Sample records for airborne light detection

  1. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    NASA Astrophysics Data System (ADS)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  2. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    PubMed Central

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-01-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration. PMID:26522006

  3. Airborne lidar wind detection at 2 μm

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.

    1995-06-01

    NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.

  4. Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory.

    Treesearch

    Stephen E. Reutebuch; Hans-Erik Andersen; Robert J. McGaughey

    2005-01-01

    Airborne laser scanning of forests has been shown to provide accurate terrain models and, at the same time, estimates of multiple resource inventory variables through active sensing of three-dimensional (3D) forest vegetation. Brief overviews of airborne laser scanning technology [often referred to as "light detection and ranging" (LIDAR)] and research...

  5. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases.

    PubMed

    Welch, David; Buonanno, Manuela; Grilj, Veljko; Shuryak, Igor; Crickmore, Connor; Bigelow, Alan W; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2018-02-09

    Airborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin. This is because, due to its strong absorbance in biological materials, far-UVC light cannot penetrate even the outer (non living) layers of human skin or eye; however, because bacteria and viruses are of micrometer or smaller dimensions, far-UVC can penetrate and inactivate them. We show for the first time that far-UVC efficiently inactivates airborne aerosolized viruses, with a very low dose of 2 mJ/cm 2 of 222-nm light inactivating >95% of aerosolized H1N1 influenza virus. Continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airborne-mediated microbial diseases.

  6. Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria

    NASA Astrophysics Data System (ADS)

    Dougall, Laura R.; Anderson, John G.; Timoshkin, Igor V.; MacGregor, Scott J.; Maclean, Michelle

    2018-02-01

    Airborne transmission of infectious organisms is a considerable concern within the healthcare environment. A number of novel methods for `whole room' decontamination, including antimicrobial 405 nm blue light, are being developed. To date, research has focused on its effects against surface-deposited contamination; however, it is important to also establish its efficacy against airborne bacteria. This study demonstrates evidence of the dose-response kinetics of airborne bacterial contamination when exposed to 405 nm light and compares bacterial susceptibility when exposed in three different media: air, liquid and surfaces. Bacterial aerosols of Staphylococcus epidermidis, generated using a 6-Jet Collison nebulizer, were introduced into an aerosol suspension chamber. Aerosolized bacteria were exposed to increasing doses of 405 nm light, and air samples were extracted from the chamber using a BioSampler liquid impinger, with viability analysed using pour-plate culture. Results have demonstrated successful aerosol inactivation, with a 99.1% reduction achieved with a 30 minute exposure to high irradiance (22 mWcm-2) 405 nm light (P=0.001). Comparison to liquid and surface exposures proved bacteria to be 3-4 times more susceptible to 405 nm light inactivation when in aerosol form. Overall, results have provided fundamental evidence of the susceptibility of bacterial aerosols to antimicrobial 405 nm light treatment, which offers benefits in terms of increased safety for human exposure, and eradication of microbes regardless of antibiotic resistance. Such benefits provide advantages for a number of applications including `whole room' environmental decontamination, in which reducing levels of airborne bacteria should reduce the number of infections arising from airborne contamination.

  7. A framework for automatic feature extraction from airborne light detection and ranging data

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua

    Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly

  8. Materiel requirements for airborne minefield detection system

    NASA Astrophysics Data System (ADS)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  9. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  10. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  11. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  12. Airborne multispectral detection of regrowth cotton fields

    NASA Astrophysics Data System (ADS)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  13. Airborne sensors for detecting large marine debris at sea.

    PubMed

    Veenstra, Timothy S; Churnside, James H

    2012-01-01

    The human eye is an excellent, general-purpose airborne sensor for detecting marine debris larger than 10 cm on or near the surface of the water. Coupled with the human brain, it can adjust for light conditions and sea-surface roughness, track persistence, differentiate color and texture, detect change in movement, and combine all of the available information to detect and identify marine debris. Matching this performance with computers and sensors is difficult at best. However, there are distinct advantages over the human eye and brain that sensors and computers can offer such as the ability to use finer spectral resolution, to work outside the spectral range of human vision, to control the illumination, to process the information in ways unavailable to the human vision system, to provide a more objective and reproducible result, to operate from unmanned aircraft, and to provide a permanent record that can be used for later analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. LAN MAP: An Innovative Airborne Light at Night Mapping Project

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.

    2013-01-01

    Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.

  15. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    NASA Astrophysics Data System (ADS)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  16. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  17. Airborne Polarized Lidar Detection of Scattering Layers in the Ocean

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne

    2001-08-01

    A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.

  18. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  19. Target detection method by airborne and spaceborne images fusion based on past images

    NASA Astrophysics Data System (ADS)

    Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng

    2017-11-01

    To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.

  20. Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms.

    PubMed

    Adell, Elisa; Moset, Verónica; Zhao, Yang; Jiménez-Belenguer, Ana; Cerisuelo, Alba; Cambra-López, María

    2014-01-01

    Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.

  1. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  2. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Yungel, J. K.

    1983-01-01

    The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.

  3. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  4. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  5. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Airborne longwave infrared LWIR) hyperspectral imagery was utilized to detect and identify gaseous chemical release plumes at sites in sourthern Texzas. The Airborne Hysperspectral Imager (AHI), developed by the University of Hawaii was flown over a petrochemical facility and a ...

  6. Airborne hyperspectral and LiDAR data integration for weed detection

    NASA Astrophysics Data System (ADS)

    Tamás, János; Lehoczky, Éva; Fehér, János; Fórián, Tünde; Nagy, Attila; Bozsik, Éva; Gálya, Bernadett; Riczu, Péter

    2014-05-01

    Agriculture uses 70% of global available fresh water. However, ca. 50-70% of water used by cultivated plants, the rest of water transpirated by the weeds. Thus, to define the distribution of weeds is very important in precision agriculture and horticulture as well. To survey weeds on larger fields by traditional methods is often time consuming. Remote sensing instruments are useful to detect weeds in larger area. In our investigation a 3D airborne laser scanner (RIEGL LMS-Q680i) was used in agricultural field near Sopron to scouting weeds. Beside the airborne LiDAR, hyperspectral imaging system (AISA DUAL) and air photos helped to investigate weed coverage. The LiDAR survey was carried out at early April, 2012, before sprouting of cultivated plants. Thus, there could be detected emerging of weeds and direction of cultivation. However airborne LiDAR system was ideal to detect weeds, identification of weeds at species level was infeasible. Higher point density LiDAR - Terrestrial laser scanning - systems are appropriate to distinguish weed species. Based on the results, laser scanner is an effective tool to scouting of weeds. Appropriate weed detection and mapping systems could contribute to elaborate water and herbicide saving management technique. This publication was supported by the OTKA project K 105789.

  7. Airborne infrared-hyperspectral mapping for detection of gaseous and solid targets

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2010-04-01

    Airborne hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. The Telops Hyper-Cam is a rugged and compact infrared hyperspectral imager based on the Fourier-transform technology. It has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. The technology offers fine spectral resolution (up to 0.25 cm-1) and high accuracy radiometric calibration (better than 1 degree Celsius). Furthermore, the spectral resolution, spatial resolution, swath width, integration time and sensitivity are all flexible parameters that can be selected and optimized to best address the specific objectives of each mission. The system performance and a few measurements have been presented in previous publications. This paper focuses on analyzing additional measurements in which detection of fertilizer and Freon gas has been demonstrated.

  8. Free-surface microfluidics for detection of airborne explosives

    NASA Astrophysics Data System (ADS)

    Meinhart, Carl; Piorek, Brian; Banerjee, Sanjoy; Lee, Seung Joon; Moskovits, Martin

    2008-11-01

    A novel microfluidic, remote-sensing, chemical detection platform has been developed for real-time sensing of airborne agents. The key enabling technology is a newly developed concept termed Free-Surface Fluidics (FSF), where one or more fluidic surfaces of a microchannel flow are confined by surface tension and exposed to the surrounding atmosphere. The result is a unique open channel flow environment that is driven by pressure through surface tension, and not subject to body forces, such as gravity. Evaporation and flow rates are controlled by microchannel geometry, surface chemistry and precisely-controlled temperature profiles. The free-surface fluidic architecture is combined with Surface-Enhanced Raman Spectroscopy (SERS) to allow for real-time profiling of atmospheric species and detection of airborne agents. The aggregation of SERS nanoparticles is controlled using microfluidics, to obtain dimer nanoparticle clusters at known streamwise positions in the microchannel. These dimers form SERS hot-spots, which amplify the Raman signal by 8 -- 10 orders of magnitude. Results indicate that explosive agents such as DNT, TNT, RDX, TATP and picric acid in the surrounding atmosphere can be readily detected by the SERS system. Due to the amplification of the SERS system, explosive molecules with concentrations of parts per trillion can be detected, even in the presence of interferent molecules having six orders of magnitude higher concentration.

  9. Airborne Detection and Tracking of Geologic Leakage Sites

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor

    2014-11-01

    Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.

  10. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles.

    PubMed

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-04-22

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30-500 nm, number concentration in range of 5 × 10²-10⁷ /cm³. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles.

  11. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  12. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  13. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  14. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-08-18

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.

  15. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring

    PubMed Central

    Allison, Robert S.; Johnston, Joshua M.; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  16. Light Detection and Ranging-Based Terrain Navigation: A Concept Exploration

    NASA Technical Reports Server (NTRS)

    Campbell, Jacob; UijtdeHaag, Maarten; vanGraas, Frank; Young, Steve

    2003-01-01

    This paper discusses the use of Airborne Light Detection And Ranging (LiDAR) equipment for terrain navigation. Airborne LiDAR is a relatively new technology used primarily by the geo-spatial mapping community to produce highly accurate and dense terrain elevation maps. In this paper, the term LiDAR refers to a scanning laser ranger rigidly mounted to an aircraft, as opposed to an integrated sensor system that consists of a scanning laser ranger integrated with Global Positioning System (GPS) and Inertial Measurement Unit (IMU) data. Data from the laser range scanner and IMU will be integrated with a terrain database to estimate the aircraft position and data from the laser range scanner will be integrated with GPS to estimate the aircraft attitude. LiDAR data was collected using NASA Dryden's DC-8 flying laboratory in Reno, NV and was used to test the proposed terrain navigation system. The results of LiDAR-based terrain navigation shown in this paper indicate that airborne LiDAR is a viable technology enabler for fully autonomous aircraft navigation. The navigation performance is highly dependent on the quality of the terrain databases used for positioning and therefore high-resolution (2 m post-spacing) data was used as the terrain reference.

  17. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  18. A Miniature Aerosol Sensor for Detecting Polydisperse Airborne Ultrafine Particles

    PubMed Central

    Zhang, Chao; Wang, Dingqu; Zhu, Rong; Yang, Wenming; Jiang, Peng

    2017-01-01

    Counting and sizing of polydisperse airborne nanoparticles have attracted most attentions owing to increasing widespread presence of airborne engineered nanoparticles or ultrafine particles. Here we report a miniature aerosol sensor to detect particle size distribution of polydisperse ultrafine particles based on ion diffusion charging and electrical detection. The aerosol sensor comprises a couple of planar electrodes printed on two circuit boards assembled in parallel, where charging, precipitation and measurement sections are integrated into one chip, which can detect aerosol particle size in of 30–500 nm, number concentration in range of 5 × 102–5 × 107 /cm3. The average relative errors of the measured aerosol number concentration and the particle size are estimated to be 12.2% and 13.5% respectively. A novel measurement scheme is proposed to actualize a real-time detection of polydisperse particles by successively modulating the measurement voltage and deducing the particle size distribution through a smart data fusion algorithm. The effectiveness of the aerosol sensor is experimentally demonstrated via measurements of polystyrene latex (PSL) aerosol and nucleic acid aerosol, as well as sodium chloride aerosol particles. PMID:28441740

  19. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay

    PubMed Central

    Myatt, Theodore A; Johnston, Sebastian L; Rudnick, Stephen; Milton, Donald K

    2003-01-01

    Background Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. Methods We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis. Results We obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. Conclusion The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles. PMID:12525263

  20. Detecting Phycocynanin-Pigmented Microbes in Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.

    2008-01-01

    A recently invented method of measuring concentrations of phycocynanin-pigmented algae and bacteria in water is based on measurement of the spectrum of reflected sunlight. When present in sufficiently high concentrations, phycocynanin-pigmented microorganisms can be hazardous to the health of humans who use, and of animals that depend on, an affected body of water. The present method is intended to satisfy a need for a rapid, convenient means of detecting hazardous concentrations of phycocynanin-pigmented microorganisms. Rapid detection will speed up the issuance of public health warnings and performance of corrective actions. The method involves the measurement of light reflected from a body of water in at least two, but preferably five wavelength bands. In one version of the method, the five wavelength bands are bands 1, 3, 4, 5, and 7 of the Thematic Mapper (TM) multispectral imaging instrument aboard the Landsat-7 satellite (see table). In principle, other wavelength bands indicative of phycocynanin could be used alternatively or in addition to these five. Moreover, although the method was originally intended specifically for processing Landsat- 7 TM data, it is equally applicable to processing of data from other satellite-borne instruments or from airborne, hand-held, buoy-mounted, tower-mounted, or otherwise mounted instruments that measure radiances of light reflected from water in the wavelength bands of interest.

  1. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  2. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    NASA Technical Reports Server (NTRS)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  3. Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin

    2015-02-01

    A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.

  4. Detection of airborne bacteria with disposable bio-precipitator and NanoGene assay.

    PubMed

    Lee, Eun-Hee; Chua, Beelee; Son, Ahjeong

    2016-09-15

    We demonstrated the detection of airborne bacteria by a disposable bio-precipitator and NanoGene assay combination. The bio-precipitator employed micro corona discharge at 1960V and at less than 35µA to simultaneously charge, capture and lyse the airborne bacteria. This was enabled by the use of a 15μL liquid anode. Using a custom exposure setup, the target bacterium Bacillus subtilis in the atomization solution was rendered airborne. After exposure, the liquid anode in the bio-precipitator was subsequently measured for DNA concentration and analyzed with the NanoGene assay. As the bacterial concentration increased from 0.0104 to 42.6 g-DCW/L the released DNA concentration in the liquid anode increased from 2.10±1.57 to 75.00±7.15ng/μL. More importantly, the NanoGene assay showed an increase in normalized fluorescence (gene quantification) from 18.03±1.18 to 49.71±1.82 as the bacterial concentrations increased from 0.0104 to 42.6 g-DCW/L. the electrical power consumption of the bio-precipitator was shown to be amenable for portable use. In addition, the detection limit of bio-precipitator and NanoGene assay combination in the context of environmentally relevant levels of airborne bacteria was also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Detecting inertial effects with airborne matter-wave interferometry

    PubMed Central

    Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.

    2011-01-01

    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658

  6. Generation and detection of broadband airborne ultrasound with cellular polymer ferroelectrets

    NASA Astrophysics Data System (ADS)

    Dansachmüller, Mario; Minev, Ivan; Bartu, Petr; Graz, Ingrid; Arnold, Nikita; Bauer, Siegfried

    2007-11-01

    Cellular polypropylene ferroelectrets are useful for broadband airborne ultrasound generation and detection up to the fundamental thickness extension resonance. The authors show that the coupling of ferroelectrets to air alters the electromechanical resonance of the foam. In an acoustical cavity, Fabry-Perot resonances are obtained, which is in excellent agreement with the plane wave model calculations. For material assessment in airborne ultrasound applications, a figure of merit is used based on the electromechanical coupling factor and acoustical impedance of the material. The good coupling of ferroelectrets to gases results from the small acoustical impedance of the material.

  7. Detecting Airborne Mercury by Use of Gold Nanowires

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Soler, Jessica; Mung, Nosang; Nix, Megan

    2009-01-01

    Like the palladium chloride (PdCl2) films described in the immediately preceding article, gold nanowire sensors have been found to be useful for detecting airborne elemental mercury at concentrations on the order of parts per billion (ppb). Also like the PdCl2 films, gold nanowire sensors can be regenerated under conditions much milder than those necessary for regeneration of gold films that have been used as airborne-Hg sensors. The interest in nanowire sensors in general is prompted by the expectation that nanowires of a given material covering a given surface may exhibit greater sensitivity than does a film of the same material because nanowires have a greater surface area. In preparation for experiments to demonstrate this sensor concept, sensors were fabricated by depositing gold nanowires, variously, on microhotplate or microarray sensor substrates. In the experiments, the electrical resistances were measured while the sensors were exposed to air at a temperature of 25 C and relative humidity of about 30 percent containing mercury at various concentrations from 2 to 70 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury at ppb concentrations in room-temperature air and can be regenerated by exposure to clean flowing air at temperatures <40 C.

  8. Utilization of an Airborne Plant Chlorophyll Imaging System for Detection of Septic System Malfunction

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Carter, Gregory A.

    2001-01-01

    Malfunctioning, or leaking, sewer systems increase the supply of water and nutrients to surface vegetation. Excess nutrients and harmful bacteria in the effluent pollute ground water and local water bodies and are dangerous to humans and the aquatic ecosystems. An airborne multispectral plant chlorophyll imaging system (PCIS) was used to identify growth patterns in the vegetation covering onsite and public sewer systems. The objective was to evaluate overall performance of the PCIS as well as to determine the best operational configuration for this application. The imaging system was flown in a light aircraft over selected locations Mobile County, Alabama. Calibration panels were used to help characterize instrument performance. Results demonstrated that the PCIS performed well and was capable of detecting septic leakage patterns from altitudes as high as 915 m. From 915 m, 6 of 18 sites were suspected to have sewage leakage. Subsequent ground inspections confirmed leakage on 3 of the 6 sites. From 610 m, 3 of 8 known leakage sites were detected. Tree cover and shadows near residential structures prevented detection of several known malfunctioning systems. Also some leakages known to occur in clear areas were not detected. False detections occurred in areas characterized by surface water drainage problems or recent excavation.

  9. Sampling and detection of airborne influenza virus towards point-of-care applications.

    PubMed

    Ladhani, Laila; Pardon, Gaspard; Meeuws, Hanne; van Wesenbeeck, Liesbeth; Schmidt, Kristiane; Stuyver, Lieven; van der Wijngaart, Wouter

    2017-01-01

    Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 μL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.

  10. Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery

    Treesearch

    Eben N. Broadbent; Angélica M. Almeyda Zambrano; Gregory P. Asner; Christopher B. Field; Brad E. Rosenheim; Ty Kennedy-Bowdoin; David E. Knapp; David Burke; Christian Giardina; Susan Cordell

    2014-01-01

    We develop and validate a high-resolution three-dimensional model of light and air temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in structure but maintaining a consistent species composition. Our microclimate models integrate high-resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral...

  11. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment.

    PubMed

    Brasel, T L; Martin, J M; Carriker, C G; Wilson, S C; Straus, D C

    2005-11-01

    The existence of airborne mycotoxins in mold-contaminated buildings has long been hypothesized to be a potential occupant health risk. However, little work has been done to demonstrate the presence of these compounds in such environments. The presence of airborne macrocyclic trichothecene mycotoxins in indoor environments with known Stachybotrys chartarum contamination was therefore investigated. In seven buildings, air was collected using a high-volume liquid impaction bioaerosol sampler (SpinCon PAS 450-10) under static or disturbed conditions. An additional building was sampled using an Andersen GPS-1 PUF sampler modified to separate and collect particulates smaller than conidia. Four control buildings (i.e., no detectable S. chartarum growth or history of water damage) and outdoor air were also tested. Samples were analyzed using a macrocyclic trichothecene-specific enzyme-linked immunosorbent assay (ELISA). ELISA specificity was tested using phosphate-buffered saline extracts of the fungal genera Aspergillus, Chaetomium, Cladosporium, Fusarium, Memnoniella, Penicillium, Rhizopus, and Trichoderma, five Stachybotrys strains, and the indoor air allergens Can f 1, Der p 1, and Fel d 1. For test buildings, the results showed that detectable toxin concentrations increased with the sampling time and short periods of air disturbance. Trichothecene values ranged from <10 to >1,300 pg/m3 of sampled air. The control environments demonstrated statistically significantly (P < 0.001) lower levels of airborne trichothecenes. ELISA specificity experiments demonstrated a high specificity for the trichothecene-producing strain of S. chartarum. Our data indicate that airborne macrocyclic trichothecenes can exist in Stachybotrys-contaminated buildings, and this should be taken into consideration in future indoor air quality investigations.

  12. Airborne detection of diffuse carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    1999-01-01

    We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at ~2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at ~3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels ~1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of ~250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.We report the first airborne detection of CO2 degassing from diffuse volcanic sources. Airborne measurement of diffuse CO2 degassing offers a rapid alternative for monitoring CO2 emission rates at Mammoth Mountain. CO2 concentrations, temperatures, and barometric pressures were measured at approximately 2,500 GPS-referenced locations during a one-hour, eleven-orbit survey of air around Mammoth Mountain at approximately 3 km from the summit and altitudes of 2,895-3,657 m. A volcanic CO2 anomaly 4-5 km across with CO2 levels approximately 1 ppm above background was revealed downwind of tree-kill areas. It contained a 1-km core with concentrations exceeding background by >3 ppm. Emission rates of approximately 250 t d-1 are indicated. Orographic winds may play a key role in transporting the diffusely degassed CO2 upslope to elevations where it is lofted into the regional wind system.

  13. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  14. Airborne optical detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1972-01-01

    Airborne measurements were made over controlled oil-spill test sites to evaluate various techniques, utilizing reflected sunlight, for detecting oil on water. The results of these measurements show that (1) maximum contrast between oil and water is in the UV and red portions of the spectrum; (2) minimum contrast is in the blue-green; (3) differential polarization appears to be a very promising technique; (4) no characteristic absorption bands, which would permit one oil to be distinguished from another, were discovered in the spectral regions measured; (5) sky conditions greatly influence the contrast between oil and water; and (6) highest contrast was achieved under overcast sky conditions.

  15. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data

    Treesearch

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina

    2013-01-01

    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  16. Airborne megawatt class free-electron laser for defense and security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the farmore » infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.« less

  17. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  18. Airborne lidar measurements of the soufriere eruption of 17 april 1979.

    PubMed

    Fuller, W H; Sokol, S; Hunt, W H

    1982-06-04

    At the time of the Soufriere, St. Vincent, volcanic eruption of 17 April 1979, a NASA P-3 aircraft with an uplooking lidar (light detection and ranging) system onboard was airborne 130 kilometers east of the island. Lidar measurements of the fresh volcanic ash were made approximately 2 hours after the eruption, 120 kilometers to the northeast and east. On the evening of 18 April, the airborne lidar, on a southerly flight track, detected significant amounts of stratospheric material in layers at 16, 17, 18, and 19.5 kilometers. These data, and measurements to the north on 19 April, indicate that the volcanic plume penetrated the stratosphere to an altitude of about 20 kilometers and moved south during the first 48 hours after the eruption.

  19. Airborne lidar measurements of the Soufriere eruption of 17 April 1979

    NASA Technical Reports Server (NTRS)

    Fuller, W. H., Jr.; Sokol, S.; Hunt, W. H.

    1982-01-01

    At the time of the Soufriere, St. Vincent, volcanic eruption of April 17, 1979, a NASA P-3 aircraft with an uplooking lidar (light detection and ranging) system onboard was airborne 130 kilometers east of the island. Lidar measurements of the fresh volcanic ash were made approximately 2 hours after the eruption, 120 kilometers to the northeast and east. On the evening of April 18, the airborne lidar, on a southerly flight track, detected significant amounts of stratospheric material in layers at 16, 17, 18, and 19.5 kilometers. These data, and measurements to the north on April 19, indicate that the volcanic plume penetrated the stratosphere to an altitude of about 20 kilometers and moved south during the first 48 hours after the eruption.

  20. Sampling and mapping forest volume and biomass using airborne LIDARs

    Treesearch

    Erik Naesset; Terje Gobakken; Ross Nelson

    2009-01-01

    Since around 1995, extensive research efforts have been made in Scandinavia to develop airborne Light Detection and Ranging (LIDAR) as an operational tool for wall-to-wall mapping of forest stands for planning purposes. Scanning LIDAR has the ability to capture the entire three-dimensional structure of forest canopies and has therefore proved to be a very efficient...

  1. Goaf water detection using the grounded electrical source airborne transient electromagnetic system

    NASA Astrophysics Data System (ADS)

    Li, D.; Ji, Y.; Guan, S.; Wu, Y.; Wang, A.

    2017-12-01

    To detect the geoelectric characteristic of goaf water, the grounded electrical source airborne transient electromagnetic (GREATEM) system (developed by Jilin University, China) is applied to the goaf water detection since its advantages of considerable prospecting depth, lateral resolution and detection efficiency. For the test of GREATEM system in goaf water detection, an experimental survey was conducted at Qinshui coal mine (Shanxi province, China). After data acquisition, noise reduction and inversion, the resistivity profiles of survey area is presented. The results highly agree the investigation information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute (China), conforming that the GREATEM system is an effective technique for resistivity detection of goaf water.

  2. Mountain pine beetle detection and monitoring: evaluation of airborne imagery

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Bone, C.; Dragicevic, S.; Ettya, A.; Northrup, J.; Reich, R.

    2007-10-01

    The processing and evaluation of digital airborne imagery for detection, monitoring and modeling of mountain pine beetle (MPB) infestations is evaluated. The most efficient and reliable remote sensing strategy for identification and mapping of infestation stages ("current" to "red" to "grey" attack) of MPB in lodgepole pine forests is determined for the most practical and cost effective procedures. This research was planned to specifically enhance knowledge by determining the remote sensing imaging systems and analytical procedures that optimize resource management for this critical forest health problem. Within the context of this study, airborne remote sensing of forest environments for forest health determinations (MPB) is most suitably undertaken using multispectral digitally converted imagery (aerial photography) at scales of 1:8000 for early detection of current MPB attack and 1:16000 for mapping and sequential monitoring of red and grey attack. Digital conversion should be undertaken at 10 to 16 microns for B&W multispectral imagery and 16 to 24 microns for colour and colour infrared imagery. From an "operational" perspective, the use of twin mapping-cameras with colour and B&W or colour infrared film will provide the best approximation of multispectral digital imagery with near comparable performance in a competitive private sector context (open bidding).

  3. Building damage assessment using airborne lidar

    NASA Astrophysics Data System (ADS)

    Axel, Colin; van Aardt, Jan

    2017-10-01

    The assessment of building damage following a natural disaster is a crucial step in determining the impact of the event itself and gauging reconstruction needs. Automatic methods for deriving damage maps from remotely sensed data are preferred, since they are regarded as being rapid and objective. We propose an algorithm for performing unsupervised building segmentation and damage assessment using airborne light detection and ranging (lidar) data. Local surface properties, including normal vectors and curvature, were used along with region growing to segment individual buildings in lidar point clouds. Damaged building candidates were identified based on rooftop inclination angle, and then damage was assessed using planarity and point height metrics. Validation of the building segmentation and damage assessment techniques were performed using airborne lidar data collected after the Haiti earthquake of 2010. Building segmentation and damage assessment accuracies of 93.8% and 78.9%, respectively, were obtained using lidar point clouds and expert damage assessments of 1953 buildings in heavily damaged regions. We believe this research presents an indication of the utility of airborne lidar remote sensing for increasing the efficiency and speed at which emergency response operations are performed.

  4. Progress in Development of an Airborne Turbulence Detection System

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    Aircraft encounters with turbulence are the leading cause of in-flight injuries (Tyrvanas 2003) and have occasionally resulted in passenger and crew fatalities. Most of these injuries are caused by sudden and unexpected encounters with severe turbulence in and around convective activity (Kaplan et al 2005). To alleviate this problem, the Turbulence Prediction and Warning Systems (TPAWS) element of NASA s Aviation Safety program has investigated technologies to detect and warn of hazardous in-flight turbulence. This effort has required the numerical modeling of atmospheric convection: 1) for characterizing convectively induced turbulence (CIT) environments, 2) for defining turbulence hazard metrics, and 3) as a means of providing realistic three-dimensional data sets that can be used to test and evaluate turbulence detection sensors. The data sets are being made available to industry and the FAA for certification of future airborne turbulence-detection systems (ATDS) with warning capability. Early in the TPAWS project, a radar-based ATDS was installed and flight tested on NASA s research aircraft, a B-757. This ATDS utilized new algorithms and hazard metrics that were developed for use with existing airborne predictive windshear radars, thus avoiding the installation of new hardware. This system was designed to detect and warn of hazardous CIT even in regions with weak radar reflectivity (i.e. 5-15 dBz). Results from an initial flight test of the ATDS were discussed in Hamilton and Proctor (2002a; 2002b). In companion papers (Proctor et al 2002a; 2002b), a numerical simulation of the most significant encounter from that flight test was presented. Since the presentation of these papers a second flight test has been conducted providing additional cases for examination. In this paper, we will present results from NASA s flight test and a numerical model simulation of a turbulence environment encountered on 30 April 2002. Progress leading towards FAA certification of

  5. Saliency Detection on Light Field.

    PubMed

    Li, Nianyi; Ye, Jinwei; Ji, Yu; Ling, Haibin; Yu, Jingyi

    2017-08-01

    Existing saliency detection approaches use images as inputs and are sensitive to foreground/background similarities, complex background textures, and occlusions. We explore the problem of using light fields as input for saliency detection. Our technique is enabled by the availability of commercial plenoptic cameras that capture the light field of a scene in a single shot. We show that the unique refocusing capability of light fields provides useful focusness, depths, and objectness cues. We further develop a new saliency detection algorithm tailored for light fields. To validate our approach, we acquire a light field database of a range of indoor and outdoor scenes and generate the ground truth saliency map. Experiments show that our saliency detection scheme can robustly handle challenging scenarios such as similar foreground and background, cluttered background, complex occlusions, etc., and achieve high accuracy and robustness.

  6. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  7. Assessment of airborne bacteria in selected occupational environments in Quezon City, Philippines.

    PubMed

    Rendon, Rhoshela Vi C; Garcia, Bea Clarise B; Vital, Pierangeli G

    2017-05-04

    Exposure to bioaerosols has been associated with health deterioration among workers in several occupational environments. This highlights the need to study the microbiological quality of air of workplaces as no such study has been conducted yet in the Philippines. To detect and characterize the culturable mesophilic airborne bacteria in selected occupational environments we used passive sedimentation technique. It was observed that the number of colony-forming units was highest in junk shop, followed by the light railway transit station and last the office. By contrast, the bacterial composition was similar in all sites: Gram-positive cocci > Gram-positive bacilli > Gram-negative bacteria. Staphylococcus aureus and Bacillus spp. were also detected in all sites. These findings suggest that the presence of airborne bacteria may be a potential health hazard in urban occupational environments in the Philippines.

  8. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.

  9. Molecular detection of airborne Coccidioides in Tucson, Arizona

    USGS Publications Warehouse

    Chow, Nancy A.; Griffin, Dale W.; Barker, Bridget M.; Loparev, Vladimir N.; Litvintseva, Anastasia P.

    2016-01-01

    Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detectingCoccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.

  10. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  11. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    EPA Science Inventory

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  12. Windshear avoidance - Requirements and proposed system for airborne lidar detection

    NASA Technical Reports Server (NTRS)

    Targ, Russell; Bowles, Roland L.

    1988-01-01

    A generalized windshear hazard index is derived from considerations of wind conditions and an aircraft's present and potential altitude. Based on a systems approach to the windshear threat, lidar appears to be a viable methodology for windshear detection and avoidance, even in conditions of moderately heavy precipitation. The airborne CO2 and Ho:YAG lidar windshear detection systems analyzed can each give the pilot information about the line-of-sight component of windshear threat from his present position to a region extending 1 to 3 km in front of the aircraft. This constitutes a warning time of 15 to 45 s. The technology necessary to design, build and test such a brassboard 10.6-micron CO2 lidar is at hand.

  13. Biosensor for remote monitoring of airborne toxins

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Bassi, Amarjeet S.; Singh, Shikha; Macleod, Roslyn

    1999-12-01

    The rapid detection of toxic contaminants released into the air by chemical processing facilities is a high priority for many manufacturers. This paper describes a novel biosensor for the remote monitoring of toxic sites. The proposed biosensor is a measurement system that employs immobilized luminescent Vibrio fisheri bacteria to detect airborne contaminants. The presence of toxic chemicals will lead to a detectable decrease in the intensity of light produced by the bacteria. Both cellular and environmental factors control the bioluminescence of these bacteria. Important design factors are the appropriate cell growth media, environmental toxicity, oxygen and cell concentrations. The luminescent bacteria are immobilized on polyvinyl alcohol (PVA) gels and placed inside a specially constructed, miniature flow cell which houses a transducer, power source, and transmitter to convert the light signal information into radio frequencies that are picked up by a receiver at a remote location. The biosensor prototype is designed to function either as a single unit mounted on an exploratory robot or numerous units spatially distributed throughout a contaminated environment for remote sensing applications.

  14. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  15. Monitoring forests at the speed of light.

    Treesearch

    Valerie Rapp

    2005-01-01

    Airborne laser scanning is a technology developed in the last 15 years. Commonly referred to as light detection and ranging, or LIDAR, these systems can map ground with up to a 6-inch elevation accuracy in open, flat terrain. LIDAR is being rapidly adopted for topographical and flood-plain mapping and the detection of earthquake faults hidden by vegetation, among other...

  16. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  17. Failure detection of liquid cooled electronics in sealed packages. [in airborne information management system

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1991-01-01

    The theory and experimental verification of a method of detecting fluid-mass loss, expansion-chamber pressure loss, or excessive vapor build-up in NASA's Airborne Information Management System (AIMS) are presented. The primary purpose of this leak-detection method is to detect the fluid-mass loss before the volume of vapor on the liquid side causes a temperature-critical part to be out of the liquid. The method detects the initial leak after the first 2.5 pct of the liquid mass has been lost, and it can be used for detecting subsequent situations including the leaking of air into the liquid chamber and the subsequent vapor build-up.

  18. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst.

    PubMed

    Neubauer, N; Kasper, G

    2015-01-01

    A previously described method for detecting catalyst particles in workplace air((1,2)) was applied to airborne carbon nanotubes (CNT). It infers the CNT concentration indirectly from the catalytic activity of metallic nanoparticles embedded as part of the CNT production process. Essentially, one samples airborne CNT onto a filter enclosed in a tiny chemical reactor and then initiates a gas-phase catalytic reaction on the sample. The change in concentration of one of the reactants is then determined by an IR sensor as measure of activity. The method requires a one-point calibration with a CNT sample of known mass. The suitability of the method was tested with nickel containing (25 or 38% by weight), well-characterized multi-walled CNT aerosols generated freshly in the lab for each experiment. Two chemical reactions were investigated, of which the oxidation of CO to CO2 at 470°C was found to be more effective, because nearly 100% of the nickel was exposed at that temperature by burning off the carbon, giving a linear relationship between CO conversion and nickel mass. Based on the investigated aerosols, a lower detection limit of 1 μg of sampled nickel was estimated. This translates into sampling times ranging from minutes to about one working day, depending on airborne CNT concentration and catalyst content, as well as sampling flow rate. The time for the subsequent chemical analysis is on the order of minutes, regardless of the time required to accumulate the sample and can be done on site.

  19. Traffic Light Detection Using Conic Section Geometry

    NASA Astrophysics Data System (ADS)

    Hosseinyalmdary, S.; Yilmaz, A.

    2016-06-01

    Traffic lights detection and their state recognition is a crucial task that autonomous vehicles must reliably fulfill. Despite scientific endeavors, it still is an open problem due to the variations of traffic lights and their perception in image form. Unlike previous studies, this paper investigates the use of inaccurate and publicly available GIS databases such as OpenStreetMap. In addition, we are the first to exploit conic section geometry to improve the shape cue of the traffic lights in images. Conic section also enables us to estimate the pose of the traffic lights with respect to the camera. Our approach can detect multiple traffic lights in the scene, it also is able to detect the traffic lights in the absence of prior knowledge, and detect the traffics lights as far as 70 meters. The proposed approach has been evaluated for different scenarios and the results show that the use of stereo cameras significantly improves the accuracy of the traffic lights detection and pose estimation.

  20. A rigorous assessment of tree height measurements obtained using airborne LIDAR and conventional field methods.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    Tree height is an important variable in forest inventory programs but is typically time-consuming and costly to measure in the field using conventional techniques. Airborne light detection and ranging (LIDAR) provides individual tree height measurements that are highly correlated with field-derived measurements, but the imprecision of conventional field techniques does...

  1. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, L. J.; Bogue, Rodney K.

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration, the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar (light detection and ranging) for Advanced In-Flight Measurements was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This report describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges by lidar on board the NASA Airborne Science DC-8 (McDonnell Douglas Corporation, Long Beach, California) airplane during two flights. The examples in this report compare lidar-predicted mountain waves and wave-induced turbulence to subsequent airplane-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  2. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  3. Efficiency of Airborne Sample Analysis Platform (ASAP) bioaerosol sampler for pathogen detection

    PubMed Central

    Sharma, Anurag; Clark, Elizabeth; McGlothlin, James D.; Mittal, Suresh K.

    2015-01-01

    The threat of bioterrorism and pandemics has highlighted the urgency for rapid and reliable bioaerosol detection in different environments. Safeguarding against such threats requires continuous sampling of the ambient air for pathogen detection. In this study we investigated the efficacy of the Airborne Sample Analysis Platform (ASAP) 2800 bioaerosol sampler to collect representative samples of air and identify specific viruses suspended as bioaerosols. To test this concept, we aerosolized an innocuous replication-defective bovine adenovirus serotype 3 (BAdV3) in a controlled laboratory environment. The ASAP efficiently trapped the surrogate virus at 5 × 103 plaque-forming units (p.f.u.) [2 × 105 genome copy equivalent] concentrations or more resulting in the successful detection of the virus using quantitative PCR. These results support the further development of ASAP for bioaerosol pathogen detection. PMID:26074900

  4. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  5. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  6. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  7. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  8. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s.

  10. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  11. A multisensor system for airborne surveillance of oil pollution

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Ketchal, R.; Catoe, C.

    1973-01-01

    The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.

  12. Airborne pipeline leak detection: UV or IR?

    NASA Astrophysics Data System (ADS)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  13. Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar

    Treesearch

    Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...

  14. An integrated GPS-FID system for airborne gas detection of pipeline right-of-ways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehue, H.L.; Sommer, P.

    1996-12-31

    Pipeline integrity, safety and environmental concerns are of prime importance in the Canadian natural gas industry. Terramatic Technology Inc. (TTI) has developed an integrated GPS/FID gas detection system known as TTI-AirTrac{trademark} for use in airborne gas detection (AGD) along pipeline right-of-ways. The Flame Ionization Detector (FID), which has traditionally been used to monitor air quality for gas plants and refineries, has been integrated with the Global Positioning System (GPS) via a 486 DX2-50 computer and specialized open architecture data acquisition software. The purpose of this technology marriage is to be able to continuously monitor air quality during airborne pipeline inspection.more » Event tagging from visual surveillance is used to determine an explanation of any delta line deviations (DLD). These deviations are an indication of hydrocarbon gases present in the plume that the aircraft has passed through. The role of the GPS system is to provide mapping information and coordinate data for ground inspections. The ground based inspection using a handheld multi gas detector will confirm whether or not a leak exists.« less

  15. Comparison of different detection methods for citrus greening disease based on airborne multispectral and hyperspectral imagery

    USDA-ARS?s Scientific Manuscript database

    Citrus greening or Huanglongbing (HLB) is a devastating disease spread in many citrus groves since first found in 2005 in Florida. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were taken to detect citrus greening infected trees in 2007 and 2010. Ground truthi...

  16. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1975-01-01

    An airborne laser fluorosensor for the detection of oil derivatives on water has been tested. The system transmits 337 nm UV radiation at the rate of 100 pulses per second and monitors fluorescent emission at 540 nm. Daylight flight tests were made over the areas of controlled oil spills and additional reconnaissance flights were made over a 50 km stretch of the Delaware River to establish ambient oil baseline in the river. The results show that the device is capable of monitoring and mapping out extremely low level oil on water which cannot be identified by ordinary photographic method.

  17. Pilot study to detect airborne Mycobacterium tuberculosis exposure in a South African public healthcare facility outpatient clinic.

    PubMed

    Matuka, O; Singh, T S; Bryce, E; Yassi, A; Kgasha, O; Zungu, M; Kyaw, K; Malotle, M; Renton, K; O'Hara, L

    2015-03-01

    Airborne transmission of Mycobacterium tuberculosis remains an occupational health hazard, particularly in crowded and resource-limited healthcare settings. To quantify airborne M. tuberculosis in a busy outpatient clinic in Gauteng, South Africa. Stationary air samples and samples from healthcare workers (HCWs) were collected in the polyclinic and administrative block. Quantitative real-time polymerase chain reaction (PCR) was used to detect airborne M. tuberculosis. Walkthrough observations and work practices of HCWs were also recorded. In total, M. tuberculosis was detected in 11 of 49 (22.4%) samples: nine of 25 (36%) HCW samples and two of 24 (8.3%) stationary air samples. Samples from five of 10 medical officers (50%) and three of 13 nurses (23%) were positive. Repeat measurements on different days showed variable results. Most of the HCWs (87.5%) with positive results had been in contact with coughing patients and had not worn respiratory masks despite training. The use of air sampling coupled with quantitative real-time PCR is a simple and effective tool to demonstrate the risk of M. tuberculosis exposure. The findings provide an impetus for hospital management to strengthen infection prevention and control measures for tuberculosis. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  19. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  20. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  1. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew T. Hudak; Lee A. Vierling; Veraldo Liesenberg; Samuel P. C. e Carvalho; Luiz C. E. Rodriguez

    2016-01-01

    Improving management practices in industrial forest plantations may increase production efficiencies, thereby reducing pressures on native tropical forests for meeting global pulp needs. This study aims to predict stem volume (V) in plantations of fast-growing Eucalyptus hybrid clones located in southeast Brazil using field plot and airborne Light Detection...

  2. Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems

    USGS Publications Warehouse

    Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.

    2009-01-01

    We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.

  3. Real-time detection of airborne fluorescent bioparticles in Antarctica

    NASA Astrophysics Data System (ADS)

    Crawford, Ian; Gallagher, Martin W.; Bower, Keith N.; Choularton, Thomas W.; Flynn, Michael J.; Ruske, Simon; Listowski, Constantino; Brough, Neil; Lachlan-Cope, Thomas; Fleming, Zoë L.; Foot, Virginia E.; Stanley, Warren R.

    2017-12-01

    We demonstrate, for the first time, continuous real-time observations of airborne bio-fluorescent aerosols recorded at the British Antarctic Survey's Halley VI Research Station, located on the Brunt Ice Shelf close to the Weddell Sea coast (lat 75°34'59'' S, long 26°10'0'' W) during Antarctic summer, 2015. As part of the NERC MAC (Microphysics of Antarctic Clouds) aircraft aerosol cloud interaction project, observations with a real-time ultraviolet-light-induced fluorescence (UV-LIF) spectrometer were conducted to quantify airborne biological containing particle concentrations along with dust particles as a function of wind speed and direction over a 3-week period. Significant, intermittent enhancements of both non- and bio-fluorescent particles were observed to varying degrees in very specific wind directions and during strong wind events. Analysis of the particle UV-induced emission spectra, particle sizes and shapes recorded during these events suggest the majority of particles were likely a subset of dust with weak fluorescence emission responses. A minor fraction, however, were likely primary biological particles that were very strongly fluorescent, with a subset identified as likely being pollen based on comparison with laboratory data obtained using the same instrument. A strong correlation of bio-fluorescent particles with wind speed was observed in some, but not all, periods. Interestingly, the fraction of fluorescent particles to total particle concentration also increased significantly with wind speed during these events. The enhancement in concentrations of these particles could be interpreted as due to resuspension from the local ice surface but more likely due to emissions from distal sources within Antarctica as well as intercontinental transport. Likely distal sources identified by back trajectory analyses and dispersion modelling were the coastal ice margin zones in Halley Bay consisting of bird colonies with likely associated high bacterial

  4. Airborne Windshear Detection and Warning Systems. Fifth and Final Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E. (Compiler)

    1994-01-01

    The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.

  5. An approach to evaluating reactive airborne wind shear systems

    NASA Technical Reports Server (NTRS)

    Gibson, Joseph P., Jr.

    1992-01-01

    An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.

  6. Airborne Laser Remote Sensor for Oil Detection and Classification : Engineering Requirements and Technical Considerations Relevant to a Performance Specification

    DOT National Transportation Integrated Search

    1975-08-01

    This report outlines the engineering requirements for an Airborne Laser Remote Sensor for Oil Detection and Classification System. Detailed engineering requirements are given for the major units of the system. Technical considerations pertinent to a ...

  7. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Llamazares, Álvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción

    2014-04-01

    Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.

  8. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  9. 14 CFR 25.1403 - Wing icing detection lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wing icing detection lights. 25.1403... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1403 Wing icing detection lights. Unless operations at night in known or forecast icing conditions are prohibited by an...

  10. 14 CFR 25.1403 - Wing icing detection lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wing icing detection lights. 25.1403... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1403 Wing icing detection lights. Unless operations at night in known or forecast icing conditions are prohibited by an...

  11. 14 CFR 25.1403 - Wing icing detection lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wing icing detection lights. 25.1403... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1403 Wing icing detection lights. Unless operations at night in known or forecast icing conditions are prohibited by an...

  12. 14 CFR 25.1403 - Wing icing detection lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wing icing detection lights. 25.1403... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1403 Wing icing detection lights. Unless operations at night in known or forecast icing conditions are prohibited by an...

  13. [Phylogenetic diversity of airborne microbes in Qingdao downtown in autumn].

    PubMed

    Wang, Lin; Song, Zhi-wen; Xu, Ai-ling; Wu, Deng-deng; Xia, Yan

    2015-04-01

    To determine the community structure of airborne microbes in Qingdao downtown in autumn, the airborne bacteria and fungi were collected by the KC-6120 air sampler and analyzed using the 16S/18S rDNA gene clone library method. Phylogenetic analysis of airborne bacteria showed that they belonged to six major phylogenetic groups: Proteobacteria (78. 8%), Firmicutes (14.6%), Actinobacteria (4.0%), Planctomycetes (1.3%), Cyanobacteria (0.7%), and Deinococcus-Thermus (0.7%). The dominant genera of airborne bacteria included Acinetobacter (39.7%), Staphylococcus (11.3%), Sphingomonas (8.6%), Paracoccus (6.0%) and Massilia (5.3%). The main types of airborne fungi were Ascomycota (97.5%) and Basidiomycota (2.5%). Dominant genera of airborne fungi included Pyrenophora (76.5%), Xylaria (13.6%) and Exophiala (2.5%). The pathogens or conditioned pathogens, such as Acinetobacter, Staphylococcus, or Sphingomonas were detected in the airborne bacteria, whereas certain kinds of fungi, such as P. graminea, X. hypoxylon and Zasmidium angulare that could cause a variety of crop diseases were also detected.

  14. Determination of 3,6-dinitrobenzo[e]pyrene in surface soil and airborne particles by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Hasei, Tomohiro; Watanabe, Tetsushi; Hirayama, Teruhisa

    2006-11-24

    We developed a sensitive analytical method and an efficient clean-up method to quantify 3,6-dinitrobenzo[e]pyrene (3,6-DNBeP) in surface soil and airborne particles. After purification using a silica gel column and two reversed-phase columns, 3,6-DNBeP was reduced to 3,6-diaminobenzo[e]pyrene by a catalyst column and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector. 3,6-DNBeP was detected in all of the soil samples and airborne particles examined. The concentration of 3,6-DNBeP in surface soil and airborne particles was determined in the ranges of 347-5007 pg/g of soil and 137-1238 fg/m3, respectively.

  15. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. On the impact of a refined stochastic model for airborne LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig

    2016-09-01

    Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.

  17. Simulation of sea surface wave influence on small target detection with airborne laser depth sounding.

    PubMed

    Tulldahl, H Michael; Steinvall, K Ove

    2004-04-20

    A theoretical model for simulation of airborne depth-sounding lidar is presented with the purpose of analyzing the influence from water surface waves on the ability to detect 1-m3 targets placed on the sea bottom. Although water clarity is the main limitation, sea surface waves can significantly affect the detectability. The detection probability for a target at a 9-m depth can be above 90% at 1-m/s wind and below 80% at 6-m/s wind for the same water clarity. The simulation model contains both numerical and analytical components. Simulated data are compared with measured data and give realistic results for bottom depths between 3 and 10 m.

  18. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    PubMed Central

    Alacid, Beatriz

    2018-01-01

    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716

  19. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic.

    PubMed

    Grayson, Stephanie A; Griffiths, Pamela S; Perez, Miriam K; Piedimonte, Giovanni

    2017-05-01

    Respiratory syncytial virus (RSV) is the most common cause of respiratory illness in infants and young children, but this virus is also capable of re-infecting adults throughout life. Universal precautions to prevent its transmission consist of gown and glove use, but masks and goggles are not routinely required because it is believed that RSV is unlikely to be transmitted by the airborne route. Our hypothesis was that RSV is present in respirable-size particles aerosolized by patients seen in a pediatric acute care setting. RSV-laden particles were captured using stationary 2-stage bioaerosol cyclone samplers. Aerosol particles were separated into three size fractions (<1, 1-4.1, and ≥4.1 μm) and were tested for the presence of RSV RNA by real-time PCR. Samplers were set 152 cm ("upper") and 102 cm ("lower") above the floor in each of two examination rooms. Of the total, 554 samples collected over 48 days, only 13 (or 2.3%) were positive for RSV. More than 90% of the RSV-laden aerosol particles were in the ≥4.1 μm size range, which typically settle to the ground within minutes, whereas only one sample (or 8%) was positive for particles in the 1-4.1 μm respirable size range. Our data indicate that airborne RSV-laden particles can be detected in pediatric outpatient clinics during the epidemic peak. However, RSV airborne transmission is highly inefficient. Thus, the logistical and financial implications of mandating the use of masks and goggles to prevent RSV spread seem unwarranted in this setting. Pediatr Pulmonol. 2017;52:684-688. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Portable light detection system for the blind

    NASA Technical Reports Server (NTRS)

    Wilber, R. L.; Carpenter, B. L.

    1973-01-01

    System can be used to detect "ready" light on automatic cooking device, to tell if lights are on for visitors, or to tell whether it is daylight or dark outside. Device is actuated like flashlight. Light impinging on photo cell activates transistor which energizes buzzer to indicate presence of light.

  1. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.

    PubMed

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  2. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    PubMed Central

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation. PMID:29487857

  3. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi

  4. Detection of Coxiella burnetii DNA in Inhalable Airborne Dust Samples from Goat Farms after Mandatory Culling

    PubMed Central

    Hogerwerf, Lenny; Still, Kelly; Heederik, Dick; van Rotterdam, Bart; de Bruin, Arnout; Nielen, Mirjam; Wouters, Inge M.

    2012-01-01

    Coxiella burnetii is thought to infect humans primarily via airborne transmission. However, air measurements of C. burnetii are sparse. We detected C. burnetii DNA in inhalable and PM10 (particulate matter with an aerodynamic size of 10 μm or less) dust samples collected at three affected goat farms, demonstrating that low levels of C. burnetii DNA are present in inhalable size fractions. PMID:22582072

  5. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  6. Characterization of airborne bacteria at an underground subway station.

    PubMed

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per; Blatny, Janet Martha

    2012-03-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.

  7. Characterization of Airborne Bacteria at an Underground Subway Station

    PubMed Central

    Dybwad, Marius; Granum, Per Einar; Bruheim, Per

    2012-01-01

    The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers. PMID:22247150

  8. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera, California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J.-B.; Rabine, D. L.; Bufton, J. L.

    1999-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based GPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous GPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  9. Using Airborne Laser Altimetry to Detect Topographic Change at Long Valley Caldera California

    NASA Technical Reports Server (NTRS)

    Hofton, M. A.; Minster, J.-B.; Ridgway, J. R.; Williams, N. P.; Blair, J. B.; Rabine, D. L.; Bufton, J. L.

    2000-01-01

    The topography of the Long Valley caldera, California, was sampled using airborne laser altimetry in 1993, 1995, and 1997 to test the feasibility of using airborne laser altimetry for monitoring deformation of volcanic origin. Results show the laser altimeters are able to resolve subtle topographic features such as a gradual slope and to detect small transient changes in lake elevation. Crossover and repeat pass analyses of laser tracks indicate decimeter-level vertical precision is obtained over flat and low-sloped terrain for altimeter systems performing waveform digitization. Comparisons with complementary, ground-based CPS data at a site close to Bishop airport indicate that the laser and GPS-derived elevations agree to within the error inherent in the measurement and that horizontal locations agree to within the radius of the laser footprint. A comparison of the data at two sites, one where no change and the other where the maximum amount of vertical uplift is expected, indicates approximately 10 cm of relative uplift occurred 1993-1997, in line with predictions from continuous CPS measurements in the region. Extensive terrain mapping flights during the 1995 and 1997 missions demonstrate some of the unique abilities of laser altimetry; the straightforward creation of high resolution, high accuracy digital elevation models of overflown terrain, and the ability to determine ground topography in the presence of significant ground cover such as dense tree canopies. These capabilities make laser altimetry an attractive technique for quantifying topographic change of volcanic origin, especially in forested regions of the world where other remote sensing instruments have difficulty detecting the underlying topography.

  10. Rapid topographic and bathymetric reconnaissance using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Axelsson, Andreas

    2010-10-01

    Today airborne LiDAR (Light Detection And Ranging) systems has gained acceptance as a powerful tool to rapidly collect invaluable information to assess the impact from either natural disasters, such as hurricanes, earthquakes and flooding, or human inflicted disasters such as terrorist/enemy activities. Where satellite based imagery provides an excellent tool to remotely detect changes in the environment, the LiDAR systems, being active remote sensors, provide an unsurpassed method to quantify these changes. The strength of the active laser based systems is especially evident in areas covered by occluding vegetation or in the shallow coastal zone as the laser can penetrate the vegetation or water body to unveil what is below. The purpose of this paper is to address the task to survey complex areas with help of the state-of-the-art airborne LiDAR systems and also discuss scenarios where the method is used today and where it may be used tomorrow. Regardless if it is a post-hurricane survey or a preparation stage for a landing operation in unchartered waters, it is today possible to collect, process and present a dense 3D model of the area of interest within just a few hours from deployment. By utilizing the advancement in processing power and wireless network capabilities real-time presentation would be feasible.

  11. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Podolske, James; Loewenstein, Max

    1993-01-01

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.

  12. Detection of abandoned mines/caves using airborne LWIR hyperspectral data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Roettiger, Kurt A.

    2012-09-01

    The detection of underground structures, both natural and man-made, continues to be an important requirement in both the military/intelligence and civil communities. There are estimates that as many as 70,000 abandoned mines/caves exist across the nation. These mines represent significant hazards to public health and safety, and they are of concern to Government agencies at the local, state, and federal levels. NASA is interested in the detection of caves on Mars and the Moon in anticipation of future manned space missions. And, the military/ intelligence community is interested in detecting caves, mines, and other underground structures that may be used to conceal the production of weapons of mass destruction or to harbor insurgents or other persons of interest by the terrorists. Locating these mines/caves scattered over millions of square miles is an enormous task, and limited resources necessitate the development of an efficient and effective broad area search strategy using remote sensing technologies. This paper describes an internally-funded research project of The Aerospace Corporation (Aerospace) to assess the feasibility of using airborne hyperspectral data to detect abandoned cave/mine entrances in a broad-area search application. In this research, we have demonstrated the potential utility of using thermal contrast between the cave/mine entrance and the ambient environment as a discriminatory signature. We have also demonstrated the use of a water vapor absorption line at12.55 μm and a quartz absorption feature at 9.25 μm as discriminatory signatures. Further work is required to assess the broader applicability of these signatures.

  13. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins.

    PubMed

    Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner

    2006-12-01

    Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.

  14. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  15. Welding studs detection based on line structured light

    NASA Astrophysics Data System (ADS)

    Geng, Lei; Wang, Jia; Wang, Wen; Xiao, Zhitao

    2018-01-01

    The quality of welding studs is significant for installation and localization of components of car in the process of automobile general assembly. A welding stud detection method based on line structured light is proposed. Firstly, the adaptive threshold is designed to calculate the binary images. Then, the light stripes of the image are extracted after skeleton line extraction and morphological filtering. The direction vector of the main light stripe is calculated using the length of the light stripe. Finally, the gray projections along the orientation of the main light stripe and the vertical orientation of the main light stripe are computed to obtain curves of gray projection, which are used to detect the studs. Experimental results demonstrate that the error rate of proposed method is lower than 0.1%, which is applied for automobile manufacturing.

  16. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration... approved airborne weather radar equipment. (c) No person may begin a flight under IFR or night VFR...

  17. Nanoscale optical interferometry with incoherent light

    PubMed Central

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  18. Nanoscale optical interferometry with incoherent light.

    PubMed

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-02-16

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.

  19. Use of spectral vegetation indices derived from airborne hyperspectral imagery for detection of European corn borer infestation in Iowa corn plots

    EPA Science Inventory

    Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae. ...

  20. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  1. Wide-field airborne laser diode array illuminator: demonstration results

    NASA Astrophysics Data System (ADS)

    Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.

    2005-06-01

    The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.

  2. A universal airborne LiDAR approach for tropical forest carbon mapping.

    PubMed

    Asner, Gregory P; Mascaro, Joseph; Muller-Landau, Helene C; Vieilledent, Ghislain; Vaudry, Romuald; Rasamoelina, Maminiaina; Hall, Jefferson S; van Breugel, Michiel

    2012-04-01

    Airborne light detection and ranging (LiDAR) is fast turning the corner from demonstration technology to a key tool for assessing carbon stocks in tropical forests. With its ability to penetrate tropical forest canopies and detect three-dimensional forest structure, LiDAR may prove to be a major component of international strategies to measure and account for carbon emissions from and uptake by tropical forests. To date, however, basic ecological information such as height-diameter allometry and stand-level wood density have not been mechanistically incorporated into methods for mapping forest carbon at regional and global scales. A better incorporation of these structural patterns in forests may reduce the considerable time needed to calibrate airborne data with ground-based forest inventory plots, which presently necessitate exhaustive measurements of tree diameters and heights, as well as tree identifications for wood density estimation. Here, we develop a new approach that can facilitate rapid LiDAR calibration with minimal field data. Throughout four tropical regions (Panama, Peru, Madagascar, and Hawaii), we were able to predict aboveground carbon density estimated in field inventory plots using a single universal LiDAR model (r ( 2 ) = 0.80, RMSE = 27.6 Mg C ha(-1)). This model is comparable in predictive power to locally calibrated models, but relies on limited inputs of basal area and wood density information for a given region, rather than on traditional plot inventories. With this approach, we propose to radically decrease the time required to calibrate airborne LiDAR data and thus increase the output of high-resolution carbon maps, supporting tropical forest conservation and climate mitigation policy.

  3. Window flaw detection by backscatter lighting

    NASA Technical Reports Server (NTRS)

    Crockett, L. K.; Minton, F. R.

    1978-01-01

    Portable fiber-optic probe detects tiny flaws in transparent materials. Probe transmits light through surface to illuminate interior of material by backscattering off its edges. Light-sensitive contact paper records scratch pattern. Technique can be used for rapid visual checks. Flexible fiber optics are safely used in explosive or flammable areas; they present no hazard of breakage or contamination in controlled environments.

  4. A Bayesian approach to traffic light detection and mapping

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, Siavash; Yilmaz, Alper

    2017-03-01

    Automatic traffic light detection and mapping is an open research problem. The traffic lights vary in color, shape, geolocation, activation pattern, and installation which complicate their automated detection. In addition, the image of the traffic lights may be noisy, overexposed, underexposed, or occluded. In order to address this problem, we propose a Bayesian inference framework to detect and map traffic lights. In addition to the spatio-temporal consistency constraint, traffic light characteristics such as color, shape and height is shown to further improve the accuracy of the proposed approach. The proposed approach has been evaluated on two benchmark datasets and has been shown to outperform earlier studies. The results show that the precision and recall rates for the KITTI benchmark are 95.78 % and 92.95 % respectively and the precision and recall rates for the LARA benchmark are 98.66 % and 94.65 % .

  5. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  6. Modification of a Pollen Trap Design To Capture Airborne Conidia of Entomophaga maimaiga and Detection of Conidia by Quantitative PCR.

    PubMed

    Bittner, Tonya D; Hajek, Ann E; Liebhold, Andrew M; Thistle, Harold

    2017-09-01

    The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth ( Lymantria dispar ) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga , using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas. IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga , an important fungal pathogen affecting gypsy moth ( Lymantria dispar ) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions. Copyright © 2017 American Society for Microbiology.

  7. Use of airborne near-infrared LiDAR for determining channel cross-section characteristics and monitoring aquatic habitat in Pacific Northwest rivers: A preliminary analysis [Chapter 6

    Treesearch

    Russell N. Faux; John M. Buffington; M. German Whitley; Steve H. Lanigan; Brett B. Roper

    2009-01-01

    Aquatic habitat monitoring is being conducted by numerous organizations in many parts of the Pacific Northwest to document physical and biological conditions of stream reaches as part of legal- and policy-mandated environmental assessments. Remote sensing using discrete-return, near-infrared, airborne LiDAR (Light Detection and Ranging) and high-resolution digital...

  8. Detecting Lateral Motion using Light's Orbital Angular Momentum.

    PubMed

    Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting

    2015-10-23

    Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound.

  9. Ship detection based on rotation-invariant HOG descriptors for airborne infrared images

    NASA Astrophysics Data System (ADS)

    Xu, Guojing; Wang, Jinyan; Qi, Shengxiang

    2018-03-01

    Infrared thermal imagery is widely used in various kinds of aircraft because of its all-time application. Meanwhile, detecting ships from infrared images attract lots of research interests in recent years. In the case of downward-looking infrared imagery, in order to overcome the uncertainty of target imaging attitude due to the unknown position relationship between the aircraft and the target, we propose a new infrared ship detection method which integrates rotation invariant gradient direction histogram (Circle Histogram of Oriented Gradient, C-HOG) descriptors and the support vector machine (SVM) classifier. In details, the proposed method uses HOG descriptors to express the local feature of infrared images to adapt to changes in illumination and to overcome sea clutter effects. Different from traditional computation of HOG descriptor, we subdivide the image into annular spatial bins instead of rectangle sub-regions, and then Radial Gradient Transform (RGT) on the gradient is applied to achieve rotation invariant histogram information. Considering the engineering application of airborne and real-time requirements, we use SVM for training ship target and non-target background infrared sample images to discriminate real ships from false targets. Experimental results show that the proposed method has good performance in both the robustness and run-time for infrared ship target detection with different rotation angles.

  10. Traffic light detection and intersection crossing using mobile computer vision

    NASA Astrophysics Data System (ADS)

    Grewei, Lynne; Lagali, Christopher

    2017-05-01

    The solution for Intersection Detection and Crossing to support the development of blindBike an assisted biking system for the visually impaired is discussed. Traffic light detection and intersection crossing are key needs in the task of biking. These problems are tackled through the use of mobile computer vision, in the form of a mobile application on an Android phone. This research builds on previous Traffic Light detection algorithms with a focus on efficiency and compatibility on a resource-limited platform. Light detection is achieved through blob detection algorithms utilizing training data to detect patterns of Red, Green and Yellow in complex real world scenarios where multiple lights may be present. Also, issues of obscurity and scale are addressed. Safe Intersection crossing in blindBike is also discussed. This module takes a conservative "assistive" technology approach. To achieve this blindBike use's not only the Android device but, an external bike cadence Bluetooth/Ant enabled sensor. Real world testing results are given and future work is discussed.

  11. Detecting light in whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Mohageg, Makan (Inventor); Le, Thanh M. (Inventor)

    2012-01-01

    An optical device including a whispering gallery mode (WGM) optical resonator configured to support one or more whispering gallery modes; and a photodetector optically coupled to an exterior surface of the optical resonator to receive evanescent light from the optical resonator to detect light inside the optical resonator.

  12. Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR

    USGS Publications Warehouse

    Jones, Benjamin M.; Stoker, Jason M.; Gibbs, Ann E.; Grosse, Guido; Romanovsky, Vladimir E.; Douglas, Thomas A.; Kinsman, Nichole E.M.; Richmond, Bruce M.

    2013-01-01

    Increases in air, permafrost, and sea surface temperature, loss of sea ice, the potential for increased wave energy, and higher river discharge may all be interacting to escalate erosion of arctic coastal lowland landscapes. Here we use airborne light detection and ranging (LiDAR) data acquired in 2006 and 2010 to detect landscape change in a 100 km2 study area on the Beaufort Sea coastal plain of northern Alaska. We detected statistically significant change (99% confidence interval), defined as contiguous areas (>10 m2) that had changed in height by at least 0.55 m, in 0.3% of the study region. Erosional features indicative of ice-rich permafrost degradation were associated with ice-bonded coastal, river, and lake bluffs, frost mounds, ice wedges, and thermo-erosional gullies. These features accounted for about half of the area where vertical change was detected. Inferred thermo-denudation and thermo-abrasion of coastal and river bluffs likely accounted for the dominant permafrost-related degradational processes with respect to area (42%) and volume (51%). More than 300 thermokarst pits significantly subsided during the study period, likely as a result of storm surge flooding of low-lying tundra (<1.4 m asl) as well as the lasting impact of warm summers in the late-1980s and mid-1990s. Our results indicate that repeat airborne LiDAR can be used to detect landscape change in arctic coastal lowland regions at large spatial scales over sub-decadal time periods.

  13. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  14. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  15. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  16. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its

  17. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... more in passenger-carrying operations, except a helicopter operating under day VFR conditions, unless..., excluding any pilot seat, of 10 seats or more in passenger-carrying operations, under night VFR when current... approved airborne weather radar equipment. (c) No person may begin a flight under IFR or night VFR...

  18. Scene-based nonuniformity correction for airborne point target detection systems.

    PubMed

    Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping

    2017-06-26

    Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.

  19. Monitor for detecting and assessing exposure to airborne nanoparticles

    NASA Astrophysics Data System (ADS)

    Marra, Johan; Voetz, Matthias; Kiesling, Heinz-Jürgen

    2010-01-01

    An important safety aspect of the workplace environment concerns the severity of its air pollution with nanoparticles (NP; <100 nm) and ultrafine particles (UFP; <300 nm). Depending on their size and chemical nature, exposure to these particles through inhalation can be hazardous because of their intrinsic ability to deposit in the deep lung regions and the possibility to subsequently pass into the blood stream. Recommended safety measures in the nanomaterials industry are pragmatic, aiming at exposure minimization in general, and advocating continuous control by monitoring both the workplace air pollution level and the personal exposure to airborne NPs. This article describes the design and operation of the Aerasense NP monitor that enables intelligence gathering in particular with respect to airborne particles in the 10-300 nm size range. The NP monitor provides real time information about their number concentration, average size, and surface areas per unit volume of inhaled air that deposit in the various compartments of the respiratory tract. The monitor's functionality relies on electrical charging of airborne particles and subsequent measurements of the total particle charge concentration under various conditions. Information obtained with the NP monitor in a typical workplace environment has been compared with simultaneously recorded data from a Scanning Mobility Particle Sizer (SMPS) capable of measuring the particle size distribution in the 11-1086 nm size range. When the toxicological properties of the engineered and/or released particles in the workplace are known, personal exposure monitoring allows a risk assessment to be made for a worker during each workday, when the workplace-produced particles can be distinguished from other (ambient) particles.

  20. Object detectability at increased ambient lighting conditions.

    PubMed

    Pollard, Benjamin J; Chawla, Amarpreet S; Delong, David M; Hashimoto, Noriyuki; Samei, Ehsan

    2008-06-01

    Under typical dark conditions encountered in diagnostic reading rooms, a reader's pupils will contract and dilate as the visual focus intermittently shifts between the high luminance display and the darker background wall, resulting in increased visual fatigue and the degradation of diagnostic performance. A controlled increase of ambient lighting may, however, reduce the severity of these pupillary adjustments by minimizing the difference between the luminance level to which the eyes adapt while viewing an image (L(adp)) and the luminance level of diffusely reflected light from the area surrounding the display (L(s)). Although ambient lighting in reading rooms has conventionally been kept at a minimum to maintain the perceived contrast of film images, proper Digital Imaging and Communications in Medicine (DICOM) calibration of modern medical-grade liquid crystal displays can compensate for minor lighting increases with very little loss of image contrast. This paper describes two psychophysical studies developed to evaluate and refine optimum reading room ambient lighting conditions through the use of observational tasks intended to simulate real clinical practices. The first study utilized the biologic contrast response of the human visual system to determine a range of representative L(adp) values for typical medical images. Readers identified low contrast horizontal objects in circular foregrounds of uniform luminance (5, 12, 20, and 30 cd/m2) embedded within digitized mammograms. The second study examined the effect of increased ambient lighting on the detection of subtle objects embedded in circular foregrounds of uniform luminance (5, 12, and 35 cd/m2) centered within a constant background of 12 cd/m2 luminance. The images were displayed under a dark room condition (1 lux) and an increased ambient lighting level (50 lux) such that the luminance level of the diffusely reflected light from the background wall was approximately equal to the image L(adp) value of

  1. [Studies on the size distribution of airborne microbes at home in Beijing].

    PubMed

    Fang, Zhi-Guo; Sun, Ping; Ouyang, Zhi-Yun; Liu, Peng; Sun, Li; Wang, Xiao-Yong

    2013-07-01

    The effect of airborne microbes on human health not only depends on their compositions (genera and species), but also on their concentrations and sizes. Moreover, there are different mechanisms of airborne microbes of different sizes with different effects on human health. The size distributions and median diameters were investigated in detail with imitated six-stage Andersen sampler in 31 selected family homes with children in Beijing. Results showed that there was similar distribution characteristics of airborne microbes in different home environment, different season, different child's sex, and different apartment's architecture, but different distribution characteristics between airborne bacteria and fungi were observed in family homes in Beijing. In general, although airborne bacteria and fungi were plotted with normal logarithmic distribution, the particle percentage of airborne bacteria increased gradually from stage 1 (> 8.2 microm) to stage 5 (1.0-2.0 microm), and then decreased dramatically in stage 6 (< 1.0 microm), the percentage of airborne fungi increased gradually from stage 1 to stage 4 (2.0-3.5 microm), and then decreased dramatically from stage 4 to stage 6. The size distributions of dominant fungi were different in different fungal genera. Cladosporium, Penicillium and Aspergillus were recorded with normal logarithmic distribution, with the highest percentage detected in stage 4, and Alternaria were observed with skew distribution, with the highest percentage detected in stage 2 (5.0-10.4 microm). Finally, the median diameters of airborne bacteria were larger than those of airborne fungi, and the lowest median diameter of airborne bacteria and fungi was found in winter, while there were no significant variations of airborne bacterial and fungal median diameters in spring, summer and autumn in a year in this study.

  2. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2015-02-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  3. A new airborne laser-induced fluorescence instrument for in situ detection of Formaldehyde throughout the troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.

    2014-08-01

    The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.

  4. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  5. Airborne asbestos exposures associated with work on asbestos fire sleeve materials.

    PubMed

    Blake, Charles L; Harbison, Stephen C; Johnson, Giffe T; Harbison, Raymond D

    2011-11-01

    Asbestos-containing fire sleeves have been used as a fire protection measure for aircraft fluid hoses. This investigation was conducted to determine the level of airborne asbestos fiber exposure experienced by mechanics who work with fire sleeve protected hoses. Duplicate testing was performed inside a small, enclosed workroom during the fabrication of hose assemblies. Personal air samples taken during this work showed detectable, but low airborne asbestos fiber exposures. Analysis of personal samples (n=9) using phrase contract microscopy (PCM) indicated task duration airborne fiber concentrations ranging from 0.017 to 0.063 fibers per milliliter (f/ml) for sampling durations of 167-198 min, and 0.022-0.14 f/ml for 30 min samples. Airborne chrysotile fibers were detected for four of these nine personal samples, and the resulting asbestos adjusted airborne fiber concentrations ranged from 0.014 to 0.025 f/ml. These results indicate that work with asbestos fire sleeve and fire sleeve protected hose assemblies, does not produce regulatory noncompliant levels of asbestos exposure for persons who handle, cut and fit these asbestos-containing materials. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  7. Detection and Identification of Archaeological Sites and Features Using Synthetic Aperture Radar (SAR) Data Collected from Airborne Platforms

    DTIC Science & Technology

    2006-04-26

    sessions were used not only for signature development, but more 5 immediately to determine the spatial precision of images produced from...algorithms (e.g., NDVI and Tasseled Cap) available. The most instructive vectors were determined to be the SAR band polarizations vertically in the C...lands. Our principal, but not exclusive, focus has been on the use of high resolution airborne radar data in detection. in’<l’entoxy, and

  8. ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS

    EPA Science Inventory

    Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...

  9. Development of a low-cost airborne ultrasound sensor for the detection of brick joints behind a wall painting.

    PubMed

    García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel

    2012-01-01

    Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XV th century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research.

  10. Development of a Low-Cost Airborne Ultrasound Sensor for the Detection of Brick Joints behind a Wall Painting

    PubMed Central

    García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel

    2012-01-01

    Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XVth century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research. PMID:22438711

  11. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Lagueux, P.; Farley, V.; Marcotte, F.; Chamberland, M.

    2009-09-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  12. Airborne measurements in the infrared using FTIR-based imaging hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Puckrin, E.; Turcotte, C. S.; Lahaie, P.; Dubé, D.; Farley, V.; Lagueux, P.; Marcotte, F.; Chamberland, M.

    2009-05-01

    Hyperspectral ground mapping is being used in an ever-increasing extent for numerous applications in the military, geology and environmental fields. The different regions of the electromagnetic spectrum help produce information of differing nature. The visible, near-infrared and short-wave infrared radiation (400 nm to 2.5 μm) has been mostly used to analyze reflected solar light, while the mid-wave (3 to 5 μm) and long-wave (8 to 12 μm or thermal) infrared senses the self-emission of molecules directly, enabling the acquisition of data during night time. Push-broom dispersive sensors have been typically used for airborne hyperspectral mapping. However, extending the spectral range towards the mid-wave and long-wave infrared brings performance limitations due to the self emission of the sensor itself. The Fourier-transform spectrometer technology has been extensively used in the infrared spectral range due to its high transmittance as well as throughput and multiplex advantages, thereby reducing the sensor self-emission problem. Telops has developed the Hyper-Cam, a rugged and compact infrared hyperspectral imager. The Hyper-Cam is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides passive signature measurement capability, with up to 320x256 pixels at spectral resolutions of up to 0.25 cm-1. The Hyper-Cam has been used on the ground in several field campaigns, including the demonstration of standoff chemical agent detection. More recently, the Hyper-Cam has been integrated into an airplane to provide airborne measurement capabilities. A special pointing module was designed to compensate for airplane attitude and forward motion. To our knowledge, the Hyper-Cam is the first commercial airborne hyperspectral imaging sensor based on Fourier-transform infrared technology. The first airborne measurements and some preliminary performance criteria for the Hyper-Cam are presented in

  13. All-optical non-mechanical fiber-coupled sensor for liquid- and airborne sound detection.

    NASA Astrophysics Data System (ADS)

    Rohringer, Wolfgang; Preißer, Stefan; Fischer, Balthasar

    2017-04-01

    Most fiber-optic devices for pressure, strain or temperature measurements are based on measuring the mechanical deformation of the optical fiber by various techniques. While excellently suited for detecting strain, pressure or structure-borne sound, their sensitivity to liquid- and airborne sound is so far not comparable with conventional capacitive microphones or piezoelectric hydrophones. Here, we present an all-optical acoustic sensor which relies on the detection of pressure-induced changes of the optical refractive index inside a rigid, millimeter-sized, fiber-coupled Fabry-Pérot interferometer (FPI). No mechanically movable or deformable parts take part in the signal transduction chain. Therefore, due to the absence of mechanical resonances, this sensing principle allows for high sensitivity as well as a flat frequency response over an extraordinary measurement bandwidth. As a fiber-coupled device, it can be integrated easily into already available distributed fiber-optic networks for geophysical sensing. We present characterization measurements demonstrating the sensitivity, frequency response and directivity of the device for sound and ultrasound detection in air and water. We show that low-frequency temperature and pressure drifts can be recorded in addition to acoustic sensing. Finally, selected application tests of the laser-based hydrophone and microphone implementation are presented.

  14. Effect of Age and Glaucoma on the Detection of Darks and Lights

    PubMed Central

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506

  15. Effect of Age and Glaucoma on the Detection of Darks and Lights.

    PubMed

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.

  16. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  17. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  18. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)

    NASA Astrophysics Data System (ADS)

    Kim, Changhyuk; Zuo, Zhili; Finger, Hartmut; Haep, Stefan; Asbach, Christof; Fissan, Heinz; Pui, David Y. H.

    2015-03-01

    Airborne molecular contaminations (AMCs) represent a wide range of gaseous contaminants in cleanrooms. Due to the unintentional nanoparticle or haze formation as well as doping caused by AMCs, improved monitoring and controlling methods for AMCs are urgent in the semiconductor industry. However, measuring ultra-low concentrations of AMCs in cleanrooms is difficult, especially, behind a gas filter. In this study, a novel detection method for AMCs, which is on-line, economical, and applicable for diverse AMCs, was developed by employing gas-to-particle conversion with soft X-ray, and then measuring the generated nanoparticles. Feasibility study of this method was conducted through the evaluations of granular-activated carbons (GACs), which are widely used AMC filter media. Sulfur dioxide (SO2) was used as an AMC for the feasibility study. Using this method, the ultra-low concentrations of SO2 behind GACs were determined in terms of concentrations of generated sulfuric acid (H2SO4) nanoparticles. By calculating SO2 concentrations from the nanoparticle concentrations using empirical correlation equations between them, remarkable sensitivity of this method to SO2 was shown, down to parts-per-trillions, which are too low to detect using commercial gas sensors. Also, the calculated SO2 concentrations showed good agreement with those measured simultaneously by a commercial SO2 monitor at parts-per-billions.

  19. Rapid System to Quantitatively Characterize the Airborne Microbial Community

    NASA Technical Reports Server (NTRS)

    Macnaughton, Sarah J.

    1998-01-01

    Bioaerosols have been linked to a wide range of different allergies and respiratory illnesses. Currently, microorganism culture is the most commonly used method for exposure assessment. Such culture techniques, however, generally fail to detect between 90-99% of the actual viable biomass. Consequently, an unbiased technique for detecting airborne microorganisms is essential. In this Phase II proposal, a portable air sampling device his been developed for the collection of airborne microbial biomass from indoor (and outdoor) environments. Methods were evaluated for extracting and identifying lipids that provide information on indoor air microbial biomass, and automation of these procedures was investigated. Also, techniques to automate the extraction of DNA were explored.

  20. Comparative performance between compressed and uncompressed airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Rupp, Ronald; Agarwal, Sanjeev; Trang, Anh; Nair, Sumesh

    2008-04-01

    The US Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division is evaluating the compressibility of airborne multi-spectral imagery for mine and minefield detection application. Of particular interest is to assess the highest image data compression rate that can be afforded without the loss of image quality for war fighters in the loop and performance of near real time mine detection algorithm. The JPEG-2000 compression standard is used to perform data compression. Both lossless and lossy compressions are considered. A multi-spectral anomaly detector such as RX (Reed & Xiaoli), which is widely used as a core algorithm baseline in airborne mine and minefield detection on different mine types, minefields, and terrains to identify potential individual targets, is used to compare the mine detection performance. This paper presents the compression scheme and compares detection performance results between compressed and uncompressed imagery for various level of compressions. The compression efficiency is evaluated and its dependence upon different backgrounds and other factors are documented and presented using multi-spectral data.

  1. Airborne Microalgae: Insights, Opportunities, and Challenges

    PubMed Central

    Skjøth, Carsten Ambelas; Šantl-Temkiv, Tina; Löndahl, Jakob

    2016-01-01

    Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmospheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our understanding of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamination events or invasions. PMID:26801574

  2. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Airborne Nanoparticle Detection By Sampling On Filters And Laser-Induced Breakdown Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Dewalle, Pascale; Sirven, Jean-Baptiste; Roynette, Audrey; Gensdarmes, François; Golanski, Luana; Motellier, Sylvie

    2011-07-01

    Nowadays, due to their unique physical and chemical properties, engineered nanoparticles are increasingly used in a variety of industrial sectors. However, questions are raised about the safety of workers who produce and handle these particles. Therefore it is necessary to assess the potential exposure by inhalation of these workers. There is thereby a need to develop a suitable instrumentation which can detect selectively the presence of engineered nanoparticles in the ambient atmosphere. In this paper Laser-Induced Breakdown Spectroscopy (LIBS) is used to meet this target. LIBS can be implemented on site since it is a fast and direct technique which requires no sample preparation. The approach consisted in sampling Fe2O3 and TiO2 nanoparticles on a filter, respectively a mixed cellulose ester membrane and a polycarbonate membrane, and to measure the surface concentration of Fe and Ti by LIBS. Then taking into account the sampling parameters (flow, duration, filter surface) we could calculate a detection limit in volume concentration in the atmosphere. With a sampling at 10 L/min on a 10 cm2 filter during 1 min, we obtained detection limits of 56 μg/m3 for Fe and 22 μg/m3 for Ti. These figures, obtained in real time, are significantly below existing workplace exposure recommendations of the EU-OSHA and of the NIOSH. These results are very encouraging and will be completed in a future work on airborne carbon nanotube detection.

  4. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  5. Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun

    USGS Publications Warehouse

    Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.

    1984-01-01

    The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.

  6. Underwater detectibility of a lighting system on a helicopter escape exit.

    PubMed

    O'Neill, Brendan D; Kozey, John W; Brooks, Chris J

    2004-06-01

    When a helicopter ditches into water, it immediately inverts due to the weight of the engines and then fills with water. Locating the emergency exit for escape under such conditions is a difficult task. A new lighting system for an escape exit has been developed that illuminates on contact with water. The detectibility of the lighting was investigated under varying conditions of ambient illumination, water turbidity, and viewing distance. A total of 288 underwater detection trials were carried out by 9 subjects with an illuminated hatch placed at 2 distances (1.5 m and 3.1 m), under 2 ambient illuminations (bright: > 3000 lux and dark: < 0.1 lux), and in 2 conditions of water turbidity. The water temperature was 12 degrees C for all conditions. At 1.5 m, the lighting system was detectable in less than 1.5 s by all subjects in both clear and turbid water and under both bright and dark conditions. At 3.1 m, the lights were detectable in both clear and turbid water under the dark condition and in clear water under the bright condition. However, the lighting was not reliably detected in turbid water under bright condition. The system met original design requirements in terms of detectibility at 1.5 m. The detection time was always under 1.5 s. It could also be detected at 3.1 m in clear and turbid water, under dark conditions. However, the detectibility at 3.1 m in turbid water, under bright condition was less reliable.

  7. Optical cloud detection from a disposable airborne sensor

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles; Brus, David

    2016-04-01

    In-situ measurement of cloud droplet microphysical properties is most commonly made from manned aircraft platforms due to the size and weight of the instrumentation, which is both costly and typically limited to sampling only a few clouds. This work describes the development of a small, lightweight (<200g), disposable, optical cloud sensor which is designed for use on routine radiosonde balloon flights and also small unmanned aerial vehicle (UAV) platforms. The sensor employs the backscatter principle, using an ultra-bright LED as the illumination source, with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. During recent field tests in Pallas, Finland, the retrieved optical sensor signal has been compared with the DMT Cloud and Aerosol Spectrometer (CAS) which measures cloud droplets in the size range from 0.5 to 50 microns. Both sensors were installed at the hill top observatory of Sammaltunturi during a field campaign in October and November 2015, which experienced long periods of immersion inside cloud. Preliminary analysis shows very good agreement between the CAPS and the disposable cloud sensor for cloud droplets >5micron effective diameter. Such data and calibration of the sensor will be discussed here, as will simultaneous balloon launches of the optical cloud sensor through the same cloud layers.

  8. Detecting Crop Functional Response to a Heat Wave using Airborne Reflectance and Sun-induced Chlorophyll Fluorescence Measurements

    NASA Astrophysics Data System (ADS)

    Yang, P.; Van der Tol, C.; Rascher, U.; Damm, A.; Schickling, A.; Verhoef, W.

    2016-12-01

    This study presents an analysis of airborne measured reflectance (R) and solar-induced chlorophyll fluorescence (SIF) as indicators of high temperature stress in agricultural crops. We used atmospherically corrected R and retrievals of SIF in the O2-A band as obtained from HyPlant data over C3 crops (rapeseed, wheat and barley) and a C4 crop (corn) in Germany before (30th June) and during (2nd July) a heat wave in 2015. The availability of airborne data during this heat wave allowed us to detect fluorescence emission efficiency changes as an indicator of crop photosynthetic performance in response to temperature fluctuations. We found that SIF is affected relatively stronger by heat stress than R. This is according to expectation, because the R spectrum is determined by leaf properties and canopy structure, whereas top-of-canopy (TOC) SIF is also affected by the temperature dependent efficiencies of photochemical and non-photochemical quenching of fluorescence. With the model 'Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE), we differentiated leaf optical parameters and canopy structure from the fluorescence quantum emission efficiency (FQE), i.e. the ratio of fluorescence production to light absorption of photosystems. The leaf optical and canopy structure parameters were retrieved from R by inversion of the radiative transfer module 'RTMo' of SCOPE. The retrieved parameters were further used to estimate the FQE from SIF measurements. It appeared that both the leaf water content CW and the FQE responded to the heat wave, but the responses were different for C3 and C4 crops. A slight reduction of CW occurred in C3 crops between the two days, but not in the C4 crop. The reduction of FQE was only significant in C3 crops, and ranged from 18% to 31% for various C3 species. These findings agree with the general knowledge that C4 plants are better adapted to high temperature than C3 plants, and comply with simulations from a biochemical model for C3

  9. VLC-beacon detection with an under-sampled ambient light sensor

    NASA Astrophysics Data System (ADS)

    Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat

    2017-08-01

    LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.

  10. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  11. CLASSiC: Cherenkov light detection with silicon carbide

    NASA Astrophysics Data System (ADS)

    Adriani, Oscar; Albergo, Sebastiano; D'Alessandro, Raffaello; Lenzi, Piergiulio; Sciuto, Antonella; Starodubtsev, Oleksandr; Tricomi, Alessia

    2017-02-01

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  12. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers.

    PubMed

    Tang, Xiao-Bin; Meng, Jia; Wang, Peng; Cao, Ye; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2016-04-01

    A small-sized UAV (NH-UAV) airborne system with two gamma spectrometers (LaBr3 detector and HPGe detector) was developed to monitor activity concentration in serious nuclear accidents, such as the Fukushima nuclear accident. The efficiency calibration and determination of minimum detectable activity concentration (MDAC) of the specific system were studied by MC simulations at different flight altitudes, different horizontal distances from the detection position to the source term center and different source term sizes. Both air and ground radiation were considered in the models. The results obtained may provide instructive suggestions for in-situ radioactivity measurements of NH-UAV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry

    PubMed Central

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M.; Clark, Andrew

    2017-01-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus–naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry. PMID:29047426

  14. Airborne Transmission of Highly Pathogenic Influenza Virus during Processing of Infected Poultry.

    PubMed

    Bertran, Kateri; Balzli, Charles; Kwon, Yong-Kuk; Tumpey, Terrence M; Clark, Andrew; Swayne, David E

    2017-11-01

    Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.

  15. Display conditions and lesion detectability: effect of background light

    NASA Astrophysics Data System (ADS)

    Razavi, Mahmood; Hall, Theodore R.; Aberle, Denise R.; Hayrapetian, Alek S.; Loloyan, Mansur; Eldredge, Sandra L.

    1990-08-01

    We assessed the effect of high background light on observer performance for the detection of a variety of chest radiographic abnormalities. Five observers reviewed 66 digital hard copy chest images formatted to 1 1 x 14 inch size under two display conditions: 1) on a specially prepared 1 1 x 14 inch illuminated panel with no peripheral light and 2) on a standard viewing panel designed for 14 x 17 inch radiographs. The images contained one - or more of the following conditions: pneumothorax, interstitial disease, nodules, alveolar process, or no abnormality. The results of receiver operator characteristic analysis show that extraneous light does reduce observer performance and the detectability of nodules, interstitial disease.

  16. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  17. Individual snag detection using neighborhood attribute filtered airborne lidar data

    Treesearch

    Brian M. Wing; Martin W. Ritchie; Kevin Boston; Warren B. Cohen; Michael J. Olsen

    2015-01-01

    The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The...

  18. Airborne particle characterization by spatial scattering and fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, John; Hirst, Edwin; Kaye, Paul; Saunders, Spencer; Clark, Don

    1999-11-01

    Several workers have reported the development of systems which allow the measurement of intrinsic fluorescence from particles irradiated with ultra-violet radiation. The fluorescence data are frequently recorded in conjunction with other parameters such as particle size, measured either as a function of optical scatter or as an aerodynamic size. The motivation for this work has been principally the detection of bioaerosols within an ambient environment. Previous work by the authors has shown that an analysis of the scattering profile of a particle, i.e.: the spatial distribution of light scattered by the particle carried in a sample air-stream, can provide an effective means of particle characterization and classification in terms of both size and shape parameters. Current work is aimed at the simultaneous recording of both spatial scattering and fluorescence data from individual particles with a view to substantially enhanced discrimination of biological aerosols. A prototype instrument has recently been completed which employs a cw 266 nm laser source to produce both elastic (spatial scattering) and inelastic (fluorescence) signals from individual airborne particles. The instrument incorporates a custom designed high-gain multi- pixel hybrid photodiode (HPD) to record the spatial scattering data and a single photomultiplier to record total fluorescence from the illuminated particle. Recorded data are processed to allow the classification of airborne particles on the basis of size, shape, and fluorescence for both biological and non- biological aerosols.

  19. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  20. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  1. Perception of airborne odors by loggerhead sea turtles.

    PubMed

    Endres, C S; Putman, N F; Lohmann, K J

    2009-12-01

    Sea turtles are known to detect chemical cues, but in contrast to most marine animals, turtles surface to breathe and thus potentially have access to olfactory cues both in air and in water. To determine whether sea turtles can detect airborne chemical cues, captive loggerhead turtles (Caretta caretta) were placed into a circular, water-filled arena in which odorants could be introduced to the air above the water surface. Air that had passed across the surface of a cup containing food elicited increased activity, diving and other behavior normally associated with feeding. By contrast, air that had passed across the surface of an identical cup containing distilled water elicited no response. Increases in activity during food odor trials occurred only after turtles surfaced to breathe and peaked in the first post-breath minute, implying that the chemical cues eliciting the responses were unlikely to have been detected while the turtles were under water. These results provide the first direct evidence that sea turtles can detect airborne odors. Under natural conditions, this sensory ability might function in foraging, navigation or both.

  2. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  3. Semi-automated based ground-truthing GUI for airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Lydic, Rich; Moore, Tim; Trang, Anh; Agarwal, Sanjeev; Tiwari, Spandan

    2005-06-01

    Over the past several years, an enormous amount of airborne imagery consisting of various formats has been collected and will continue into the future to support airborne mine/minefield detection processes, improve algorithm development, and aid in imaging sensor development. The ground-truthing of imagery is a very essential part of the algorithm development process to help validate the detection performance of the sensor and improving algorithm techniques. The GUI (Graphical User Interface) called SemiTruth was developed using Matlab software incorporating signal processing, image processing, and statistics toolboxes to aid in ground-truthing imagery. The semi-automated ground-truthing GUI is made possible with the current data collection method, that is including UTM/GPS (Universal Transverse Mercator/Global Positioning System) coordinate measurements for the mine target and fiducial locations on the given minefield layout to support in identification of the targets on the raw imagery. This semi-automated ground-truthing effort has developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division, Airborne Application Branch with some support by the University of Missouri-Rolla.

  4. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the upper Tanana Valley of interior Alaska

    Treesearch

    Hans-Erik Andersen; Jacob Strunk; Hailemariam Temesgen

    2011-01-01

    Airborne laser scanning, collected in a sampling mode, has the potential to be a valuable tool for estimating the biomass resources available to support bioenergy production in rural communities of interior Alaska. In this study, we present a methodology for estimating forest biomass over a 201,226-ha area (of which 163,913 ha are forested) in the upper Tanana valley...

  5. Airborne Dust Monitoring Activities at the National Environmental Satellite, Data and Information Service

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D.; Taylor, J.

    2002-12-01

    Wind blown dust can be a hazard to transportation, industrial, and military operations, and much work has been devoted to its analysis and prediction from a meteorological viewpoint. The detection and forecasting of dust outbreaks in near real time is difficult, particularly in remote desert areas with sparse observation networks. The Regional Haze Regulation, passed by Congress in 1999, mandates a reduction in man made inputs to haze in 156 Class I areas (national parks and wilderness areas). Studies have demonstrated that satellite data can be useful in detection and tracking of dust storms. Environmental satellites offer frequent coverage of large geographic areas. The National Environmental Satellite, Data, and Information Service (NESDIS) of the U.S. National Oceanic and Atmospheric Administration (NOAA) operates a system of polar orbiting and geostationary environmental satellites, which sense data in two visible and three infrared channels. Promising results in the detection of airborne dust have been obtained using multispectral techniques to combine information from two or more channels to detect subtle spectral differences. One technique, using a ratio of two thermal channels, detects the presence of airborne dust, and discriminates it from both underlying ground and meteorological clouds. In addition, NESDIS accesses and is investigating for operational use data from several other satellites. The Total Ozone Mapping Spectrometer on board NASA's Earth Probe mission provides an aerosol index product which can detect dust and smoke, and the Moderate Resolution Imaging Spectroradiometer on NASA's Terra and Aqua satellites provide several channels which can detect aerosols in multispectral channel combinations. NESDIS, in cooperation with NOAA's Air Resources Laboratory, produces a daily smoke transport forecast, combining satellite derived smoke source points with a mathematical transport prediction model; such a scheme could be applied to other aerosol

  6. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  7. A novel sampling method to detect airborne influenza and other respiratory viruses in mechanically ventilated patients: a feasibility study.

    PubMed

    Mitchell, Alicia B; Tang, Benjamin; Shojaei, Maryam; Barnes, Lachlan S; Nalos, Marek; Oliver, Brian G; McLean, Anthony S

    2018-04-17

    Respiratory viruses circulate constantly in the ambient air. The risk of opportunistic infection from these viruses can be increased in mechanically ventilated patients. The present study evaluates the feasibility of detecting airborne respiratory viruses in mechanically ventilated patients using a novel sample collection method involving ventilator filters. We collected inspiratory and expiratory filters from the ventilator circuits of mechanically ventilated patients in an intensive care unit over a 14-month period. To evaluate whether we could detect respiratory viruses collected in these filters, we performed a reverse transcription polymerase chain reaction on the extracted filter membrane with primers specific for rhinovirus, respiratory syncytial virus, influenza virus A and B, parainfluenza virus (type 1, 2 and 3) and human metapneumovirus. For each patient, we also performed a full virology screen (virus particles, antibody titres and virus-induced biomarkers) on respiratory samples (nasopharyngeal swab, tracheal aspirate or bronchoalveolar fluid) and blood samples. Respiratory viruses were detected in the ventilator filters of nearly half the patients in the study cohort (n = 33/70). The most common virus detected was influenza A virus (n = 29). There were more viruses detected in the inspiratory filters (n = 18) than in the expiratory filters (n = 15). A third of the patients with a positive virus detection in the ventilator filters had a hospital laboratory confirmed viral infection. In the remaining cases, the detected viruses were different from viruses already identified in the same patient, suggesting that these additional viruses come from the ambient air or from cross-contamination (staff or visitors). In patients in whom new viruses were detected in the ventilator filters, there was no evidence of clinical signs of an active viral infection. Additionally, the levels of virus-induced biomarker in these patients were not

  8. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  9. Visible-light system for detecting doxorubicin contamination on skin and surfaces.

    PubMed

    Van Raalte, J; Rice, C; Moss, C E

    1990-05-01

    A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.

  10. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  11. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran

    PubMed Central

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Background: Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. Materials and Methods: A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. Results: The average level of bacteria ranged from 99 to 1079 CFU/m3. The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m3) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m3). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Conclusion: Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections. PMID:27656612

  12. Occurrence of airborne vancomycin- and gentamicin-resistant bacteria in various hospital wards in Isfahan, Iran.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmad, Hossein; Hassanzadeh, Akbar

    2016-01-01

    Airborne transmission of pathogenic resistant bacteria is well recognized as an important route for the acquisition of a wide range of nosocomial infections in hospitals. The aim of this study was to determine the prevalence of airborne vancomycin and gentamicin (VM and GM) resistant bacteria in different wards of four educational hospitals. A total of 64 air samples were collected from operating theater (OT), Intensive Care Unit (ICU), surgery ward, and internal medicine ward of four educational hospitals in Isfahan, Iran. Airborne culturable bacteria were collected using all glass impingers. Samples were analyzed for the detection of VM- and GM-resistant bacteria. The average level of bacteria ranged from 99 to 1079 CFU/m(3). The highest level of airborne bacteria was observed in hospital 4 (628 CFU/m(3)) and the highest average concentration of GM- and VM-resistant airborne bacteria were found in hospital 3 (22 CFU/m(3)). The mean concentration of airborne bacteria was the lowest in OT wards and GM- and VM-resistant airborne bacteria were not detected in this ward of hospitals. The highest prevalence of antibiotic-resistant airborne bacteria was observed in ICU ward. There was a statistically significant difference for the prevalence of VM-resistant bacteria between hospital wards (P = 0.012). Our finding showed that the relatively high prevalence of VM- and GM-resistant airborne bacteria in ICUs could be a great concern from the point of view of patients' health. These results confirm the necessity of application of effective control measures which significantly decrease the exposure of high-risk patients to potentially airborne nosocomial infections.

  13. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  14. Neuraminidase as an enzymatic marker for detecting airborne Influenza virus and other viruses.

    PubMed

    Turgeon, Nathalie; Toulouse, Marie-Josée; Ho, Jim; Li, Dongqing; Duchaine, Caroline

    2017-02-01

    Little information is available regarding the effectiveness of air samplers to collect viruses and regarding the effects of sampling processes on viral integrity. The neuraminidase enzyme is present on the surface of viruses that are of agricultural and medical importance. It has been demonstrated that viruses carrying this enzyme can be detected using commercial substrates without having to process the sample by methods such as RNA extraction. This project aims at evaluating the effects of 3 aerosol-sampling devices on the neuraminidase enzyme activity of airborne viruses. The purified neuraminidase enzymes from Clostridium perfringens, a strain of Influenza A (H1N1) virus, the FluMist influenza vaccine, and the Newcastle disease virus were used as models. The neuraminidase models were aerosolized in aerosol chambers and sampled with 3 different air samplers (SKC BioSampler, 3-piece cassettes with polycarbonate filters, and Coriolis μ) to assess the effect on neuraminidase enzyme activity. Our results demonstrated that Influenza virus and Newcastle disease virus neuraminidase enzymes are resistant to aerosolization and sampling with all air samplers tested. Moreover, we demonstrated that the enzymatic neuraminidase assay is as sensitive as RT-qPCR for detecting low concentrations of Influenza virus and Newcastle disease virus. Therefore, given the sensitivity of the assay and its compatibility with air sampling methods, viruses carrying the neuraminidase enzyme can be rapidly detected from air samples using neuraminidase activity assay without having to preprocess the samples.

  15. The State of the Industry and Research in Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Hodges, G.

    2007-12-01

    Development of airborne geophysical methods has tended to proceed in rushes of energy, when many new systems are developed for the same application simultaneously along many pathways. The tremendous growth of airborne EM through the '50s to '70s was followed by natural selection in the '80s and '90s down to two styles: fixed-wing aircraft with high-powered time domain systems (FTEM) offering depth of exploration but poor spatial resolution, and helicopter-borne frequency-domain systems (HFEM) offering the best resolution but poor depth of exploration. At the end of the '90s there was an incredible spurt of energy toward helicopter time domain development, spurred technological advances in electronics and materials. By 2007 there were 8 systems operational. Perhaps the most daring current research is toward airborne EM systems utilizing ambient EM fields as sources. Magnetic sensors are almost universally cesium-vapor total field sensors (0.01nT sampled at 0.1s). Because the limitation on target detection is ambient, in-band noise, there is little to gain from producing higher-sensitivity meters. Data quality improvements are being sought by measuring horizontal and vertical gradients more accurately. The new wave of research for magnetic surveys is the measurement of vector or tensor magnetic data with directional sensors, generally either fluxgates or SQUIDS. Magnetometers on autonomous aircraft are newly available. Gamma Ray Spectrometry surveys with sodium-iodide crystal detectors give good performance, and the low cost allows for large volumes to make up for the relatively low sensitivity. The last few years have seen development of new systems in which each crystal in the detector array is monitored, calibrated and stabilized individually using natural radiation. Airborne gravity systems available use the LaCoste zero-length pendulum, or orthogonal accelerometers. Separation of gravity from acceleration is generally done with platforms stabilized for both

  16. Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection.

    PubMed

    Roberts, David W; Olson, Jonathan D; Evans, Linton T; Kolste, Kolbein K; Kanick, Stephen C; Fan, Xiaoyao; Bravo, Jaime J; Wilson, Brian C; Leblond, Frederic; Marois, Mikael; Paulsen, Keith D

    2018-06-01

    OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis. RESULTS Although, as expected, red-light excitation is less sensitive to PpIX in exposed tumor, it did reveal tumor at a depth up to 5 mm below the resection bed in 22 of 24 patients who also exhibited PpIX fluorescence under blue-light excitation during the course of surgery. CONCLUSIONS Red-light excitation of tumor-associated PpIX fluorescence below the surface of the surgical field can be achieved intraoperatively and enables detection of subsurface tumor that is not visualized under conventional blue-light excitation. Clinical trial registration no.: NCT02191488 (clinicaltrials.gov).

  17. The Development of a 30-125 Micron Array for Airborne Astronomy

    NASA Technical Reports Server (NTRS)

    Mason, C. G.; Dotson, J. L.; Erickson, E. F.; Farhoomand, J.; Haas, M. R.; Koerber, C. T.; Prasad, A.; Sisson, D.; Witteborn, F. C.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The development of a 30-125 micron Ge:Sb photoconductor array for AIRES (Airborne Infra-Red Echelle Spectrometer) is described. The prototype array is a 2x24 module which can be close-stacked to provide larger two-dimensional formats. Light is focused onto each detector using a collecting cone with a 2 mm pitch. The array is read out by two Raytheon SBRC-190 cryogenic multiplexers that also provide a CTIA (capacitive transimpedance amplifier) unit cell for each detector. We discuss our results from a test series conducted to measure the array performance and to evaluate its suitability for airborne astronomy.

  18. Airborne particles released by crushing CNT composites

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Okayama, C.; Kotake, M.; Ata, S.; Matsui, Y.; Gotoh, K.

    2017-06-01

    We investigated airborne particles released as a result of crushing carbon nanotube (CNT) composites using a laboratory scale crusher with rotor blades. For each crushing test, five pellets (approximately 0.1 g) of a polymer (polystyrene, polyamide, or polycarbonate) containing multiwall CNTs (Nanocyl NC7000 or CNano Flotube9000) or no CNTs were placed in the container of the crusher. The airborne particles released by the crushing of the samples were measured. The real-time aerosol measurements showed increases in the concentration of nanometer- and micrometer-sized particles, regardless of the sample type, even when CNT-free polymers were crushed. The masses of the airborne particles collected on filters were below the detection limit, which indicated that the mass ratios of the airborne particles to the crushed pellets were lower than 0.02%. In the electron microscopic analysis, particles with protruding CNTs were observed. However, free-standing CNTs were not found, except for a poorly dispersed CNT-polystyrene composite. This study demonstrated that the crushing test using a laboratory scale crusher is capable of evaluating the potential release of CNTs as a result of crushing CNT composites. The advantage of this method is that only a small amount of sample (several pieces of pellets) is required.

  19. The lizard celestial compass detects linearly polarized light in the blue.

    PubMed

    Beltrami, Giulia; Parretta, Antonio; Petrucci, Ferruccio; Buttini, Paola; Bertolucci, Cristiano; Foà, Augusto

    2012-09-15

    The present study first examined whether ruin lizards, Podarcis sicula, are able to orientate using plane-polarized light produced by an LCD screen. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze positioned under an LCD screen producing white polarized light with a single E-vector, which provided an axial cue. White polarized light did not include wavelengths in the UV. Lizards orientated correctly either when tested with E-vector parallel to the training axis or after 90 deg rotation of the E-vector direction, thus validating the apparatus. Further experiments examined whether there is a preferential region of the light spectrum to perceive the E-vector direction of polarized light. For this purpose, lizards reaching learning criteria under white polarized light were subdivided into four experimental groups. Each group was tested for orientation under a different spectrum of plane-polarized light (red, green, cyan and blue) with equalized photon flux density. Lizards tested under blue polarized light orientated correctly, whereas lizards tested under red polarized light were completely disoriented. Green polarized light was barely discernible by lizards, and thus insufficient for a correct functioning of their compass. When exposed to cyan polarized light, lizard orientation performances were optimal, indistinguishable from lizards detecting blue polarized light. Overall, the present results demonstrate that perception of linear polarization in the blue is necessary - and sufficient - for a proper functioning of the sky polarization compass of ruin lizards. This may be adaptively important, as detection of polarized light in the blue improves functioning of the polarization compass under cloudy skies, i.e. when the alternative celestial compass based on detection of the sun disk is rendered useless because the sun is obscured by clouds.

  20. Light Scattering based detection of food pathogens

    USDA-ARS?s Scientific Manuscript database

    The current methods for detecting foodborne pathogens are mostly destructive (i.e., samples need to be pretreated), and require time, personnel, and laboratories for analyses. Optical methods including light scattering based techniques have gained a lot of attention recently due to its their rapid a...

  1. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  2. Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection

    DTIC Science & Technology

    2017-03-01

    Light-Actuated Micromechanical Relays for Zero-Power Infrared Detection Zhenyun Qian, Sungho Kang, Vageeswar Rajaram, Cristian Cassella, Nicol E...near-zero power infrared (IR) detection . Differently from any existing switching element, the proposed LMR relies on a plasmonically-enhanced...chip enabling the monolithic fabrication of multiple LMRs connected together to form a logic topology suitable for the detection of specific

  3. Airborne Acoustic Perception by a Jumping Spider.

    PubMed

    Shamble, Paul S; Menda, Gil; Golden, James R; Nitzany, Eyal I; Walden, Katherine; Beatus, Tsevi; Elias, Damian O; Cohen, Itai; Miles, Ronald N; Hoy, Ronald R

    2016-11-07

    Jumping spiders (Salticidae) are famous for their visually driven behaviors [1]. Here, however, we present behavioral and neurophysiological evidence that these animals also perceive and respond to airborne acoustic stimuli, even when the distance between the animal and the sound source is relatively large (∼3 m) and with stimulus amplitudes at the position of the spider of ∼65 dB sound pressure level (SPL). Behavioral experiments with the jumping spider Phidippus audax reveal that these animals respond to low-frequency sounds (80 Hz; 65 dB SPL) by freezing-a common anti-predatory behavior characteristic of an acoustic startle response. Neurophysiological recordings from auditory-sensitive neural units in the brains of these jumping spiders showed responses to low-frequency tones (80 Hz at ∼65 dB SPL)-recordings that also represent the first record of acoustically responsive neural units in the jumping spider brain. Responses persisted even when the distances between spider and stimulus source exceeded 3 m and under anechoic conditions. Thus, these spiders appear able to detect airborne sound at distances in the acoustic far-field region, beyond the near-field range often thought to bound acoustic perception in arthropods that lack tympanic ears (e.g., spiders) [2]. Furthermore, direct mechanical stimulation of hairs on the patella of the foreleg was sufficient to generate responses in neural units that also responded to airborne acoustic stimuli-evidence that these hairs likely play a role in the detection of acoustic cues. We suggest that these auditory responses enable the detection of predators and facilitate an acoustic startle response. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Phytochrome-Mediated Detection of Changes in Reflected Light

    PubMed Central

    Mancinelli, Alberto L.

    1991-01-01

    Measurements of phytochrome photoequilibria and photoconversion rates in vivo, in seedlings of Cucurbita pepo L. exposed to light in growth chambers, indicate that significant changes in the state of phytochrome can be brought about by changes in the quality and quantity of the light reflected from the walls of the growth chambers. The changes in reflected light, although large, were small in terms of the total radiation (direct light from the lamps plus wall-reflected light) to which the seedlings were exposed. The conditions used were approximate simulations of direct and reflected sunlight conditions in the natural environment. Keeping in mind the limitations imposed by the approximation of the simulations, the results from this study are consistent with the hypothesis that, in the natural environment, a plant might be capable of detecting the presence of nearby plants, before being shaded by them, through the phytochrome-mediated perception of changes in reflected light. PMID:16667942

  5. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  6. Alignment and Calibration of an Airborne Infrared Spectrometer

    NASA Astrophysics Data System (ADS)

    Vira, A.

    2017-12-01

    The airborne infrared spectrometer (AIR-Spec) will measure the coronal plasma emission lines in the infrared at high spatial and spectral resolution. These results will enhance our understanding of the coronal dynamics and improve solar forecasting models. To measure the infrared coronal emission lines, the airborne system will fly on the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the total solar eclipse in August 2017. The flight path was calculated to maximize the observation time. A detailed analysis of our flight path will be reported. The optical system consists of a fast steering mirror, telescope, grating spectrometer, and slit-jaw imager. Light from the sun is directed into the f/15 telescope by a fast steering mirror. The telescope focuses the light on the slitjaw and the remaining light enters the grating spectrometer through the slit. The poster will include a discussion of the alignment procedures for the telescope and spectrograph. All of the spectrometer optics are cooled to cryogenic temperatures, which complicates the alignment process. After the telescope and spectrometer are aligned independently, the telescope needs to be precisely aligned to the spectrometer. Several alignment methods were used to ensure that the telescope is focused at the slitjaw and normal to the spectrometer. In addition to the optical alignment, there are a few calibrations to complete: 1) flat field, 2) spectral, and 3) radiometric. The flat field gives us a measure of the pixel to pixel variations. The spectral calibration is used to determine the conversion factor between wavelength and pixel. The radiometric calibration is used to map the camera output to radiance. All these calibrations are necessary for processing our data from the solar eclipse. We will report on our methods and results for the optical alignment and calibration for AIR-Spec. AIR-Spec is supported by NSF and Smithsonian Institution through the

  7. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  8. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  9. Instrument Would Detect and Collect Biological Aerosols

    NASA Technical Reports Server (NTRS)

    Savoy, Steve; Mayo, Mike

    2006-01-01

    A proposed compact, portable instrument would sample micron-sized airborne particles, would discriminate between biological ones (e.g., bacteria) and nonbiological ones (e.g., dust particles), and would collect the detected biological particles for further analysis. The instrument is intended to satisfy a growing need for means of rapid, inexpensive collection of bioaerosols in a variety of indoor and outdoor settings. Purposes that could be served by such collection include detecting airborne pathogens inside buildings and their ventilation systems, measuring concentrations of airborne biological contaminants around municipal waste-processing facilities, monitoring airborne effluents from suspected biowarfare facilities, and warning of the presence of airborne biowarfare agents

  10. MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles.

    PubMed

    Yu, Ming; Carter, Kelly T; Makar, Karen W; Vickers, Kathy; Ulrich, Cornelia M; Schoen, Robert E; Brenner, Dean; Markowitz, Sanford D; Grady, William M

    2015-01-01

    Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 19 and 38 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (379 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6-65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.

  11. Airborne electromagnetic bathymetry investigations in Port Lincoln, South Australia - comparison with an equivalent floating transient electromagnetic system

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian

    2011-09-01

    Helicopter time-domain airborne electromagnetic (AEM) methodology is being investigated as a reconnaissance technique for bathymetric mapping in shallow coastal waters, especially in areas affected by water turbidity where light detection and ranging (LIDAR) and hyperspectral techniques may be limited. Previous studies in Port Lincoln, South Australia, used a floating AEM time-domain system to provide an upper limit to the expected bathymetric accuracy based on current technology for AEM systems. The survey lines traced by the towed floating system were also flown with an airborne system using the same transmitter and receiver electronic instrumentation, on two separate occasions. On the second occasion, significant improvements had been made to the instrumentation to reduce the system self-response at early times. A comparison of the interpreted water depths obtained from the airborne and floating systems is presented, showing the degradation in bathymetric accuracy obtained from the airborne data. An empirical data correction method based on modelled and observed EM responses over deep seawater (i.e. a quasi half-space response) at varying survey altitudes, combined with known seawater conductivity measured during the survey, can lead to significant improvements in interpreted water depths and serves as a useful method for checking system calibration. Another empirical data correction method based on observed and modelled EM responses in shallow water was shown to lead to similar improvements in interpreted water depths; however, this procedure is notably inferior to the quasi half-space response because more parameters need to be assumed in order to compute the modelled EM response. A comparison between the results of the two airborne surveys in Port Lincoln shows that uncorrected data obtained from the second airborne survey gives good agreement with known water depths without the need to apply any empirical corrections to the data. This result significantly

  12. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. PROGRAM ASPECT - FOR REMOTE SENSING OF AIRBORNE PLUMES

    EPA Science Inventory

    The SAFEGUARD program is a multi-sensor program for the detection and imaging of chemical plumes and vapors. The system is composed of an airborne sensor suite including an infrared line scanner and a high-speed fourier transform infrared spectrometer. Both systems are integrat...

  14. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    PubMed

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  15. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  16. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate

  17. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  18. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  19. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  20. Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.

    1998-07-01

    We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.

  1. Airborne multicamera system for geo-spatial applications

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Kulkarni, Rahul R.; Lyle, Stacey; Steidley, Carl W.

    2003-08-01

    Airborne remote sensing has many applications that include vegetation detection, oceanography, marine biology, geographical information systems, and environmental coastal science analysis. Remotely sensed images, for example, can be used to study the aftermath of episodic events such as the hurricanes and floods that occur year round in the coastal bend area of Corpus Christi. This paper describes an Airborne Multi-Spectral Imaging System that uses digital cameras to provide high resolution at very high rates. The software is based on Delphi 5.0 and IC Imaging Control's ActiveX controls. Both time and the GPS coordinates are recorded. Three successful test flights have been conducted so far. The paper present flight test results and discusses the issues being addressed to fully develop the system.

  2. Airborne Particulate Threat Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing

  3. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  4. Development of an Airborne High Resolution TV System (AHRTS)

    DTIC Science & Technology

    1975-11-01

    GOVT ACCESSION NO READ INSTRUCTIONS BEFORE COMPLETING FORM JP RECIPIENT’S CATALOG NUMBER DEVELOPMENT OF AN ^IRBORNE HIGH JESOLUTION TV SYSTEM...c. Sytem Elements The essential Airborne Subsystem elements of camera, video tape recorder, transmitter and antennas are required to have...The camera operated over the 3000:1 light change as required. A solar shutter was Incorporated to protect the vidicon from damage from direct view

  5. An automated data exploitation system for airborne sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike

    2014-06-01

    Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.

  6. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  7. Airborne direct-detection and coherent wind lidar measurements over the North Atlantic in 2015 supporting ESA's aeolus mission

    NASA Astrophysics Data System (ADS)

    Marksteiner, Uwe; Reitebuch, Oliver; Lemmerz, Christian; Lux, Oliver; Rahm, Stephan; Witschas, Benjamin; Schäfler, Andreas; Emmitt, Dave; Greco, Steve; Kavaya, Michael J.; Gentry, Bruce; Neely, Ryan R.; Kendall, Emma; Schüttemeyer, Dirk

    2018-04-01

    The launch of the Aeolus mission by the European Space Agency (ESA) is planned for 2018. The satellite will carry the first wind lidar in space, ALADIN (Atmospheric Laser Doppler INstrument). Its prototype instrument, the ALADIN Airborne Demonstrator (A2D), was deployed during several airborne campaigns aiming at the validation of the measurement principle and optimization of algorithms. In 2015, flights of two aircraft from DLR & NASA provided the chance to compare parallel wind measurements from four airborne wind lidars for the first time.

  8. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; hide

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  9. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be

  10. MEDUSA: an airborne multispectral oil spill detection and characterization system

    NASA Astrophysics Data System (ADS)

    Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver

    2000-12-01

    MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.

  11. Factors contributing to airborne particle dispersal in the operating room.

    PubMed

    Noguchi, Chieko; Koseki, Hironobu; Horiuchi, Hidehiko; Yonekura, Akihiko; Tomita, Masato; Higuchi, Takashi; Sunagawa, Shinya; Osaki, Makoto

    2017-07-06

    Surgical-site infections due to intraoperative contamination are chiefly ascribable to airborne particles carrying microorganisms. The purpose of this study is to identify the actions that increase the number of airborne particles in the operating room. Two surgeons and two surgical nurses performed three patterns of physical movements to mimic intraoperative actions, such as preparing the instrument table, gowning and donning/doffing gloves, and preparing for total knee arthroplasty. The generation and behavior of airborne particles were filmed using a fine particle visualization system, and the number of airborne particles in 2.83 m 3 of air was counted using a laser particle counter. Each action was repeated five times, and the particle measurements were evaluated through one-way analysis of variance multiple comparison tests followed by Tukey-Kramer and Bonferroni-Dunn multiple comparison tests for post hoc analysis. Statistical significance was defined as a P value ≤ .01. A large number of airborne particles were observed while unfolding the surgical gown, removing gloves, and putting the arms through the sleeves of the gown. Although numerous airborne particles were observed while applying the stockinet and putting on large drapes for preparation of total knee arthroplasty, fewer particles (0.3-2.0 μm in size) were detected at the level of the operating table under laminar airflow compared to actions performed in a non-ventilated preoperative room (P < .01). The results of this study suggest that surgical staff should avoid unnecessary actions that produce a large number of airborne particles near a sterile area and that laminar airflow has the potential to reduce the incidence of bacterial contamination.

  12. Assessment of airborne virus contamination in wastewater treatment plants.

    PubMed

    Masclaux, Frédéric G; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-08-01

    Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers' health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27 × 10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Automatic detection of white-light flare kernels in SDO/HMI intensitygrams

    NASA Astrophysics Data System (ADS)

    Mravcová, Lucia; Švanda, Michal

    2017-11-01

    Solar flares with a broadband emission in the white-light range of the electromagnetic spectrum belong to most enigmatic phenomena on the Sun. The origin of the white-light emission is not entirely understood. We aim to systematically study the visible-light emission connected to solar flares in SDO/HMI observations. We developed a code for automatic detection of kernels of flares with HMI intensity brightenings and study properties of detected candidates. The code was tuned and tested and with a little effort, it could be applied to any suitable data set. By studying a few flare examples, we found indication that HMI intensity brightening might be an artefact of the simplified procedure used to compute HMI observables.

  14. Retrieval of profile information from airborne multiaxis UV-visible skylight absorption measurements.

    PubMed

    Bruns, Marco; Buehler, Stefan A; Burrows, John P; Heue, Klaus-Peter; Platt, Ulrich; Pundt, Irene; Richter, Andreas; Rozanov, Alexej; Wagner, Thomas; Wang, Ping

    2004-08-01

    A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

  15. Oil Spill AISA+ Hyperspectral Data Detection Based on Different Sea Surface Glint Suppression Methods

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ren, G.; Ma, Y.; Dong, L.; Wan, J.

    2018-04-01

    The marine oil spill is a sudden event, and the airborne hyperspectral means to detect the oil spill is an important part of the rapid response. Sun glint, the specular reflection of sun light from water surface to sensor, is inevitable due to the limitation of observation geometry, which makes so much bright glint in image that it is difficult to extract oil spill feature information from the remote sensing data. This paper takes AISA+ airborne hyperspectral oil spill image as data source, using multi-scale wavelet transform, enhanced Lee filter, enhanced Frost filter and mean filter method for sea surface glint suppression of images. And then the classical SVM method is used for the oil spill information detection, and oil spill information distribution map obtained by human-computer interactive interpretation is used to verify the accuracy of oil spill detection. The results show that the above methods can effectively suppress the sea surface glints and improve the accuracy of oil spill detection. The enhanced Lee filter method has the highest detection accuracy of 88.28 %, which is 12.2 % higher than that of the original image.

  16. Airborne imaging spectrometers developed in China

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Xue, Yongqi

    1998-08-01

    Airborne imaging spectral technology, principle means in airborne remote sensing, has been developed rapidly both in the world and in China recently. This paper describes Modular Airborne Imaging Spectrometer (MAIS), Operational Modular Airborne Imaging Spectrometer (OMAIS) and Pushbroom Hyperspectral Imagery (PHI) that have been developed or are being developed in Airborne Remote Sensing Lab of Shanghai Institute of Technical Physics, CAS.

  17. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.

    PubMed

    Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung

    2018-03-23

    Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.

  18. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    PubMed Central

    Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung

    2018-01-01

    Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690

  19. Assessment of airborne soy-hull allergen (Gly m 1) in the Port of Ancona, Italy.

    PubMed

    Antonicelli, L; Ruello, M L; Monsalve, R I; González, R; Fava, G; Bonifazi, F

    2010-10-01

    Epidemic asthma outbreaks are potentially a very high-risk medical situation in seaport towns where large volumes of soybean are loaded and unloaded Airborne allergen assessment plays a pivotal role in evaluating the resulting environmental pollution. The aim of this study was to measure the airborne Gly m 1 allergen level in the seaport of Ancona in order assess the soybean-specific allergenic risk for the city. Allergen and PM10 were evaluated at progressive distances from the port area. Allergen analysis was performed by monoclonal antibody-based immunoassay on the sampled filters. Daily meteorological data were obtained from the local meteorological station. For estimating the assimilative capacity of the atmosphere, an approach based on dispersive ventilation coefficient was tried. The allergen concentrations detected were low (range = 0.4-171 ng/m3). A decreasing gradient of the airborne allergen from the unloading area (22.1 +/- 41.2 ng/m3) to the control area (0.6 +/- 0.7 ng/m3) was detected. The concentration of the airborne Gly m 1 was not coupled with the presence of the soy-carrying ships in the port. A statistically significant relationship between airborne allergen, PM10 and local meteorological parameters quantifies the association with the atmospheric condition. Airborne Gly m 1 is part of the atmospheric dust of Ancona. The low level of this allergen seems consistent with the absence of asthma epidemic outbreak.

  20. Airborne Tactical Crossload Planner

    DTIC Science & Technology

    2017-12-01

    set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the

  1. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  2. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  3. Active matrix-based collection of airborne analytes: an analyte recording chip providing exposure history and finger print.

    PubMed

    Fang, Jun; Park, Se-Chul; Schlag, Leslie; Stauden, Thomas; Pezoldt, Jörg; Jacobs, Heiko O

    2014-12-03

    In the field of sensors that target the detection of airborne analytes, Corona/lens-based-collection provides a new path to achieve a high sensitivity. An active-matrix-based analyte collection approach referred to as "airborne analyte memory chip/recorder" is demonstrated, which takes and stores airborne analytes in a matrix to provide an exposure history for off-site analysis. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  5. Detection of light-matter interaction in the weak-coupling regime by quantum light

    NASA Astrophysics Data System (ADS)

    Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying

    2018-04-01

    "Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.

  6. Waveguide detection of right-angle-scattered light in flow cytometry

    DOEpatents

    Mariella, Jr., Raymond P.

    2000-01-01

    A transparent flow cell is used as an index-guided optical waveguide. A detector for the flow cell but not the liquid stream detects the Right-Angle-Scattered (RAS) Light exiting from one end of the flow cell. The detector(s) could view the trapped RAS light from the flow cell either directly or through intermediate optical light guides. If the light exits one end of the flow cell, then the other end of the flow cell can be given a high-reflectivity coating to approximately double the amount of light collected. This system is more robust in its alignment than the traditional flow cytometry systems which use imaging optics, such as microscope objectives.

  7. The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

    NASA Astrophysics Data System (ADS)

    Sparks, William B.; White, Richard L.; Lupu, Roxana E.; Ford, Holland C.

    2018-02-01

    Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

  8. Sky light polarization detection with linear polarizer triplet in light field camera inspired by insect vision.

    PubMed

    Zhang, Wenjing; Cao, Yu; Zhang, Xuanzhe; Liu, Zejin

    2015-10-20

    Stable information of a sky light polarization pattern can be used for navigation with various advantages such as better performance of anti-interference, no "error cumulative effect," and so on. But the existing method of sky light polarization measurement is weak in real-time performance or with a complex system. Inspired by the navigational capability of a Cataglyphis with its compound eyes, we introduce a new approach to acquire the all-sky image under different polarization directions with one camera and without a rotating polarizer, so as to detect the polarization pattern across the full sky in a single snapshot. Our system is based on a handheld light field camera with a wide-angle lens and a triplet linear polarizer placed over its aperture stop. Experimental results agree with the theoretical predictions. Not only real-time detection but simple and costless architecture demonstrates the superiority of the approach proposed in this paper.

  9. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. Dual-foci detection in photoacoustic computed tomography with coplanar light illumination and acoustic detection: a phantom study.

    PubMed

    Lin, Xiangwei; Liu, Chengbo; Meng, Jing; Gong, Xiaojing; Lin, Riqiang; Sun, Mingjian; Song, Liang

    2018-05-01

    A dual-foci transducer with coplanar light illumination and acoustic detection was applied for the first time. It overcame the small directivity angle, low-sensitivity, and large datasets in conventional circular scanning or array-based photoacoustic computed tomography (PACT). The custom-designed transducer is focused on both the scanning plane with virtual-point detection and the elevation direction for large field of view (FOV) cross-sectional imaging. Moreover, a coplanar light illumination and acoustic detection configuration can provide ring-shaped light irradiation with highly efficient acoustic detection, which in principle has a better adaptability when imaging samples of irregular surfaces. Phantom experiments showed that our PACT system can achieve high resolution (∼0.5  mm), enhanced signal-to-noise ratio (16-dB improvement), and a more complete structure in a greater FOV with an equal number of sampling points compared with the results from a flat aperture transducer. This study provides the proof of concept for the fabrication of a sparse array with the dual-foci property and large aperture size for high-quality, low-cost, and high-speed photoacoustic imaging. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    PubMed Central

    Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A

    2009-01-01

    TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings. PMID:19296717

  12. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    PubMed

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p < 0.001). Detected concentrations of airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    PubMed

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  14. Characterization of airborne transducers by optical tomography

    PubMed

    Bou Matar O; Pizarro; Certon; Remenieras; Patat

    2000-03-01

    This paper describes the application of an acousto-optic method to the measurement of airborne ultrasound. The method consists of a heterodyne interferometric probing of the pressure emitted by the transducer combined with a tomographic algorithm. The heterodyne interferometer measures the optical phase shift of the probe laser beam, proportional to the acoustic pressure integrated along the light path. A number of projections of the sound field, e.g. a set of ray integrals obtained along parallel paths, are made in moving the transducer to be tested. The main advantage of the method is its very high sensitivity in air (2 x 10(-4) Pa Hz-1/2), combined with a large bandwidth. Using the same principle as X-ray tomography the ultrasonic pressure in a plane perpendicular to the transducer axis can be reconstructed. Several ultrasonic fields emitted by wide-band home made electrostatic transducers, with operating frequencies between 200 and 700 kHz, have been measured. The sensitivities compared favorably with those of commercial airborne transducers.

  15. Rapid optimization method of the strong stray light elimination for extremely weak light signal detection.

    PubMed

    Wang, Geng; Xing, Fei; Wei, Minsong; You, Zheng

    2017-10-16

    The strong stray light has huge interference on the detection of weak and small optical signals, and is difficult to suppress. In this paper, a miniaturized baffle with angled vanes was proposed and a rapid optimization model of strong light elimination was built, which has better suppression of the stray lights than the conventional vanes and can optimize the positions of the vanes efficiently and accurately. Furthermore, the light energy distribution model was built based on the light projection at a specific angle, and the light propagation models of the vanes and sidewalls were built based on the Lambert scattering, both of which act as the bias of a calculation method of stray light. Moreover, the Monte-Carlo method was employed to realize the Point Source Transmittance (PST) simulation, and the simulation result indicated that it was consistent with the calculation result based on our models, and the PST could be improved by 2-3 times at the small incident angles for the baffle designed by the new method. Meanwhile, the simulation result was verified by laboratory tests, and the new model with derived analytical expressions which can reduce the simulation time significantly.

  16. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  17. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  18. Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE)

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.

    1998-01-01

    Scanning holographic lidar receivers are currently in use in two operational lidar systems, PHASERS (Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing) and now HARLIE (Holographic Airborne Rotating Lidar Instrument Experiment). These systems are based on volume phase holograms made in dichromated gelatin (DCG) sandwiched between 2 layers of high quality float glass. They have demonstrated the practical application of this technology to compact scanning lidar systems at 532 and 1064 nm wavelengths, the ability to withstand moderately high laser power and energy loading, sufficient optical quality for most direct detection systems, overall efficiencies rivaling conventional receivers, and the stability to last several years under typical lidar system environments. Their size and weight are approximately half of similar performing scanning systems using reflective optics. The cost of holographic systems will eventually be lower than the reflective optical systems depending on their degree of commercialization. There are a number of applications that require or can greatly benefit from a scanning capability. Several of these are airborne systems, which either use focal plane scanning, as in the Laser Vegetation Imaging System or use primary aperture scanning, as in the Airborne Oceanographic Lidar or the Large Aperture Scanning Airborne Lidar. The latter class requires a large clear aperture opening or window in the aircraft. This type of system can greatly benefit from the use of scanning transmission holograms of the HARLIE type because the clear aperture required is only about 25% larger than the collecting aperture as opposed to 200-300% larger for scan angles of 45 degrees off nadir.

  19. Remote detection of water stress in orchard canopies using MODIS/ASTER airborne simulator (MASTER) data

    NASA Astrophysics Data System (ADS)

    Cheng, Tao; Riaño, David; Koltunov, Alexander; Whiting, Michael L.; Ustin, Susan L.

    2011-09-01

    Vegetation canopy water content (CWC) is an important parameter for monitoring natural and agricultural ecosystems. Previous studies focused on the observation of annual or monthly variations in CWC but lacked temporal details to study vegetation physiological activities within a diurnal cycle. This study provides an evaluation of detecting vegetation diurnal water stress using airborne data acquired with the MASTER instrument. Concurrent with the morning and afternoon acquisitions of MASTER data, an extensive field campaign was conducted over almond and pistachio orchards in southern San Joaquin Valley of California to collect CWC measurements. Statistical analysis of the field measurements indicated a significant decrease of CWC from morning to afternoon. Field measured CWC was linearly correlated to the normalized difference infrared index (NDII) calculated with atmospherically corrected MASTER reflectance data using either FLAASH or empirical line (EL). Our regression analysis demonstrated that both atmospheric corrections led to a root mean square error (RMSE) of approximately 0.035 kg/m2 for the estimation of CWC (R2=0.42 for FLAASH images and R2=0.45 for EL images). Remote detection of the subtle decline in CWC awaits an improved prediction of CWC. Diurnal CWC maps revealed the spatial patterns of vegetation water status in response to variations in irrigation treatment.

  20. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric

  1. Distribution and identification of airborne fungi in railway stations in Tokyo, Japan.

    PubMed

    Kawasaki, Tamami; Kyotani, Takashi; Ushiogi, Tomoyoshi; Izumi, Yasuhiko; Lee, Hunjun; Hayakawa, Toshio

    2010-01-01

    The current study was performed to (1) understand the distribution of airborne fungi culturable on dichloran-glycerol agar (DG18) media over a one-year monitoring period, (2) identify the types of airborne fungi collected, and (3) compare and contrast under- and above-ground spaces, in two railway stations in Tokyo, Japan. Measurements of airborne fungi were taken at stations A and B located in Tokyo. Station A had under- and above-ground concourses and platforms whereas station B had spaces only above-ground. Airborne fungi at each measurement position were collected with an air sampler on DG18 media. After cultivation of the sample plates, the number of fungi colonies was counted on each agar plate. In station A, the underground platform was characterized as (1) having the highest humidity and (2) a high concentration of airborne fungi, with (3) a high proportion of non-sporulating fungi (NSF) and Aspergillus versicolor. There was a strong positive correlation between the concentrations of airborne particles and fungi in station A. Common aspects of the two stations were (1) that fungi were mostly detected in autumn, and (2) there was no correlation between the humidity and concentration of fungi throughout the year. The results of this study indicate that the distribution and composition of fungi differ depending on the structure of the station.

  2. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    USGS Publications Warehouse

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-01-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared

  3. Examination of Airborne FDEM System Attributes for UXO Mapping and Detection

    DTIC Science & Technology

    2009-11-01

    quadrature output should only occur when there is a distortion in the transmitter waveform signal that correlates with the quadrature part of the...suggested that the S/N performance of the quadrature output of the two FDEM designs would be similar to the observed S/N of TEM systems, though...the semi-airborne configuration. We propose to extend the current SAIC codes to address this need, and to perform additional modeling using codes

  4. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  5. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  6. Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD)

    Atmospheric Science Data Center

    2016-10-18

    Webinar: Airborne Data Discovery and Analysis with Toolsets for Airborne Data (TAD) Wednesday, October 26, 2016 Join us on ... and flight data ranges are available. Registration is now open.  Access the full announcement   For TAD Information, ...

  7. Airborne-biogeochemical survey test-case results

    USGS Publications Warehouse

    Collins, William E.; Chang, Sheng-Huei; Raines, Gary L.; Canney, Frank C.; Ashley, Roger; Barringer, Anthony R.

    1980-01-01

    Airborne spectroradiometer surveys over several forest-covered sulfide bodies indicate that mineralization has affected the overlying vegetation; anomalous spectral reflectivity properties can be detected in the vegetation using appropriate remote-sensing interments and data-reduction techniques. Mineralization induces subtle changes in the shape of the chlorophyll a and b absorption spectrum between 550 and 750 nm. The observed spectral variations appear specifically to be on the wings of the broad red chlorophyll bars, centered at about 680 nm.

  8. Quantitative measurement of airborne cockroach allergen in New York City apartments

    PubMed Central

    Esposito, W. A.; Chew, G. L.; Correa, J. C.; Chillrud, S. N.; Miller, R. L.; Kinney, P. L.

    2013-01-01

    We designed and tested a sampling and analysis system for quantitative measurement of airborne cockroach allergen with sufficient sensitivity for residential exposure assessment. Integrated 1-week airborne particle samples were collected at 10–15 LPM in 19 New York City apartments in which an asthmatic child who was allergic to cockroach allergen resided. Four simultaneous air samples were collected in each home: at heights of 0.3 and 1 m in the child's bedroom and in the kitchen. Extracts of air samples were analyzed by ELISA for the cockroach allergen Bla g2, modified by amplifying the colorimetric signal generated via use of AMPLI-Q detection system (DAKO Corporation, Carpinteria, CA, USA). Settled dust samples were quantified by conventional ELISA. Of the homes where cockroach allergen was detected in settled dust, Bla g2 also was detected in 87% and 93% of air samples in the bedroom and kitchen, respectively. Airborne Bla g2 levels were highly correlated within and between the bedroom and kitchen locations (P < 0.001). Expressed as picogram per cubic meter, the room average geometric mean for Bla g2 concentrations was 1.9 pg/m3 (95% CI 0.63, 4.57) and 3.8 pg/m3 (95% CI 1.35, 9.25) in bedrooms and kitchens, respectively. This method offers an attractive supplement to settled dust sampling for cockroach allergen exposure health studies. PMID:21658130

  9. Detecting an Extended Light Source through a Lens

    ERIC Educational Resources Information Center

    Litaker, E. T.; Machacek, J. R.; Gay, T. J.

    2011-01-01

    We present a Monte Carlo simulation of a cylindrical luminescent volume and a typical lens-detector system. The results of this simulation yield a graphically simple picture of the regions within the cylindrical volume from which this system detects light. Because the cylindrical volume permits large angles of incidence, we use a modification of…

  10. THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agol, Eric; Jansen, Tiffany; Lacy, Brianna

    2015-10-10

    Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon. We consider two model systems, for which we discuss the requirements for detection of exomoons around nearby stars. We simulate themore » characterization of an Earth–Moon analog system with spectroastrometry, showing that the orbit, the planet mass, and the spectra of both bodies can be recovered. To enable the detection and characterization of exomoons we recommend that coronagraphic telescopes should extend in wavelength coverage to 3 μm, and should be designed with spectroastrometric requirements in mind.« less

  11. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  12. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  13. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  14. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    NASA Astrophysics Data System (ADS)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    The accurate estimation of carbon stored in a tree is essential to accounting for the carbon emissions due to deforestation and degradation. Airborne LiDAR (Light Detection and Ranging) has been successful in estimating aboveground carbon density (ACD) by correlating airborne metrics, such as canopy height, to field-estimated biomass. This latter step is reliant on field allometry which is applied to forest inventory quantities, such as stem diameter and height, to predict the biomass of a given tree stem. Constructing such allometry is expensive, time consuming, and requires destructive sampling. Consequently, the sample sizes used to construct such allometry are often small, and the largest tree sampled is often much smaller than the largest in the forest population. The uncertainty resulting from these sampling errors can lead to severe biases when the allometry is applied to stems larger than those harvested to construct the allometry, which is then subsequently propagated to airborne ACD estimates. The Kruger National Park (KNP) mission of maintaining biodiversity coincides with preserving ecosystem carbon stocks. However, one hurdle to accurately quantifying carbon density in savannas is that small stems are typically harvested to construct woody biomass allometry, yet they are not representative of Kruger's distribution of biomass. Consequently, these equations inadequately capture large tree variation in sapwood/hardwood composition, root/shoot/leaf allocation, branch fall, and stem rot. This study eliminates the "middleman" of field allometry by directly measuring, or harvesting, tree biomass within the extent of airborne LiDAR. This enables comparisons of field and airborne ACD estimates, and also enables creation of new airborne algorithms to estimate biomass at the scale of individual trees. A field campaign was conducted at Pompey Silica Mine 5km outside Kruger National Park, South Africa, in Mar-Aug 2010 to harvest and weigh tree mass. Since

  15. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  16. Measurement of the length of pedestrian crossings and detection of traffic lights from image data

    NASA Astrophysics Data System (ADS)

    Shioyama, Tadayoshi; Wu, Haiyuan; Nakamura, Naoki; Kitawaki, Suguru

    2002-09-01

    This paper proposes a method for measurement of the length of a pedestrian crossing and for the detection of traffic lights from image data observed with a single camera. The length of a crossing is measured from image data of white lines painted on the road at a crossing by using projective geometry. Furthermore, the state of the traffic lights, green (go signal) or red (stop signal), is detected by extracting candidates for the traffic light region with colour similarity and selecting a true traffic light from them using affine moment invariants. From the experimental results, the length of a crossing is measured with an accuracy such that the maximum relative error of measured length is less than 5% and the rms error is 0.38 m. A traffic light is efficiently detected by selecting a true traffic light region with an affine moment invariant.

  17. Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance.

    PubMed

    Raval, Jay S; Koch, Eileen; Donnenberg, Albert D

    2012-10-01

    Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products. We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts. Viable and non-viable particles were well-correlated (r(2) = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥ 0.5/feet(3) (a limit set by the United States Pharmacopeia) at an action limit of ≥ 32 000 particles (≥ 0.5 µ)/feet(3), with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management. A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet(3) triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement.

  18. Real-time monitoring of non-viable airborne particles correlates with airborne colonies and represents an acceptable surrogate for daily assessment of cell-processing cleanroom performance

    PubMed Central

    RAVAL, JAY S.; KOCH, EILEEN; DONNENBERG, ALBERT D.

    2014-01-01

    Background aims Airborne particulate monitoring is mandated as a component of good manufacturing practice. We present a procedure developed to monitor and interpret airborne particulates in an International Organization for Standardization (ISO) class 7 cleanroom used for the cell processing of Section 351 and Section 361 products. Methods We collected paired viable and non-viable airborne particle data over a period of 1 year in locations chosen to provide a range of air quality. We used receiver operator characteristic (ROC) analysis to determine empirically the relationship between non-viable and viable airborne particle counts. Results Viable and non-viable particles were well-correlated (r 2 = 0.78), with outlier observations at the low end of the scale (non-viable particles without detectable airborne colonies). ROC analysis predicted viable counts ≥0.5/feet 3 (a limit set by the United States Pharmacopeia) at an action limit of ≥32 000 particles (≥0.5 μ)/feet 3 , with 95.6% sensitivity and 50% specificity. This limit was exceeded 2.6 times during 18 months of retrospective daily cleanroom data (an expected false alarm rate of 1.3 times/year). After implementing this action limit, we were alerted in real time to an air-handling failure undetected by our hospital facilities management. Conclusions A rational action limit for non-viable particles was determined based on the correlation with airborne colonies. Reaching or exceeding the action limit of 32 000 non-viable particles/feet 3 triggers suspension of cleanroom cell-processing activities, deep cleaning, investigation of air handling, and a deviation management process. Our full procedure for particle monitoring is available as an online supplement. PMID:22746538

  19. Airborne relay-based regional positioning system.

    PubMed

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  20. Airborne Relay-Based Regional Positioning System

    PubMed Central

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-01-01

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953

  1. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler.

    PubMed

    Miyajima, Kumiko; Suzuki, Yurika; Miki, Daisuke; Arai, Moeka; Arakawa, Takahiro; Shimomura, Hiroji; Shiba, Kiyoko; Mitsubayashi, Kohji

    2014-06-01

    Dermatophagoides farinae allergen (Der f1) is one of the most important indoor allergens associated with allergic diseases in humans. Mite allergen Der f1 is usually associated with particles of high molecular weight; thus, Der f1 is generally present in settled dust. However, a small quantity of Der f1 can be aerosolized and become an airborne component. Until now, a reliable method of detecting airborne Der f1 has not been developed. The aim of this study was to develop a fiber-optic chemifluorescent immunoassay for the detection of airborne Der f1. In this method, the Der f1 concentration measured on the basis of the intensity of fluorescence amplified by an enzymatic reaction between the labeled enzyme by a detection antibody and a fluorescent substrate. The measured Der f1 concentration was in the range from 0.49 to 250 ng/ml and a similar range was found by enzyme-linked immunosorbent assay (ELISA). This method was proved to be highly sensitive to Der f1 compared with other airborne allergens. For the implementation of airborne allergen measurement in a residential environment, a bioaerosol sampler was constructed. The airborne allergen generated by a nebulizer was conveyed to a newly sampler we developed for collecting airborne Der f1. The sampler was composed of polymethyl methacrylate (PMMA) cells for gas/liquid phases and some porous membranes which were sandwiched in between the two phases. Der f1 in air was collected by the sampler and measured using the fiber-optic immunoassay system. The concentration of Der f1 in aerosolized standards was in the range from 0.125 to 2.0 mg/m(3) and the collection rate of the device was approximately 0.2%. © 2013 Elsevier B.V. All rights reserved.

  2. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    PubMed Central

    Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610

  3. Airborne bacterial assemblage in a zero carbon building: A case study.

    PubMed

    Leung, M H Y; Tong, X; Tong, J C K; Lee, P K H

    2018-01-01

    Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day-to-day) and long-term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time-decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source-tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of light artifacts

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2016-03-01

    It is often difficult to identify cancer tissue during brain cancer (glioma) surgery. Gliomas invade into areas of normal brain, and this cancer invasion is frequently not detected using standard preoperative magnetic resonance imaging (MRI). This results in enduring invasive cancer following surgery and leads to recurrence. A hand-held Raman spectroscopy is able to rapidly detect cancer invasion in patients with grade 2-4 gliomas. However, ambient light sources can produce spectral artifacts which inhibit the ability to distinguish between cancer and normal tissue using the spectral information available. To address this issue, we have demonstrated that artificial neural networks (ANN) can accurately classify invasive cancer versus normal brain tissue, even when including measurements with significant spectral artifacts from external light sources. The non-parametric and adaptive model used by ANN makes it suitable for detecting complex non-linear spectral characteristics associated with different tissues and the confounding presence of light artifacts. The use of ANN for brain cancer detection with Raman spectroscopy, in the presence of light artifacts, improves the robustness and clinical translation potential for intraoperative use. Integration with the neurosurgical workflow is facilitated by accounting for the effect of light artifacts which may occur, due to operating room lights, neuronavigation systems, windows, or other light sources. The ability to rapidly detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery, and thereby improve patient survival.

  5. Identification of cyanobacteriochromes detecting far-red light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λ max = 725–755 nm)/orange (λ max = 590–600 nm) and far-red/red (λ max = 615–685 nm) photoswitches that are small (<200 amino acids) and canmore » be genetically reconstituted in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/ or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. In conclusion, this work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum.« less

  6. Identification of cyanobacteriochromes detecting far-red light

    DOE PAGES

    Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark

    2016-06-13

    The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors. Our studies reveal far-red (λ max = 725–755 nm)/orange (λ max = 590–600 nm) and far-red/red (λ max = 615–685 nm) photoswitches that are small (<200 amino acids) and canmore » be genetically reconstituted in living cells. Phylogenetic analysis and characterization of additional CBCRs demonstrated that far-red/orange CBCRs evolved after a complex transition from green/red CBCRs known for regulating complementary chromatic acclimation. Incorporation of different bilin chromophores demonstrated that tuning mechanisms responsible for red-shifted chromophore absorption act at the A-, B-, and/ or C-rings, whereas photoisomerization occurs at the D-ring. Two such proteins exhibited detectable fluorescence extending well into the near-infrared region. In conclusion, this work extends the spectral window of CBCRs to the edge of the infrared, raising the possibility of using CBCRs in synthetic biology applications in the far-red region of the spectrum.« less

  7. Direct detection of exothermic dark matter with light mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Department of Physics, National Tsing Hua University,Hsinchu, Taiwan; Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan

    2016-08-05

    We study the dark matter (DM) direct detection for the models with the effects of the isospin-violating couplings, exothermic scatterings, and/or the lightness of the mediator, proposed to relax the tension between the CDMS-Si signals and null experiments. In the light of the new updates of the LUX and CDMSlite data, we find that many of the previous proposals are now ruled out, including the Ge-phobic exothermic DM model and the Xe-phobic DM one with a light mediator. We also examine the exothermic DM models with a light mediator but without the isospin violation, and we are unable to identifymore » any available parameter space that could simultaneously satisfy all the experiments. The only models that can partially relax the inconsistencies are the Xe-phobic exothermic DM models with or without a light mediator. But even in this case, a large portion of the CDMS-Si regions of interest has been constrained by the LUX and SuperCDMS data.« less

  8. Cross-reactivity among antigens of different air-borne fungi detected by ELISA using five monoclonal antibodies against Penicillium notatum.

    PubMed

    Shen, H D; Lin, W L; Chen, R J; Han, S H

    1990-10-01

    Cross-reactivity among antigens of 12 genera of air-borne fungi, 13 species of Penicillium, and 5 species of Aspergillus was studied by ELISA using five monoclonal antibodies (MoAbs) against Penicillium notatum. Epitopes recognized by all the five MoAbs were susceptible to treatment of mild periodate oxidation and may therefore be associated with carbohydrates. Furthermore, our results showed that there is cross-reactivity among antigens of Penicillium, Aspergillus, and Eurotium species. By using these MoAbs, cross reactivity was not detected between antigens of Penicillium notatum and antigens of Fusarium solani, Alternaria porri, Cladosporium cladosporoides, Curvularia species, Nigrospora species, Aureobasidium pullulans, Wallemia species, Rhizopus arrhizus, and Candida albicans. Cross-reactivity among antigens of 11 species of Penicillium and 5 species of Aspergillus could be detected by ELISA using one of the five MoAbs (MoAb P15). The fact that there may be cross-reactivity among antigens of closely related fungi species should be considered in the diagnosis and treatment of mold allergic diseases.

  9. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  10. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  11. Measurement of aircraft xenon strobe light characteristics

    DOT National Transportation Integrated Search

    1976-08-01

    This report provides data on the characteristics of aircraft xenon strobe lights related to their potential for use as the cooperative element in Optical IR (Infrared) Airborne Proximity Warning Indicator (APWI) systems. It includes a description of ...

  12. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  13. Ensemble Learning Method for Outlier Detection and its Application to Astronomical Light Curves

    NASA Astrophysics Data System (ADS)

    Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Chen, Wesley

    2016-09-01

    Outlier detection is necessary for automated data analysis, with specific applications spanning almost every domain from financial markets to epidemiology to fraud detection. We introduce a novel mixture of the experts outlier detection model, which uses a dynamically trained, weighted network of five distinct outlier detection methods. After dimensionality reduction, individual outlier detection methods score each data point for “outlierness” in this new feature space. Our model then uses dynamically trained parameters to weigh the scores of each method, allowing for a finalized outlier score. We find that the mixture of experts model performs, on average, better than any single expert model in identifying both artificially and manually picked outliers. This mixture model is applied to a data set of astronomical light curves, after dimensionality reduction via time series feature extraction. Our model was tested using three fields from the MACHO catalog and generated a list of anomalous candidates. We confirm that the outliers detected using this method belong to rare classes, like Novae, He-burning, and red giant stars; other outlier light curves identified have no available information associated with them. To elucidate their nature, we created a website containing the light-curve data and information about these objects. Users can attempt to classify the light curves, give conjectures about their identities, and sign up for follow up messages about the progress made on identifying these objects. This user submitted data can be used further train of our mixture of experts model. Our code is publicly available to all who are interested.

  14. A General Purpose Feature Extractor for Light Detection and Ranging Data

    DTIC Science & Technology

    2010-11-17

    datasets, and the 3D MIT DARPA Urban Challenge dataset. Keywords: SLAM ; LIDARs ; feature detection; uncertainty estimates; descriptors 1. Introduction The...November 2010 Abstract: Feature extraction is a central step of processing Light Detection and Ranging ( LIDAR ) data. Existing detectors tend to exploit...detector for both 2D and 3D LIDAR data that is applicable to virtually any environment. Our method adapts classic feature detection methods from the image

  15. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  16. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    comprised three airborne campaigns in Greenland from April to June 2012 separated by roughly one month and preliminary results showed the instrument capability to detect ice motion. CryoVEx 2012 was a large collaborative effort to help ensure the accuracy of ESA's ice mission CryoSat. The aim of this large-scale Arctic campaign was to record sea-ice thickness and conditions of the ice exactly below the CryoSat-2 path. A range of sensors installed on different aircraft included simple cameras to get a visual record of the sea ice, laser scanners to clearly map the height of the ice, an ice-thickness sensor (EM-Bird), ESA's radar altimeter (ASIRAS) and NASA's snow and Ku-band radars, which mimic CryoSat's measurements but at a higher resolution. Preliminary results reveal the ability to detect centimetre differences between sea-ice and thin ice/water which in turn allow for the estimation of actual sea ice thickness. In support of two currently operating EE Missions: SMOS (Soil Moisture and Ocean Salinity) and GOCE (Gravity field and steady-state Ocean Circulation Explorer), DOMECair airborne campaign will take place in Antarctica, in the Dome C region during the middle of January 2013. The two main objectives are to quantify and document the spatial variability in the DOME C area, important to establish long-term cross-calibrated multi-mission L-band measurement time-series (SMOS) and fill in the gap in the high-quality gravity anomaly maps in Antarctica since airborne gravity measurements are sparse (GOCE). Key airborne instruments in the campaign are EMIRAD-2 L-band radiometer, designed and operated by DTU and a gravimeter from AWI. ESA campaigns have been fundamental and an essential part in the preparation of new Earth Observation missions, as well as in the independent validation of their measurements and quantification of error sources. For the different activities a rich variety of datasets has been recorded, are archived and users can access campaign data through the

  17. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Estimating forest structural characteristics using the airborne LiDAR scanning system and a near-real time profiling laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Kaiguang

    LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatially-explicit mapping of forest characteristics, such as canopy height and Leaf Area Index. However, many factors, such as large data volume and high costs for data acquisition, precludes the operational and practical use of most currently available LiDARs for frequent and large-scale mapping. At the same time, a growing need is arising for real-time remote sensing platforms, e.g., to provide timely information for urgent applications. This study aims to develop an airborne profiling LiDAR system, featured with on-the-fly data processing, for near real- or real-time forest inventory. The development of such a system involves implementing the on-board data processing and analysis as well as building useful regression-based models to relate LiDAR measurements with forest biophysical parameters. This work established a paradigm for an on-the-fly airborne profiling LiDAR system to inventory regional forest resources in real- or near real-time. The system was developed based on an existing portable airborne laser system (PALS) that has been previously assembled at NASA by Dr. Ross Nelson. Key issues in automating PALS as an on-the-fly system were addressed, including the design of an archetype for the system workflow, the development of efficient and robust algorithms for automatic data processing and analysis, the development of effective regression models to predict forest biophysical parameters from LiDAR measurements, and the implementation of an integrated software package to incorporate all the above development. This work exploited the untouched potential of airborne laser profilers for real-time forest inventory, and therefore, documented an initial step toward developing airborne-laser-based, on-the-fly, real-time, forest inventory systems. Results from this work demonstrated the utility and effectiveness of

  19. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  20. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    PubMed

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  1. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  2. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  3. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  4. Assessing airborne aflatoxin B1 during on-farm grain handling activities.

    PubMed

    Selim, M I; Juchems, A M; Popendorf, W

    1998-04-01

    The presence of aflatoxin in corn and corn dust during relatively normal years and the increased risk of Aspergillus flavus infestation during drought conditions suggest that airborne agricultural exposures should be of considerable concern. Liquid extraction, thin layer chromatography, and high pressure liquid chromatography were used for the analysis of aflatoxin B1 in grain dust and bulk corn samples. A total of 24 samples of airborne dust were collected from 8 farms during harvest, 22 samples from 9 farms during animal feeding, and 14 sets of Andersen samples from 11 farms during bin cleaning. A total of 14 samples of settled dust and 18 samples of bulk corn were also collected and analyzed. The airborne concentration of aflatoxin B1 found in dust collected during harvest and grain unloading ranged from 0.04 to 92 ng/m3. Higher levels of aflatoxin B1 were found in the airborne dust samples collected from enclosed animal feeding buildings (5-421 ng/m3) and during bin cleaning (124-4849 ng/m3). Aflatoxin B1 up to 5100 ng/g were detected in settled dust collected from an enclosed animal feeding building; however, no apparent correlation was found between the airborne concentration of aflatoxin B1 and its concentration in settled dust or bulk corn. The data demonstrate that farmers and farm workers may be exposed to potentially hazardous concentrations of aflatoxin B1, particularly during bin cleaning and animal feeding in enclosed buildings.

  5. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection.

    PubMed

    Ozkan, Gokhan; Guzel, Kadriye Gorkem Ulu

    2017-08-01

    The objective of this clinical study was to compare conventional caries detection techniques, pen-type laser fluorescence device, and near-infrared light transillumination method in approximal dentin caries lesions. The study included 157 patients, aged 12-18, without any cavity in the posterior teeth. Two calibrated examiners carried out the assessments of selected approximal caries sites independently. After the assessments, the unopened sites were excluded and a total of 161 approximal sites were included in the study. When both the examiners arrived at a consensus regarding the presence of dentin caries, the detected lesions were opened with a conical diamond burr, the cavity extent was examined and validated (gold standard). Sensitivity, specificity, negative predictive value, positive predictive value, accuracy, and area under the ROC curve (Az) values among the caries detection methods were calculated. Bitewing radiography and near-infrared (NIR) light transillumination methods showed the highest sensitivity (0.83-0.82) and accuracy (0.82-0.80) among the methods. Visual inspection showed the lowest sensitivity (0.54). Laser fluorescence device and visual inspection showed nearly equal performance. Near-infrared light transillumination can be used as an alternative method to approximal dentin caries detection. Visual inspection and laser fluorescence device alone should not be used for approximal dentin caries.

  6. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  7. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  8. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  9. Non-contact detection of cardiac rate based on visible light imaging device

    NASA Astrophysics Data System (ADS)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  10. Predicting infection risk of airborne foot-and-mouth disease.

    PubMed

    Schley, David; Burgin, Laura; Gloster, John

    2009-05-06

    Foot-and-mouth disease is a highly contagious disease of cloven-hoofed animals, the control and eradication of which is of significant worldwide socio-economic importance. The virus may spread by direct contact between animals or via fomites as well as through airborne transmission, with the latter being the most difficult to control. Here, we consider the risk of infection to flocks or herds from airborne virus emitted from a known infected premises. We show that airborne infection can be predicted quickly and with a good degree of accuracy, provided that the source of virus emission has been determined and reliable geo-referenced herd data are available. A simple model provides a reliable tool for estimating risk from known sources and for prioritizing surveillance and detection efforts. The issue of data information management systems was highlighted as a lesson to be learned from the official inquiry into the UK 2007 foot-and-mouth outbreak: results here suggest that the efficacy of disease control measures could be markedly improved through an accurate livestock database incorporating flock/herd size and location, which would enable tactical as well as strategic modelling.

  11. Three-dimensional feature extraction and geometric mappings for improved parameter estimation in forested terrain using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Lee, Heezin

    Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the

  12. Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.

    PubMed

    Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi

    2017-05-01

    When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.

  13. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-16

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  14. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  15. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

    PubMed Central

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  16. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  17. Implementing the ban on smoking in Israeli pubs: measuring airborne nicotine and enforcement by local authorities.

    PubMed

    Satran, Carmit; Drach-Zahavy, Anat; Hammond, S Katharine; Baron-Epel, Orna

    2014-06-01

    In 2007 an amendment to the law restricting smoking in pubs and bars (P&Bs) was enacted in Israel. However, a year after the ban only slight decreases in airborne smoke in P&Bs in one city have been reported. We aimed to assess levels of airborne nicotine in Israeli P&Bs and to measure ifself-reported enforcement of the law by local officials was associated with levels of airborne nicotine in P&Bs. Airborne nicotine levels were measured in 72 P&Bs in 29 towns in Israel; this consisted of 90% of eligible towns. In addition, 73 local authority officials were interviewed in 25 of these towns. The officials were asked to assess the local authority's level of enforcement of the law banning smoking in P&Bs. The association of levels of airborne nicotine with the levels of enforcement of the law was calculated. Data were collected during 2009-2010 and analyzed in 2010-2011. Levels of airborne nicotine were comparatively high in P&Bs. No association was detected between levels of nicotine and the P&Bs' characteristics. In the larger towns, levels of airborne nicotine were higher. In 16% of towns the local authority officials reported high levels of law enforcement. Generally, levels of reported enforcement by local authorities were low and did not predict levels of airborne nicotine in the P&Bs. Self-reported local authorities' law enforcement was not associated with levels of airborne nicotine in P&Bs in these towns. There is a need to develop ways to increase law enforcement by the local authorities or other agencies.

  18. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79

  19. Air-borne and tissue-borne sensitivities of bioacoustic sensors used on the skin surface.

    PubMed

    Zañartu, Matías; Ho, Julio C; Kraman, Steve S; Pasterkamp, Hans; Huber, Jessica E; Wodicka, George R

    2009-02-01

    Measurements of body sounds on the skin surface have been widely used in the medical field and continue to be a topic of current research, ranging from the diagnosis of respiratory and cardiovascular diseases to the monitoring of voice dosimetry. These measurements are typically made using light-weight accelerometers and/or air-coupled microphones attached to the skin. Although normally neglected, air-borne sounds generated by the subject or other sources of background noise can easily corrupt such recordings, which is particularly critical in the recording of voiced sounds on the skin surface. In this study, the sensitivity of commonly used bioacoustic sensors to air-borne sounds was evaluated and compared with their sensitivity to tissue-borne body sounds. To delineate the sensitivity to each pathway, the sensors were first tested in vitro and then on human subjects. The results indicated that, in general, the air-borne sensitivity is sufficiently high to significantly corrupt body sound signals. In addition, the air-borne and tissue-borne sensitivities can be used to discriminate between these components. Although the study is focused on the evaluation of voiced sounds on the skin surface, an extension of the proposed methods to other bioacoustic applications is discussed.

  20. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  1. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  2. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    NASA Astrophysics Data System (ADS)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  3. The light output and the detection efficiency of the liquid scintillator EJ-309.

    PubMed

    Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G

    2014-07-01

    The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Detection and quantification of snow algae with an airborne imaging spectrometer.

    PubMed

    Painter, T H; Duval, B; Thomas, W H; Mendez, M; Heintzelman, S; Dozier, J

    2001-11-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).

  5. Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer

    PubMed Central

    Painter, Thomas H.; Duval, Brian; Thomas, William H.; Mendez, Maria; Heintzelman, Sara; Dozier, Jeff

    2001-01-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2. PMID:11679355

  6. A novel method for detecting light source for digital images forensic

    NASA Astrophysics Data System (ADS)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  7. Synergistic Use of WorldView-2 Imagery and Airborne LiDAR Data for Urban Land Cover Classification

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2017-02-01

    There are lots of challenges for deriving urban land cover types for high resolution optical imagery because of spectral similarity of different objects, mixed pixels, shadows of buildings and large tree crowns. In order to reduce these uncertainties, recently, it’s a trend of the classification of urban land cover from multi-source sensors in the field of urban remote sensing. In this study, a hierarchical support vector machine (SVM) classification method was applied to the urban land cover mapping, using the WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data. The results showed that: (1) The overall accuracy (OA) and overall kappa (OK) were 72.92% and 0.66 for WorldView-2 imagery alone; while the OA and OK were improved up to 89.44% and 0.87 for the synergistic use of the two types of data source. (2) Buildings and road/parking lots extracted from fused data were more precision and well-shaped. The two classes from fused data were optimally classified with higher producer’s accuracy and user’s accuracy than WorldView-2 imagery alone. The trees were also easily separated from the grasslands when the airborne LiDAR data was added. (3) The fused data could reduce the phenomenon of different spectral character of the complex and detailed objects. It was also helpful to address the problem of shadows from the high-rise buildings. The results from this study indicate that the synergistic use of high resolution optical imagery and airborne LiDAR data can be an efficient approach to improving the classification of urban land cover.

  8. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    NASA Astrophysics Data System (ADS)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  9. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control

    PubMed Central

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-01-01

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen). PMID:27399720

  10. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control.

    PubMed

    Kim, Heekang; Kwon, Soon; Kim, Sungho

    2016-07-08

    This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD) or Complementary metal-Oxide-Semiconductor (CMOS) camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC), the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs), High-intensity discharge (HID), and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM), Spectral Correlation Mapper (SCM), and Euclidean Distance Mapper (EDM). The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen).

  11. Water Mapping Using Multispectral Airborne LIDAR Data

    NASA Astrophysics Data System (ADS)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  12. Polyp detection rates using magnification with narrow band imaging and white light.

    PubMed

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-05-16

    To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other's findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ(2) test and means were compared using the Student's t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for adenomas). Miss rate of

  13. New Airborne LiDAR Survey of the Hayward Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Prentice, C. S.; Phillips, D. A.; Bevis, M.; Shrestha, R. L.

    2007-12-01

    We present a digital elevation model (DEM) constructed from newly acquired high-resolution LIght Detection and Ranging (LIDAR) data along the Hayward Fault in Northern California. The data were acquired by the National Center for Airborne Laser Mapping (NCALM) in the spring of 2007 in conjunction with a larger regional airborne LIDAR survey of the major crustal faults in northern California coordinated by UNAVCO and funded by the National Science Foundation as part of GeoEarthScope. A consortium composed of the U. S. Geological Survey, Pacific Gas & Electric Company, the San Francisco Public Utilities Commission, and the City of Berkeley separately funded the LIDAR acquisition along the Hayward Fault. Airborne LIDAR data were collected within a 106-km long by 1-km wide swath encompassing the Hayward Fault that extended from San Pablo Bay on the north to the southern end of its restraining stepover with the Calaveras Fault on the south. The Hayward Fault is among the most urbanized faults in the nation. With its most recent major rupture in 1868, it is well within the time window for its next large earthquake, making it an excellent candidate for a "before the earthquake" DEM image. After the next large Hayward Fault event, this DEM can be compared to a post-earthquake LIDAR DEM to provide a means for a detailed analysis of fault slip. In order to minimize location errors, temporary GPS ground control stations were deployed by Ohio State University, UNAVCO, and student volunteers from local universities to augment the available continuous GPS arrays operated in the study area by the Bay Area Regional Deformation (BARD) Network and the Plate Boundary Observatory (PBO). The vegetation cover varies along the fault zone: most of the vegetation is non-native species. Photographs from the 1860s show very little tall vegetation along the fault zone. A number of interesting geomorphic features are associated with the Hayward Fault, even in urbanized areas. Sag ponds and

  14. Spectral difference analysis and airborne imaging classification for citrus greening infected trees

    USDA-ARS?s Scientific Manuscript database

    Citrus greening, also called Huanglongbing (HLB), became a devastating disease spread through citrus groves in Florida, since it was first found in 2005. Multispectral (MS) and hyperspectral (HS) airborne images of citrus groves in Florida were acquired to detect citrus greening infected trees in 20...

  15. Demonstration and Validation of an Improved Airborne Electromagnetic System for UXO Detection and Mapping

    DTIC Science & Technology

    2010-05-01

    William E. Doll Battelle 105 Mitchell Road Suite 103 Oak Ridge, TN 37830 865-483-2548 865-599-6165 dollw@battelle.org Airborne Survey...Manager David T. Bell Battelle 105 Mitchell Road Suite 103 Oak Ridge, TN 37830 865-483-2547 865-250-0578 belldt@battelle.org Battelle-Oak Ridge

  16. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  17. Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light

    PubMed Central

    Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.

    2014-01-01

    A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the

  18. Comprehensive analysis of airborne contaminants from recent Spacelab missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.

    1993-01-01

    The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.

  19. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.

    2015-12-01

    The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.

  20. Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake.

    PubMed

    Roddewig, Michael R; Churnside, James H; Hauer, F Richard; Williams, Jacob; Bigelow, Patricia E; Koel, Todd M; Shaw, Joseph A

    2018-05-20

    The use of airborne lidar to survey fisheries has not yet been extensively applied in freshwater environments. In this study, we investigated the applicability of this technology to identify invasive lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park, USA. Results of experimental trials conducted in 2004 and in 2015-16 provided lidar data that identified groups of fish coherent with current knowledge and models of lake trout spawning sites, and one identified site was later confirmed to have lake trout.

  1. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  2. Airborne Remote sensing of the OH tropospheric column with an Integrated Path Differential LIDAR.

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Liang, Q.; Nicely, J. M.; Brune, W. H.; Miller, D. O.; Thames, A. B.

    2017-12-01

    The Hydroxyl radical, OH, is central to the photochemistry that controls tropospheric oxidation including the removal of atmospheric methane. Measurements of this important species are thus critical to testing our understanding and for constraining model results. Until now, tropospheric measurements have been limited to airborne or ground-based in situ instruments best suited to test photochemical box models. However, because of the growing recognition of the importance of the global methane abundance, we have a growing need to better quantify OH at the regional to global scales that are best sampled with airborne or space-based remote sensing instruments. To address this need, we have developed an instrument concept and have begun work on a laser transmitter for an airborne integrated path differential absorption LIDAR for the detection of OH. We will describe the instrument and present the expected performance characteristics. As a demonstration, we will use measurements from the recent ATOM-1 NASA airborne campaign to show measured OH columns can be used to constrain regional and global models.

  3. Easier detection of invertebrate "identification-key characters" with light of different wavelengths

    PubMed Central

    2011-01-01

    The marine α-taxonomist often encounters two problems. Firstly, the "environmental dirt" that is frequently present on the specimens and secondly the difficulty in distinguishing key-features due to the uniform colours which fixed animals often adopt. Here we show that illuminating animals with deep-blue or ultraviolet light instead of the normal white-light abrogates both difficulties; dirt disappears and important details become clearly visible. This light regime has also two other advantages. It allows easy detection of very small, normally invisible, animals (0.1 μm range). And as these light wavelengths can induce fluorescence, new identification markers may be discovered by this approach. PMID:22040277

  4. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event.

    PubMed

    Hu, Jialin; Zhao, Fuzheng; Zhang, Xu-Xiang; Li, Kan; Li, Chaoran; Ye, Lin; Li, Mei

    2018-02-15

    Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM 2.5 samples, and from 7.61 to 38.49ppm in PM 10 samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Upgraded airborne scanner for commercial remote sensing

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  6. Testing an innovative device against airborne Aspergillus contamination.

    PubMed

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  8. Infrared light sensor applied to early detection of tooth decay

    NASA Astrophysics Data System (ADS)

    Benjumea, Eberto; Espitia, José; Díaz, Leonardo; Torres, Cesar

    2017-08-01

    The approach dentistry to dental care is gradually shifting to a model focused on early detection and oral-disease prevention; one of the most important methods of prevention of tooth decay is opportune diagnosis of decay and reconstruction. The present study aimed to introduce a procedure for early diagnosis of tooth decay and to compare result of experiment of this method with other common treatments. In this setup, a laser emitting infrared light is injected in core of one bifurcated fiber-optic and conduced to tooth surface and with the same bifurcated fiber the radiation reflected for the same tooth is collected and them conduced to surface of sensor that measures thermal and light frequencies to detect early signs of decay below a tooth surface, where demineralization is difficult to spot with x-ray technology. This device will can be used to diagnose tooth decay without any chemicals and rays such as high power lasers or X-rays.

  9. Artificial light at night confounds broad-scale habitat use by migrating birds

    USGS Publications Warehouse

    McLaren, James D.; Buler, Jeffrey J.; Schreckengost, Tim; Smolinsky, Jaclyn A.; Boone, Matthew; van Loon, E. Emiel; Dawson, Deanna K.; Walters, Eric L.

    2018-01-01

    With many of the world's migratory bird populations in alarming decline, broad-scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light-polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi-year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly-lit sources. This finding implies broad-scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high-quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.

  10. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.

    PubMed

    Meadow, J F; Altrichter, A E; Kembel, S W; Kline, J; Mhuireach, G; Moriyama, M; Northcutt, D; O'Connor, T K; Womack, A M; Brown, G Z; Green, J L; Bohannan, B J M

    2014-02-01

    Architects and engineers are beginning to consider a new dimension of indoor air: the structure and composition of airborne microbial communities. A first step in this emerging field is to understand the forces that shape the diversity of bioaerosols across space and time within the built environment. In an effort to elucidate the relative influences of three likely drivers of indoor bioaerosol diversity - variation in outdoor bioaerosols, ventilation strategy, and occupancy load - we conducted an intensive temporal study of indoor airborne bacterial communities in a high-traffic university building with a hybrid HVAC (mechanically and naturally ventilated) system. Indoor air communities closely tracked outdoor air communities, but human-associated bacterial genera were more than twice as abundant in indoor air compared with outdoor air. Ventilation had a demonstrated effect on indoor airborne bacterial community composition; changes in outdoor air communities were detected inside following a time lag associated with differing ventilation strategies relevant to modern building design. Our results indicate that both occupancy patterns and ventilation strategies are important for understanding airborne microbial community dynamics in the built environment. © 2013 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  11. 2002 Airborne Geophysical Survey at Pueblo of Isleta Bombing Targets, New Mexico, April 10 May 6, 2002 (Rev 1)

    DTIC Science & Technology

    2005-12-01

    helicopter geophysical survey performed by US Army Engineering Support Center, Huntsville (USAESCH) and Oak Ridge National Laboratory ( ORNL ) over areas...Array Detection System NAD North American Datum ORAGS Oak Ridge Airborne Geophysical System ORNL Oak Ridge National Laboratory RMS Root...used by ORNL in 1999 for.....................5 Figure 2.4 ORAGS-Hammerhead airborne magnetometer system used at Badlands Bombing Range in FY2000

  12. Airborne Trailblazer: Two decades with NASA Langley's 737 flying laboratory

    NASA Technical Reports Server (NTRS)

    Wallace, Lane E.

    1994-01-01

    This book is the story of a very unique aircraft and the contributions it has made to the air transportation industry. NASA's Boeing 737-100 Transport Systems Research Vehicle started life as the prototype for Boeing's 737 series of aircraft. The airplane was acquired by LaRC in 1974 to conduct research into advanced transport aircraft technologies. In the twenty years that followed, the airplane participated in more than twenty different research projects, evolving from a research tool for a specific NASA program into a national airborne research facility. It played a critical role in developing and gaining acceptance for numerous significant transport technologies including 'glass cockpits,' airborne windshear detection systems, data links for air traffic control communications, the microwave landing system, and the satellite-based global positioning system (GPS).

  13. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  14. Enhanced detection of a low-frequency signal by using broad squeezed light and a bichromatic local oscillator

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing

    2017-08-01

    We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.

  15. A study of airborne chrysotile concentrations associated with handling, unpacking, and repacking boxes of automobile clutch discs.

    PubMed

    Jiang, George C T; Madl, Amy K; Ingmundson, Kelsey J; Murbach, Dana M; Fehling, Kurt A; Paustenbach, Dennis J; Finley, Brent L

    2008-06-01

    Although automotive friction products (brakes and manual clutches) historically contained chrysotile asbestos, industrial hygiene surveys and epidemiologic studies of auto mechanics have consistently shown that these workers are not at an increased risk of developing asbestos-related diseases. Airborne asbestos levels during brake repair and brake parts handling have been well-characterized, but the potential exposure to airborne asbestos fibers during the handling of clutch parts has not been examined. In this study, breathing zone samples on the lapel of a volunteer worker (n=100) and area samples at bystander (n=50), remote area (n=25), and ambient (n=9) locations collected during the stacking, unpacking, and repacking of boxes of asbestos-containing clutches, and the subsequent cleanup and clothes handling, were analyzed by phase contrast microscopy (PCM) and transmission electron microscopy (TEM). In addition, fiber morphology and size distribution was evaluated using X-ray diffraction, polarized light microscopy, and ISO analytical methods. It was observed that the (1) airborne asbestos concentrations increased with the number of boxes unpacked and repacked, (2) repetitive stacking of unopened boxes of clutches resulted in higher asbestos concentrations than unpacking and repacking the boxes of clutches, (3) cleanup and clothes handling tasks yielded very low asbestos concentrations. Fiber size and morphology analyses showed that amphibole fibers were not detected in the clutches and that the vast majority (>95%) of the airborne chrysotile fibers were less than 20 microm in length. Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results, it was found that 30-min average airborne chrysotile concentrations (PCM adjusted) were 0.026+/-0.004 f/cc or 0.100+/-0.017 f/cc for a worker unpacking and repacking 1 or 2 boxes of clutches, respectively. The 30-min PCM adjusted average airborne asbestos

  16. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  17. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    PubMed

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  18. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  19. Polyp detection rates using magnification with narrow band imaging and white light

    PubMed Central

    Gilani, Nooman; Stipho, Sally; Panetta, James D; Petre, Sorin; Young, Michele A; Ramirez, Francisco C

    2015-01-01

    AIM: To compare the yield of adenomas between narrow band imaging and white light when using high definition/magnification. METHODS: This prospective, non-randomized comparative study was performed at the endoscopy unit of veteran affairs medical center in Phoenix, Arizona. Consecutive patients undergoing first average risk colorectal cancer screening colonoscopy were selected. Two experienced gastroenterologists performed all the procedures that were blinded to each other’s findings. Demographic details were recorded. Data are presented as mean ± SEM. Proportional data were compared using the χ2 test and means were compared using the Student’s t test. Tandem colonoscopy was performed in a sequential and segmental fashion using one of 3 strategies: white light followed by narrow band imaging [Group A: white light (WL) → narrow band imaging (NBI)]; narrow band imaging followed by white light (Group B: NBI → WL) and, white light followed by white light (Group C: WL → WL). Detection rate of missed polyps and adenomas were evaluated in all three groups. RESULTS: Three hundred patients were studied (100 in each Group). Although the total time for the colonoscopy was similar in the 3 groups (23.8 ± 0.7, 22.2 ± 0.5 and 24.1 ± 0.7 min for Groups A, B and C, respectively), it reached statistical significance between Groups B and C (P < 0.05). The cecal intubation time in Groups B and C was longer than for Group A (6.5 ± 0.4 min and 6.5 ± 0.4 min vs 4.9 ± 0.3 min; P < 0.05). The withdrawal time for Groups A and C was longer than Group B (18.9 ± 0.7 min and 17.6 ± 0.6 min vs 15.7 ± 0.4 min; P < 0.05). Overall miss rate for polyps and adenomas detected in three groups during the second look was 18% and 17%, respectively (P = NS). Detection rate for polyps and adenomas after first look with white light was similar irrespective of the light used during the second look (WL → WL: 13.7% for polyps, 12.6% for adenomas; WL → NBI: 14.2% for polyps, 11.3% for

  20. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  1. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  2. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  3. Light detection and the wavelength shifter deposition in DEAP-3600

    NASA Astrophysics Data System (ADS)

    Broerman, B.; Retière, F.

    2016-02-01

    The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.

  4. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shang, Li; Dong, Shaojun

    2008-03-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 × 10-7 M, 3.5 × 10-7 M, 4.1 × 10-7 M, and 7.7 × 10-7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  5. Prevention the spread of norovirus infection on airborne route by using Plasma Assisted Catalytic Technology (PACT) device.

    PubMed

    Tanaka, Yoshimoto; Fujino, Kan; Larkins, Gerald Andrew; Osawa, Atsushi; Hayashi, Yuji; Taharaguchi, Satoshi

    2018-04-30

    Zoonosis becomes a popular word. Highly pathogenic influenza virus (HPI), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) recently occurred at around Africa, Meddle-East and South-East Asia area, whose virus is classified as airborne. Sterilization capability was investigated by using chemical reactor of PACT device. Test on airborne infection was carried out by Feline Calicivirus Vaccine (FCV) strain F9, which is also surrogated human norovirus. It was found that PACT device could sterilize instantly FCV when passing through the plasma space of PACT device. Sterilization rate may be more than 99.99% (below the detection limit). This result may be available to sterilize various virus including human norovirus and airborne-infectious microorganisms.

  6. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  7. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  8. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  9. Parameter identification of JONSWAP spectrum acquired by airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Pei, Hailong; Xu, Chengzhong

    2017-12-01

    In this study, we developed the first linear Joint North Sea Wave Project (JONSWAP) spectrum (JS), which involves a transformation from the JS solution to the natural logarithmic scale. This transformation is convenient for defining the least squares function in terms of the scale and shape parameters. We identified these two wind-dependent parameters to better understand the wind effect on surface waves. Due to its efficiency and high-resolution, we employed the airborne Light Detection and Ranging (LIDAR) system for our measurements. Due to the lack of actual data, we simulated ocean waves in the MATLAB environment, which can be easily translated into industrial programming language. We utilized the Longuet-Higgin (LH) random-phase method to generate the time series of wave records and used the fast Fourier transform (FFT) technique to compute the power spectra density. After validating these procedures, we identified the JS parameters by minimizing the mean-square error of the target spectrum to that of the estimated spectrum obtained by FFT. We determined that the estimation error is relative to the amount of available wave record data. Finally, we found the inverse computation of wind factors (wind speed and wind fetch length) to be robust and sufficiently precise for wave forecasting.

  10. Robust sky light polarization detection with an S-wave plate in a light field camera.

    PubMed

    Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin

    2016-05-01

    The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.

  11. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].

    PubMed

    Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong

    2006-07-01

    The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.

  12. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; hide

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  13. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  14. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    PubMed Central

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-01-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents. PMID:28300143

  15. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  16. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  17. Turbulence and mountain wave conditions observed with an airborne 2-micron lidar

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Ashburn, Chris; Ehernberger, Jack; Bogue, Rodney

    2006-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges (California, USA) by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 meters per second (m/s) at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 seconds in moderate turbulence.

  18. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    NASA Astrophysics Data System (ADS)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  19. Experimental study on the sensitive depth of backwards detected light in turbid media.

    PubMed

    Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping

    2018-05-28

    In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

  20. Model-assisted forest yield estimation with light detection and ranging

    Treesearch

    Jacob L. Strunk; Stephen E. Reutebuch; Hans-Erik Andersen; Peter J. Gould; Robert J. McGaughey

    2012-01-01

    Previous studies have demonstrated that light detection and ranging (LiDAR)-derived variables can be used to model forest yield variables, such as biomass, volume, and number of stems. However, the next step is underrepresented in the literature: estimation of forest yield with appropriate confidence intervals. It is of great importance that the procedures required for...

  1. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  2. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, M. J.; Bosh, A. S.; Levine, S. E.

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it

  3. An update on airborne contact dermatitis.

    PubMed

    Huygens, S; Goossens, A

    2001-01-01

    This review is an update of 2 previously published articles on airborne contact dermatoses. Because reports in the literature often omit the term 'airborne', 18 volumes of Contact Dermatitis (April 1991-June 2000), 8 volumes of the American Journal of Contact Dermatitis (1992 1999) and 4 volumes of La Lettre du Gerda (1996-1999) were screened, and the cases cited were classified as to history, lesion locations, sensitization sources, and other factors. Reports on airborne dermatitis are increasingly being published, sometimes in relation to specific occupational areas.

  4. New method for the detection of light deflection by solar gravity.

    PubMed

    Shapiro, I I

    1967-08-18

    The prediction of Einstein's theory of general relativity that light will be deflected by the sun may be tested by sending radio waves from the earth to Venus or Mercury when either passes behind the sun and detecting the echoes with a radar interferometer.

  5. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-;can ALS now work better on the task of LAI prediction?; As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  6. Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant

    2004-08-01

    The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.

  7. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  8. Quick response airborne command post communications

    NASA Astrophysics Data System (ADS)

    Blaisdell, Randy L.

    1988-08-01

    National emergencies and strategic crises come in all forms and sizes ranging from natural disasters at one end of the scale up to and including global nuclear warfare at the other. Since the early 1960s the U.S. Government has spent billions of dollars fielding airborne command posts to ensure continuity of government and the command and control function during times of theater conventional, theater nuclear, and global nuclear warfare. Unfortunately, cost has prevented the extension of the airborne command post technology developed for these relatively unlikely events to the lower level, though much more likely to occur, crises such as natural disasters, terrorist acts, political insurgencies, etc. This thesis proposes the implementation of an economical airborne command post concept to address the wide variety of crises ignored by existing military airborne command posts. The system is known as the Quick Response Airborne Command Post (QRAC Post) and is based on the exclusive use of commercially owned and operated aircraft, and commercially available automated data processing and communications resources. The thesis addresses the QRAC Post concept at a systems level and is primarily intended to demonstrate how current technology can be exploited to economically achieve a national objective.

  9. Airborne radioactivity surveys in the Mojave Desert region, Kern, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    Moxham, Robert M.

    1952-01-01

    Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.

  10. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  11. Vehicle tracking in wide area motion imagery from an airborne platform

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; van Huis, Jasper R.; Eendebak, Pieter T.; Baan, Jan

    2015-10-01

    Airborne platforms, such as UAV's, with Wide Area Motion Imagery (WAMI) sensors can cover multiple square kilometers and produce large amounts of video data. Analyzing all data for information need purposes becomes increasingly labor-intensive for an image analyst. Furthermore, the capacity of the datalink in operational areas may be inadequate to transfer all data to the ground station. Automatic detection and tracking of people and vehicles enables to send only the most relevant footage to the ground station and assists the image analysts in effective data searches. In this paper, we propose a method for detecting and tracking vehicles in high-resolution WAMI images from a moving airborne platform. For the vehicle detection we use a cascaded set of classifiers, using an Adaboost training algorithm on Haar features. This detector works on individual images and therefore does not depend on image motion stabilization. For the vehicle tracking we use a local template matching algorithm. This approach has two advantages. In the first place, it does not depend on image motion stabilization and it counters the inaccuracy of the GPS data that is embedded in the video data. In the second place, it can find matches when the vehicle detector would miss a certain detection. This results in long tracks even when the imagery is of low frame-rate. In order to minimize false detections, we also integrate height information from a 3D reconstruction that is created from the same images. By using the locations of buildings and roads, we are able to filter out false detections and increase the performance of the tracker. In this paper we show that the vehicle tracks can also be used to detect more complex events, such as traffic jams and fast moving vehicles. This enables the image analyst to do a faster and more effective search of the data.

  12. Structured Light-Based Hazard Detection For Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Nefian, Ara; Wong, Uland Y.; Dille, Michael; Bouyssounouse, Xavier; Edwards, Laurence; To, Vinh; Deans, Matthew; Fong, Terry

    2017-01-01

    This paper describes a structured light-based sensor for hazard avoidance in planetary environments. The system presented here can also be used in terrestrial applications constrained by reduced onboard power and computational complexity and low illumination conditions. The sensor is on a calibrated camera and laser dot projector system. The onboard hazard avoidance system determines the position of the projected dots in the image and through a triangulation process detects potential hazards. The paper presents the design parameters for this sensor and describes the image based solution for hazard avoidance. The system presented here was tested extensively in day and night conditions in Lunar analogue environments. The current system achieves over 97 detection rate with 1.7 false alarms over 2000 images.

  13. Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics.

    PubMed

    Cotič, Jasna; Jevnikar, Peter; Kocjan, Andraž

    2017-07-01

    The combined effects of alumina airborne-particle abrasion and prolonged in vitro ageing on the flexural strength of 3Y-TZP ceramic have been studied. The aim was to identify the different effects on the surface and subsurface regions that govern the performance of this popular bioceramic known for its susceptibility to low-temperature degradation (LTD). As-sintered or airborne-particle abraded 3Y-TZP discs were subjected to ageing at 134°C for up to 480h. Biaxial flexural strength was measured and the relative amount of monoclinic phase determined using X-ray diffraction. The transformed zone depth (TZD) was observed on cross-sections with scanning electron microscopy coupled with a focused ion beam. Segmented linear regression was used to analyze the flexural strength and TZD as functions of the ageing time. A two-step linear ageing kinetics was detected in airborne-particle abraded specimens, reflecting the different microstructures through which the LTD proceeds into the bulk. A 10μm thick altered zone under the abraded surface was involved in both the surface strengthening and the increased ageing resistance. When the zone was annihilated by the LTD, the strength of the ceramic specimens and the speed of LTD returned to the values measured before abrasion. Even at prolonged ageing times, the strength of abraded groups was not lower than that of as-sintered groups. Both the ageing kinetics and the flexural strength were prominently affected by airborne-particle abrasion, which altered the subsurface microstructure and phase composition. Airborne-particle abrasion was not harmful to the 3Y-TZP ceramics' stability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  15. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  16. Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Radke, L. F.; Langer, G.; Hindman, E. E., II

    1978-01-01

    Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented.

  17. SITHON: An Airborne Fire Detection System Compliant with Operational Tactical Requirements

    PubMed Central

    Kontoes, Charalabos; Keramitsoglou, Iphigenia; Sifakis, Nicolaos; Konstantinidis, Pavlos

    2009-01-01

    In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces. PMID:22399963

  18. High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area.

    PubMed

    Hervas, Anna; Casamayor, Emilio O

    2009-02-01

    The bacterioneuston (bacteria inhabiting the air-water interface) is poorly characterized and possibly forms a unique community in the aquatic environment. In high mountain lakes, the surface film is subjected to extreme conditions of life, suggesting the development of a specific and adapted bacterioneuston community. We have studied the surface film of a remote high mountain lake in the Pyrenees by cloning the PCR-amplified 16S rRNA gene and comparing with bacteria present in underlying waters (UW), and airborne bacteria from the dust deposited on the top of the snow pack. We did not detect unusual taxa in the neuston but rather very common and widespread bacterial groups. Betaproteobacteria and Actinobacteria accounted for >75% of the community composition. Other minor groups were Gammaproteobacteria (between 8% and 12%), Alphaproteobacteria (between 1% and 5%), and Firmicutes (1%). However, we observed segregated populations in neuston and UW for the different clades within each of the main phylogenetic groups. The soil bacterium Acinetobacter sp. was only detected in the snow-dust sample. Overall, higher similarities were found between bacterioneuston and airborne bacteria than between the former and bacterioplankton. The surface film in high mountain lakes appears as a direct interceptor of airborne bacteria useful for monitoring long-range bacterial dispersion.

  19. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    PubMed

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  20. Airborne Transparencies.

    ERIC Educational Resources Information Center

    Horne, Lois Thommason

    1984-01-01

    Starting from a science project on flight, art students discussed and investigated various means of moving in space. Then they made acetate illustrations which could be used as transparencies. The projection phenomenon made the illustrations look airborne. (CS)

  1. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  2. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  3. Buildings classification from airborne LiDAR point clouds through OBIA and ontology driven approach

    NASA Astrophysics Data System (ADS)

    Tomljenovic, Ivan; Belgiu, Mariana; Lampoltshammer, Thomas J.

    2013-04-01

    In the last years, airborne Light Detection and Ranging (LiDAR) data proved to be a valuable information resource for a vast number of applications ranging from land cover mapping to individual surface feature extraction from complex urban environments. To extract information from LiDAR data, users apply prior knowledge. Unfortunately, there is no consistent initiative for structuring this knowledge into data models that can be shared and reused across different applications and domains. The absence of such models poses great challenges to data interpretation, data fusion and integration as well as information transferability. The intention of this work is to describe the design, development and deployment of an ontology-based system to classify buildings from airborne LiDAR data. The novelty of this approach consists of the development of a domain ontology that specifies explicitly the knowledge used to extract features from airborne LiDAR data. The overall goal of this approach is to investigate the possibility for classification of features of interest from LiDAR data by means of domain ontology. The proposed workflow is applied to the building extraction process for the region of "Biberach an der Riss" in South Germany. Strip-adjusted and georeferenced airborne LiDAR data is processed based on geometrical and radiometric signatures stored within the point cloud. Region-growing segmentation algorithms are applied and segmented regions are exported to the GeoJSON format. Subsequently, the data is imported into the ontology-based reasoning process used to automatically classify exported features of interest. Based on the ontology it becomes possible to define domain concepts, associated properties and relations. As a consequence, the resulting specific body of knowledge restricts possible interpretation variants. Moreover, ontologies are machinable and thus it is possible to run reasoning on top of them. Available reasoners (FACT++, JESS, Pellet) are used to check

  4. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    NASA Astrophysics Data System (ADS)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell

  5. Advances in Acoustic Landmine Detection

    DTIC Science & Technology

    2006-10-01

    8] A. Petculescu and J. M. Sabatier, “ Feasibility study of an air - coupled acoustic sensor for measuring small vibrations, Proc. SPIE 17th...the acoustic-to-seismic (A/S) coupling of airborne sound into the ground for buried anti-personnel and anti-tank landmine detection is well established...113, pp.1333-1341 (2003)]. A sound source is used to insonify the ground surface. The airborne sound couples into the soil and excites the

  6. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  7. Detecting skin malignancy using elastic light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan

    2007-07-01

    We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.

  8. Laser-induced photo emission detection: data acquisition based on light intensity counting

    NASA Astrophysics Data System (ADS)

    Yulianto, N.; Yudasari, N.; Putri, K. Y.

    2017-04-01

    Laser Induced Breakdown Detection (LIBD) is one of the quantification techniques for colloids. There are two ways of detection in LIBD: optical detection and acoustic detection. LIBD is based on the detection of plasma emission due to the interaction between particle and laser beam. In this research, the changing of light intensity during plasma formations was detected by a photodiode sensor. A photo emission data acquisition system was built to collect and transform them into digital counts. The real-time system used data acquisition device National Instrument DAQ 6009 and LABVIEW software. The system has been tested on distilled water and tap water samples. The result showed 99.8% accuracy by using counting technique in comparison to the acoustic detection with sample rate of 10 Hz, thus the acquisition system can be applied as an alternative method to the existing LIBD acquisition system.

  9. Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment

    NASA Astrophysics Data System (ADS)

    Kiss, K.; Malinen, J.; Tokola, T.

    2016-06-01

    Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.

  10. Airborne asbestos in public buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesson, J.; Hatfield, J.; Schultz, B.

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest.more » However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.« less

  11. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  12. An overview of the legislation and light microscopy for detection of processed animal proteins in feeds.

    PubMed

    Liu, Xian; Han, Lujia; Veys, Pascal; Baeten, Vincent; Jiang, Xunpeng; Dardenne, Pierre

    2011-08-01

    From the first cases of bovine spongiform encephalopathy (BSE) among cattle in the United Kingdom in 1986, the route of infection of BSE is generally believed by means of feeds containing low level of processed animal proteins (PAPs). Therefore, many feed bans and alternative and complementary techniques were resulted for the BSE safeguards in the world. Now the feed bans are expected to develop into a "species to species" ban, which requires the corresponding species-specific identification methods. Currently, banned PAPs can be detected by various methods as light microscopy, polymerase chain reaction, enzyme-linked immunosorbent assay, near infrared spectroscopy, and near infrared microscopy. Light microscopy as described in the recent Commission Regulation EC/152/2009 is the only official method for the detection and characterization of PAPs in feed in the European Union. It is able to detect the presence of constituents of animal origin in feed at the level of 1 g/kg with hardly any false negative. Nevertheless, light microscopy has the limitation of lack of species specificity. This article presents a review of legislations on the use of PAPs in feedstuff, the detection details of animal proteins by light microscopy, and also presents and discusses the analysis procedure and expected development of the technique. Copyright © 2010 Wiley-Liss, Inc.

  13. Second International Airborne Remote Sensing Conference and Exhibition

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference provided four days of displays and scientific presentations on applications, technology, a science of sub-orbital data gathering and analysis. The twelve displayed aircraft equipped with sophisticated instrumentation represented a wide range of environmental and reconnaissance missions,including marine pollution control, fire detection, Open Skies Treaty verification, thermal mapping, hydrographical measurements, military research, ecological and agricultural observations, geophysical research, atmospheric and meterological observations, and aerial photography. The U.S. Air Force and the On-Site Inspection Agency displayed the new Open Skies Treaty verification Boeing OC 135B that promotes international monitoring of military forces and activities. SRl's Jetstream uses foliage and ground penetrating SAR for forest inventories, toxic waste delineation, and concealed target and buried unexploded ordnance detection. Earth Search Sciences's Gulfstream 1 with prototype miniaturized airborne hyperspectral imaging equipment specializes in accurate mineral differentiation, low-cost hydrocarbon exploration, and nonproliferation applications. John E. Chance and the U.S. Army Corps of Engineers displayed the Bell 2 helicopter with SHOALS that performs hydrographic surveying of navigation projects, coastal environment assessment, and nautical charting surveys. Bechtel Nevada and U.S. DOE displayed both the Beech King AIR B-200 platform equipped to provide first response to nuclear accidents and routine environmental surveillance, and the MBB BO-105 helicopter used in spectral analysis for environmental assessment and military appraisal. NASA Ames Research Center's high-altitude Lockheed ER-2 assists in earth resources monitoring research in atmospheric chemistry, oceanography, and electronic sensors; ozone and greenhouse studies and satellite calibration and data validation. Ames also showcased the Learjet 24 Airborne Observatory that completed missions in Venus

  14. [Airborne fungal community composition in indoor environments in Beijing].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun; Liu, Peng; Sun, Li; Wang, Xiao-yong

    2013-05-01

    autumn, and the lowest in winter. Concerning the Penicillium concentration, the seasonal variation pattern was different, and higher concentration was observed in spring than summer, autumn and winter. Finally, we also found that higher fungal concentration was detected in families with boys than those with girls, and negative correlation was found between airborne fungal concentration and living area per capita.

  15. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  16. Direct Detection of Polarized, Scattered Light from Exoplanets

    NASA Astrophysics Data System (ADS)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  17. Airborne Collision Detection and Avoidance for Small UAS Sense and Avoid Systems

    NASA Astrophysics Data System (ADS)

    Sahawneh, Laith Rasmi

    , sense and avoid, minimum sensing range, airborne collision detection and avoidance, collision detection, collision risk assessment, collision avoidance, conflict detection, conflict avoidance, path planning.

  18. Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires

    NASA Astrophysics Data System (ADS)

    Chasmer, L. E.; Hopkinson, C. D.; Petrone, R. M.; Sitar, M.

    2017-12-01

    Accuracy of depth of burn (an indicator of consumption) in peatland soils using prefire and postfire airborne light detection and ranging (lidar) data is determined within a wetland-upland forest environment near Fort McMurray, Alberta, Canada. The relationship between peat soil burn depth and an "active" normalized burn ratio (ANBR) is also examined beneath partially and fully burned forest and understory canopies using state-of-the-art active reflectance from a multispectral lidar compared with normalized burn ratio (NBR) derived from Landsat 7 ETM+. We find significant correspondence between depth of burn, lidar-derived ANBR, and difference NBR (dNBR) from Landsat. However, low-resolution optical imagery excludes peatland burn losses in transition zones, which are highly sensitive to peat loss via combustion. The findings presented here illustrate the utility of this new remote sensing technology for expanding an area of research where it has previously been challenging to spatially detect and quantify such wildfire burn losses.

  19. Airborne spectroradiometry: The application of AIS data to detecting subtle mineral absorption features

    NASA Technical Reports Server (NTRS)

    Cocks, T. D.; Green, A. A.

    1986-01-01

    Analysis of Airborne Imaging Spectrometer (AIS) data acquired in Australia has revealed a number of operational problems. Horizontal striping in AIS imagery and spectral distortions due to order overlap were investigated. Horizontal striping, caused by grating position errors can be removed with little or no effect on spectral details. Order overlap remains a problem that seriously compromises identification of subtle mineral absorption features within AIS spectra. A spectrometric model of the AIS was developed to assist in identifying spurious spectral features, and will be used in efforts to restore the spectral integrity of the data.

  20. Event Detection Using Mobile Phone Mass GPS Data and Their Reliavility Verification by Dmsp/ols Night Light Image

    NASA Astrophysics Data System (ADS)

    Yuki, Akiyama; Satoshi, Ueyama; Ryosuke, Shibasaki; Adachi, Ryuichiro

    2016-06-01

    In this study, we developed a method to detect sudden population concentration on a certain day and area, that is, an "Event," all over Japan in 2012 using mass GPS data provided from mobile phone users. First, stay locations of all phone users were detected using existing methods. Second, areas and days where Events occurred were detected by aggregation of mass stay locations into 1-km-square grid polygons. Finally, the proposed method could detect Events with an especially large number of visitors in the year by removing the influences of Events that occurred continuously throughout the year. In addition, we demonstrated reasonable reliability of the proposed Event detection method by comparing the results of Event detection with light intensities obtained from the night light images from the DMSP/OLS night light images. Our method can detect not only positive events such as festivals but also negative events such as natural disasters and road accidents. These results are expected to support policy development of urban planning, disaster prevention, and transportation management.

  1. Real-time measurements of airborne biologic particles using fluorescent particle counter to evaluate microbial contamination: results of a comparative study in an operating theater.

    PubMed

    Dai, Chunyang; Zhang, Yan; Ma, Xiaoling; Yin, Meiling; Zheng, Haiyang; Gu, Xuejun; Xie, Shaoqing; Jia, Hengmin; Zhang, Liang; Zhang, Weijun

    2015-01-01

    Airborne bacterial contamination poses a risk for surgical site infection, and routine surveillance of airborne bacteria is important. Traditional methods for detecting airborne bacteria are time consuming and strenuous. Measurement of biologic particle concentrations using a fluorescent particle counter is a novel method for evaluating air quality. The current study was to determine whether the number of biologic particles detected by the fluorescent particle counter can be used to indicate airborne bacterial counts in operating rooms. The study was performed in an operating theater at a university hospital in Hefei, China. The number of airborne biologic particles every minute was quantified using a fluorescent particle counter. Microbiologic air sampling was performed every 30 minutes using an Andersen air sampler (Pusong Electronic Instruments, Changzhou, China). Correlations between the 2 different methods were analyzed by Pearson correlation coefficients. A significant correlation was observed between biologic particle and bacterial counts (Pearson correlation coefficient = 0.76), and the counting results from 2 methods both increased substantially between operations, corresponding with human movements in the operating room. Fluorescent particle counters show potential as important tools for monitoring bacterial contamination in operating theatres. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu

    2017-09-01

    This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.

  3. Effect of light intensity on food detection in captive great fruit-eating bats, Artibeus lituratus (Chiroptera: Phyllostomidae).

    PubMed

    Gutierrez, Eduardo de A; Pessoa, Valdir F; Aguiar, Ludmilla M S; Pessoa, Daniel M A

    2014-11-01

    Bats are known for their well-developed echolocation. However, several experiments focused on the bat visual system have shown evidence of the importance of visual cues under specific luminosity for different aspects of bat biology, including foraging behavior. This study examined the foraging abilities of five female great fruit-eating bats, Artibeus lituratus, under different light intensities. Animals were given a series of tasks to test for discrimination between a food target against an inedible background, under light levels similar to the twilight illumination (18lx), the full moon (2lx) and complete darkness (0lx). We found that the bats required a longer time frame to detect targets under a light intensity similar to twilight, possibly due to inhibitory effects present under a more intense light level. Additionally, bats were more efficient at detecting and capturing targets under light conditions similar to the luminosity of a full moon, suggesting that visual cues were important for target discrimination. These results demonstrate that light intensity affects foraging behavior and enables the use of visual cues for food detection in frugivorous bats. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Forced-air warming: a source of airborne contamination in the operating room?

    PubMed

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  6. Feasibility Study of an Optical Caustic Plasmonic Light Scattering Sensor for Human Serum Anti-Dengue Protein E Antibody Detection

    PubMed Central

    García, Antonio A.; Pirez-Gomez, Miguel A.; Pech-Pacheco, José L.; Mendez-Galvan, Jorge F.; Machain-Williams, Carlos; Talavera-Aguilar, Lourdes; Espinosa-Carrillo, José H.; Duarte-Villaseñor, Miriam M.; Be-Ortiz, Christian; Espinosa-de los Monteros, Luz E.; Castillo-Pacheco, Ariel; Garcia-Rejon, Julian E.

    2017-01-01

    Antibody detection and accurate diagnosis of tropical diseases is essential to help prevent the spread of disease. However, most detection methods lack cost-effectiveness and field portability, which are essential features for achieving diagnosis in a timely manner. To address this, 3D-printed oblate spheroid sample chambers were fabricated to measure green light scattering of gold nanoparticles using an optical caustic focus to detect antibodies. Scattering signals of 20–200 nm gold nanoparticles using a green laser were compared to green light emitting diode (LED) light source signals and to Mie theory. The change in signal from 60 to 120 nm decreased in the order of Mie Theory > optical caustic scattering > 90° scattering. These results suggested that conjugating 60 nm gold nanoparticles and using an optical caustic system to detect plasmonic light scattering, would result in a sensitive test for detecting human antibodies in serum. Therefore, we studied the light scattering response of conjugated gold nanoparticles exposed to different concentrations of anti-protein E antibody, and a feasibility study of 10 human serum samples using dot blot and a handheld optical caustic-based sensor device. The overall agreement between detection methods suggests that the new sensor concept shows promise to detect gold nanoparticle aggregation in a homogeneous assay. Further testing and protocol optimization is needed to draw conclusions on the positive and negative predictive values for this new testing system. PMID:28817080

  7. Airborne Particles.

    ERIC Educational Resources Information Center

    Ojala, Carl F.; Ojala, Eric J.

    1987-01-01

    Describes an activity in which students collect airborne particles using a common vacuum cleaner. Suggests ways for the students to convert their data into information related to air pollution and human health. Urges consideration of weather patterns when analyzing the results of the investigation. (TW)

  8. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    PubMed

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study

    USDA-ARS?s Scientific Manuscript database

    The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...

  10. Serum Free Light Chains in Neoplastic Monoclonal Gammopathies: Relative Under-Detection of Lambda Dominant Kappa/Lambda Ratio, and Underproduction of Free Lambda Light Chains, as Compared to Kappa Light Chains, in Patients With Neoplastic Monoclonal Gammopathies.

    PubMed

    Lee, Won Sok; Singh, Gurmukh

    2018-07-01

    Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized.

  11. Serum Free Light Chains in Neoplastic Monoclonal Gammopathies: Relative Under-Detection of Lambda Dominant Kappa/Lambda Ratio, and Underproduction of Free Lambda Light Chains, as Compared to Kappa Light Chains, in Patients With Neoplastic Monoclonal Gammopathies

    PubMed Central

    Lee, Won Sok; Singh, Gurmukh

    2018-01-01

    Background Quantitative evaluation of serum free light chains is recommended for the work up of monoclonal gammopathies. Immunoglobulin light chains are generally produced in excess of heavy chains. In patients with monoclonal gammopathy, κ/λ ratio is abnormal less frequently with lambda chain lesions. This study was undertaken to ascertain if the levels of overproduction of the two light chain types and their detection rates are different in patients with neoplastic monoclonal gammopathies. Methods Results of serum protein electrophoresis (SPEP), serum protein immunofixation electrophoresis (SIFE), urine protein electrophoresis (UPEP), urine protein immunofixation electrophoresis (UIFE), and serum free light chain assay (SFLCA) in patients with monoclonal gammopathies were examined retrospectively. Results The κ/λ ratios were appropriately abnormal more often in kappa chain lesions. Ratios of κ/λ were normal in about 25% of patients with lambda chain lesions in whom free homogenous lambda light chains were detectable in urine. An illustrative case suggests underproduction of free lambda light chains, in some instances. Conclusions The lower prevalence of lambda dominant κ/λ ratio in lesions with lambda light chains is estimated to be due to relative under-detection of lambda dominant κ/λ ratio in about 25% of the patients and because lambda chains are not produced in as much excess of heavy chains as are kappa chains, in about 5% of the patients. The results question the medical necessity and clinical usefulness of the serum free light chain assay. UPEP/UIFE is under-utilized. PMID:29904440

  12. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    PubMed Central

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  14. Enhanced Army Airborne Forces: A New Joint Operational Capability

    DTIC Science & Technology

    2014-01-01

    that are trained to carry out airborne operations, including the 75th Ranger Regiment and Army special forces. Today’s airborne forces lack protected...Operation Just Cause Airborne units were used extensively in Panama, and the 82nd Air- borne’s 1st Brigade and the 75th Ranger Regiment were both...carry out airborne operations, including the 75th Ranger Regiment and Army special forces. The changes made to transition the Army into a force

  15. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  16. Gravity for Detecting Caves: Airborne and Terrestrial Simulations Based on a Comprehensive Karstic Cave Benchmark

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Pivetta, Tommaso; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Rossi, Lorenzo; Fabbri, Julius; Mansi, Ahmed Hamdi

    2016-04-01

    Underground caves bear a natural hazard due to their possible evolution into a sink hole. Mapping of all existing caves could be useful for general civil usages as natural deposits or tourism and sports. Natural caves exist globally and are typical in karst areas. We investigate the resolution power of modern gravity campaigns to systematically detect all void caves of a minimum size in a given area. Both aerogravity and terrestrial acquisitions are considered. Positioning of the gravity station is fastest with GNSS methods the performance of which is investigated. The estimates are based on a benchmark cave of which the geometry is known precisely through a laser-scan survey. The cave is the Grotta Gigante cave in NE Italy in the classic karst. The gravity acquisition is discussed, where heights have been acquired with dual-frequency geodetic GNSS receivers and Total Station. Height acquisitions with non-geodetic low-cost receivers are shown to be useful, although the error on the gravity field is larger. The cave produces a signal of -1.5 × 10-5 m/s2, with a clear elliptic geometry. We analyze feasibility of airborne gravity acquisitions for the purpose of systematically mapping void caves. It is found that observations from fixed wing aircraft cannot resolve the caves, but observations from slower and low-flying helicopters or drones do. In order to detect the presence of caves the size of the benchmark cave, systematic terrestrial acquisitions require a density of three stations on square 500 by 500 m2 tiles. The question has a large impact on civil and environmental purposes, since it will allow planning of urban development at a safe distance from subsurface caves. The survey shows that a systematic coverage of the karst would have the benefit to recover the position of all of the greater existing void caves.

  17. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  18. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  19. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  20. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2006-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  1. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  2. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  3. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  4. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  5. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  6. Airborne lidar experiments at the Savannah River Plant

    NASA Technical Reports Server (NTRS)

    Krabill, William B.; Swift, Robert N.

    1985-01-01

    The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed.

  7. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use.

  8. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  9. Nepal and Papua Airborne Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Olesen, A. V.; Forsberg, R.; Kasenda, F.; Einarsson, I.; Manandhar, N.

    2011-12-01

    Airborne gravimetry offers a fast and economic way to cover vast areas and it allows access to otherwise difficult accessible areas like mountains, jungles and the near coastal zone. It has the potential to deliver high resolution and bias free data that may bridge the spectral gap between global satellite gravity models and the high resolution gravity information embedded in digital terrain models. DTU Space has for more than a decade done airborne gravity surveys in many parts of the world. Most surveys were done with a LaCoste & Romberg S-meter updated for airborne use. This instrument has proven to deliver near bias free data when properly processed. A Chekan AM gravimeter was recently added to the airborne gravity mapping system and will potentially enhance the spatial resolution and the robustness of the system. This paper will focus on results from two recent surveys over Nepal, flown in December 2010, and over Papua (eastern Indonesia), flown in May and June 2011. Both surveys were flown with the new double gravimeter setup and initial assessment of system performance indicates improved spatial resolution compared to the single gravimeter system. Comparison to EGM08 and to the most recent GOCE models highlights the impact of the new airborne gravity data in both cases. A newly computed geoid model for Nepal based on the airborne data allows for a more precise definition of the height of Mt. Everest in a global height system. This geoid model suggests that the height of Mt. Everest should be increased by approximately 1 meter. The paper will also briefly discuss system setup and will highlight a few essential processing steps that ensure that bias problems are minimized and spatial resolution enhanced.

  10. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  11. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  12. Direct detection of light ''Ge-phobic'' exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng, E-mail: gelmini@physics.ucla.edu, E-mail: a.georgescu@physics.ucla.edu, E-mail: jhhuh@physics.ucla.edu

    2014-07-01

    We present comparisons of direct dark matter (DM) detection data for light WIMPs with exothermic scattering with nuclei (exoDM), both assuming the Standard Halo Model (SHM) and in a halo model–independent manner. Exothermic interactions favor light targets, thus reducing the importance of upper limits derived from xenon targets, the most restrictive of which is at present the LUX limit. In our SHM analysis the CDMS-II-Si and CoGeNT regions become allowed by these bounds, however the recent SuperCDMS limit rejects both regions for exoDM with isospin-conserving couplings. An isospin-violating coupling of the exoDM, in particular one with a neutron to protonmore » coupling ratio of -0.8 (which we call ''Ge-phobic''), maximally reduces the DM coupling to germanium and allows the CDMS-II-Si region to become compatible with all bounds. This is also clearly shown in our halo-independent analysis.« less

  13. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  14. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  15. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  17. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  18. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  19. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  20. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  1. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  2. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  3. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  4. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  5. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  6. Note: Sensitive fluorescence detection through minimizing the scattering light by anti-reflective nanostructured materials

    NASA Astrophysics Data System (ADS)

    Xu, Supeng; Yin, Yanning; Gu, Ruoxi; Xia, Meng; Xu, Liang; Chen, Li; Xia, Yong; Yin, Jianping

    2018-04-01

    We demonstrate a new approach with fabrication of anti-reflective coating to substantially reduce the scattering light in an ultra-high vacuum during laser induced fluorescence (LIF) detection. To do so, the surface of the vacuum chamber in the detection region was blackened and coated with the special solar heat absorbing nanomaterials. We demonstrate that more than 97.5% of the stray light in the chamber spanning from near infrared to ultraviolet can be absorbed which effectively improves the signal to noise (S/N) ratio. With this technique, the LIF signal from the cold magnesium monofluoride molecules has been observed with an S/N ratio of ˜4 times better than without that.

  7. NASA Program of Airborne Optical Observations.

    PubMed

    Bader, M; Wagoner, C B

    1970-02-01

    NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.

  8. Temporal variability of the bioaerosol background at a subway station: concentration level, size distribution, and diversity of airborne bacteria.

    PubMed

    Dybwad, Marius; Skogan, Gunnar; Blatny, Janet Martha

    2014-01-01

    Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 10(3) CFU m(-3) and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents.

  9. Temporal Variability of the Bioaerosol Background at a Subway Station: Concentration Level, Size Distribution, and Diversity of Airborne Bacteria

    PubMed Central

    Dybwad, Marius; Skogan, Gunnar

    2014-01-01

    Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 103 CFU m−3 and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents. PMID:24162566

  10. Low-cost lightweight airborne laser-based sensors for pipeline leak detection and reporting

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.; Wainner, Richard T.; Laderer, Matthew C.; Allen, Mark G.; Rutherford, James; Wehnert, Paul; Dey, Sean; Gilchrist, John; Corbi, Ron; Picciaia, Daniele; Andreussi, Paolo; Furry, David

    2013-05-01

    Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).

  11. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  12. Using Airborne LIDAR Data to Determine Old vs. Young Cottonwood Trees in the Riparian Corridor of the San Pedro River

    NASA Astrophysics Data System (ADS)

    Farid, A.; Goodrich, D.; Sartori, M.; Sorooshian, S.

    2003-12-01

    Quantification of vegetation patterns and properties is needed to determine their role in the landscape and to develop management plans to conserve natural resources. Vegetation patterns can be mapped from the ground, or by using aerial photography or satellite imagery. However, quantifying the physical properties of vegetation patterns with ground-based or remote sensing technology is difficult, time consuming, and often costly. Digital data from an airborne lidar (light detecting and ranging) instrument offers an alternative method for quantifying vegetation properties and patterns. Using lidar, a study was conducted in the San Pedro National Riparian Conservation Area in an attempt to differentiate young and old Cottonwood trees in southeastern Arizona as young and old cottonwoods have significantly different water use per unit area of canopy. The lidar data was acquired in June 2003, using Optech's ALTM (Airborne Laser Terrain Mapper), during flyovers conducted at an altitude of 750 m. It has been demonstrated that the height of old and young cottonwood canopies can be measured by using lidar. Canopy heights measured with the lidar show a good degree of correlation with ground-based measurements. Methodologically, the first step required is to differentiate old from young cottonwood canopies by the differences in canopy height obtained from lidar data. In addition to vegetation heights, spatial patterns of crown area, canopy cover, and intensity of return laser pulse are measured for both old and young cottonwood trees with the lidar data. The second stage of this study demonstrates that these other parameters of old and young cottonwood trees, when extrapolated from lidar, are significantly different. This study indicates the potential of airborne lidar data to distinguish between different ages of cottonwood forest canopy for large areas quickly and quantitatively.

  13. Development of SEM/STEM-WDX for highly sensitive detection of light elements

    NASA Astrophysics Data System (ADS)

    Anan, Y.; Koguchi, M.; Kimura, T.; Sekiguchi, T.

    2018-02-01

    In this study, to detect the light element lithium (Li) and to detect low dosed Boron (B) in the local area at nm order, we developed an analytical electron microscope equipped with an improved serial (S)-type WDX (wavelength dispersive X-ray spectroscopy) system. In detail, to detect Li, we developed a high-conductivity multi-capillary X-ray (MCX) lens, and a diffractor with a lattice spacing (d) of 15 nm, and with a spacing variation (δ d) of 0.8 nm. Moreover, to detect low dosed light element B, we designed a high-conductivity MCX lens based on the soft X-ray reflectivity in the capillary and calculation. We developed a large-solid-angle MCX lens whose conductivity of the characteristic X-rays of B became 20 times higher than that of an MCX lens with a 30-mm focal length. Our developed analytical electron microscope was applied to a LiAl specimen and a low B-doped Si substrate specimen, and the performance of this analytical electron microscope was evaluated. As a results, this analytical electron microscope could detect the characteristic X-rays of Li with a minimum mass fraction (MMF) of 8.4 atomic % (at. %). The energy resolution was 1 eV at 55 eV. From the results of measuring the line profile of B for the unpatterned B-implantation area on a B-doped Si substrate specimen, the measured line profile data were in good agreement with secondary ion mass spectrometry data up to a depth of 100 nm with a B concentration of 0.05 at. %.

  14. A new DOAS instrument on long-distance IAGOS-CARIBIC flights and airborne DOAS applications

    NASA Astrophysics Data System (ADS)

    Penth, Lara; Frieß, Udo; Pöhler, Denis; Platt, Ulrich; Zahn, Andreas

    2017-04-01

    Within the IAGOS-CARIBIC project airborne DOAS (Differential Optical Absorption Spectroscopy) measurements of atmospheric trace gases are performed aboard a commercial long range passenger aircraft from Lufthansa since 2005. They provide a unique dataset for episodic, long-term and seasonal observations. The DOAS instrument is the only remote sensing technique aboard. DOAS is a well-established remote sensing technique to retrieve trace gas columns in the atmosphere from scattered light spectra of the sun. A series of trace gas species can be observed simultaneously, including nitrogen dioxide (NO2), sulphur dioxide (SO2), bromine oxide (BrO), nitrous acid (HONO), formaldehyde (HCHO) and ozone (O3). Since DOAS is a contact-free measurement technique, it is specially well suited for measuring highly reactive trace gases. It is widely used on different platforms and the airborne DOAS measurements are filling the gap between ground-based measurements and satellite data. The CARIBIC DOAS instrument is divided into an instrument unit within the CARIBIC container in the cargo hold of the aircraft, a telescope unit, which is specially designed for the permanently mounted pylon underneath the aircraft, and fiber optics in between. The instrument unit consists of three temperature stabilized spectrometers and the readout and control electronics. The telescope unit contains three telescopes, which observe scattered sunlight to the right under the elevation angles of +10˚ , -10˚ and -82˚ (nadir) relative to the horizon. This measurement geometry allows the separation of boundary layer, free tropospheric and stratospheric trace gas columns along the flight track. A new DOAS instrument was designed and installed in 2016 (first flights expected from March 2017) to improve the detection limits of NO2, SO2, BrO, HCHO, HONO, O3 and O4. Furthermore, an extended wavelength range allows to measure in addition iodine monoxide (a potentially important oxidant in the free troposphere

  15. Sensitivity enhancement of fluorescence detection in CE by coupling and conducting excitation light with tapered optical fiber.

    PubMed

    Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F

    2011-01-01

    This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  17. Airborne protein concentration: a key metric for type 1 allergy risk assessment-in home measurement challenges and considerations.

    PubMed

    Tulum, Liz; Deag, Zoë; Brown, Matthew; Furniss, Annette; Meech, Lynn; Lalljie, Anja; Cochrane, Stella

    2018-01-01

    Exposure to airborne proteins can be associated with the development of immediate, IgE-mediated respiratory allergies, with genetic, epigenetic and environmental factors also playing a role in determining the likelihood that sensitisation will be induced. The main objective of this study was to determine whether airborne concentrations of selected common aeroallergens could be quantified in the air of homes using easily deployable, commercially available equipment and analytical methods, at low levels relevant to risk assessment of the potential to develop respiratory allergies. Additionally, air and dust sampling were compared and the influence of factors such as different filter types on allergen quantification explored. Low volume air sampling pumps and DUSTREAM ® dust samplers were used to sample 20 homes and allergen levels were quantified using a MARIA ® immunoassay. It proved possible to detect a range of common aeroallergens in the home with sufficient sensitivity to quantify airborne concentrations in ranges relevant to risk assessment (Limits of Detection of 0.005-0.03 ng/m 3 ). The methodology discriminates between homes related to pet ownership and there were clear advantages to sampling air over dust which are described in this paper. Furthermore, in an adsorption-extraction study, PTFE (polytetrafluoroethylene) filters gave higher and more consistent recovery values than glass fibre (grade A) filters for the range of aeroallergens studied. Very low airborne concentrations of allergenic proteins in home settings can be successfully quantified using commercially available pumps and immunoassays. Considering the greater relevance of air sampling to human exposure of the respiratory tract and its other advantages, wider use of standardised, sensitive techniques to measure low airborne protein concentrations and how they influence development of allergic sensitisation and symptoms could accelerate our understanding of human dose-response relationships

  18. Comparison of Ground-Based and Airborne Function Allocation Concepts for NextGen Using Human-In-The-Loop Simulations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Prevot, Thomas; Murdoch, Jennifer L.; Cabrall, Christopher D.; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Hoadley, Sherwood T.; Wilson, Sara R.; Hubbs, Clay E.; hide

    2010-01-01

    Investigation of function allocation for the Next Generation Air Transportation System is being conducted by the National Aeronautics and Space Administration (NASA). To provide insight on comparability of different function allocations for separation assurance, two human-in-the-loop simulation experiments were conducted on homogeneous airborne and ground-based approaches to four-dimensional trajectory-based operations, one referred to as ground-based automated separation assurance (groundbased) and the other as airborne trajectory management with self-separation (airborne). In the coordinated simulations at NASA s Ames and Langley Research Centers, controllers for the ground-based concept at Ames and pilots for the airborne concept at Langley managed the same traffic scenarios using the two different concepts. The common scenarios represented a significant increase in airspace demand over current operations. Using common independent variables, the simulations varied traffic density, scheduling constraints, and the timing of trajectory change events. Common metrics were collected to enable a comparison of relevant results. Where comparisons were possible, no substantial differences in performance or operator acceptability were observed. Mean schedule conformance and flight path deviation were considered adequate for both approaches. Conflict detection warning times and resolution times were mostly adequate, but certain conflict situations were detected too late to be resolved in a timely manner. This led to some situations in which safety was compromised and/or workload was rated as being unacceptable in both experiments. Operators acknowledged these issues in their responses and ratings but gave generally positive assessments of the respective concept and operations they experienced. Future studies will evaluate technical improvements and procedural enhancements to achieve the required level of safety and acceptability and will investigate the integration of

  19. An overview of Airborne Data for Assessing Models (ADAM): a web development effort to effectively disseminate airborne data products

    NASA Astrophysics Data System (ADS)

    Mangosing, D. C.; Chen, G.; Kusterer, J.; Rinsland, P.; Perez, J.; Sorlie, S.; Parker, L.

    2011-12-01

    One of the objectives of the NASA Langley Research Center's MEaSURES project, "Creating a Unified Airborne Database for Model Assessment", is the development of airborne Earth System Data Records (ESDR) for the regional and global model assessment and validation activities performed by the tropospheric chemistry and climate modeling communities. The ongoing development of ADAM, a web site designed to access a unified, standardized and relational ESDR database, meets this objective. The ESDR database is derived from publically available data sets, from NASA airborne field studies to airborne and in-situ studies sponsored by NOAA, NSF, and numerous international partners. The ADAM web development activities provide an opportunity to highlight a growing synergy between the Airborne Science Data for Atmospheric Composition (ASD-AC) group at NASA Langley and the NASA Langley's Atmospheric Sciences Data Center (ASDC). These teams will collaborate on the ADAM web application by leveraging the state-of-the-art service and message-oriented data distribution architecture developed and implemented by ASDC and using a web-based tool provided by the ASD-AC group whose user interface accommodates the nuanced perspective of science users in the atmospheric chemistry and composition and climate modeling communities.

  20. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.