-(1,3)-glucan levels correlated moderately with β-(1,3)-glucans in actively collected airborne dust and floor dust samples, while the glucan levels in the airborne dust and floor dust samples did not correlate. The combination of the newly developed β-(1,3)-glucan sandwich EIA with EDC sampling now allows assessment in large-scale population studies of exposure to airborne β-(1,3)-glucans in homes or other low-exposure environments. PMID:20038709

  13. Fungal Fragments in Moldy Houses: A Field Study in Homes in New Orleans and Southern Ohio

    PubMed Central

    Reponen, Tiina; Seo, Sung-Chul; Grimsley, Faye; Lee, Taekhee; Crawford, Carlos; Grinshpun, Sergey A.

    2007-01-01

    Smaller-sized fungal fragments (<1 μm) may contribute to mold-related health effects. Previous laboratory-based studies have shown that the number concentration of fungal fragments can be up to 500 times higher than that of fungal spores, but this has not yet been confirmed in a field study due to lack of suitable methodology. We have recently developed a field-compatible method for the sampling and analysis of airborne fungal fragments. The new methodology was utilized for characterizing fungal fragment exposures in mold-contaminated homes selected in New Orleans, Louisiana and Southern Ohio. Airborne fungal particles were separated into three distinct size fractions: (i) >2.25 μm (spores); (ii) 1.05–2.25 μm (mixture); and (iii) < 1.0 μm (submicrometer-sized fragments). Samples were collected in five homes in summer and winter and analyzed for (1→3)-β-D-glucan. The total (1→3)-β-D-glucan varied from 0.2 to 16.0 ng m−3. The ratio of (1→3)-β-D-glucan mass in fragment size fraction to that in spore size fraction (F/S) varied from 0.011 to 2.163. The mass ratio was higher in winter (average = 1.017) than in summer (0.227) coinciding with a lower relative humidity in the winter. Assuming a mass-based F/S-ratio=1 and the spore size = 3 μm, the corresponding number-based F/S-ratio (fragment number/spore number) would be 103 and 106, for the fragment sizes of 0.3 and 0.03 μm, respectively. These results indicate that the actual (field) contribution of fungal fragments to the overall exposure may be very high, even much greater than that estimated in our earlier laboratory-based studies. PMID:19050738

  14. Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator

    NASA Astrophysics Data System (ADS)

    Buchholz, Bernhard; Ebert, Volker

    2018-01-01

    Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10-20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.

  15. Enumerating Spore-Forming Bacteria Airborne with Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Barengoltz, Jack

    2006-01-01

    A laboratory method has been conceived to enable the enumeration of (1) Cultivable bacteria and bacterial spores that are, variously, airborne by themselves or carried by, parts of, or otherwise associated with, other airborne particles; and (2) Spore-forming bacteria among all of the aforementioned cultivable microbes.

  16. Airborne transmission and precautions: facts and myths.

    PubMed

    Seto, W H

    2015-04-01

    Airborne transmission occurs only when infectious particles of <5 μm, known as aerosols, are propelled into the air. The prevention of such transmission is expensive, requiring N95 respirators and negative pressure isolation rooms. This lecture first discussed whether respiratory viral infections are airborne with reference to published reviews of studies before 2008, comparative trials of surgical masks and N95 respirators, and relevant new experimental studies. However, the most recent experimental study, using naturally infected influenza volunteers as the source, showed negative results from all the manikins that were exposed. Modelling studies by ventilation engineers were then summarized to explain why these results were not unexpected. Second, the systematic review commissioned by the World Health Organization on what constituted aerosol-generating procedures was summarized. From the available evidence, endotracheal intubation either by itself or combined with other procedures (e.g. cardiopulmonary resuscitation or bronchoscopy) was consistently associated with increased risk of transmission by the generation of aerosols. Copyright © 2014. Published by Elsevier Ltd.

  17. Airborne Passive Remote Sensing of the Troposphere in Nashville/Middle Tennessee Area During the 1995 Southern Oxidants Study

    NASA Technical Reports Server (NTRS)

    Rider, D. M.; Worden, H. M.; Beer, R.; Nandi, S.; Sparks, L. C.

    1998-01-01

    In July of 1995 the Airborne Emission Spectrometer was deployed to Nashville, Tennessee to participate in the 1995 Ozone Study Intensive Campaign of the Southern Oxidants Study. AES is a high resolution mid-infrared interferometer that measures the spectrum of upwelling radiation in the 650-4250 cm-1 range.

  18. Challenges and Successes Managing Airborne Science Data for CARVE

    NASA Astrophysics Data System (ADS)

    Hardman, S. H.; Dinardo, S. J.; Lee, E. C.

    2014-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission collects detailed measurements of important greenhouse gases on local to regional scales in the Alaskan Arctic and demonstrates new remote sensing and improved modeling capabilities to quantify Arctic carbon fluxes and carbon cycle-climate processes. Airborne missions offer a number of challenges when it comes to collecting and processing the science data and CARVE is no different. The biggest challenge relates to the flexibility of the instrument payload. Within the life of the mission, instruments may be removed from or added to the payload, or even reconfigured on a yearly, monthly or daily basis. Although modification of the instrument payload provides a distinct advantage for airborne missions compared to spaceborne missions, it does tend to wreak havoc on the underlying data system when introducing changes to existing data inputs or new data inputs that require modifications to the pipeline for processing the data. In addition to payload flexibility, it is not uncommon to find unsupported files in the field data submission. In the case of CARVE, these include video files, photographs taken during the flight and screen shots from terminal displays. These need to captured, saved and somehow integrated into the data system. The CARVE data system was built on a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This well-tested and proven infrastructure allows the CARVE data system to be easily adapted in order to handle the challenges posed by the CARVE mission and to successfully process, manage and distribute the mission's science data. This

  19. In vitro evaluation of pulmonary deposition of airborne volcanic ash

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Sæunn Gudmundsdottir, Sigurbjörg; Joutsensaari, Jorma; Tapper, Unto; Ruusunen, Jarno; Ihalainen, Mika; Karhunen, Tommi; Torvela, Tiina; Jokiniemi, Jorma; Järvinen, Kristiina; Gíslason, Sigurður Reynir; Briem, Haraldur; Gizurarson, Sveinbjörn

    2013-05-01

    There has been an increasing interest in the effects of volcanic eruption on the environment, climate, and health following two recent volcanic eruptions in Iceland. Although health issues are mainly focused on subjects living close to the eruption due to the high concentration of airborne ash and gasses in close vicinity to the volcanoes, the ash may also reach high altitude and get distributed thousands of kilometers away from the volcano. Ash particles used in the studies were collected at the Eyjafjallajökull and Grímsvötn eruption sites. The composition, size, density and morphology of the particles were analyzed and the effect of particle properties on the re-dispersion and lung deposition were studied. The aerodynamic size and morphology of the particles were consistent with field measurement results obtained during the eruptions. Due to their size and structure, the ash particles can be re-suspended and transported into the lungs. The total surface area of submicron ash particles deposited into the alveolar and tracheobronchial regions of the lungs were 3-9% and 1-2%, respectively. Although the main fraction of the surface area is deposited in the head airways region, a significant amount of particles can deposit into the alveolar and tracheobronchial regions. The results indicate that a substantial increase in the concentration of respirable airborne ash particles and associated health hazard can take place if the deposited ash particles are re-suspended under dry, windy conditions or by outdoor human activity.

  20. Water Mapping Using Multispectral Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  1. Airborne Electromagnetic Mapping of Peatlands: a Case Study in Norway.

    NASA Astrophysics Data System (ADS)

    Silvestri, S.; Viezzoli, A.; Pfaffhuber, A. A.; Vettore, A.

    2017-12-01

    Peatlands are extraordinary reservoirs of organic carbon that can be found over a wide range of latitudes, in tropical, to temperate, to (sub)polar climates. According to some estimates, the carbon stored in peatlands almost match the atmospheric carbon pool. Peatlands degradation due to natural and anthropogenic factors releases every year large amount of CO2 and other green house gasses into the atmosphere. The conservation of peatlands is therefore a key measure to reduce emissions and to mitigate climate change. An effective plan to prevent peatlands degradation must move from a precise estimate of the volume of peat stored across vast territories around the world. One example are the several bogs that characterize large surfaces in Norway. Our research combines the use of high spatial resolution satellite optical data with Airborne Electromagnetic (AEM) and field measurements in order to map the extension and thickness of peat in Brøttum, Ringsaker province, Norway. The methodology allows us to quantify the volume of peat as well as the organic carbon stock. The variable thickness typical of Norwegian bogs allows us to test the limits of the AEM methodology in resolving near surface peat layers. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747809. Start date: 1 June 2017. Duration: 24 months

  2. Studies on propagation of microbes in the airborne state

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Wolochow, H.; Straat, P.; Chatigny, M. A.

    1974-01-01

    An investigation was conducted to demonstrate whether airborne microbes could propagate. The procedure consisted of: (1) looking for dilution of a labelled base in DNA; (2) looking for labelling of DNA by mixing aerosols of the label and the cells; (3) examining changes in cell size; (4) testing the possibility of spore germination; and (5) seeking evidence of an increase in cell number. Results indicate that growth and propagation can occur under special conditions, principally at temperatures of approximately 30 C (87 F) and water activity equivalents of 0.95 to 0.98.

  3. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  4. Association Between Weather Variables, Airborne Inoculum Concentration, and Raspberry Fruit Rot Caused by Botrytis cinerea.

    PubMed

    Carisse, Odile; McNealis, Vanessa; Kriss, Alissa

    2018-01-01

    Botrytis fruit rot (BFR), one of the most important diseases of raspberry (Rubus spp.), is controlled primarily with fungicides. Despite the use of fungicides, crop losses due to BFR are high in most years. The aim of this study was to investigate the association between airborne inoculum, weather variables, and BFR in order to improve the management of the disease as well as harvest and storage decisions. Crop losses, measured as the percentage of diseased berries during the harvest period, were monitored in unsprayed field plots at four sites in three successive years, together with meteorological data and the number of conidia in the air. Based on windowpane analysis, there was no evidence of correlation between crop losses and temperature, vapor pressure deficit, wind, solar radiation, or probability of infection. There were significant correlations between crop losses and airborne inoculum and between crop losses and humidity-related variables, and the best window length was identified as 7 days. Using 7-day average airborne inoculum concentration combined with 7-day average relative humidity for periods ending 6 to 8 days before bloom, it was possible to accurately predict crop losses (R 2 of 0.86 to 0.89). These models could be used to assist with managing BFR, timing harvests, and optimizing storage duration in raspberry crops.

  5. Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release.

    PubMed

    Motzkus, C; Gensdarmes, F; Géhin, E

    2011-10-15

    Impingement of droplets on surfaces occurs in many industrial and natural processes. The study of droplet break-up is fundamental in order to determine the potential sources of airborne contamination for scenarios of hazardous liquid falls such as dripping. There are very few data in the literature describing the case of impact of millimetre-size droplets. The purposes of this work were to study experimentally particle emission during the impact of droplets on a liquid film and to assess the use of coalescence/splash relations to predict airborne particle release. The results are described using dimensionless numbers taking into account the inertial, viscosity and surface tension forces. Experiments were carried out for Weber numbers between 62 and 1754 and for Ohnesorge numbers between 2.0×10(-3) and 1.5×10(-2). New results on coalescence/splash thresholds are obtained using highly sensitive aerosol measurement and allow a prediction concerning the presence or absence of airborne particles according to a threshold relation. Moreover, we propose a modification of the Cossali et al.'s relation in order to describe the coalescence/prompt splash threshold. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Advances and Best Practices in Airborne Gravimetry from the U.S. GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Diehl, Theresa; Childers, Vicki; Preaux, Sandra; Holmes, Simon; Weil, Carly

    2013-04-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, an official policy of the U.S. National Geodetic Survey as of 2007, is working to survey the entire U.S. and its holdings with high-altitude airborne gravimetry. The goal of the project is to provide a consistent, high-quality gravity dataset that will become the cornerstone of a new gravimetric geoid and national vertical datum in 2022. Over the last five years, the GRAV-D project has surveyed more than 25% of the country, accomplishing almost 500 flights on six different aircraft platforms and producing more than 3.7 Million square km of data thus far. This wealth of experience has led to advances in the collection, processing, and evaluation of high-altitude (20,000 - 35,000 ft) airborne gravity data. This presentation will highlight the most important practical and theoretical advances of the GRAV-D project, giving an introduction to each. Examples of innovation include: 1. Use of navigation grade inertial measurement unit data and precise lever arm measurements for positioning; 2. New quality control tests and software for near real-time analysis of data in the field; 3. Increased accuracy of gravity post-processing by reexamining assumptions and simplifications that were inconsistent with a goal of 1 mGal precision; and 4. Better final data evaluation through crossovers, additional statistics, and inclusion of airborne data into harmonic models that use EGM08 as a base model. The increases in data quality that resulted from implementation of the above advances (and others) will be shown with a case study of the GRAV-D 2008 southern Alaska survey near Anchorage, over Cook Inlet. The case study's statistics and comparisons to global models illustrate the impact that these advances have had on the final airborne gravity data quality. Finally, the presentation will summarize the best practices identified by the project from its last five years of experience.

  7. [Respiratory protection provided by N95 filtering facepiece respirators and disposable medicine masks against airborne bacteria in different working environments].

    PubMed

    Lu, W; Zhu, X C; Zhang, X Y; Chen, Y T; Chen, W H

    2016-09-20

    Objective: To determine the relative protection provided by N95 filtering facepiece respirators (FFR) and disposable medicine masks (DMM) against airborne bacteria in different working environments. Methods: The field study was performed with 12 subjects wearing an N95 filtering facepiece respirator and a disposable medicine mask for 1h, respectively. Airborne microorganisms and bacteria samples from both the external (Ce) and the inner (Ci) surface of N95 FFR and DMM are collected. The Ce: Ci ratio was used to calculate the bacterial filtering proportion. Bacterial filtering efficiency (BFE) was measured using the JWL-2A Sampler. Results: The bacterial filtration efficiency of N95 FFR and DMM were 99.93% and 91.53%, respectively. There was significant difference between the two materials ( P <0.05). In summer, airborne bacterial concentration was higher than that in winter. In the same season, airborne bacterial concentration in hospital environment is higher than that in campus. The higher the airborne bacterial concentration, the greater bacterial contaminated on the external surface of the used masks. To all masks used in different working environment, bacterial contamination on the external surface was much greater than the inner surface ( P <0.01). Compared to N95 FFR, DMM had slighter bacterial contamination on the external surface and greater bacterial contamination on the inner surface. However, this difference was not significant ( P >0.05). The bacterial filtering proportion of N95 FFR is higher than DMM. These differences were significant in samples tested in summer ( P <0.05) , but were not significant in samples tested in winter ( P >0.05). Conclusion: Bacterial filtering efficiency of N95 respirator is superior to medicine mask, and this advantage become more obvious in high airborne bacterial concentration levels.

  8. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...-1279; Notice No. 11-07] Notification for Airborne Wind Energy Systems (AWES) AGENCY: Federal Aviation... CFR) part 77, ``Safe, Efficient Use and Preservation of the Navigable Airspace,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system...

  9. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    NASA Astrophysics Data System (ADS)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  10. Developing Toolsets for AirBorne Data (TAD): Overview of Design Concept

    NASA Astrophysics Data System (ADS)

    Parker, L.; Perez, J.; Chen, G.; Benson, A.; Peeters, M. C.

    2013-12-01

    NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, including a wide range of the trace gases and aerosol properties. Even though the spatial and temporal coverage is limited, the aircraft data offer high resolution and comprehensive simultaneous coverage of many variables, e.g. ozone precursors, intermediate photochemical species, and photochemical products. The recent NASA Earth Venture Program has generated an unprecedented amount of aircraft observations in terms of the sheer number of measurements and data volume. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for aircraft data for scientific research on climate change and air quality relevant issues, particularly: 1) Provide timely access to a broad user community, 2) Provide an intuitive user interface to facilitate quick discovery of the variables and data, 3) Provide data products and tools to facilitate model assessment activities, e.g., merge files and data subsetting capabilities, 4) Provide simple utility 'calculators', e.g., unit conversion and aerosol size distribution processing, and 5) Provide Web Coverage Service capable tools to enhance the data usability. The general strategy and design of TAD will be presented.

  11. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  12. Progress in Airborne Polarimeter Inter Comparison for the NASA Aerosols-Clouds-Ecosystems (ACE) Mission

    NASA Technical Reports Server (NTRS)

    Knobelspiesse, Kirk; Redemann, Jens

    2014-01-01

    The Aerosols-Clouds-Ecosystems (ACE) mission, recommended by the National Research Council's Decadal Survey, calls for a multi-angle, multi-spectral polarimeter devoted to observations of atmospheric aerosols and clouds. In preparation for ACE, NASA funds the deployment of airborne polarimeters, including the Airborne Multiangle SpectroPolarimeter Imager (AirMSPI), the Passive Aerosol and Cloud Suite (PACS) and the Research Scanning Polarimeter (RSP). These instruments have been operated together on NASA's ER-2 high altitude aircraft as part of field campaigns such as the POlarimeter DEfinition EXperiment (PODEX) (California, early 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, California and Texas, summer 2013). Our role in these efforts has been to serve as an assessment team performing level 1 (calibrated radiance, polarization) and level 2 (retrieved geophysical parameter) instrument intercomparisons, and to promote unified and generalized calibration, uncertainty assessment and retrieval techniques. We will present our progress in this endeavor thus far and describe upcoming research in 2015.

  13. Full Chain Benchmarking for Open Architecture Airborne ISR Systems: A Case Study for GMTI Radar Applications

    DTIC Science & Technology

    2015-09-15

    middleware implementations via a common object-oriented software hierarchy, with library -specific implementations of the five GMTI benchmark ...Full-Chain Benchmarking for Open Architecture Airborne ISR Systems A Case Study for GMTI Radar Applications Matthias Beebe, Matthew Alexander...time performance, effective benchmarks are necessary to ensure that an ARP system can meet the mission constraints and performance requirements of

  14. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  15. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; hide

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  16. 30 CFR 57.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Underground § 57.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention of contamination, removal by exhaust...

  17. Appendix : airborne incidents : an econometric analysis of severity

    DOT National Transportation Integrated Search

    2014-12-19

    This is the Appendix for Airborne Incidents: An Econometric Analysis of Severity Report. : Airborne loss of separation incidents occur when an aircraft breaches the defined separation limit (vertical and/or horizontal) with another aircraft or terrai...

  18. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  19. Networked Airborne Communications Using Adaptive Multi Beam Directional Links

    DTIC Science & Technology

    2016-03-05

    Networked Airborne Communications Using Adaptive Multi-Beam Directional Links R. Bruce MacLeod Member, IEEE, and Adam Margetts Member, IEEE MIT...provide new techniques for increasing throughput in airborne adaptive directional net- works. By adaptive directional linking, we mean systems that can...techniques can dramatically increase the capacity in airborne networks. Advances in digital array technology are beginning to put these gains within reach

  20. Scratched: World War II Airborne Operations That Never Happened

    DTIC Science & Technology

    2014-05-22

    Approved for Public Release; Distribution is Unlimited SCRATCHED: WORLD WAR II AIRBORNE OPERATIONS THAT NEVER HAPPENED A Monograph by...2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From - To) JUN 2013-MAY 2014 4. TITLE AND SUBTITLE Scratched: World War II Airborne...Maastricht gap, to get Allied troops through the West Wall. For numerous reasons, the overall Allied airborne effort of World War II provided mixed

  1. Airborne pollen survey in Bangkok, Thailand: A 35-year update.

    PubMed

    Songnuan, Wisuwat; Bunnag, Chaweewan; Soontrapa, Kitipong; Pacharn, Punchama; Wangthan, Unchalee; Siriwattanakul, Umaporn; Malainual, Nat

    2015-09-01

    Pollen allergy is a growing global health issue. While airborne pollen counts are reported daily in several countries, such information is lacking in Thailand. This study aimed to survey airborne pollens at five sites in Bangkok, comparing data with the previous study performed 35 years ago in 1980. Sample collection was done using the ROTOROD® sampler by exposing the rods for one hour each day twice a week from May 2012-April 2013. Overall, we found that the average pollen count was relatively high throughout the year, at an average of 242 grains/m3. The highest peak was found in September (700 grains/m3). Interestingly, we found that the pollen count was noticeably lower in 2012-2013 when compared to the 1980 study. We also observed the approximate shift of pollen peaks about one to two months earlier in the 2012-2013 study. However, the major groups of airborne pollens did not change significantly. Grass, sedge, amaranthus pollens and fern spores still dominated. The unidentified pollen group was the only group with a higher pollen count when compared to the previous study.

  2. Satellite and airborne IR sensor validation by an airborne interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 andmore » HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.« less

  3. Investigations on gravity data processing in airborne and shipborne gravimetry

    NASA Astrophysics Data System (ADS)

    Lu, Biao; Barthelmes, Franz; Petrovic, Svetozar; Förste, Christoph; Ince, Sinem; Flechtner, Frank

    2017-04-01

    Nowadays, airborne and shipborne gravimetry are very important methods to improve our knowledge about the Earth gravity field. The gravimeter Chekan-AM onboard the German High Altitude and Long Range (HALO) aircraft anables gravimetry at hardly accessible places like the polar regions of the Earth. One preparatory campaign on HALO has been carried out over Italy in 2012 to test the performance of the gravimeter Chekan-AM onboard such a jet aircraft. Specifically, the processing strategy of data achieved with this gravimeter has been studied. To investigate how future airborne gravity campaigns could be designed over regions like Antarctica, a dedicated flight track during the GEOHALO experiment had been run two times at different heights and velocities of the aircraft. These two flight paths are investigated and the results show that the equipment worked well also at higher altitude and speed. Comparisons with the global gravity field model EIGEN-6C4 and an analysis of the gravity differences at the crossover points show that the accuracy of this campaign is approximately 1 mGal. For geodetic purpose, a local geoid is computed by combining point mass modelling and the remove-compute-restore technique which is also taking into account the topography effect. Shipborne gravimetry can provide us high accurate and high resolution information of the Earth gravity field. Four campaigns of shipborne gravimetry by using the Chekan-AM on different research vessels have been conducted within the framework of the ongoing project "Finalising Surveys for the Baltic Motorways of the Sea" (FAMOS) since 2015. It turned out that problems due to influences of stormy sea and an abnormal drift behavior of the instrument at some parts of these campaigns need some additional investigations. The current processing of these gravity campaigns results in RMS of gravity differences at crossover points of about 0.5 mGal. Further investigations will continue to improve these results. Lastly, a

  4. The Way Point Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2012-01-01

    Airborne real time observation are a major component of NASA's Earth Science research and satellite ground validation studies. For mission scientist, planning a research aircraft mission within the context of meeting the science objective is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. Multiple aircraft are often involved in the NASA field campaigns the coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving dynamic weather conditions often determine the success of the campaign. A flight planning tool is needed to provide situational awareness information to the mission scientist and help them plan and modify the flight tracks successfully. Scientists at the University of Alabama Huntsville and the NASA Marshal Space Flight Center developed the Waypoint Planning Tool (WPT), an interactive software tool that enables scientist to develop their own flight plans (also known as waypoints), with point and click mouse capabilities on a digital map filled with time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analyses during and after each campaign helped identify both issues and new requirements, initiating the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities to the Google Earth Plugin and Java Web Start/Applet on web platform, as well as to the rising open source GIS tools with new JavaScript frameworks, the Waypoint planning Tool has entered its third phase of technology advancement. The newly innovated, cross-platform, modular designed

  5. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    NASA Astrophysics Data System (ADS)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  6. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings.

    PubMed

    Luongo, J C; Fennelly, K P; Keen, J A; Zhai, Z J; Jones, B W; Miller, S L

    2016-10-01

    Infectious disease outbreaks and epidemics such as those due to SARS, influenza, measles, tuberculosis, and Middle East respiratory syndrome coronavirus have raised concern about the airborne transmission of pathogens in indoor environments. Significant gaps in knowledge still exist regarding the role of mechanical ventilation in airborne pathogen transmission. This review, prepared by a multidisciplinary group of researchers, focuses on summarizing the strengths and limitations of epidemiologic studies that specifically addressed the association of at least one heating, ventilating and/or air-conditioning (HVAC) system-related parameter with airborne disease transmission in buildings. The purpose of this literature review was to assess the quality and quantity of available data and to identify research needs. This review suggests that there is a need for well-designed observational and intervention studies in buildings with better HVAC system characterization and measurements of both airborne exposures and disease outcomes. Studies should also be designed so that they may be used in future quantitative meta-analyses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention...

  8. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...

  9. Airborne multicamera system for geo-spatial applications

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.

    2003-08-01

    Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.

  10. NASA airborne laser altimetry and ICESat-2 post-launch data validation

    NASA Astrophysics Data System (ADS)

    Brunt, K. M.; Neumann, T.; Studinger, M.; Hawley, R. L.; Markus, T.

    2016-12-01

    A series of NASA airborne lidars have made repeated surveys over an 11,000-m ground-based kinematic GPS traverse near Summit Station, Greenland. These ground-based data were used to assess the surface elevation bias and measurement precision of two airborne laser altimeters: Airborne Topographic Mapper (ATM) and Land, Vegetation, and Ice Sensor (LVIS). Data from the ongoing monthly traverses allowed for the assessment of 8 airborne lidar campaigns; elevation biases for these altimeters were less than 12.2 cm, while assessments of surface measurement precision were less than 9.1 cm. Results from the analyses of the Greenland ground-based GPS and airborne lidar data provide guidance for validation strategies for Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products. Specifically, a nested approach to validation is required, where ground-based GPS data are used to constrain the bias and measurement precision of the airborne lidar data; airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make more statistically meaningful assessments of satellite elevation data. This nested validation approach will continue for the ground-traverse in Greenland; further, the ICESat-2 Project Science Office has plans to conduct similar coordinated ground-based and airborne data collection in Antarctica.

  11. Warriors from the Sky: US Army Airborne Operational Art in Normandy

    DTIC Science & Technology

    2017-05-25

    capabilities required for conducting a cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne...cross- Channel joint forcible entry operation. This included the identification of specific missions for the airborne forces. As a result, the airborne...Operation Market Garden, Holland 1944 (HQ, 82 Airborne Division: Feb 1946), 4. Market Garden, following the invasion in Normandy, was the first

  12. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  13. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  14. Airborne observed solar elevation and row direction effects on the near-IR/red ratio of cotton

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Goettelman, R. C.; Leroy, M. J. (Principal Investigator)

    1981-01-01

    An airborne multispectral scanner was used to obtain data over two adjacent cotton fields having rows perpendicular to one another, at three times of day (different solar elevations), and on two dates (different plant size). The near IR/red ratios were displayed in image form, so that within-field variations and differences between fields could be easily assessed. The ratio varied with changing Sun elevation for north-south oriented rows, but no variation was detected for east-west oriented rows.

  15. The exposure assessment of airborne particulates matter (PM10 & PM2.5) towards building occupants: A case study at KL Sentral, Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohddin, S. A.; Aminuddin, N. M.

    2014-02-01

    Airborne particulates have been recognized as a crucial pollutant of indoor air. These pollutants can contribute towards poor indoor air quality (IAQ), which may affect human health in immediate or long term. This study aims to determine the level of IAQ and the effects of particulate towards occupants of office buildings (the office buildings selected for the case study are SSM, KTMB and MRCB at KL Sentral). The objectives of study are (i) to measure the level of airborne particulates that contribute to the IAQ during working hours, (ii) to compare the level of airborne particulates with the existing guidelines and standards of IAQ in Malaysia and other Asian countries and (iii) to assess the symptoms associated with airborne particulates among the building occupants, which were achieved through primary data collection (case study or site survey, structured interview and questionnaire survey) and supported by literature reviews. The results showed that the mass concentration level of airborne particulates within the areas has exceeded the allowable limit of 0.15mg/m3 by IAQ Code of Practice, 2005 of the Department of Safety and Health (DOSH), Malaysia and 0.05mg/m3 by the Department of Environmental (DOE) (outdoor) of 8 hours continuous sampling. Based on the findings, the highest mass concentration values measured is 2.581 mg/m3 at lobby of SSM building which is the highest recorded 17 times higher from the maximum limit recommended by DOSH than the others. This is due to the nearby construction works and the high numbers of particulates are generated from various types of vehicles for transportation surrounding KL Sentral. Therefore, the development of Malaysian Ambient Air Quality Guidelines on PM2.5 as one of the crucial parameters is highly recommended.

  16. Modelling airborne gravity data by means of adapted Space-Wise approach

    NASA Astrophysics Data System (ADS)

    Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea

    2017-04-01

    Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.

  17. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Technical Reports Server (NTRS)

    He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John

    2010-01-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an

  18. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  19. Global Test Range: Toward Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Freudinger, Larry; DelFrate John H.

    2008-01-01

    This viewgraph presentation reviews the planned global sensor network that will monitor the Earth's climate, and resources using airborne sensor systems. The vision is an intelligent, affordable Earth Observation System. Global Test Range is a lab developing trustworthy services for airborne instruments - a specialized Internet Service Provider. There is discussion of several current and planned missions.

  20. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  1. Assessing exergy of forest ecosystem using airborne and satellite data

    NASA Astrophysics Data System (ADS)

    Brovkina, Olga; Fabianek, Tomas; Lukes, Petr; Zemek, Frantisek

    2017-04-01

    Interactions of the energy flows of forest ecosystem with environment are formed by a suite of forest structure, functions and pathways of self-control. According to recent thermodynamic theory for open systems, concept of exergy of solar radiation has been applied to estimate energy consumptions on evapotranspiration and biomass production in forest ecosystem or to indicate forest decline and human land use impact on ecosystem stability. However, most of the methods for exergy estimation in forest ecosystem is not stable and its physical meaning remains on the surface. This study was aimed to contribute to understanding the exergy of forest ecosystem using combination of remote sensing (RS) and eddy covariance technologies, specifically: 1/to explore exergy of solar radiation depending on structure of solar spectrum (number of spectral bands of RS data), and 2/to explore the relationship between exergy and flux tower eddy covariance measurements. Two study forest sites were located in Western Beskids in the Czech Republic. The first site was dominated by young Norway spruce, the second site was dominated by mature European beech. Airborne hyperspectral data in VNIR, SWIR and TIR spectral regions were acquired 9 times for study sites during a vegetation periods in 2015-2016. Radiometric, geometric and atmospheric corrections of airborne data were performed. Satellite multispectral Landsat-8 cloud-free 21 scenes were downloaded and atmospherically corrected for the period from April to November 2015-2016. Evapotranspiration and latent heat fluxes were collected from operating flux towers located on study sites according to date and time of remote sensing data acquisition. Exergy was calculated for each satellite and airborne scene using various combinations of spectral bands as: Ex=E^out (K+ln E^out/E^in )+R, where Ein is the incoming solar energy, Eout is the reflected solar energy, R = Ein-Eout is absorbed energy, Eout/Ein is albedo and K is the Kullback increment

  2. a Study of Co-Planing Technology of Spaceborne, Airborne and Ground Remote Sensing Detecting Resource, Driven by Disaster Emergency Task

    NASA Astrophysics Data System (ADS)

    Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.

    2018-04-01

    Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.

  3. New Atmospheric Observations from the Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS)

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Xie, F.; Muradyan, P.; Garrison, J. L.; Lulich, T.; Voo, J.; Larson, K. M.

    2008-12-01

    The Airborne GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was deployed on the NCAR HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) aircraft to make atmospheric observations over the Gulf of Mexico coastal region in February 2008. The objective of the measurements was to test the performance of the system in comparisons with radiosonde profiles and dropsonde profiles that were also collected during the field campaign. The airborne GNSS radio occultation measures of GNSS signals from satellites that are setting or rising behind the Earth's limb relative to the receiver on board an aircraft. High-gain side-looking antennas and a 10MHz GPS Recording System that records the raw RF signal make this set of instrumentation unique, and especially adapted for open-loop tracking observations in the lower atmosphere. Measurements of the amount of refraction in the signal ray paths are inverted using an Abel transform procedure to retrieve a profile of refractivity, which depends on atmospheric pressure, temperature and relative humidity. The airborne geometry, in contrast to the space- borne satellite occultation geometry, is affected by a large drift in the tangent point location, that is the location of the closest point to the Earth surface, as the ray path descends in the atmosphere. Therefore plans for the validation campaign included releasing dropsondes in the plane of the line of sight of the satellite-receiver occultation geometry in order to study this effect. Careful timing and location of the flight path was used to coordinate occultation times with operational and supplementary radiosonde launches. A total of 6 days of balloon sounding data were collected with 20 dropsondes and 28 supplementary radiosonde profiles. A discussion of the technical performance of the system will be presented, which describes the signal characteristics and antenna performance. Preliminary results on the quality of retrieved

  4. Progress Report on the Airborne Metadata and Time Series Working Groups of the 2016 ESDSWG

    NASA Astrophysics Data System (ADS)

    Evans, K. D.; Northup, E. A.; Chen, G.; Conover, H.; Ames, D. P.; Teng, W. L.; Olding, S. W.; Krotkov, N. A.

    2016-12-01

    NASA's Earth Science Data Systems Working Groups (ESDSWG) was created over 10 years ago. The role of the ESDSWG is to make recommendations relevant to NASA's Earth science data systems from users' experiences. Each group works independently focusing on a unique topic. Participation in ESDSWG groups comes from a variety of NASA-funded science and technology projects, including MEaSUREs and ROSS. Participants include NASA information technology experts, affiliated contractor staff and other interested community members from academia and industry. Recommendations from the ESDSWG groups will enhance NASA's efforts to develop long term data products. The Airborne Metadata Working Group is evaluating the suitability of the current Common Metadata Repository (CMR) and Unified Metadata Model (UMM) for airborne data sets and to develop new recommendations as necessary. The overarching goal is to enhance the usability, interoperability, discovery and distribution of airborne observational data sets. This will be done by assessing the suitability (gaps) of the current UMM model for airborne data using lessons learned from current and past field campaigns, listening to user needs and community recommendations and assessing the suitability of ISO metadata and other standards to fill the gaps. The Time Series Working Group (TSWG) is a continuation of the 2015 Time Series/WaterML2 Working Group. The TSWG is using a case study-driven approach to test the new Open Geospatial Consortium (OGC) TimeseriesML standard to determine any deficiencies with respect to its ability to fully describe and encode NASA earth observation-derived time series data. To do this, the time series working group is engaging with the OGC TimeseriesML Standards Working Group (SWG) regarding unsatisfied needs and possible solutions. The effort will end with the drafting of an OGC Engineering Report based on the use cases and interactions with the OGC TimeseriesML SWG. Progress towards finalizing

  5. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. Active sampling with DNPH-coated solid sorbents has been widely used for sampling airborne carbonyls; ...

  6. OPTIMIZING THE PAKS METHOD FOR MEASURING AIRBORNE ACROLEIN

    EPA Science Inventory

    Airborne acrolein is produced from the combustion of fuel and tobacco and is of concern due to its potential for respiratory tract irritation and other adverse health effects. DNPH active-sampling is a method widely used for sampling airborne aldehydes and ketones (carbonyls); ...

  7. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  8. Field assessment of the impacts of landscape structure on different-sized airborne particles in residential areas of Beijing, China

    NASA Astrophysics Data System (ADS)

    Fan, Shuxin; Li, Xiaopeng; Han, Jing; Cao, Yu; Dong, Li

    2017-10-01

    In high-density metropolis, residential areas are important human living environments. Aimed at investigating the impacts of landscape structure on the levels of different-sized airborne particle in residential areas, we conducted field monitoring of the levels of TSP, PM10, PM2.5 and PM1 using mobile traverses in 18 residential areas during the daytime in winter (Dec. 2015-Feb. 2016) and summer (Jun.-Aug. 2016) in Beijing, China. The net concentration differences (d) of the four-sized particles (dTSP, dPM10, dPM2.5 and dPM1) between residential environments and nearby corresponding urban backgrounds, which can be regarded as the reduction of particle concentration in residential environments, were calculated. The effects and relative contributions of different landscape structure parameters on these net concentration differences were further investigated. Results showed that the distribution of particle concentrations has great spatial variation in urban environments. Within the residential environment, there were overall lower concentrations of the four-sized particles compared with the nearby urban background. The net concentration differences of the four-sized particles were all significantly different among the 18 studied residential areas. The average dTSP, dPM10, dPM2.5 and dPM1 reached 18.92, 12.28, 2.01 and 0.53 μg/m3 in summer, and 9.91, 7.81, 1.39 and 0.38 μg/m3 in winter, respectively. The impacts and relative contribution of different landscape structure parameters on the reductions of TSP, PM10, PM2.5 and PM1 in residential environments differed and showed seasonal variation. Percentage of vegetation cover (PerVC) and building cover (PerBC) had the greatest impact. A 10% increase in PerVC would increase about 5.03, 8.15, 2.16 and 0.20 μg/m3 of dTSP, dPM10, dPM2.5 and dPM1 in summer, and a 10% increase in PerBC would decreased about 41.37, 16.54, 2.47 and 0.95 μg/m3 of them in winter. Increased vegetation coverage and decreased building

  9. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran

    PubMed Central

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Background: Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. Materials and Methods: A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. Results: The average level of bacteria ranged from 99 to 1079 CFU/m3. The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m3) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m3). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Conclusion: Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections. PMID:27656612

  10. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  11. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  12. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada

  13. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  14. Analysis of satellite and airborne wind measurements during the SEMAPHORE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, J.; Hauser, D.

    1994-12-31

    During the SEMAPHORE experiment Intensive Observation Period (IOP), held in October and November 1993 in the Azores-Madeira region, two airplanes, instrumented for atmospheric research, and two oceanographic research vessels have conducted in situ measurements in a 500km x 500km domain. Within the framework of SEMAPHORE, the SOFIA program is dedicated to the study of the air-sea fluxes and interactions from local scale up to mesoscale. The analysis of the structure of the wind and wave fields and their relations to the surface fluxes (especially near oceanic fronts) and the validation of the satellite data are two of the main goalsmore » of the SOFIA program. During the IOP, the experiment domain was regularly overflown by the ERS-1 and Topex-Poseidon (TP) satellites. This study presents a preliminary analysis of the ERS-1 and TP altimeter wind and wave measurement and ERS-1 scatterometer wind fields. The data from the airborne RESSAC (a radar ocean wave spectrometer) are also presented.« less

  15. Mid-Infrared Spectroscopy of Mercury from the Kuiper Airborne Observatory

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Witteborn, F. C.; Kozlowski, R. W. H.; Wooden, D. H.

    1996-03-01

    We present mid-infrared (5 - 10mic) spectroscopic measurements of the planet Mercury obtained from the Kuiper Airborne Observatory (KAO) using the High Efficiency Infrared Faint Object Grating Spectrograph (HIFOGS). Spectra show features characteristic of plagioclase feldspar that was previously observed near 120 deg mercurian longitude. The spectra also show spectral features that could be interpreted indicative of the presence of pyrrhotite (pyrr). An analysis that fully accounts for the effects of large field of view (FOV), thermal gradients, rough surface and absolute calibration is still underway.

  16. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    NASA Astrophysics Data System (ADS)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  17. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  18. Airborne Bacterial Communities in Three East Asian Cities of China, South Korea, and Japan.

    PubMed

    Lee, Jae Young; Park, Eun Ha; Lee, Sunghee; Ko, GwangPyo; Honda, Yasushi; Hashizume, Masahiro; Deng, Furong; Yi, Seung-Muk; Kim, Ho

    2017-07-17

    The global diversity of airborne bacteria has not yet been studied, despite its importance in human health and climate change. Here, we focused on the diversity of airborne bacteria and their correlations with meteorological/environmental conditions in China, South Korea, and Japan. Beijing (China) had more diverse airborne bacteria, followed by Seoul (South Korea) and Nagasaki (Japan), and seasonal variations were observed. Beijing and Seoul had more diverse airborne bacteria during the winter, whereas Nagasaki showed greater diversity during the summer. According to principal component analysis and Bray-Curtis similarity, higher similarity was observed between Beijing and Seoul than between Seoul and Nagasaki during all seasons except summer. Among meteorological/environmental variables, temperature and humidity were highly correlated with the diversity of airborne bacteria on the measurement day, whereas wind speeds and the frequency of northwest winds were highly correlated for 2-3-day moving averages. Thus, proximity and resuspension could enhance bacterial diversity in East Asian cities.

  19. Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system.

    PubMed

    Chow, T T; Yang, X Y

    2005-02-01

    A laminar airflow study was performed in a standard operating theatre in Hong Kong, the design of which followed the requirements of the UK Health Technical Memorandum. The study of the ultra-clean ventilation system investigated the effectiveness of the laminar flow in: (i) preventing bioaerosols released by the surgical staff from causing postoperative infection of the patient; and (ii) protecting the surgical team against infection by bacteria from the wound site. Seven cases of computer simulation are presented and the sensitivity of individual cases is discussed. Air velocity at the supply diffuser has been identified as one of the most important factors in governing the dispersion of airborne infectious particles. Higher velocity within the laminar regime is advantageous in minimizing the heat-dissipation effect, and to ensure an adequate washing effect against particulate settlement. Inappropriate positioning of the medical lamps can be detrimental. Omission of a partial wall may increase the infection risk of the surgical team due to the ingression of room air at the supply diffuser periphery. This paper stresses that a successful outcome in preventing airborne infection depends as much on resolving human factors as on overcoming technical obstacles.

  20. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  1. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak

    2017-02-01

    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  2. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  3. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  4. Relationships between ground and airborne gamma-ray spectrometric survey data, North Ras Millan, Southern Sinai Peninsula, Egypt.

    PubMed

    Youssef, Mohamed A S

    2016-02-01

    In the last decades of years, there was considerable growth in the use of airborne gamma-ray spectrometry. With this growth, there was an increasing need to standardize airborne measurements, so that they can be independent of survey parameters. Acceptable procedures were developed for converting airborne to ground gamma-ray spectrometric measurements of total-count intensity as well as, potassium, equivalent uranium and equivalent thorium concentrations, due to natural sources of radiation. The present study aims mainly to establish relationships between ground and airborne gamma-ray spectrometric data, North Ras Millan, Southern Sinai Peninsula, Egypt. The relationships between airborne and ground gamma-ray spectrometric data were deduced for the original and separated rock units in the study area. Various rocks in the study area, represented by Quaternary Wadi sediments, Cambro-Ordovician sandstones, basic dykes and granites, are shown on the detailed geologic map. The structures are displayed, which located on the detailed geologic map, are compiled from the integration of previous geophysical and surface geological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  6. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  7. Simulation and analysis of airborne antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Kim, J. J.; Burnside, Walter D.

    1984-01-01

    The objective is to develop an accurate and efficient analytic solution for predicting high frequency radiation patterns of fuselage-mounted airborne antennas. This is an analytic study of airborne antenna patterns using the Uniform Geometrical Theory of Diffraction (UTD). The aircraft is modeled in its most basic form so that the solution is applicable to general-type aircraft. The fuselage is modeled as a perfectly conducting composite ellipsoid; whereas, the wings, stabilizers, nose, fuel tanks, and engines, are simulated as perfectly conducting flat plates that can be attached to the fuselage and/or to each other. The composite-ellipsoid fuselage model is necessary to successfully simulate the wide variety of real world fuselage shapes. Since the antenna is mounted on the fuselage, it has a dominant effect on the resulting radiation pattern so it must be simulated accurately, especially near the antenna. Various radiation patterns are calculated for commercial, private, and military aircraft, and the Space Shuttle Orbiter. The application of this solution to numerous practical airborne antenna problems illustrates its versatility and design capability. In most cases, the solution accuracy is verified by the comparisons between the calculated and measured data.

  8. Husbandry Trace Gas Emissions from a Dairy Complex By Mobile in Situ and Airborne and Spaceborne Remote Sensing: A Comex Campaign Focus

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Tratt, D. M.; Bovensmann, H.; Buckland, K. N.; Burrows, J. P.; Frash, J.; Gerilowski, K.; Iraci, L. T.; Johnson, P. D.; Kolyer, R.; Krautwurst, S.; Krings, T.; Leen, J. B.; Hu, C.; Melton, C.; Vigil, S. A.; Yates, E. L.; Zhang, M.

    2014-12-01

    Recent field study reviews on the greenhouse gas methane (CH4) found significant underestimation from fossil fuel industry and husbandry. The 2014 COMEX campaign seeks to develop methods to derive CH4 and carbon dioxide (CO2) from remote sensing data by combining hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages synergies between high spatial resolution HSI column abundance maps and moderate spectral/spatial resolution NIS. Airborne husbandry data were collected for the Chino dairy complex (East Los Angeles Basin) by NIS-MAMAP, HSI-Mako thermal-infrared (TIR); AVIRIS NG shortwave IR (SWIR), with in situ surface mobile-AMOG Surveyor (AutoMObile greenhouse Gas)-and airborne in situ from a Twin Otter and the AlphaJet. AMOG Surveyor uses in situ Integrated Cavity Off Axis Spectroscopy (OA-ICOS) to measure CH4, CO2, H2O, H2S and NH3 at 5-10 Hz, 2D winds, and thermal anomaly in an adapted commuter car. OA-ICOS provides high precision and accuracy with excellent stability. NH3 and CH4 emissions were correlated at dairy size-scales but not sub-dairy scales in surface and Mako data, showing fine-scale structure and large variations between the numerous dairies in the complex (herd ~200,000-250,000) embedded in an urban setting. Emissions hotspots were consistent between surface and airborne surveys. In June, surface and MAMAP data showed a weak overall plume, while surface and Mako data showed a stronger plume in late (hotter) July. Multiple surface plume transects using NH3 fingerprinting showed East and then NE advection out of the LA Basin consistent with airborne data. Long-term trends were investigated in satellite data. This study shows the value of synergistically combined NH3 and CH4 remote sensing data to the task of CH4 source attribution using airborne and space-based remote sensing (IASI for NH3) and top of atmosphere sensitivity calculations for Sentinel V and Carbon Sat (CH4).

  9. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in Western U.S. National Parks

    EPA Science Inventory

    The Western Airborne Contaminants Assessment Project (WACAP) was initiated in 2002 by the National Park Service to determine if airborne contaminants were having an impact on remote western ecosystems. Multiple sample media (snow, water, sediment, fish and terrestrial vegetation...

  10. Geronimo: Planning Considerations for Employing Airborne Forces

    DTIC Science & Technology

    2017-05-25

    Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that... operation , a planner must adhere to joint planning considerations and understand the Air Force and Army requirements. Today the Army maintains only...one brigade and two battalions of deployable conventional airborne combat power. The special operations community also is airborne capable, and the

  11. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  12. [Development of a microenvironment test chamber for airborne microbe research].

    PubMed

    Zhan, Ningbo; Chen, Feng; Du, Yaohua; Cheng, Zhi; Li, Chenyu; Wu, Jinlong; Wu, Taihu

    2017-10-01

    One of the most important environmental cleanliness indicators is airborne microbe. However, the particularity of clean operating environment and controlled experimental environment often leads to the limitation of the airborne microbe research. This paper designed and implemented a microenvironment test chamber for airborne microbe research in normal test conditions. Numerical simulation by Fluent showed that airborne microbes were evenly dispersed in the upper part of test chamber, and had a bottom-up concentration growth distribution. According to the simulation results, the verification experiment was carried out by selecting 5 sampling points in different space positions in the test chamber. Experimental results showed that average particle concentrations of all sampling points reached 10 7 counts/m 3 after 5 minutes' distributing of Staphylococcus aureus , and all sampling points showed the accordant mapping of concentration distribution. The concentration of airborne microbe in the upper chamber was slightly higher than that in the middle chamber, and that was also slightly higher than that in the bottom chamber. It is consistent with the results of numerical simulation, and it proves that the system can be well used for airborne microbe research.

  13. 47 CFR 22.925 - Prohibition on airborne operation of cellular telephones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Prohibition on airborne operation of cellular... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.925 Prohibition on airborne... any other type of aircraft must not be operated while such aircraft are airborne (not touching the...

  14. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. A Multi-Use Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.

    2003-01-01

    Much of our progress in understanding the Earth system comes from measurements made in the atmosphere. Aircraft are widely used to collect in situ measurements of the troposphere and lower stratosphere, and they also serve as platforms for many remote sensing instruments. Airborne field measurement campaigns require a capable aircraft, a specially trained support team, a suite of basic instrumentation, space and power for new instruments, and data analysis and processing capabilities (e.g. Veal et al., 1977). However, these capabilities are expensive and there is a need to reduce costs while maintaining the capability to perform this type of research. To this end, NASA entered a Cooperative Agreement with the University of North Dakota (UND) to help support the operations of the UND Cessna Citation research aircraft. This Cooperative Agreement followed in form and substance a previous agreement. The Cooperative Agreement has benefited both NASA and UND. In part because of budget reductions, the NASA Airborne Science Office has elected to take advantage of outside operators of science research platforms to off-load some science requirements (Huning, 1996). UND has worked with NASA to identify those requirements that could be met more cost effectively with the UND platform. This has resulted in significant cost savings to NASA while broadening the base of researchers in the NASA science programs. At the same time, the Agreement has provided much needed support to UND to help sustain the Citation research facility. In this report, we describe the work conducted under this Cooperative Agreement.

  17. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  18. Urban greenness influences airborne bacterial community composition.

    PubMed

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  19. Diagnostic studies of the Antarctic vortex during the 1987 Airborne Antarctic Ozone Experiment - Ozone miniholes

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Austin, J.; Browell, E. V.; Mccormick, M. P.; Krueger, A. J.

    1989-01-01

    Localized rapid reductions in total ozone (miniholes), which were observed during the Airborne Antarctic Ozone Experiment, are studied with particular attention given to meteorological aspects. It is suggested that miniholes are forced by tropospheric weather features and that they are largely reversible distortions to the airflow around the vortex. The relationship between the miniholes and upper tropospheric and lower stratospheric synoptic-scale disturbances is studied. Trajectory calculations are presented which demonstrate the exchange of air from low latitudes with air from within the vortex, with the vortex air subsequently moving to lower latitudes.

  20. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  1. A comparison of the structureborne and airborne paths for propfan interior noise

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.; Ramakrishnan, J. V.

    1986-01-01

    A comparison is made between the relative levels of aircraft interior noise related to structureborne and airborne paths for the same propeller source. A simple, but physically meaningful, model of the structure treats the fuselage interior as a rectangular cavity with five rigid walls. The sixth wall, the fuselage sidewall, is a stiffened panel. The wing is modeled as a simple beam carried into the fuselage by a large discrete stiffener representing the carry-through structure. The fuselage interior is represented by analytically-derived acoustic cavity modes and the entire structure is represented by structural modes derived from a finite element model. The noise source for structureborne noise is the unsteady lift generation on the wing due to the rotating trailing vortex system of the propeller. The airborne noise source is the acoustic field created by a propeller model consistent with the vortex representation. Comparisons are made on the basis of interior noise over a range of propeller rotational frequencies at a fixed thrust.

  2. The New Zealand gravimetric quasigeoid model 2017 that incorporates nationwide airborne gravimetry

    NASA Astrophysics Data System (ADS)

    McCubbine, J. C.; Amos, M. J.; Tontini, F. C.; Smith, E.; Winefied, R.; Stagpoole, V.; Featherstone, W. E.

    2017-12-01

    A one arc-minute resolution gravimetric quasigeoid model has been computed for New Zealand, covering the region 25°S -60°S and 160°E -170°W . It was calculated by Wong and Gore modified Stokes integration using the remove-compute-restore technique with the EIGEN-6C4 global gravity model as the reference field. The gridded gravity data used for the computation consisted of 40,677 land gravity observations, satellite altimetry-derived marine gravity anomalies, historical shipborne marine gravity observations and, importantly, approximately one million new airborne gravity observations. The airborne data were collected with the specific intention of reinforcing the shortcomings of the existing data in areas of rough topography inaccessible to land gravimetry and in coastal areas where shipborne gravimetry cannot be collected and altimeter-derived gravity anomalies are generally poor. The new quasigeoid has a nominal precision of ± 48 mm on comparison with GPS-levelling data, which is approximately 14 mm less than its predecessor NZGeoid09.

  3. Long-term airborne contamination studied by attic dust in an industrial area: Ajka, Hungary

    NASA Astrophysics Data System (ADS)

    Völgyesi, P.; Jordan, G.; Szabo, Cs.

    2012-04-01

    Heavy industrial activities such as mining, metal industry, coal fired power plants have produced large amount of by-products and wide-spread pollution, particularly in the period of centrally dictated economy after WWII, in Hungary. Several studies suggest that significant amount of these pollutants have been deposited in the urban environment. Nowadays, more than half of the world's population is living in urban areas and people spend almost 80% of their lives indoors in developed countries increasing human health risk due to contamination present in urban dwellings. Attic dust sampling was applied to determine the long-term airborne contamination load in the industrial town of Ajka (Hungary). There has been a high industrial activity in Ajka since the end of the 19th century. In addition to aluminum and alumina industry, coal mining, coal fired power plant and glass industry sites, generated numerous waste heaps which act as multi-contamination sources in the area. In October 2010 the Ajka red mud tailings pond failed and caused an accidental regional contamination of international significance. The major objective of this research was to study and map the spatial distribution of heavy metal contamination in airborne attic dust samples. At 27 sampling sites 30 attic dust samples were collected. Sampling strategy followed a grid-based stratified random sampling design. In each cell a house for attic dust sample collection was selected that was located the closest to a randomly generated point in the grid cell. The project area covers a 8x8 grid of 1x1 km cells with a total area of 64 km2. In order to represent long-term industrial pollution, houses with attics kept intact for at least 30-40 years were selected for sampling. Sampling included the collection of background samples remotely placed from the industrialized urban area. The concentration of the major and toxic elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, and As, Ba, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Se, Sn

  4. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  5. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  6. Validating MODIS above-cloud aerosol optical depth retrieved from "color ratio" algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors

    NASA Astrophysics Data System (ADS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rosenheimer, Michal; Spurr, Rob

    2016-10-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the "color ratio" method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about -10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.

  7. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  8. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the

  9. The Effect of Pitch, Roll, and Yaw on Airborne Gravity Observations of the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Kanney, J.; Youngman, M.

    2017-12-01

    Aircraft turbulence can wreak havoc on the gravity measurementby beam-style gravimeters. Prior studies have confirmed the correlation of poor quality airborne gravity data collection to amplified aircraft motion. Motion in the aircraft is the combined effect of the airframe design, the autopilot and its performance, and the weather/wind regime. NOAA's National Geodetic Survey has launched the Gravity for the Redefinition of the American Vertical Datum project (GRAV-D) to provide the foundation for a new national vertical datum by 2022. This project requires collecting airborne gravity data covering the entire country and its holdings. The motion of the aircraft employed in this project is of prime importance because we use a beam-style gravimeter mounted on a gyro-stabilized platform to align the sensor to a time-averaged local vertical. Aircraft turbulence will tend to drive the platform off-level, allowing horizontal forces to map into the vertical gravity measurement. Recently, the GRAV-D project has experimented with two new factors in airborne gravity data collection. The first aspect is the use of the Aurora optionally piloted Centaur aircraft. This aircraft can be flown either with or without a pilot, but the autopilot is specifically designed to be very accurate. Incorporated into the much smaller frame of this aircraft is a new gravimeter developed by Micro-g LaCoste, called the Turnkey Airborne Gravimeter System 7 (TAGS7). This smaller, lighter instrument also has a new design whereby the beam is held fixed in an electromagnetic force field. The result of this new configuration is notably improved data quality in wind conditions higher than can be tolerated by our current system. So, which caused the improvement, the aircraft motion or the new meter? This study will start to tease apart these two effects with recently collected survey data. Specifically, we will compare the motion profile of the Centaur aircraft with other aircraft in the GRAV-D portfolio

  10. Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Ryder, Claire; Estellés, Victor; Segura, Sara; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Tsekeri, Alexandra; Smith, Helen; Ulanowski, Zbigniew; O'Sullivan, Debbie; Brooke, Jennifer; Pradhan, Yaswant; Buxmann, Joelle

    2018-04-01

    In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.

  11. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  12. LESSONS LEARNED REGARDING THE USE OF AN IMPINGER FOR COLLECTING AIRBORNE BACTERIA DURING A BIOSOLIDS APPLICATION FIELD STUDY

    EPA Science Inventory

    The National Risk Management Research Laboratory (NRMRL) of the USEPA has performed laboratory wind tunnel studies as well as large field studies to evaluate specific bioaerosol components (bacteria, fungi, endotoxin, β-d glucan) that may be associated with various practices for ...

  13. BOREAS RSS-12 Airborne Tracking Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Lobitz, Brad; Spanner, Michael; Wrigley, Robert

    2000-01-01

    The BOREAS RSS-12 team collected both ground and airborne sunphotometer measurements for use in characterizing the aerosol optical properties of the atmosphere during the BOREAS data collection activities. These measurements are to be used to: 1) measure the magnitude and variability of the aerosol optical depth in both time and space; 2) determine the optical properties of the boreal aerosols; and 3) atmospherically correct remotely sensed data acquired during BOREAS. This data set contains airborne tracking sunphotometer data that were acquired from the C-130 aircraft during its flights over the BOREAS study areas. The data cover selected days and times from May to September 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  15. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  16. A comparison of forest height prediction from FIA field measurement and LiDAR data via spatial models

    Treesearch

    Yuzhen Li

    2009-01-01

    Previous studies have shown a high correspondence between tree height measurements acquired from airborne LiDAR and that those measured using conventional field techniques. Though these results are very promising, most of the studies were conducted over small experimental areas and tree height was measured carefully or using expensive instruments in the field, which is...

  17. Identification of invasive and expansive plant species based on airborne hyperspectral and ALS data

    NASA Astrophysics Data System (ADS)

    Szporak-Wasilewska, Sylwia; Kuc, Gabriela; Jóźwiak, Jacek; Demarchi, Luca; Chormański, Jarosław; Marcinkowska-Ochtyra, Adriana; Ochtyra, Adrian; Jarocińska, Anna; Sabat, Anita; Zagajewski, Bogdan; Tokarska-Guzik, Barbara; Bzdęga, Katarzyna; Pasierbiński, Andrzej; Fojcik, Barbara; Jędrzejczyk-Korycińska, Monika; Kopeć, Dominik; Wylazłowska, Justyna; Woziwoda, Beata; Michalska-Hejduk, Dorota; Halladin-Dąbrowska, Anna

    2017-04-01

    The aim of Natura 2000 network is to ensure the long term survival of most valuable and threatened species and habitats in Europe. The encroachment of invasive alien and expansive native plant species is among the most essential threat that can cause significant damage to protected habitats and their biodiversity. The phenomenon requires comprehensive and efficient repeatable solutions that can be applied to various areas in order to assess the impact on habitats. The aim of this study is to investigate of the issue of invasive and expansive plant species as they affect protected areas at a larger scale of Natura 2000 network in Poland. In order to determine the scale of the problem we have been developing methods of identification of invasive and expansive species and then detecting their occurrence and mapping their distribution in selected protected areas within Natura 2000 network using airborne hyperspectral and airborne laser scanning data. The aerial platform used consists of hyperspectral HySpex scanner (451 bands in VNIR and SWIR), Airborne Laser Scanner (FWF) Riegl Lite Mapper and RGB camera. It allowed to obtain simultaneous 1 meter resolution hyperspectral image, 0.1 m resolution orthophotomaps and point cloud data acquired with 7 points/m2. Airborne images were acquired three times per year during growing season to account for plant seasonal change (in May/June, July/August and September/October 2016). The hyperspectral images were radiometrically, geometrically and atmospherically corrected. Atmospheric correction was performed and validated using ASD FieldSpec 4 measurements. ALS point cloud data were used to generate several different topographic, vegetation and intensity products with 1 m spatial resolution. Acquired data (both hyperspectral and ALS) were used to test different classification methods including Mixture Tuned Matched Filtering (MTMF), Spectral Angle Mapper (SAM), Random Forest (RF), Support Vector Machines (SVM), among others

  18. Airborne sound transmission loss characteristics of woodframe construction

    Treesearch

    Fred F. Rudder

    1985-01-01

    This report summarizes the available data on the airborne sound transmission loss properties of wood-frame construction and evaluates the methods for predicting the airborne sound transmission loss. The first part of the report comprises a summary of sound transmission loss data for wood-frame interior walls and floor-ceiling construction. Data bases describing the...

  19. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  20. Estuarine Salinity Mapping From Airborne Radiometry

    NASA Astrophysics Data System (ADS)

    Walker, J. P.; Gao, Y.; Cook, P. L. M.; Ye, N.

    2016-12-01

    Estuaries are critical ecosystems providing both ecological habitat and human amenity including boating and recreational fishing. Salinity gradients, caused by the mixing of fresh and salt water, exert an overwhelming control on estuarine ecology and biogeochemistry as well as being a key tracer for model calibration. At present, salinity monitoring within estuaries typically uses point measurements or underway boat-based methods, which makes sensing of localised phenomena such as upwelling of saline bottom water difficult. This study has pioneered the use of airborne radiometry (passive microwave) sensing as a new method to remotely quantify estuarine salinity, allowing rapid production of high resolution surface salinity maps. The airborne radiometry mapping was conducted for the Gippsland Lakes, the largest estuary in Australia, in February, July, October and November of 2015, using the Polarimetric L-band Microwave Radiometer (PLMR). Salinity was retrieved from the brightness temperature collected by PLMR with results validated against boat sampling conducted concurrently with each flight. Results showed that the retrieval accuracy of the radiative transfer model was better than 5 ppt for most flights. The spatial, temporal and seasonal variations of salinity observed in this study are also analysed and discussed.

  1. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    NASA Astrophysics Data System (ADS)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the

  2. Airborne pollen and suicide mortality in Tokyo, 2001-2011.

    PubMed

    Stickley, Andrew; Sheng Ng, Chris Fook; Konishi, Shoko; Koyanagi, Ai; Watanabe, Chiho

    2017-05-01

    Prior research has indicated that pollen might be linked to suicide mortality although the few studies that have been undertaken to date have produced conflicting findings and been limited to Western settings. This study examined the association between the level of airborne pollen and suicide mortality in Tokyo, Japan in the period from 2001 to 2011. The daily number of suicide deaths was obtained from the Japanese Ministry of Health, Labour and Welfare, with pollen data being obtained from the Tokyo Metropolitan Institute of Public Health. A time-stratified case-crossover study was performed to examine the association between different levels of pollen concentration and suicide mortality. During the study period there were 5185 male and 2332 female suicides in the pollen season (February to April). For men there was no association between airborne pollen and suicide mortality. For women, compared to when there was no airborne pollen, the same-day (lag 0) pollen level of 30 to <100 grains per cm 2 was associated with an approximately 50% increase in the odds for suicide (e.g. 30 to <50 grains per cm 2 : odds ratio 1.574, 95% confidence interval 1.076-2.303, p=0.020). The estimates remained fairly stable after adjusting for air pollutants and after varying the cut-points that defined the pollen levels. Our results indicate that pollen is associated with female suicide mortality in Tokyo. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  4. Calibration Of Airborne Visible/IR Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.

    1990-01-01

    Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.

  5. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  6. Asthmatic responses to airborne acid aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any,more » were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.« less

  7. DC-8 Airborne Laboratory in flight during research mission - view from above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The DC-8 Airborne Science Laboratroy is shown flying above a solid layer of clouds. The aircraft was transferred from the Ames Research Center to the Dryden Flight Research Center in late 1997. Over the past several years, it has undertaken a wide range of research in such fields as archeology, ecology, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, and other fields. In this photo, it is shown flying over a bank of clouds. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  8. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    NASA Astrophysics Data System (ADS)

    He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.

    2010-12-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool

  9. The magnetic field structure in high-mass star formation regions

    NASA Technical Reports Server (NTRS)

    Davidson, Jacqueline A.; Schleuning, D.; Dotson, J. L.; Dowell, C. Darren; Hildebrand, Roger H.

    1995-01-01

    We present a preliminary analysis of far-IR polarimetric observations, which were made to study the magnetic field structure in the high-mass star formation regions of M42, NGC2024, and W3. These observations were made from the Kuiper Airborne Observatory (KAO), using the University of Chicago far-IR polarimeter, Stokes.

  10. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  11. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    Indoor environmental quality has significant effects on human health. It is reported that adults in China spent about 80%-90% of their time in indoor environments, and a number of physically handicapped people such as the elderly and infants stayed in the room even up to 95% of their total time. Moreover, air conditioner in indoor environments becomes more and more important in modern life, and a closed circulatory system can be formed among human body, room and air conditioner in indoor environments with an air conditioner, which can make the microbes such as bacteria, viruses and mold indoors propagate rapidly or abundantly. Therefore, studies on the microbial pollution in the air at places such as mall, classroom, office, and family home have been the research hotspots recently. In the present study, the community composition and concentration variation pattern of airborne fungi were investigated from Nov 2009 to Oct 2010 in 31 family homes with children in Beijing. Results showed that 24 generas of airborne fungi in family homes were identified from 225 isolates. The most common fungi were Penicillium, Cladosporium, Aspergillus, Alternaria and Phoma. The frequency of Penicillium, Cladosporium, Aspergillus, Alternaria and Monilia was much higher than those of other fungal genera in family home, and the frequency of Penicillium was more than 90%. As for the concentration percentage, airborne fungi with most high concentrations were Penicillium, Cladosporium, Aspergillus, No-sporing, and Alternaria, and totally accounted for more than 65.0%. Penicillium contributed to 32.2% of the total airborne fungi in family homes. In the 31 family homes selected, the fungal concentration in the air ranged from 62-3 498 CFU x m(-3), and the mean concentration was 837 CFU x m(-3). Seasonal variation pattern of total fungi, and Cladosporium, Aspergillus, Alternaria concentration was consistent, and the highest fungal concentration was observed in summer, followed by spring and

  12. Flow analysis of airborne particles in a hospital operating room

    NASA Astrophysics Data System (ADS)

    Faeghi, Shiva; Lennerts, Kunibert

    2016-06-01

    Preventing airborne infections during a surgery has been always an important issue to deliver effective and high quality medical care to the patient. One of the important sources of infection is particles that are distributed through airborne routes. Factors influencing infection rates caused by airborne particles, among others, are efficient ventilation and the arrangement of surgical facilities inside the operating room. The paper studies the ventilation airflow pattern in an operating room in a hospital located in Tehran, Iran, and seeks to find the efficient configurations with respect to the ventilation system and layout of facilities. This study uses computational fluid dynamics (CFD) and investigates the effects of different inflow velocities for inlets, two pressurization scenarios (equal and excess pressure) and two arrangements of surgical facilities in room while the door is completely open. The results show that system does not perform adequately when the door is open in the operating room under the current conditions, and excess pressure adjustments should be employed to achieve efficient results. The findings of this research can be discussed in the context of design and controlling of the ventilation facilities of operating rooms.

  13. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  14. Decreasing airborne contamination levels in high-risk hospital areas using a novel mobile air-treatment unit.

    PubMed

    Bergeron, V; Reboux, G; Poirot, J L; Laudinet, N

    2007-10-01

    To evaluate the performance of a new mobile air-treatment unit that uses nonthermal-plasma reactors for lowering the airborne bioburden in critical hospital environments and reducing the risk of nosocomial infection due to opportunistic airborne pathogens, such as Aspergillus fumigatus. Tests were conducted in 2 different high-risk hospital areas: an operating room under simulated conditions and rooms hosting patients in a pediatric hematology ward. Operating room testing provided performance evaluations of removal rates for airborne contamination (ie, particles larger than 0.5 microm) and overall lowering of the airborne bioburden (ie, colony-forming units of total mesophilic flora and fungal flora per cubic meter of air). In the hematology service, opportunistic and nonpathogenic airborne fungal levels in a patient's room equipped with an air-treatment unit were compared to those in a control room. In an operating room with a volume of 118 m(3), the time required to lower the concentration of airborne particles larger than 0.5 microm by 90% was decreased from 12 minutes with the existing high-efficiency particulate air filtration system to less than 2 minutes with the units tested, with a 2-log decrease in the steady-state levels of such particles (P<.01). Concurrently, total airborne mesophilic flora concentrations dropped by a factor of 2, and the concentrations of fungal species were reduced to undetectable levels (P<.01). The 12-day test period in the hematology ward revealed a significant reduction in airborne fungus levels (P<.01), with average reductions of 75% for opportunistic species and 82% for nonpathogenic species. Our data indicate that the mobile, nonthermal-plasma air treatment unit tested in this study can rapidly reduce the levels of airborne particles and significantly lower the airborne bioburden in high-risk hospital environments.

  15. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    PubMed

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  16. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    PubMed Central

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  17. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  18. Pig Farmers’ Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes

    PubMed Central

    Vestergaard, Ditte V.; Holst, Gitte J.; Basinas, Ioannis; Elholm, Grethe; Schlünssen, Vivi; Linneberg, Allan; Šantl-Temkiv, Tina; Finster, Kai; Sigsgaard, Torben; Marshall, Ian P. G.

    2018-01-01

    Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building’s occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers’ homes, and from suburban homes (267 samples in total) and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3–V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers’ homes than suburban homes (Wilcoxon rank sum test P < 0.05). Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers’ homes than in suburban homes (ALDEx2 with P < 0.05), including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, and Lactobacillus. Pig stables had significantly lower airborne bacterial diversity than farmers’ homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables themselves do not appear

  19. Pig Farmers' Homes Harbor More Diverse Airborne Bacterial Communities Than Pig Stables or Suburban Homes.

    PubMed

    Vestergaard, Ditte V; Holst, Gitte J; Basinas, Ioannis; Elholm, Grethe; Schlünssen, Vivi; Linneberg, Allan; Šantl-Temkiv, Tina; Finster, Kai; Sigsgaard, Torben; Marshall, Ian P G

    2018-01-01

    Airborne bacterial communities are subject to conditions ill-suited to microbial activity and growth. In spite of this, air is an important transfer medium for bacteria, with the bacteria in indoor air having potentially major consequences for the health of a building's occupants. A major example is the decreased diversity and altered composition of indoor airborne microbial communities as a proposed explanation for the increasing prevalence of asthma and allergies worldwide. Previous research has shown that living on a farm confers protection against development of asthma and allergies, with airborne bacteria suggested as playing a role in this protective effect. However, the composition of this beneficial microbial community has still not been identified. We sampled settled airborne dust using a passive dust sampler from Danish pig stables, associated farmers' homes, and from suburban homes (267 samples in total) and carried out quantitative PCR measurements of bacterial abundance and MiSeq sequencing of the V3-V4 region of bacterial 16S rRNA genes found in these samples. Airborne bacteria had a greater diversity and were significantly more abundant in pig stables and farmers' homes than suburban homes (Wilcoxon rank sum test P < 0.05). Moreover, bacterial taxa previously suggested to contribute to a protective effect had significantly higher relative and absolute abundance in pig stables and farmers' homes than in suburban homes (ALDEx2 with P < 0.05), including Firmicutes, Peptostreptococcaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, Ruminiclostridium , and Lactobacillus . Pig stables had significantly lower airborne bacterial diversity than farmers' homes, and there was no discernable direct transfer of airborne bacteria from stable to home. This study identifies differences in indoor airborne bacterial communities that may be an important component of this putative protective effect, while showing that pig stables themselves do not appear to

  20. Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house.

    PubMed

    Hao, Xiaoxia; Cao, Wei; Li, Baoming; Zhang, Qiang; Wang, Chaoyuan; Ge, Liangpeng

    2014-04-01

    Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29-6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 x 10(5) and 2.82 x 10(3) colony-forming units (CFU) m(-3) after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying. There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing