Sample records for airborne radar reflectivity

  1. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  2. Processing of High Resolution, Multiparametric Radar Data for the Airborne Dual-Frequency Precipitation Radar APR-2

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Meagher, Jonathan P.; Durden, Stephen L.; Im, Eastwood

    2004-01-01

    Following the successful Precipitation Radar (PR) of the Tropical Rainfall Measuring Mission, a new airborne, 14/35 GHz rain profiling radar, known as Airborne Precipitation Radar - 2 (APR-2), has been developed as a prototype for an advanced, dual-frequency spaceborne radar for a future spaceborne precipitation measurement mission. . This airborne instrument is capable of making simultaneous measurements of rainfall parameters, including co-pol and cross-pol rain reflectivities and vertical Doppler velocities, at 14 and 35 GHz. furthermore, it also features several advanced technologies for performance improvement, including real-time data processing, low-sidelobe dual-frequency pulse compression, and dual-frequency scanning antenna. Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in four experiments including CAMEX-4 and the Wakasa Bay Experiment. Raw radar data are first processed to obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used to refine reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct Doppler measurements for the aircraft motion. Finally, the the melting layer of precipitation is detected and its boundaries and characteristics are identifIed at the APR-2 range resolution of 30m. The resulting 3D dataset will be used for validation of other airborne and spaceborne instruments, development of multiparametric rain/snow retrieval algorithms and melting layer characterization and statistics.

  3. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  4. Calibration of a 35-GHz Airborne Cloud Radar: Lessons Learned and Intercomparison with a 94-GHz Airborne Cloud Radar

    NASA Astrophysics Data System (ADS)

    Ewald, Florian; Gross, Silke; Hagen, Martin; Hirsch, Lutz; Delanoë, Julien

    2017-04-01

    Clouds play an important role in the climate system since they have a profound influence on Earth's radiation budget and the water cycle. Uncertainties associated with their spatial characteristics as well as their microphysics still introduce large uncertainties in climate change predictions. In recent years, our understanding of the inner workings of clouds has been greatly advanced by the deployment of cloud profiling microwave radars from ground as well as from space like CloudSat or the upcoming EarthCARE satellite mission. In order to validate and assess the limitations of these spaceborne missions, a well-calibrated, airborne cloud radar with known sensitivity to clouds is indispensable. Within this context, the German research aircraft HALO was equipped with the high-power (30kW peak power) cloud radar operating at 35 GHz and a high spectral resolution lidar (HSRL) system at 532 nm. During a number of flight experiments over Europe and over the tropical and extra-tropical North-Atlantic, several radar calibration efforts have been made using the ocean surface backscatter. Moreover, CloudSat underflights have been conducted to compare the radar reflectivity and measurement sensitivity between the air- and spaceborne instruments. Additionally, the influence of different radar wavelengths was explored with joint flights of HALO and the French Falcon 20 aircraft, which was equipped with the RASTA cloud radar at 94 GHz and a HSRL at 355 nm. In this presentation, we will give an overview of lessons learned from different calibration strategies using the ocean surface backscatter. Additional measurements of signal linearity and signal saturation will complement this characterization. Furthermore, we will focus on the coordinated airborne measurements regarding the different sensitivity for clouds at 35 GHz and 94 GHz. By using the highly sensitive lidar signals, we show if the high-power cloud radar at 35 GHz can be used to validate spaceborne and airborne

  5. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  6. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  7. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  8. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  9. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  10. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  11. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  12. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  13. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  14. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  15. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  16. Simulation of a weather radar display for over-water airborne radar approaches

    NASA Technical Reports Server (NTRS)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  17. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  18. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  19. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  20. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  1. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  2. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  3. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar Altimeter Equipment... Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For...

  4. Airborne Radar Interferometric Repeat-Pass Processing

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  5. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    NASA Technical Reports Server (NTRS)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  6. Remote Sensing of Precipitation from Airborne and Spaceborne Radar. Chapter 13

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph

    2017-01-01

    Weather radar measurements from airborne or satellite platforms can be an effective remote sensing tool for examining the three-dimensional structures of clouds and precipitation. This chapter describes some fundamental properties of radar measurements and their dependence on the particle size distribution (PSD) and radar frequency. The inverse problem of solving for the vertical profile of PSD from a profile of measured reflectivity is stated as an optimal estimation problem for single- and multi-frequency measurements. Phenomena that can change the measured reflectivity Z(sub m) from its intrinsic value Z(sub e), namely attenuation, non-uniform beam filling, and multiple scattering, are described and mitigation of these effects in the context of the optimal estimation framework is discussed. Finally, some techniques involving the use of passive microwave measurements to further constrain the retrieval of the PSD are presented.

  7. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  8. Airborne radar radiometer measurements of tropical storms

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.; Okamoto, K.

    1992-01-01

    The results from an airborne radar radiometer experiment of rainfall measurement in tropical storms are presented. The experiment was conducted in the Western Pacific in September 1990 with the NASA/DC-8 aircraft which was equipped with a nadir-loking dual-frequency rain radar operating at X band and Ka band, and several channels of microwave radiometers. The X-band radar has a capability of dual-polarization reception which enables the measurements of Linear Depolarization Ratio (LDR). The data of the microwave radiometers are compared with the radar data.

  9. Software development for airborne radar

    NASA Astrophysics Data System (ADS)

    Sundstrom, Ingvar G.

    Some aspects for development of software in a modern multimode airborne nose radar are described. First, an overview of where software is used in the radar units is presented. The development phases-system design, functional design, detailed design, function verification, and system verification-are then used as the starting point for the discussion. Methods, tools, and the most important documents are described. The importance of video flight recording in the early stages and use of a digital signal generators for performance verification is emphasized. Some future trends are discussed.

  10. Real-time simulation of an airborne radar for overwater approaches

    NASA Technical Reports Server (NTRS)

    Karmarkar, J.; Clark, D.

    1982-01-01

    Software developed to provide a real time simulation of an airborne radar for overwater approaches to oil rig platforms is documented. The simulation is used to study advanced concepts for enhancement of airborne radar approaches (ARA) in order to reduce crew workload, improve approach tracking precision, and reduce weather minimums. ARA's are currently used for offshore helicopter operations to and from oil rigs.

  11. Multibeam monopulse radar for airborne sense and avoid system

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo

    2016-10-01

    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  12. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  13. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  14. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  15. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    NASA Astrophysics Data System (ADS)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  16. Preliminary results from multiparameter airborne rain radar measurement in the western Pacific

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroshi; Meneghini, Robert; Kozu, Toshiaki

    1993-01-01

    Preliminary results are presented from multiparameter airborne radar measurements of tropical storms. The experiment was conducted in the western Pacific in September 1990 with the NASA DC-8 aircraft that was equipped with a dual-wavelength radar at X and Ka bands and several microwave radiometers. The modification to dual-polarization at X-band radar enabled measurements of the linear depolarization ratio (LDR). Vertical profiles of dual-polarization and dual-frequency observables for an example of stratiform rain and three examples of convective rain cells are examined. It is shown that at nadir incidence the LDR measurement often can be used to distinguish the phase states of the hydrometeors and to identify the melting layer. In addition to the information concerning particle shape and orientation from LDR, the ratio of the radar reflectivity factors in two frequency bands (X and Ka bands) provides insight into particle size. The capabilities of dual-wavelength and dual-polarization radar in the identification of particle size and phase will be important considerations in the design of future spaceborne weather radars.

  17. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  18. Measurements of Ocean Surface Scattering Using an Airborne 94-GHz Cloud Radar: Implication for Calibration of Airborne and Spaceborne W-band Radars

    NASA Technical Reports Server (NTRS)

    Li, Li-Hua; Heymsfield, Gerald M.; Tian, Lin; Racette, Paul E.

    2004-01-01

    Scattering properties of the Ocean surface have been widely used as a calibration reference for airborne and spaceborne microwave sensors. However, at millimeter-wave frequencies, the ocean surface backscattering mechanism is still not well understood, in part, due to the lack of experimental measurements. During the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE), measurements of ocean surface backscattering were made using a 94-GHz (W-band) cloud radar onboard a NASA ER-2 high-altitude aircraft. The measurement set includes the normalized Ocean surface cross section over a range of the incidence angles under a variety of wind conditions. Analysis of the radar measurements shows good agreement with a quasi-specular scattering model. This unprecedented dataset enhances our knowledge about the Ocean surface scattering mechanism at 94 GHz. The results of this work support the proposition of using the Ocean surface as a calibration reference for airborne millimeter-wave cloud radars and for the ongoing NASA CloudSat mission, which will use a 94-GHz spaceborne cloud radar for global cloud measurements.

  19. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  20. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  1. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Heymsfield, Andrew J.; Li, Lihua; Guimond, Stephen

    2010-01-01

    This paper presents observations of deep convection characteristics in the tropics and subtropics that have been classified into four categories: tropical cyclone, oceanic, land, and sea breeze. Vertical velocities in the convection were derived from Doppler radar measurements collected during several NASA field experiments from the nadir-viewing high-altitude ER-2 Doppler radar (EDOP). Emphasis is placed on the vertical structure of the convection from the surface to cloud top (sometimes reaching 18-km altitude). This unique look at convection is not possible from other approaches such as ground-based or lower-altitude airborne scanning radars. The vertical motions from the radar measurements are derived using new relationships between radar reflectivity and hydrometeor fall speed. Various convective properties, such as the peak updraft and downdraft velocities and their corresponding altitude, heights of reflectivity levels, and widths of reflectivity cores, are estimated. The most significant findings are the following: 1) strong updrafts that mostly exceed 15 m/s, with a few exceeding 30 m/s, are found in all the deep convection cases, whether over land or ocean; 2) peak updrafts were almost always above the 10-km level and, in the case of tropical cyclones, were closer to the 12-km level; and 3) land-based and sea-breeze convection had higher reflectivities and wider convective cores than oceanic and tropical cyclone convection. In addition, the high-resolution EDOP data were used to examine the connection between reflectivity and vertical velocity, for which only weak linear relationships were found. The results are discussed in terms of dynamical and microphysical implications for numerical models and future remote sensors.

  2. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document

    NASA Technical Reports Server (NTRS)

    Parsons, C. L. (Editor)

    1989-01-01

    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  3. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  4. Radar Reflectivity in Wingtip-Generated Wake Vortices

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki

    1997-01-01

    This report documents new predictive models of radar reflectivity, with meter-scale resolution, for aircraft wakes in clear air and fog. The models result from a radar design program to locate and quantify wake vortices from commercial aircraft in support of the NASA Aircraft Vortex Spacing System (AVOSS). The radar reflectivity model for clear air assumes: 1) turbulent eddies in the wake produce small discontinuities in radar refractive index; and 2) these turbulent eddies are in the 'inertial subrange' of turbulence. From these assumptions, the maximum radar frequency for detecting a particular aircraft wake, as well as the refractive index structure constant and radar volume reflectivity in the wake can be obtained from the NASA Terminal Area Simulation System (TASS) output. For fog conditions, an empirical relationship is used to calculate radar reflectivity factor from TASS output of bulk liquid water. Currently, two models exist: 1) Atlas-based on observations of liquid water and radar reflectivity factor in clouds; and 2) de Wolf- specifically tailored to a specific measured dataset (1992 Vandenberg Air Force Base).

  5. Multimission airborne radar for the 1990s

    NASA Astrophysics Data System (ADS)

    Robinson, Thomas H.

    1986-07-01

    The continuing trend towards the development and production of aircraft capable of multiple missions indicates that future airborne radars must provide a broad spectrum of air-to-air and air-to-ground modes. This paper investigates the modal and functional requirements of a multimode radar projected for the mid-1990s period. The paper is divided into two sections. In the first, the multimission capabilities of current radars are presented to establish trends and capabilities. In the second, the requirements of the next generation system are established. Current multimode radars lay the basis for future systems. The experience gained on the APG-65 and APG-63/70 radars is presented and conclusions are drawn regarding their impact on future system requirements. Not only are modes and performance reviewed for these radars but also their system architecture. The discussion starts with the APG-65 radar which is the first true multimission radar with programmable signal and data processing. Following this, the evolution of the APG-63 radar, culminating with the most recent upgrading resulting in redesignation of APG-70, is presented. The incorporation of air-to-ground capabilities in the APG-70, resulting from the Dual Role Fighter program, is reviewed. Results from the Advanced Fighter Capabilities Demonstration program are presented showing how high resolution SAR was incorporated into a full weapon delivery solution. The specific radar requirements for the next decade radar system are developed. This development is done in two parts. First, mode requirements are synthesized for air superiority, navigation and strike/interdiction operation. This includes low altitude penetration requirements and a review of radar timeline constraints which arise. Second, the fundamental functional requirements needed to implement the mode requirements are explored. Architectural issues and their impact on reliability and sustainability are also considered.

  6. Microphysical Retrievals Over Stratiform Rain Using Measurements from an Airborne Dual-Wavelength Radar-Radiometer

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kumagai, Hiroshi; Wang, James R.; Iguchi, Toshio; Kozu, Toshiaki

    1997-01-01

    The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar

  7. Estimation of snow in extratropical cyclones from multiple frequency airborne radar observations. An Expectation-Maximization approach

    NASA Astrophysics Data System (ADS)

    Grecu, M.; Tian, L.; Heymsfield, G. M.

    2017-12-01

    A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar

  8. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  9. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms

  10. Estimation of Snow Parameters from Dual-Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    1997-01-01

    Estimation of snow characteristics from airborne radar measurements would complement In-situ measurements. While In-situ data provide more detailed information than radar, they are limited in their space-time sampling. In the absence of significant cloud water contents, dual-wavelength radar data can be used to estimate 2 parameters of a drop size distribution if the snow density is assumed. To estimate, rather than assume, a snow density is difficult, however, and represents a major limitation in the radar retrieval. There are a number of ways that this problem can be investigated: direct comparisons with in-situ measurements, examination of the large scale characteristics of the retrievals and their comparison to cloud model outputs, use of LDR measurements, and comparisons to the theoretical results of Passarelli(1978) and others. In this paper we address the first approach and, in part, the second.

  11. An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays

    DTIC Science & Technology

    2006-03-01

    Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two

  12. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    NASA Technical Reports Server (NTRS)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  13. A Dual-Wavelength Radar Technique to Detect Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2016-01-01

    This study is aimed at investigating the feasibility of a Ku- and Ka-band space/air-borne dual wavelength radar algorithm to discriminate various phase states of precipitating hydrometeors. A phase-state classification algorithm has been developed from the radar measurements of snow, mixed-phase and rain obtained from stratiform storms. The algorithm, presented in the form of the look-up table that links the Ku-band radar reflectivities and dual-frequency ratio (DFR) to the phase states of hydrometeors, is checked by applying it to the measurements of the Jet Propulsion Laboratory, California Institute of Technology, Airborne Precipitation Radar Second Generation (APR-2). In creating the statistically-based phase look-up table, the attenuation corrected (or true) radar reflectivity factors are employed, leading to better accuracy in determining the hydrometeor phase. In practice, however, the true radar reflectivities are not always available before the phase states of the hydrometeors are determined. Therefore, it is desirable to make use of the measured radar reflectivities in classifying the phase states. To do this, a phase-identification procedure is proposed that uses only measured radar reflectivities. The procedure is then tested using APR-2 airborne radar data. Analysis of the classification results in stratiform rain indicates that the regions of snow, mixed-phase and rain derived from the phase-identification algorithm coincide reasonably well with those determined from the measured radar reflectivities and linear depolarization ratio (LDR).

  14. Proceedings of the Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J. (Editor)

    1991-01-01

    The Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop was held on 23-24 May 1991 at JPL. Thirty oral presentations were made and 18 poster papers displayed during the workshop. Papers from these 25 presentations are presented which include analyses of AIRSAR operations and studies in SAR remote sensing, ecology, hydrology, soil science, geology, oceanography, volcanology, and SAR mapping and data handling. Results from these studies indicate the direction and emphasis of future orbital radar-sensor missions that will be launched during the 1990's.

  15. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  16. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  17. Modified Hitschfeld-Bordan Equations for Attenuation-Corrected Radar Rain Reflectivity: Application to Nonuniform Beamfilling at Off-Nadir Incidence

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang

    2013-01-01

    As shown by Takahashi et al., multiple path attenuation estimates over the field of view of an airborne or spaceborne weather radar are feasible for off-nadir incidence angles. This follows from the fact that the surface reference technique, which provides path attenuation estimates, can be applied to each radar range gate that intersects the surface. This study builds on this result by showing that three of the modified Hitschfeld-Bordan estimates for the attenuation-corrected radar reflectivity factor can be generalized to the case where multiple path attenuation estimates are available, thereby providing a correction to the effects of nonuniform beamfilling. A simple simulation is presented showing some strengths and weaknesses of the approach.

  18. Radar reflectivity of bare and vegetation-covered soil

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Bradley, G. A.

    1981-01-01

    Radar sensitivity to soil moisture content has been investigated experimentally for bare and vegetation-covered soil using detailed spectral measurements obtained by a truck-mounted radar spectrometer in the 1-8 GHz band and by airborne scatterometer observations at 1.6, 4.75, and 13.3 GHz. It is shown that radar can provide quantitative information on the soil moisture content of both bare and vegetation-covered soil. The observed soil moisture is in the form of the soil matric potential or a related quantity such as the percent of field capacity. The depth of the monitored layer varies from 1 cm for very wet soil to about 15 cm for very dry soil.

  19. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  20. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  1. Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement

    NASA Technical Reports Server (NTRS)

    Kumagai, H.; Meneghini, R.; Kozu, T.

    1992-01-01

    Results from a multiparameter airborne radar/radiometer experiment (the Typhoon experiment) are presented. The experiment was conducted in the western Pacific with the NASA DC-8 aircraft, in which a dual-wavelength at X-band and Ka-band and dual-polarization at X-band radar was installed. The signatures of dBZ(X), dBZ(Ka), LDR (linear depolarization ratio) at X-band and DZ=dBZ(X)-dBZ(Ka) are discussed for the data obtained in the penetration of the typhoon Flo. With emphasis on discrimination of hydrometeor particles, some statistical features of the brightband in stratiform rain are discussed.

  2. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  3. Ku band airborne radar altimeter observations of marginal sea ice during the 1984 Marginal Ice Zone Experiment

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1991-01-01

    Pulse-limited, airborne radar data taken in June and July 1984 with a 13.8-GHz altimeter over the Fram Strait marginal ice zone are analyzed with the aid of large-format aerial photography, airborne synthetic aperture radar data, and surface observations. Variations in the radar return pulse waveforms are quantified and correlated with ice properties recorded during the Marginal Ice Zone Experiment. Results indicate that the wide-beam altimeter is a flexible instrument, capable of identifying the ice edge with a high degree of accuracy, calculating the ice concentration, and discriminating a number of different ice classes. This suggests that microwave radar altimeters have a sensitivity to sea ice which has not yet been fully exploited. When fused with SSM/I, AVHRR and ERS-1 synthetic aperture radar imagery, future ERS-1 altimeter data are expected to provide some missing pieces to the sea ice geophysics puzzle.

  4. Producing Science-Ready Radar Datasets for the Retrieval of Forest Structure Parameters from Backscatter: Correcting for Terrain Topography and Changes in Vegetation Reflectivity

    NASA Technical Reports Server (NTRS)

    Simard, M.; Riel, Bryan; Hensley, S.; Lavalle, Marco

    2011-01-01

    Radar backscatter data contain both geometric and radiometric distortions due to underlying topography and the radar viewing geometry. Our objective is to develop a radiometric correction algorithm specific to the UAVSAR system configuration that would improve retrieval of forest structure parameters. UAVSAR is an airborne Lband radar capable of repeat?pass interferometry producing images with a spatial resolution of 5m. It is characterized by an electronically steerable antenna to compensate for aircraft attitude. Thus, the computation of viewing angles (i.e. look, incidence and projection) must include aircraft attitude angles (i.e. yaw, pitch and roll) in addition to the antenna steering angle. In this presentation, we address two components of radiometric correction: area projection and vegetation reflectivity. The first correction is applied by normalization of the radar backscatter by the local ground area illuminated by the radar beam. The second is a correction due to changes in vegetation reflectivity with viewing geometry.

  5. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  6. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical

  7. Radar signatures of road vehicles: airborne SAR experiments

    NASA Astrophysics Data System (ADS)

    Palubinskas, G.; Runge, H.; Reinartz, P.

    2005-10-01

    The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.

  8. Characterization of wetland, forest, and agricultural ecosystems in Belize with airborne radar (AIRSAR)

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Rey-Benayas, Jose Maria; Paris, Jack F.

    1992-01-01

    The Shuttle Imaging Radar-C/X-SAR (Synthetic Aperture Radar) Experiment includes the study of wetland dynamics in the seasonal tropics. In preparation for these wetland studies, airborne P, L, and C band radar (AIRSAR) data of Belize, Guatemala, and Mexico acquired by NASA and JPL in March 1990 were analyzed. The first phase of our study focuses on AIRSAR data from the Gallon Jug test site in northwestern Belize, for which ground data were also collected during the three days prior to the overflight. One of the main objectives of the Gallon Jug study is to develop a method for characterizing wetland vegetation types and their flooding status with multifrequency polarimetric radar data.

  9. Feasibility of inter-comparing airborne and spaceborne observations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    This paper investigates the feasibility of using an airborne synthetic aperture radar (SAR) to validate spaceborne SAR data. This is directed at soil moisture sensing and the recently launched Soil Moisture Active Passive (SMAP) satellite. The value of this approach is related to the fact that vicar...

  10. Characterizing the Precipitation Processes in Hurricane Karl (2010) Through Analysis of Airborne Doppler Radar Data and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    DeHart, J.; Houze, R.

    2016-12-01

    Airborne radar data and numerical simulations are employed to investigate the structure of Hurricane Karl (2010). Karl peaked in intensity as a major hurricane in the Gulf of Mexico before making landfall on the mountainous coast of Veracruz, Mexico. Multiple aircraft extensively sampled Karl during the NASA GRIP campaign, including NASA's DC-8 aircraft instrumented with the Advanced Precipitation Radar 2 (APR-2), which is a high-resolution, dual-frequency Doppler radar. Data from APR-2 provide a unique opportunity to characterize the precipitation structure of Karl as it underwent orographic modification. As Karl made landfall on 17 September 2010, the vertical structure of the precipitation echo varied spatially around the Mexican terrain. The precipitation variation was linked to several factors: landfall, orientation of flow relative to the topographic features, and differing characteristics inherent to the eyewall and rainbands. Despite the differences in the reflectivity intensity across the storm, we show that low-level reflectivity enhancement occurred only where upslope flow was favorable. The radar data indicate that the processes initially contributing to the reflectivity enhancement were warm-cloud processes, either through collection of orographically-generated cloud water or shallow convection. But as Karl weakened, the low-level enhancement processes were overshadowed by deep convection that developed along the terrain. Analysis of the radar data is complemented by a series of numerical simulations, which reasonably reproduce the track, intensity and structure of Karl. The simulated thermodynamic and kinematic patterns provide a holistic view of Karl's evolution during landfall. We use terrain modification experiments to examine the sensitivity of the orographic enhancement processes to the three-dimensional terrain and land surface characteristics. Consistent with the radar analysis, warm-cloud enhancement processes are visible in the spatial

  11. Airborne radar and radiometer experiment for quantitative remote measurements of rain

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Meneghini, Robert; Boncyk, Wayne; Wilheit, Thomas T.; Nakamura, Kenji

    1989-01-01

    An aircraft experiment has been conducted with a dual-frequency (10 GHz and 35 GHz) radar/radiometer system and an 18-GHz radiometer to test various rain-rate retrieval algorithms from space. In the experiment, which took place in the fall of 1988 at the NASA Wallops Flight Facility, VA, both stratiform and convective storms were observed. A ground-based radar and rain gauges were also used to obtain truth data. An external radar calibration is made with rain gauge data, thereby enabling quantitative reflectivity measurements. Comparisons between path attenuations derived from the surface return and from the radar reflectivity profile are made to test the feasibility of a technique to estimate the raindrop size distribution from simultaneous radar and path-attenuation measurements.

  12. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the

  13. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  14. Simulation of radar reflectivity and surface measurements of rainfall

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Bringi, V. N.

    1987-01-01

    Raindrop size distributions (RSDs) are often estimated using surface raindrop sampling devices (e.g., disdrometers) or optical array (2D-PMS) probes. A number of authors have used these measured distributions to compute certain higher-order RSD moments that correspond to radar reflectivity, attenuation, optical extinction, etc. Scatter plots of these RSD moments versus disdrometer-measured rainrates are then used to deduce physical relationships between radar reflectivity, attenuation, etc., which are measured by independent instruments (e.g., radar), and rainrate. In this paper RSDs of the gamma form as well as radar reflectivity (via time series simulation) are simulated to study the correlation structure of radar estimates versus rainrate as opposed to RSD moment estimates versus rainrate. The parameters N0, D0 and m of a gamma distribution are varied over the range normally found in rainfall, as well as varying the device sampling volume. The simulations are used to explain some possible features related to discrepancies which can arise when radar rainfall measurements are compared with surface or aircraft-based sampling devices.

  15. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    NASA Technical Reports Server (NTRS)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  16. Inner Core Structure of Hurricane Alicia from Airborne Doppler Radar Observations.

    NASA Astrophysics Data System (ADS)

    Marks, Frank D., Jr.; Houze, Robert A., Jr.

    1987-05-01

    Airborne Doppler radar measurements are used to determine the horizontal winds, vertical air motions, radar reflectivity and hydrometer fallspeeds over much of the inner-core region (within 40 km of the eye) of Hurricane Alicia (1983). The reconstructed flow field is more complete and detailed than any obtained previously. The data show both the primary (azimuthal) and secondary (radial-height) circulations. The primary circulation was characterized by an outward sloping maximum of tangential wind. The secondary circulation was characterized by a deep layer of radial inflow in the lower troposphere and a layer of intense outflow above 10 km altitude. The rising branch of the secondary circulation was located in the eyewall and sloped radially outward. Discrete convective-scale bubbles of more intense upward motion were superimposed on this mean rising current, and convective-scale downdrafts were located throughout and below the core of maximum precipitation in the eyewall.Precipitation particles in the eyewall rainshaft circulated 18-20 km downwind as they fell, consistent with the typical upwind slope with increasing altitude of eyewall precipitation cores Outside the eyewall, the precipitation was predominantly stratiform. A radar bright band was evident at the melting level. Above the melting level, ice particles were advected into the stratiform region from the upper levels of the eyewall and drifted downward through a mesoscale region of ascent. Hypothetical precipitation particle trajectories showed that as these particles fell slowly through the mesoscale updraft toward the melting level, they were carried azimuthally as many as 1 1/2 times around the storm. During this spiraling descent, the particles evidently grew vigorously. The amount of water condensed by the ambient mesoscale ascent exceeded that transported into the stratiform region by the eyewall outflow by a factor of 3. As the particles fell into the lower troposphere, they entered a mesoscale

  17. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J.

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.

  18. Multiple scattering effects on the Linear Depolarization Ratio (LDR) measured during CaPE by a Ka-band air-borne radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1993-01-01

    Air-borne radar measurements of thunderstorms were made as part of the CaPE (Convection and Precipitation/Electrification) experiment in Florida in July 1991. The radar has two channels, X-band (10 GHz) and Ka-band (34.5 GHz), and is capable of measuring cross-polarized returns as well as co-polarized returns. In stratiform rain, the cross-polarized components can be observed only at the bright band region and from the surface reflection. The linear depolarization ratios (LDR's) measured at X-band and Ka-band at the bright band are nearly equal. In convective rain, however, the LDR in Ka-band often exceeds the X-band LDR by several dB, and sometimes by more than 10 dB, reaching LDR values of up to -5 dB over heavy convective rain. For randomly oriented hydrometeors, such high LDR values cannot be explained by single scattering from non-spherical scattering particles alone. Because the LDR by single backscatter depends weakly on the wavelength, the difference between the Ka-band and X-band LDR's suggests that multiple scattering effects prevail in the Ka-band LDR. In order to test this inference, the magnitude of the cross-polarized component created by double scattering was calculated using the parameters of the airborne radar, which for both frequencies has beamwidths of 5.1 degrees and pulse widths of 0.5 microsecond. Uniform rain beyond the range of 3 km is assumed.

  19. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  20. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar-reflection

  1. On construction method of shipborne and airborne radar intelligence and related equipment knowledge graph

    NASA Astrophysics Data System (ADS)

    Hao, Ruizhe; Huang, Jian

    2017-08-01

    Knowledge graph construction in military intelligence domain is sprouting but technically immature. This paper presents a method to construct the heterogeneous knowledge graph in the field of shipborne and airborne radar and equipment. Based on the expert knowledge and the up-to-date Internet open source information, we construct the knowledge graph of radar characteristic information and the equipment respectively, and establish relationships between two graphs, providing the pipeline and method for the intelligence organization and management in the context of the crowding battlefields big data.

  2. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  3. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  4. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  5. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  6. Application of a Threshold Method to Airborne-Spaceborne Attenuating-Wavelength Radars for the Estimation of Space-Time Rain-Rate Statistics.

    NASA Astrophysics Data System (ADS)

    Meneghini, Robert

    1998-09-01

    A method is proposed for estimating the area-average rain-rate distribution from attenuating-wavelength spaceborne or airborne radar data. Because highly attenuated radar returns yield unreliable estimates of the rain rate, these are eliminated by means of a proxy variable, Q, derived from the apparent radar reflectivity factors and a power law relating the attenuation coefficient and the reflectivity factor. In determining the probability distribution function of areawide rain rates, the elimination of attenuated measurements at high rain rates and the loss of data at light rain rates, because of low signal-to-noise ratios, leads to truncation of the distribution at the low and high ends. To estimate it over all rain rates, a lognormal distribution is assumed, the parameters of which are obtained from a nonlinear least squares fit to the truncated distribution. Implementation of this type of threshold method depends on the method used in estimating the high-resolution rain-rate estimates (e.g., either the standard Z-R or the Hitschfeld-Bordan estimate) and on the type of rain-rate estimate (either point or path averaged). To test the method, measured drop size distributions are used to characterize the rain along the radar beam. Comparisons with the standard single-threshold method or with the sample mean, taken over the high-resolution estimates, show that the present method usually provides more accurate determinations of the area-averaged rain rate if the values of the threshold parameter, QT, are chosen in the range from 0.2 to 0.4.

  7. A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Buck, Bill K.

    2009-01-01

    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics.

  8. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  9. Englacial layer mapping correlation and consistency techniques: an example from airborne ice penetrating radar profiles in West Antarctica

    NASA Astrophysics Data System (ADS)

    Sudunagunta, V.; Ballal, S.; Albach, R.; Muldoon, G.; Quartini, E.; Cavitte, M. G.; Young, D. A.; Blankenship, D. D.

    2016-12-01

    Ice sheets are important considerations in projections of sea level rise and studies of climate history. Satellite imagery, ice-penetrating radar, and ground penetrating radar are commonly used to understand the dynamics and health of ice sheets. We focus on how to accurately interpret ice-penetrating radar data by tracing isochrones dated by comparison to deep ice cores so that an extensive knowledge of the West Antarctic Ice Sheet's internal stratigraphy is obtained. The radar data shows englacial reflectors and isochrones are interpreted englacial reflectors. We analyze these features and attempt to understand their possible origins. Accurate interpretation of radar data is crucial because the data will be used to evaluate ice flow evolution and boundary conditions. It can also be used to validate simulated ice sheet models. However to do so, isochrones must be traced and connected correctly. Our approach accomplishes this and has the potential to be applied to other ice sheets on Earth and in extraterrestrial systems. We discuss the methodology utilized by our team to interpret data from the West Antarctic Ice Sheet collected using airborne ice-penetrating radar. The seismic reflection interpretation environment Landmark DecisionSpace was adapted to display and interpret the radar returns. When tracing isochrones, a group approach is used to maximize accuracy. In gridded surveys, loops are used to continuously check isochrones, in addition to retracing of isochrones by different group members to check for errors in interpretation. As loops are made, areas of possible scientific merit, such as isochrone drawdowns or Raymond bumps, are documented. A key aspect of this approach is the ability to work in a shared environment with a collaborative database like DecisionSpace. We will explore how we identified these features, their root causes, and subsequent implications for understanding ice sheet dynamics.

  10. A Study of Reflected Sonic Booms Using Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Kantor, Samuel R.; Cliatt, Larry J., II

    2017-01-01

    In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.

  11. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  12. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders.

    PubMed

    Gallego, Antonio-Javier; Gil, Pablo; Pertusa, Antonio; Fisher, Robert B

    2018-03-06

    In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F 1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed.

  13. Segmentation of Oil Spills on Side-Looking Airborne Radar Imagery with Autoencoders

    PubMed Central

    2018-01-01

    In this work, we use deep neural autoencoders to segment oil spills from Side-Looking Airborne Radar (SLAR) imagery. Synthetic Aperture Radar (SAR) has been much exploited for ocean surface monitoring, especially for oil pollution detection, but few approaches in the literature use SLAR. Our sensor consists of two SAR antennas mounted on an aircraft, enabling a quicker response than satellite sensors for emergency services when an oil spill occurs. Experiments on TERMA radar were carried out to detect oil spills on Spanish coasts using deep selectional autoencoders and RED-nets (very deep Residual Encoder-Decoder Networks). Different configurations of these networks were evaluated and the best topology significantly outperformed previous approaches, correctly detecting 100% of the spills and obtaining an F1 score of 93.01% at the pixel level. The proposed autoencoders perform accurately in SLAR imagery that has artifacts and noise caused by the aircraft maneuvers, in different weather conditions and with the presence of look-alikes due to natural phenomena such as shoals of fish and seaweed. PMID:29509720

  14. General probability-matched relations between radar reflectivity and rain rate

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Daniel; Wolff, David B.; Atlas, David

    1993-01-01

    An improved method for transforming radar-observed reflectivities Ze into rain rate R is presented. The method is based on a formulation of a Ze-R function constrained such that (1) the radar-retrieved pdf of R and all of its moments are identical to those determined from the gauges over a sufficiently large domain, and (2) the fraction of the time that it is raining above a low but still has an accurately measurable rain intensity is identical for both the radar and for simultaneous measurements of collocated gauges on average. Data measured by a 1.65-deg beamwidth C-band radar and 22 gauges located in the vicinity of Darwin, Australia, are used. The resultant Ze-R functions show a strong range dependence, especially for the rain regimes characterized by strong reflectivity gradients and substantial attenuation. The application of these novel Ze-R functions to the radar data produces excellent matches to the gauge measurements without any systematic bias.

  15. Remote sensing with laser spectrum radar

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  16. Venus mountain-top mineralogy: Misconceptions about pyrite as the high radar-reflecting phase

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Straub, Darcy W.

    1993-01-01

    Altitude-dependent, high radar-reflectivity surfaces on Venus are observed on most mountainous volcanic terranes above a planetary radius of about 6054 km. However, high radar-reflectivity areas also occur at lower altitudes in some impact craters and plain terranes. Pyrite (FeS2) is commonly believed to be responsible for the high radar reflectivities at high elevations on Venus, on account of large dielectric constants measured for sulfide-bearing rocks that were erroneously attributed to pyrite instead of pyrrhotite. Pentlandite-pyrrhotite assemblages may be responsible for high reflectivities associated with impact craters on the Venusian surface, by analogy with Fe-Ni sulfide deposits occurring in terrestrial astroblemes. Mixed-valence Fe(2+)-Fe(3+) silicates, including oxyhornblende, oxybiotite, and ilvaite, may contribute to high radar reflecting surfaces on mountain-tops of Venus.

  17. Development and Testing of the VAHIRR Radar Product

    NASA Technical Reports Server (NTRS)

    Barrett, Joe III; Miller, Juli; Charnasky, Debbie; Gillen, Robert; Lafosse, Richard; Hoeth, Brian; Hood, Doris; McNamara, Todd

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) and Flight Rules (FR) are used for launches and landings at government and commercial spaceports. They are designed to avoid natural and triggered lightning strikes to space vehicles, which can endanger the vehicle, payload, and general public. The previous LLCC and FR were shown to be overly restrictive, potentially leading to costly launch delays and scrubs. A radar algorithm called Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), along with new LLCC and FR for anvil clouds, were developed using data collected by the Airborne Field Mill II research program. VAHIRR is calculated at every horizontal position in the coverage area of the radar and can be displayed similar to a two-dimensional derived reflectivity product, such as composite reflectivity or echo tops. It is the arithmetic product of two quantities not currently generated by the Weather Surveillance Radar 1988 Doppler (WSR-88D): a volume average of the reflectivity measured in dBZ and the average cloud thickness based on the average echo top height and base height. This presentation will describe the VAHIRR algorithm, and then explain how the VAHIRR radar product was implemented and tested on a clone of the National Weather Service's (NWS) Open Radar Product Generator (ORPG-clone). The VAHIRR radar product was then incorporated into the Advanced Weather Interactive Processing System (AWIPS), to make it more convenient for weather forecasters to utilize. Finally, the reliability of the VAHIRR radar product was tested with real-time level II radar data from the WSR-88D NWS Melbourne radar.

  18. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea.

    PubMed

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe; Miegebielle, Véronique

    2017-08-02

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface.

  19. Battlefield radar imaging through airborne millimetric wave SAR (Synthetic Aperture Radar)

    NASA Astrophysics Data System (ADS)

    Carletti, U.; Daddio, E.; Farina, A.; Morabito, C.; Pangrazi, R.; Studer, F. A.

    Airborne synthetic aperture radar (SAR), operating in the millimetric-wave (mmw) region, is discussed with reference to a battlefield surveillance application. The SAR system provides high resolution real-time imaging of the battlefield and moving target detection, under adverse environmental conditions (e.g., weather, dust, smoke, obscurants). The most relevant and original aspects of the system are the band of operation (i.e., mmw in lieu of the more traditional microwave region) and the use of an unmanned platform. The former implies reduced weight and size requirements, thus allowing use of small unmanned platforms. The latter enchances the system operational effectiveness by permitting accomplishment of recognition missions in depth beyond the FEBA. An overall system architecture based on the onboard sensor, the platform, the communication equipment, and a mobile ground station is described. The main areas of ongoing investigation are presented: the simulation of the end-to-end system, and the critical technological issues such as mmw antenna, transmitter, signal processor for image formation and platform attitude errors compensation and detection and imaging of moving targets.

  20. NASA ER-2 Doppler radar reflectivity calibration for the CAMEX project

    NASA Technical Reports Server (NTRS)

    Caylor, I. J.; Heymsfield, G. M.; Bidwell, S. W.; Ameen, S.

    1994-01-01

    The NASA ER-2 Doppler radar (EDOP) was flown aboard the ER-2 high-altitude aircraft in September and October 1993 for the Convection and Moisture Experiment. During these flights, the first reliable reflectivity observations were performed with the EDOP instrument. This report details the procedure used to convert real-time engineering data into calibrated radar reflectivity. Application of the calibration results produces good agreement between the EDOP nadir pointing reflectivity and ground truth provided by a National Weather Service WSR-88D radar. The rms deviation between WSR-88D and EDOP is 6.9 dB, while measurements of the ocean surface backscatter coefficient are less than 3 dB from reported scatterometer coefficients. After an initial 30-minute period required for the instrument to reach thermal equilibrium, the radar is stable to better than 0.25 dB during flight. The range performance of EDOP shows excellent agreement with aircraft altimeter and meteorological sounding data.

  1. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  2. Frequency Agility Radar,

    DTIC Science & Technology

    1982-12-06

    different model aircraft in different wave bands (P,L, S and X). Yet, the obtained results were relatively complex and it was not easy to find regularity...hertz for the S wave band . This type of narrow wave band signifies that the drift velocity of the target viewed in the reflection center is very low... Band of Airborne Radar With Pulse Width of 0.02)4 s and Grazing Angle of 470) Key: 1. Probability exceeding horizontal coordinates 2. Clutter section 3

  3. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  4. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  5. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  6. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  7. Full Chain Benchmarking for Open Architecture Airborne ISR Systems: A Case Study for GMTI Radar Applications

    DTIC Science & Technology

    2015-09-15

    middleware implementations via a common object-oriented software hierarchy, with library -specific implementations of the five GMTI benchmark ...Full-Chain Benchmarking for Open Architecture Airborne ISR Systems A Case Study for GMTI Radar Applications Matthias Beebe, Matthew Alexander...time performance, effective benchmarks are necessary to ensure that an ARP system can meet the mission constraints and performance requirements of

  8. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    PubMed Central

    Angelliaume, Sébastien; Ceamanos, Xavier; Viallefont-Robinet, Françoise; Baqué, Rémi; Déliot, Philippe

    2017-01-01

    Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur), the airborne system developed by ONERA (the French Aerospace Lab), during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on the sea surface

  9. Quantifying monthly to decadal subsidence and assessing collapse potential near the Wink sinkholes, west Texas, using airborne lidar, radar interferometry, and microgravity

    NASA Astrophysics Data System (ADS)

    Paine, J. G.; Collins, E.; Yang, D.; Andrews, J. R.; Averett, A.; Caudle, T.; Saylam, K.

    2014-12-01

    We are using airborne lidar and satellite-based radar interferometry (InSAR) to quantify short-term (months to years) and longer-term (decades) subsidence in the area surrounding two large (100- to 200-m diameter) sinkholes that formed above Permian bedded salt in 1980 and 2002 in the Wink area, west Texas. Radar interferograms constructed from synthetic aperture radar data acquired between 2008 and 2011 with the ALOS PALSAR L-band satellite-borne instrument reveal local areas that are subsiding at rates that reach a few cm per month. Subsiding areas identified on radar interferograms enable labor-intensive ground investigations (such as microgravity surveys) to focus on areas where subsidence is occurring and shallow-source mass deficits might exist that could be sites of future subsidence or collapse. Longer-term elevation changes are being quantified by comparing digital elevation models (DEMs) constructed from high-resolution airborne lidar data acquired over a 32-km2 area in 2013 with older, lower-resolution DEMs constructed from data acquired during the NASA- and NGA-sponsored Shuttle Radar Topographic Mission in February 2000 and from USGS aerial photogrammetry-derived topographic data from the 1960s. Total subsidence reaches more than 10 m over 45 years in some areas. Maximum rates of subsidence measured on annual (from InSAR) and decadal (from lidar) time scales are about 0.25 m/yr. In addition to showing the extent and magnitude of subsidence at the 1980 and 2002 sinkholes, comparison of the 2013 lidar-derived DEM with the 1960s photogrammetry-derived DEM revealed other locations that have undergone significant (more than 1 m) elevation change since the 1960s, but show no evidence of recent (2008 to 2011) ground motion from satellite radar interferograms. Regional coverage obtained by radar interferometry and local coverage obtained with airborne lidar show that areas of measurable subsidence are all within a few km of the 1980 and 2002 sinkholes.

  10. Hurricane Georges' Landfall in the Dominican Republic: Detailed Airborne Doppler Radar Imagery

    NASA Technical Reports Server (NTRS)

    Geerts, B.; Heymsfield, G. M.; Tian, L.; Halverson, J. B.; Guillory, A.; Mejia, M. I.

    1999-01-01

    Current understanding of landfalling tropical cyclones is limited, especially with regard to convective scale processes. On 22 September 1998 Hurricane Georges made landfall on the island of Hispaniola, leaving behind a trail of death and devastation, largely the result of excessive rainfall, not sea level surge or wind. Detailed airborne measurements were taken as part of the Third Convection and Moisture Experiment (CAMEX-3). Of Particular interest are the ER-2 nadir X-band Doppler radar (EDOP) data, which provide a first-time high-resolution view of the precipitation and airflow changes as a hurricane interacts with mountainous terrain. The circulation of hurricane Georges underwent an obvious transition during landfall, evident in the rapid increase in minimum sea-level pressure, the subsidence of the eyewall anvil, and a decrease in average ice concentrations in the eyewall. The eye, as seen in satellite imagery, disappeared, but contrary to current understanding, this was not due to eyewall contraction but rather to convective eruption within the eye. The main convective event within the eye, with upper-level updraft magnitudes near 20 m/s and 89 GHz brightness temperatures below 100 K, occurred when the eye moved over the Cordillera Central, the island's main mountain chain. The location, intensity and evolution of this convection indicate that it was coupled to the surface orography. It is likely that surface rain rates increased during landfall, because of effective droplet collection, both in the convection and in the more widespread stratiform rainfall areas over the island. Evidence for this is the increase in radar reflectivity below the bright band of 1-2 dB/km down to ground-level. Such increase was absent offshore. Such low-level rain enhancement, which cannot be detected in satellite images of upwelling infrared or microwave radiation, must be due to the ascent of boundary-layer air over the topography.

  11. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP

    PubMed Central

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  12. Airborne Synthetic Aperature Radar (AIRSAR) on left rear fuselage of DC-8 Airborne Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A view of the Airborne Synthetic Aperature Radar (AIRSAR) antenna on the left rear fuselage of the DC-8. The AIRSAR captures images of the ground from the side of the aircraft and can provide precision digital elevation mapping capabilities for a variety of studies. The AIRSAR is one of a number of research systems that have been added to the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  13. Radar Observation of Large Attenuation in Convective Storms: Implications for the Dropsize Distribution

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.

    2000-01-01

    Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).

  14. Performance of three reflectance calibration methods for airborne hyperspectral spectrometer data.

    PubMed

    Miura, Tomoaki; Huete, Alfredo R

    2009-01-01

    In this study, the performances and accuracies of three methods for converting airborne hyperspectral spectrometer data to reflectance factors were characterized and compared. The "reflectance mode (RM)" method, which calibrates a spectrometer against a white reference panel prior to mounting on an aircraft, resulted in spectral reflectance retrievals that were biased and distorted. The magnitudes of these bias errors and distortions varied significantly, depending on time of day and length of the flight campaign. The "linear-interpolation (LI)" method, which converts airborne spectrometer data by taking a ratio of linearly-interpolated reference values from the preflight and post-flight reference panel readings, resulted in precise, but inaccurate reflectance retrievals. These reflectance spectra were not distorted, but were subject to bias errors of varying magnitudes dependent on the flight duration length. The "continuous panel (CP)" method uses a multi-band radiometer to obtain continuous measurements over a reference panel throughout the flight campaign, in order to adjust the magnitudes of the linear-interpolated reference values from the preflight and post-flight reference panel readings. Airborne hyperspectral reflectance retrievals obtained using this method were found to be the most accurate and reliable reflectance calibration method. The performances of the CP method in retrieving accurate reflectance factors were consistent throughout time of day and for various flight durations. Based on the dataset analyzed in this study, the uncertainty of the CP method has been estimated to be 0.0025 ± 0.0005 reflectance units for the wavelength regions not affected by atmospheric absorptions. The RM method can produce reasonable results only for a very short-term flight (e.g., < 15 minutes) conducted around a local solar noon. The flight duration should be kept shorter than 30 minutes for the LI method to produce results with reasonable accuracies. An important

  15. Use of multi-frequency, multi-polarization, multi-angle airborne radars for class discrimination in a southern temperature forest

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1984-01-01

    The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.

  16. 2nd Generation Airborne Precipitation Radar (APR-2)

    NASA Technical Reports Server (NTRS)

    Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.

    2012-01-01

    Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .

  17. Simulation of multistatic and backscattering cross sections for airborne radar

    NASA Astrophysics Data System (ADS)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  18. Correlation of S-Band Weather Radar Reflectivity and ACTS Propagation Data in Florida

    NASA Technical Reports Server (NTRS)

    Wolfe, Eric E.; Flikkema, Paul G.; Henning, Rudolf E.

    1997-01-01

    Previous work has shown that Ka-band attenuation due to rainfall and corresponding S-band reflectivity are highly correlated. This paper reports on work whose goal is to determine the feasibility of estimation and, by extension, prediction of one parameter from the other using the Florida ACTS propagation terminal (APT) and the nearby WSR-88D S-band Doppler weather radar facility operated by the National Weather Service. This work is distinguished from previous efforts in this area by (1) the use of a single-polarized radar, preventing estimation of the drop size distribution (e.g., with dual polarization) and (2) the fact that the radar and APT sites are not co-located. Our approach consists of locating the radar volume elements along the satellite slant path and then, from measured reflectivity, estimating the specific attenuation for each associated path segment. The sum of these contributions yields an estimation of the millimeter-wave attenuation on the space-ground link. Seven days of data from both systems are analyzed using this procedure. The results indicate that definite correlation of S-band reflectivity and Ka-band attenuation exists even under the restriciton of this experiment. Based on these results, it appears possible to estimate Ka-band attenuation using widely available operational weather radar data. Conversely, it may be possible to augment current radar reflectivity data and coverage with low-cost attenuation or sky temperature data to improve the estimation of rain rates.

  19. Airborne derivation of microburst alerts from ground-based Terminal Doppler Weather Radar information: A flight evaluation

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1993-01-01

    An element of the NASA/FAA windshear program is the integration of ground-based microburst information on the flight deck, to support airborne windshear alerting and microburst avoidance. NASA conducted a windshear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. Microburst information was extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the windshear hazard level (F-factor) that would be experienced by the aircraft in each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which atmospheric 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne reactive windshear detection system. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurements would be required to support an airborne executive-level alerting protocol, the practicality of airborne utilization of TDWR data link data has been demonstrated.

  20. A comparison of in situ and airborne radar observations of ocean wave directionality

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Peng, C. Y.

    1985-01-01

    The directional spectrum of a fully arisen, about 3 m sea as measured by an experimental airborne radar, the NASA K(u)-band radar ocean wave spectrometer (ROWS), is compared to reference pitch-roll buoy data and to the classical SWOP (stereo wave observations project) spectrum for fully developed conditions. The ROWS spectrum, inferred indirectly from backscattered power measurements at 5-km altitude, is shown to be in excellent agreement with the buoy spectrum. Specifically, excellent agreement is found between the two nondirectional height spectra, and mean wave directions and directional spreads as functions of frequency. A comparison of the ROWS and SWOP spectra shows the two spectra to be very similar, in detailed shape as well as in terms of the gross spreading characteristics. Both spectra are seen to exhibit bimodal structures which accord with the Phillips' (1958) resonance mechanism. This observation is thus seen to support Phillips' contention that the SWOP modes were indeed resonance modes, not statistical artifacts.

  1. Measuring Geophysical Parameters of the Greenland Ice Sheet using Airborne Radar Altimetry

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift. Calvin T.

    1995-01-01

    This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar- altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that the sub-surface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to be measured but also help in the understanding of satellite radar-altimeter data.

  2. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  3. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  4. Weather Radars and Lidar for Observing the Atmosphere

    NASA Astrophysics Data System (ADS)

    (Vivek) Vivekanandan, J.

    2010-05-01

    The Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado develops and deploys state-of-the-art ground-based radar, airborne radar and lidar instruments to advance scientific understanding of the earth system. The ground-based radar (S-Pol) is equipped with dual-wavelength capability (S-band and Ka-band). S-Pol is the only transportable radar in the world. In order to capture faster moving weather events such as tornadoes and record observations of clouds over rugged mountainous terrain and ocean, an airborne radar (ELDORA) is used. It is the only airborne Doppler meteorological radar that is able to detect motions in the clear air. The EOL is in the process of building the first phase of a three phase dual wavelength W/Ka-band airborne cloud radar to be called the HIAPER Cloud Radar (HCR). This phase is a pod based W-band radar system with scanning capability. The second phase will add pulse compression and polarimetric capability to the W-band system, while the third phase will add complementary Ka-band radar. The pod-based radar is primarily designed to fly on the Gulfstream V (GV) and C-130 aircraft. The envisioned capability of a millimeter wave radar system on GV is enhanced by coordination with microwave radiometer, in situ probes, and especially by the NCAR GV High-Spectral Resolution Lidar (HSRL) which is also under construction. The presentation will describe the capabilities of current instruments and also planned instrumentation development.

  5. Feasibility study for airborne fluorescence/reflectivity lidar bathymetry

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika

    2012-06-01

    There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.

  6. Detection of hail signatures from single-polarization C-band radar reflectivity

    NASA Astrophysics Data System (ADS)

    Kunz, Michael; Kugel, Petra I. S.

    2015-02-01

    Five different criteria that estimate hail signatures from single-polarization radar data are statistically evaluated over a 15-year period by categorical verification against loss data provided by a building insurance company. The criteria consider different levels or thresholds of radar reflectivity, some of them complemented by estimates of the 0 °C level or cloud top temperature. Applied to reflectivity data from a single C-band radar in southwest Germany, it is found that all criteria are able to reproduce most of the past damage-causing hail events. However, the criteria substantially overestimate hail occurrence by up to 80%, mainly due to the verification process using damage data. Best results in terms of highest Heidke Skill Score HSS or Critical Success Index CSI are obtained for the Hail Detection Algorithm (HDA) and the Probability of Severe Hail (POSH). Radar-derived hail probability shows a high spatial variability with a maximum on the lee side of the Black Forest mountains and a minimum in the broad Rhine valley.

  7. Measured Changes in C-Band Radar Reflectivity of Clear Air Caused by Aircraft Wake Vortices

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1997-01-01

    Wake vortices from a C-130 airplane were observed at the NASA Wallops Flight Facility with a ground-based, monostatic C-band radar and an antenna-mounted boresight video camera. The airplane wake was viewed from a distance of approximately 1 km, and radar scanning was adjusted to cross a pair of marker smoke trails generated by the C-130. For each airplane pass, changes in radar reflectivity were calculated by subtracting the signal magnitudes during an initial clutter scan from the signal magnitudes during vortex-plus-clutter scans. The results showed both increases and decreases in reflectivity on and near the smoke trails in a characteristic sinusoidal pattern of heightened reflectivity in the center and lessened reflectivity at the sides. Reflectivity changes in either direction varied from -131 to -102 dBm(exp -1); the vortex-plus-clutter to noise ratio varied from 20 to 41 dB. The radar recordings lasted 2.5 min each; evidence of wake vortices was found for up to 2 min after the passage of the airplane. Ground and aircraft clutter were eliminated as possible sources of the disturbance by noting the occurrence of vortex signatures at different positions relative to the ground and the airplane. This work supports the feasibility of vortex detection by radar, and it is recommended that future radar vortex detection be done with Doppler systems.

  8. The application of airborne imaging radars (L and X-band) to earth resources problems

    NASA Technical Reports Server (NTRS)

    Drake, B.; Shuchman, R. A.; Bryan, M. L.; Larson, R. W.; Liskow, C. L.; Rendleman, R. A.

    1974-01-01

    A multiplexed synthetic aperture Side-Looking Airborne Radar (SLAR) that simultaneously images the terrain with X-band (3.2 cm) and L-band (23.0 cm) radar wavelengths was developed. The Feasibility of using multiplexed SLAR to obtain useful information for earth resources purposes. The SLAR imagery, aerial photographs, and infrared imagery are examined to determine the qualitative tone and texture of many rural land-use features imaged. The results show that: (1) Neither X- nor L-band SLAR at moderate and low depression angles can directly or indirectly detect pools of water under standing vegetation. (2) Many of the urban and rural land-use categories present in the test areas can be identified and mapped on the multiplexed SLAR imagery. (3) Water resources management can be done using multiplexed SLAR. (4) Drainage patterns can be determined on both the X- and L-band imagery.

  9. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  10. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    NASA Technical Reports Server (NTRS)

    Hurtak, James J.; Ford, John P.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  11. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  12. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  13. Comparisons of Reflectivities from the TRMM Precipitation Radar and Ground-Based Radars

    NASA Technical Reports Server (NTRS)

    Wang, Jianxin; Wolff, David B.

    2008-01-01

    Given the decade long and highly successful Tropical Rainfall Measuring Mission (TRMM), it is now possible to provide quantitative comparisons between ground-based radars (GRs) with the space-borne TRMM precipitation radar (PR) with greater certainty over longer time scales in various tropical climatological regions. This study develops an automated methodology to match and compare simultaneous TRMM PR and GR reflectivities at four primary TRMM Ground Validation (GV) sites: Houston, Texas (HSTN); Melbourne, Florida (MELB); Kwajalein, Republic of the Marshall Islands (KWAJ); and Darwin, Australia (DARW). Data from each instrument are resampled into a three-dimensional Cartesian coordinate system. The horizontal displacement during the PR data resampling is corrected. Comparisons suggest that the PR suffers significant attenuation at lower levels especially in convective rain. The attenuation correction performs quite well for convective rain but appears to slightly over-correct in stratiform rain. The PR and GR observations at HSTN, MELB and KWAJ agree to about 1 dB on average with a few exceptions, while the GR at DARW requires +1 to -5 dB calibration corrections. One of the important findings of this study is that the GR calibration offset is dependent on the reflectivity magnitude. Hence, we propose that the calibration should be carried out using a regression correction, rather than simply adding an offset value to all GR reflectivities. This methodology is developed towards TRMM GV efforts to improve the accuracy of tropical rain estimates, and can also be applied to the proposed Global Precipitation Measurement and other related activities over the globe.

  14. Radar-based rainfall estimation: Improving Z/R relations through comparison of drop size distributions, rainfall rates and radar reflectivity patterns

    NASA Astrophysics Data System (ADS)

    Neuper, Malte; Ehret, Uwe

    2014-05-01

    The relation between the measured radar reflectivity factor Z and surface rainfall intensity R - the Z/R relation - is profoundly complex, so that in general one speaks about radar-based quantitative precipitation estimation (QPE) rather than exact measurement. Like in Plato's Allegory of the Cave, what we observe in the end is only the 'shadow' of the true rainfall field through a very small backscatter of an electromagnetic signal emitted by the radar, which we hope has been actually reflected by hydrometeors. The meteorological relevant and valuable Information is gained only indirectly by more or less justified assumptions. One of these assumptions concerns the drop size distribution, through which the rain intensity is finally associated with the measured radar reflectivity factor Z. The real drop size distribution is however subject to large spatial and temporal variability, and consequently so is the true Z/R relation. Better knowledge of the true spatio-temporal Z/R structure therefore has the potential to improve radar-based QPE compared to the common practice of applying a single or a few standard Z/R relations. To this end, we use observations from six laser-optic disdrometers, two vertically pointing micro rain radars, 205 rain gauges, one rawindsonde station and two C-band Doppler radars installed or operated in and near the Attert catchment (Luxembourg). The C-band radars and the rawindsonde station are operated by the Belgian and German Weather Services, the rain gauge data was partly provided by the French, Dutch, Belgian, German Weather Services and the Ministry of Agriculture of Luxembourg and the other equipment was installed as part of the interdisciplinary DFG research project CAOS (Catchment as Organized Systems). With the various data sets correlation analyzes were executed. In order to get a notion on the different appearance of the reflectivity patterns in the radar image, first of all various simple distribution indices (for example the

  15. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  16. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  17. Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Heymsfield, Gerald M.; Li, Lihua; Heymsfield, Andrew J.

    2005-01-01

    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm.

  18. Radar Observations of Convective Systems from a High-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    Reflectivity data collected by the precipitation radar on board the tropical Rainfall Measuring Mission (TRMM) satellite, orbiting at 350 km altitude, are compared to reflectivity data collected nearly simultaneously by a doppler radar aboard the NASA ER-2 flying at 19-20 km altitude, i.e. above even the deepest convection. The TRMM precipitation radar is a scanning device with a ground swath width of 215 km, and has a resolution of about a4.4 km in the horizontal and 250 m in the vertical (125 m in the core swath 48 km wide). The TRMM radar has a wavelength of 217 cm (13.8 GHz) and the Nadir mirror echo below the surface is used to correct reflectivity for loss by attenuation. The ER-2 Doppler radar (EDOP) has two antennas, one pointing to the nadir, 34 degrees forward. The forward pointing beam receives both the normal and the cross-polarized echos, so the linear polarization ratio field can be monitored. EDOP has a wavelength of 3.12 cm (9.6 GHz), a vertical resolution of 37.5 m and a horizontal along-track resolution of about 100 m. The 2-D along track airflow field can be synthesized from the radial velocities of both beams, if a reflectivity-based hydrometer fall speed relation can be assumed. It is primarily the superb vertical resolution that distinguishes EDOP from other ground-based or airborne radars. Two experiments were conducted during 1998 into validate TRMM reflectivity data over convection and convectively-generated stratiform precipitation regions. The Teflun-A (TEXAS-Florida Underflight) experiment, was conducted in April and May and focused on mesoscale convective systems mainly in southeast Texas. TEFLUN-B was conducted in August-September in central Florida, in coordination with CAMEX-3 (Convection and Moisture Experiment). The latter was focused on hurricanes, especially during landfall, whereas TEFLUN-B concentrated on central; Florida convection, which is largely driven and organized by surface heating and ensuing sea breeze circulations

  19. Why does radar reflectivity tend to increase downward toward the ocean surface, but decrease downward toward the land surface?

    NASA Astrophysics Data System (ADS)

    Liu, Chuntao; Zipser, Edward J.

    2013-01-01

    Both ground and space borne radars have shown that radar reflectivity profiles below the freezing level have different slopes over land and ocean in general. This is critical in correctly estimating the surface precipitation rate in the usual situation in which the radar reflectivity cannot be measured as close to the surface as one would like. Using 14 years of Tropical Rainfall Measuring Mission precipitation radar observations, the variations of slopes of the radar reflectivity in the low troposphere are examined over the stratiform and convective precipitation regions. Radar reflectivity below the freezing level usually decreases toward the surface over land, but increases toward the surface over the ocean. Increasing reflectivity toward the surface is hypothesized to occur mainly when raindrops grow while falling through low clouds, which is favored by high humidity at low levels, and by updraft speeds lower than the fall speed of raindrops, both more likely over oceans. Other things being equal, proxy evidence is presented that the more intense the convection, the more likely reflectivity is to decrease toward the surface, and that this is at least as important as low-level relative humidity. Over monsoon regions with more moderate convection but higher humidity, such as southeast China and the Amazon, there are more profiles with reflectivity increasing toward the surface than over other continental regions such as Africa. Radar reflectivity tends to increase toward the surface in shallow warm rain systems in trade cumulus regions, but tends to decrease toward the surface when high reflectivity values are present at or above the freezing level.

  20. Greenland annual accumulation along the EGIG line, 1959-2004, from ASIRAS airborne radar and neutron-probe density measurements

    NASA Astrophysics Data System (ADS)

    Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.

    2016-08-01

    We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.

  1. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yun-Jin (Editor)

    1996-01-01

    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop.

  2. Simultaneous measurements of radar reflectivity and refractive index spectra in clear air convection.

    NASA Technical Reports Server (NTRS)

    Konrad, T. G.; Robison, F. L.

    1972-01-01

    Simultaneous measurements of radar reflectivity and radio refractive index at several altitudes in clear air convection have been made. The experimental data were compared with the theoretical relationship which relates the reflectivity to the refractivity spectrum. The agreement between the measurements and the theory is excellent and shows that the radar returns in clear air are the result of, and can be quantitatively described as being from, fine-scale refractivity fluctuations due to turbulent mixing. Further, the data give strong support to the -5/3 spectral decay of the refractivity spectrum in the inertial subrange.

  3. Lava flows in mare imbrium: An evaluation of anomalously low earth-based radar reflectivity

    USGS Publications Warehouse

    Schaber, G.G.; Thompson, T.W.; Zisk, S.H.

    1975-01-01

    The lunar maria reflect two to five times less Earth-based radar power than the highlands, the spectrally blue maria surfaces returning the lowest power levels. This effect of weakening signal return has been attributed to increased signal absorption related to the electrical and magnetic characteristics of the mineral ilmenite (FeTiO3). The surface of Mare Imbrium contains some of the most distinct red-blue colorimetric boundaries and depolarized 70 cm wavelength reflectivity variations on the near side of the Moon. The weakest levels of both 3.8 cm and 70 cm reflectivity within Imbrium are confined to regional mare surfaces of the blue spectral type that can be recognized as stratigraphically unique flow surfaces. Frequency distributions of the 70 cm polarized and depolarized radar return power for five mare surfaces within the basin indicate that signal absorption, and probably the ilmenite content, increases generally from the beginning of the Imbrian Period to the end of the Eratosthenian Period with slight reversal between the end of the Imbrian and beginning of the Eratosthenian. TiO2 calibrated radar reflectivity curves can be utilized for lunar maria geochemical mapping in the same manner as the TiO2 calibrated spectral reflectivity curves of Charette et al. (1974). The long wavelength radar data may be a sensitive indicator of mare chemical variations as it is unaffected by the normal surface rock clutter that includes ray materials from large impact craters. ?? 1975 D. Reidel Publishing Company.

  4. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    Over the last decade, multiple satellite-based laser and radar altimeters, optimized for polar observations, have been launched with one of the major objectives being the determination of global sea ice thickness and distribution [5, 6]. Estimation of sea-ice thickness from these altimeters relies on freeboard measurements and the presence of snow cover on sea ice affects this estimate. Current means of estimating the snow depth rely on daily precipitation products and/or data from passive microwave sensors [2, 7]. Even a small uncertainty in the snow depth leads to a large uncertainty in the sea-ice thickness estimate. To improve the accuracy of the sea-ice thickness estimates and provide validation for measurements from satellite-based sensors, the Center for Remote Sensing of Ice Sheets deploys the Snow Radar as a part of NASA Operation IceBridge. The Snow Radar is an ultra-wideband, frequency-modulated, continuous-wave radar capable of resolving snow depth on sea ice from 5 cm to more than 2 meters from long-range, airborne platforms [4]. This paper will discuss the algorithm used to directly extract snow depth estimates exclusively using the Snow Radar data set by tracking both the air-snow and snow-ice interfaces. Prior work in this regard used data from a laser altimeter for tracking the air-snow interface or worked under the assumption that the return from the snow-ice interface was greater than that from the air-snow interface due to a larger dielectric contrast, which is not true for thick or higher loss snow cover [1, 3]. This paper will also present snow depth estimates from Snow Radar data during the NASA Operation IceBridge 2010-2011 Antarctic campaigns. In 2010, three sea ice flights were flown, two in the Weddell Sea and one in the Amundsen and Bellingshausen Seas. All three flight lines were repeated in 2011, allowing an annual comparison of snow depth. In 2011, a repeat pass of an earlier flight in the Weddell Sea was flown, allowing for a

  5. Comments on airborne ISR radar utilization

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    A sensor/payload operator for modern multi-sensor multi-mode Intelligence, Surveillance, and Reconnaissance (ISR) platforms is often confronted with a plethora of options in sensors and sensor modes. This often leads an over-worked operator to down-select to favorite sensors and modes; for example a justifiably favorite Full Motion Video (FMV) sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. At best, sensors might be used in a serial monogamous fashion with some cross-cueing. The challenge is then to increase the utilization of the radar modes in a manner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into `super-modes'.

  6. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  7. Airborne Turbulence Detection System Certification Tool Set

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    A methodology and a corresponding set of simulation tools for testing and evaluating turbulence detection sensors has been presented. The tool set is available to industry and the FAA for certification of radar based airborne turbulence detection systems. The tool set consists of simulated data sets representing convectively induced turbulence, an airborne radar simulation system, hazard tables to convert the radar observable to an aircraft load, documentation, a hazard metric "truth" algorithm, and criteria for scoring the predictions. Analysis indicates that flight test data supports spatial buffers for scoring detections. Also, flight data and demonstrations with the tool set suggest the need for a magnitude buffer.

  8. Detection and Identification of Archaeological Sites and Features Using Synthetic Aperture Radar (SAR) Data Collected from Airborne Platforms

    DTIC Science & Technology

    2006-04-26

    sessions were used not only for signature development, but more 5 immediately to determine the spatial precision of images produced from...algorithms (e.g., NDVI and Tasseled Cap) available. The most instructive vectors were determined to be the SAR band polarizations vertically in the C...lands. Our principal, but not exclusive, focus has been on the use of high resolution airborne radar data in detection. in’<l’entoxy, and

  9. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    USGS Publications Warehouse

    Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.

    2012-01-01

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

  10. Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) Cost-Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) are designed to prevent space launch vehicles from flight through environments conducive to natural or triggered lightning and are used for all U.S. government and commercial launches at government and civilian ranges. They are maintained by a committee known as the NASA/USAF Lightning Advisory Panel (LAP). The previous LLCC for anvil cloud, meant to avoid triggered lightning, have been shown to be overly restrictive. Some of these rules have had such high safety margins that they prohibited flight under conditions that are now thought to be safe 90% of the time, leading to costly launch delays and scrubs. The LLCC for anvil clouds was upgraded in the summer of 2005 to incorporate results from the Airborne Field Mill (ABFM) experiment at the Eastern Range (ER). Numerous combinations of parameters were considered to develop the best correlation of operational weather observations to in-cloud electric fields capable of rocket triggered lightning in anvil clouds. The Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) was the best metric found. Dr. Harry Koons of Aerospace Corporation conducted a risk analysis of the VAHIRR product. The results indicated that the LLCC based on the VAHIRR product would pose a negligible risk of flying through hazardous electric fields. Based on these findings, the Kennedy Space Center Weather Office is considering seeking funding for development of an automated VAHIRR algorithm for the new ER 45th Weather Squadron (45 WS) RadTec 431250 weather radar and Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Before developing an automated algorithm, the Applied Meteorology Unit (AMU) was tasked to determine the frequency with which VAHIRR would have allowed a launch to safely proceed during weather conditions otherwise deemed "red" by the Launch Weather Officer. To do this, the AMU manually calculated VAHIRR values based on candidate cases from past launches with known anvil cloud

  11. Hurricane structure and wind fields from stereoscopic and infrared satellite observations and radar data

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Morris, K. R.

    1986-01-01

    Hurricane cloud and precipitation structure have been studied by means of IR and stereoscopic visual satellite data from synchronized scanning GOES-East and -West, in combination with ground-based radar data for Hurricane Frederico and time-composited airborne radar data for Hurricane Allen. It is noted that stereoscopically measured cloudtop height in these hurricanes is not as closely correlated to radar reflectivity at lower levels as it is in intense thunderstorms over land. This and other results obtained imply that satellite precipitation estimation techniques for tropical cyclones that are based on cloudtop measurements will not be accurate with respect to time and place scales that are less than several hours and a few hundred km, respectively.

  12. New Martian climate constraints from radar reflectivity within the north polar layered deposits

    NASA Astrophysics Data System (ADS)

    Lalich, D. E.; Holt, J. W.

    2017-01-01

    The north polar layered deposits (NPLD) of Mars represent a global climate record reaching back millions of years, potentially recorded in visible layers and radar reflectors. However, little is known of the specific link between those layers, reflectors, and the global climate. To test the hypothesis that reflectors are caused by thick and indurated layers known as "marker beds," the reflectivity of three reflectors was measured, mapped, and compared to a reflectivity model. The measured reflectivities match the model and show a strong sensitivity to layer thickness, implying that radar reflectivity may be used as a proxy for short-term accumulation patterns and that regional climate plays a strong role in layer thickness variations. Comparisons to an orbitally forced NPLD accumulation model show a strong correlation with predicted marker bed formation, but dust content is higher than expected, implying a stronger role for dust in Mars polar climate than previously thought.

  13. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  14. Use of Dual-wavelength Radar for Snow Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Iguchi, Toshio; Detwiler, Andrew

    2005-01-01

    Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the characteristic parameters of the snow size distributions. An analysis of the computational results, made at X and Ka bands (T-39 airborne radar) and at S and X bands (CP-2 ground-based radar), indicates that valid estimates of the median volume diameter of snow particles, D(sub 0), should be possible if one of the two wavelengths of the radar operates in the non-Rayleigh scattering region. However, the accuracy may be affected to some extent if the shape factors of the Gamma function used for describing the particle distribution are chosen far from the true values or if cloud water attenuation is significant. To examine the validity and accuracy of the dual-wavelength radar algorithms, the algorithms are applied to the data taken from the Convective and Precipitation-Electrification Experiment (CaPE) in 1991, in which the dual-wavelength airborne radar was coordinated with in situ aircraft particle observations and ground-based radar measurements. Having carefully co-registered the data obtained from the different platforms, the airborne radar-derived size distributions are then compared with the in-situ measurements and ground-based radar. Good agreement is found for these comparisons despite the uncertainties resulting from mismatches of the sample volumes among the different sensors as well as spatial and temporal offsets.

  15. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Technical Standard Order (TSO)-C63d, Airborne Weather Radar Equipment. The objective is to leverage the..., Airborne Weather and Ground Mapping Pulsed Radars. The FAA and industry collaborated on the end-to-end...

  16. Radar sea reflection for low-e targets

    NASA Astrophysics Data System (ADS)

    Chow, Winston C.; Groves, Gordon W.

    1998-09-01

    Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.

  17. Common-midpoint radar surveys of ice sheets: a tool for better ice and bed property inversions

    NASA Astrophysics Data System (ADS)

    Holschuh, N.; Christianson, K.; Anandakrishnan, S.; Alley, R. B.; Jacobel, R. W.

    2016-12-01

    In response to the demand for observationally derived boundary conditions in ice-sheet models, geophysicists are striving to more quantitatively interpret the reflection amplitudes of ice penetrating radar data. Inversions for ice-flow parameters and basal properties typically use common-offset radar data, which contain a single observation of bed reflection amplitude at each location in the survey; however, the radar equation has more than one unknown - ice temperature, subglacial water content, and bedrock roughness cannot be uniquely determined without additional constraints. In this study, we adapt traditional seismic property inversion techniques to radar data, using additional information collected with a common-midpoint (CMP) radar survey geometry (which varies the source-receiver offset for each subsurface target). Using two of the first common-midpoint ice-penetrating radar data sets collected over thick ice in Antarctica and Greenland, we test the hypothesis that these data can be used to disentangle the contributions of ice conductivity and bed permittivity to the received reflection amplitudes. We focus specifically on the corrections for the angular dependence of antenna gain and surface reflectivity, refractive focusing effects, and surface scattering losses. Inferred temperature profiles, derived from the constrained ice conductivities at Kamb Ice Stream and the North East Greenland Ice Stream, suggest higher than expected depth-integrated temperatures, as well as non-physical depth trends (with elevated temperatures near the surface). We hypothesize that this is driven in part by offset-dependent interferences between the sub-wavelength layers that make up a single nadir reflection, and present a convolutional model that describes how this interference might systematically reduce reflection power with offset (thereby elevating the inferred attenuation rate). If these additional offset-dependent power losses can be isolated and removed, common

  18. Comparison of surface wind stress measurements - Airborne radar scatterometer versus sonic anemometer

    NASA Technical Reports Server (NTRS)

    Brucks, J. T.; Leming, T. D.; Jones, W. L.

    1980-01-01

    Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.

  19. Surface and Basal Roughness in Radar Sounding Data: Obstacle and Opportunity

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Haynes, M.

    2015-12-01

    The surface and basal roughness of glaciers, ice sheets, and ice shelves can pose a significant obstacle to the visual interpretation and quantitative analysis of radar sounding data. Areas of high surface roughness - including grounding zones, shear margins, and crevasse fields - can produce clutter and side-lobe signals that obscure the interpretation of englacial and subglacial features. These areas can also introduce significant variation in bed echo strength profiles as a result of losses from two-way propagation through rough ice surfaces. Similarly, reflections from rough basal interfaces beneath ice sheets and ice shelves can also result in large, spatially variable losses in bed echo power. If unmitigated and uncorrected, these effects can degrade or prevent the definitive interpretation of material and geometric properties at the base of ice sheets and ice shelves using radar reflectivity and bed echo character. However, these effects also provide geophysical signatures of surface and basal interface character - including surface roughness, firn density, subglacial bedform geometry, ice shelf basal roughness, marine-ice/brine detection, and crevasse geometry - that can be observed and constrained by exploiting roughness effects in radar sounding data. We present a series of applications and approaches for characterizing and correcting surface and basal roughness effects for airborne radar sounding data collected in Antarctica. We also present challenges, insights, and opportunities for extending these techniques to the orbital radar sounding of Europa's ice shell.

  20. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  1. Operations Manager Tim Miller checks out software for the Airborne Synthetic Aperature Radar (AIRSAR

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Tim Miller checks out software for the Airborne Synthetic Aperture Radar (AIRSAR). He was the AIRSAR operations manager for NASA's Jet Propulsion Laboratory. The AIRSAR produces imaging data for a range of studies conducted by the DC-8. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  2. Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles.

    PubMed

    Donovan, David Patrick; Quante, Markus; Schlimme, Ingo; Macke, Andreas

    2004-09-01

    The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

  3. Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Kucera, Paul A.

    2004-01-01

    This report describes the work performed by the University of North Dakota (UND) under NASA Grant NAG5-11509, titled Airborne In Situ and Ground-based Polarimetric Radar Measurements of Tropical Convection in Support of CRYSTAL-FACE. This work focused on the collection of data by two key platforms: the UND Citation II research aircraft and the NASA NPOL radar system. The CRYSTAL-FACE (C-F) mission addresses several key issues from the NASA Earth System Enterprise, including the variability of water in the atmosphere, the forcing provided by tropical cirrus and the response of the Earth system to this forcing. In situ measurements and radar observations of tropical convection, cirrus clouds and their environment are core elements of C-F. One of the primary issues that C-F is addressing is the relationship of tropical cirrus anvils to precipitating deep convection. The in situ measurements from C-F are being used to validate remote sensing of Earth-Atmosphere properties, increase our knowledge of upper tropospheric water vapor and its distribution, and increase our knowledge of tropical cirrus cloud morphology and composition. Radar measurements, especially polarimetric diversity observations available fiom the NASA NPOL radar, are providing essential information about the initiation, modulation, and dissipation of convective cores and the generation of associated anvils in tropical convection. Specifically, NPOL radar measurements contain information about convective intensity and its vertical structure for comparison with thermodynamic and kinematic environmental measurements observed from soundings. Because of the polarimetric diversity of MOL, statistics on bulk microphysical properties can be retrieved and compared to the other characteristics of convection and associated cirrus anvils. In summary, the central objectives of this proposal were to deploy the UND Citation research aircraft as an in situ sensing platform for this mission and to provide collaborative

  4. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration... approved airborne weather radar equipment. (c) No person may begin a flight under IFR or night VFR...

  5. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  6. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo

  7. A Study on Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    An important objective for the Dual-wavelength Ku-/Ka-band Precipitation Radar (DPR) that will be on board the Global Precipitation Measuring (GPM) core satellite, is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku- and Ka-bands, and the radar reflectivity factor at Ku-band, ZKu, for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu-DFR plane assuming that the snow follows the Gunn-Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). In an effort to verify the simulated results, the data collected by the Airborne Second Generation Precipitation Radar (APR-2) in the Wakasa Bay AMSR-E campaign are employed. Using the signatures of Linear Depolarization Ratio (LDR) at Ku-band, the APR-2 data can be easily divided into the regions of snow, mixed phase and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu-DFR plane. It has been found that in 90% of the cases, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of GPM DPR at Ku-band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

  8. Simultaneous dual-band radar development

    NASA Technical Reports Server (NTRS)

    Liskow, C. L.

    1974-01-01

    Efforts to design and construct an airborne imaging radar operating simultaneously at L band and X band with an all-inertial navigation system in order to form a dual-band radar system are described. The areas of development include duplex transmitters, receivers, and recorders, a control module, motion compensation for both bands, and adaptation of a commercial inertial navigation system. Installation of the system in the aircraft and flight tests are described. Circuit diagrams, performance figures, and some radar images are presented.

  9. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  10. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e

  11. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  12. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  13. Synergizing High-Resolution EOS Terra Satellite Data and S-POLKa Radar Reflectivity to Assess Trade Wind Cumuli Precipitation

    NASA Astrophysics Data System (ADS)

    Snodgrass, E. R.; di Girolamo, L.; Rauber, R.; Zhao, G.

    2005-12-01

    During the RICO field campaign, the EOS Terra Spacecraft and NCAR's S-POLKa radar collected coincident high-resolution visible and near-IR satellite data and dual-polarized S-band and Ka-band radar reflectivity data to understand trade wind cumuli cloud distribution and precipitation. In this paper, the comparison of the trade wind cloud field's satellite-derived cloud properties and radar-derived precipitation characteristics are presented. Specifically, these results focus on the relationship between radar reflectivity and derived rain rate to the satellite visible radiance, cloud fraction, height and thickness. Also results concerning the relationship between cloud area estimated by satellite and cloud boundary estimated by radar Bragg and Rayleigh scattering will be presented. The resolution effects between visible satellite data from the ASTER instrument at 15m ground-resolution and the S-POLKa radar data will be reviewed. The potential applications of these results to the estimation of trade wind cumuli's role in returning water to the ocean through precipitation, and to cloud and climate model parameterization will be discussed.

  14. Radar volume reflectivity estimation using an array of ground-based rainfall drop size detectors

    NASA Astrophysics Data System (ADS)

    Lane, John; Merceret, Francis; Kasparis, Takis; Roy, D.; Muller, Brad; Jones, W. Linwood

    2000-08-01

    Rainfall drop size distribution (DSD) measurements made by single disdrometers at isolated ground sites have traditionally been used to estimate the transformation between weather radar reflectivity Z and rainfall rate R. Despite the immense disparity in sampling geometries, the resulting Z-R relation obtained by these single point measurements has historically been important in the study of applied radar meteorology. Simultaneous DSD measurements made at several ground sites within a microscale area may be used to improve the estimate of radar reflectivity in the air volume surrounding the disdrometer array. By applying the equations of motion for non-interacting hydrometers, a volume estimate of Z is obtained from the array of ground based disdrometers by first calculating a 3D drop size distribution. The 3D-DSD model assumes that only gravity and terminal velocity due to atmospheric drag within the sampling volume influence hydrometer dynamics. The sampling volume is characterized by wind velocities, which are input parameters to the 3D-DSD model, composed of vertical and horizontal components. Reflectivity data from four consecutive WSR-88D volume scans, acquired during a thunderstorm near Melbourne, FL on June 1, 1997, are compared to data processed using the 3D-DSD model and data form three ground based disdrometers of a microscale array.

  15. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  16. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    NASA Astrophysics Data System (ADS)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  17. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  18. Improved estimation of heavy rainfall by weather radar after reflectivity correction and accounting for raindrop size distribution variability

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z-R) and radar reflectivity-specific attenuation (Z-k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  19. Three-dimensional fusion of spaceborne and ground radar reflectivity data using a neural network-based approach

    NASA Astrophysics Data System (ADS)

    Kou, Leilei; Wang, Zhuihui; Xu, Fen

    2018-03-01

    The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method; interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.

  20. Eyeballing oscillators for pulsed Doppler radar

    NASA Astrophysics Data System (ADS)

    Goldman, S.

    1985-03-01

    The visibility of small targets to a Doppler radar system in the presence of large targets is limited by phase noise. Such limitations occur when an airborne radar searches the ground for a mobile vehicle. Under these conditions, the performance of the Doppler radar depends greatly on the specifications of its phased-locked oscillator. Goldman (1984) has discussed the steps required to evaluate the noise resulting from a pulsed Doppler radar system. In the present investigation, these techniques are applied in reverse to determine system specifications for oscillator noise. A 95-GHz pulsed Doppler radar system is used as an example of specifying system phase noise.

  1. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  2. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  3. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    PubMed Central

    Alacid, Beatriz

    2018-01-01

    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716

  4. Breath Activity Monitoring With Wearable UWB Radars: Measurement and Analysis of the Pulses Reflected by the Human Body.

    PubMed

    Pittella, Erika; Pisa, Stefano; Cavagnaro, Marta

    2016-07-01

    Measurements of ultrawideband (UWB) pulses reflected by the human body are conducted to evidence the differences in the received signal time behaviors due to respiration phases, and to experimentally verify previously obtained numerical results on the body's organs responsible for pulse reflection. Two experimental setups are used. The first one is based on a commercially available impulse radar system integrated on a single chip, while the second one implements an indirect time-domain reflectometry technique using a vector network analyzer controlled by a LabVIEW virtual instrument running on a laptop. When the UWB source is placed close to the human body, a small reflection due to the lung boundaries is present in the received pulse well distanced in time from the reflection due to the air-skin interface; this reflection proved to be linked to the different respiration phases. The changes in the reflected pulse could be used to detect, through wearable radar systems, lung movements associated with the breath activity. The development of a wearable radar system is of great importance because it allows the breath activity sensing without interfering with the subject daily activities.

  5. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  6. Characterizing near-surface firn from the scattered signal component of glacier surface reflections detected in airborne radio-echo sounding measurements

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Cawkwell, F.; Dowdeswell, J. A.

    2016-12-01

    With recent summer warming, surface melt on Canadian Arctic ice caps has intensified and extended to higher elevations in ice cap accumulation areas. Consequently, more meltwater percolates into the near-surface firn, and refreezes as ice layers where firn temperatures are below freezing. This process can increase firn densification rates, causing a lowering of the glacier surface height even in the absence of mass changes. Thus, knowledge of spatio-temporal variations in the near-surface firn stratigraphy is important for interpreting altimetrically-derived estimates of ice cap mass balance. We investigate the use of the scattering signal component of glacier surface reflections in airborne radio-echo sounding (RES) measurements to characterize the near-surface firn stratigraphy. The scattering signal distribution over Devon Ice Cap is compared to firn stratigraphy derived from ground-based radar data. We identify three distinct firn facies zones at different elevation ranges. The scattered signal component changes significantly between the different firn facies zones: low scattering correlates to laterally homogeneous firn containing thin, flat and continuous ice layers at elevations above 1800 m and below 1200 m, where firn consists mainly of ice. Higher scattering values are found from 1200-1800 m where the firn contains discrete, undulating ice layers. No correlation was found between the scattering component and surface roughness. Modelled scattering values for the measured roughness were significantly less than the observed values, and did not reproduce their observed spatial distribution. This indicates that the scattering component is determined mainly by the structure of near-surface firn. Our results suggest that the scattering component of surface reflections from airborne RES measurements has potential for characterizing heterogeneity in the spatial structure of firn that is affected by melting and refreezing processes.

  7. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  8. Airborne Microwave Imaging of River Velocities

    NASA Technical Reports Server (NTRS)

    Plant, William J.

    2002-01-01

    The objective of this project was to determine whether airborne microwave remote sensing systems can measure river surface currents with sufficient accuracy to make them prospective instruments with which to monitor river flow from space. The approach was to fly a coherent airborne microwave Doppler radar, developed by APL/UW, on a light airplane along several rivers in western Washington state over an extended period of time. The fundamental quantity obtained by this system to measure river currents is the mean offset of the Doppler spectrum. Since this scatter can be obtained from interferometric synthetic aperture radars (INSARs), which can be flown in space, this project provided a cost effective means for determining the suitability of spaceborne INSAR for measuring river flow.

  9. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  10. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  11. Steam injection pilot study in a contaminated fractured limestone (Maine, USA): Modeling and analysis of borehole radar reflection data

    USGS Publications Warehouse

    Gregoire, C.; Lane, J.W.; Joesten, P.K.

    2005-01-01

    Steam-enhanced remediation (SER) has been successfully used to remove DNAPL and LNAPL contaminants in porous media. Between August and November 2002, SER was tested in fractured limestone at the former Loring Air Force Base, in Maine, USA. During the SER investigation, the U.S. Geological Survey conducted a series of borehole radar surveys to evaluate the effectiveness of radar methods for monitoring the movement of steam and heat through the fractured limestone. The data were collected before steam injection, 10 days after the beginning of injection, and at the end of injection. In this paper, reflection-mode borehole radar data from wells JBW-7816 and JBW-7817A are presented and discussed. Theoretical modeling was performed to predict the variation of fracture reflectivity owed to heating, to show displacement of water and to assess the effect of SER at the site. Analysis of the radar profile data indicates some variations resulting from heating (increase of continuity of reflectors, attenuation of deeper reflections) but no substantial variation of traveltimes. Spectral content analysis of several individual reflections surrounding the boreholes was used to investigate the replacement of water by steam in the fractures. Observed decrease in radar reflectivity was too small to be explained by a replacement of water by steam, except for two high-amplitude reflectors, which disappeared near the end of the injection; moreover, no change of polarity, consistent with steam replacing water, was observed. The decrease of amplitude was greater for reflectors near well JBW-7817A and is explained by a greater heating around this well.

  12. Progress in coherent laser radar

    NASA Technical Reports Server (NTRS)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  13. Storm Surge Measurement with an Airborne Scanning Radar Altimeter

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Krabill, W. B.; Shaffer, W. A.; Baig, S. R.; Peng, M.; Pietrafesa, L. J.; Garcia, A. W.; Marks, F. D., Jr.; Black, P. G.; hide

    2008-01-01

    Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.

  14. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower

  15. Vertical structure of radar reflectivity in deep intense convective clouds over the tropics

    NASA Astrophysics Data System (ADS)

    Kumar, Shailendra; Bhat, G. S.

    2015-04-01

    This study is based on 10 years of radar reflectivity factor (Z) data derived from the TRMM Precipitation Radar (PR) measurements. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective clouds (ICCs), essentially following the methodology used in deriving the vertical profiles of radar reflectivity (VPRR). CbT contains Z≥ 20 dBZ at 12 km height with its base height below 3 km. ICCs belong to the top 5% reflectivity population at 3 km and 8 km altitude. Regional differences in the vertical structure of convective cells have been explored for two periods, namely, JJAS (June, July, August and September) and JFM (January, February and March) months. Frequency of occurrences of CbTs and ICCs depend on the region. Africa and Latin America are the most productive regions for the CbTs while the foothills of Western Himalaya contain the most intense profiles. Among the oceanic areas, the Bay of Bengal has the strongest vertical profile, whereas Atlantic Ocean has the weakest profile during JJAS. During JFM months, maritime continent has the strongest vertical profile whereas western equatorial Indian Ocean has the weakest. Monsoon clouds lie between the continental and oceanic cases. The maximum heights of 30 and 40 dBZ reflectivities (denoted by MH30 and MH40, respectively) are also studied. MH40 shows a single mode and peaks around 5.5 km during both JJAS and JFM months. MH30 shows two modes, around 5 km and between 8 km and 10 km, respectively. It is also shown that certain conclusions such as the area/region with the most intense convective cells, depend of the reference height used in defining a convective cell.

  16. Multifunction Radar for Airborne Applications.

    DTIC Science & Technology

    1986-07-01

    de rapport ( doo roSarvre o ntn orcp tion To de 0 & TR. Pour chaque valour de To, on calculo de la m~me faqon quo prdcdmment PS lo rIpporr - pour...senseur primordial dfalts les aviotts militaires. (in certain ttimbreC de caracteristiulues imptirtantes donne anl radar Ia supuirioritui sur Ics...muitcoroliugiques 1ironillard. nuagesi. 1estimation de distance et lestimatitin Douppler. - la sonplesse de at ]’orientatiiin ilectritnique des

  17. Borehole radar interferometry revisited

    USGS Publications Warehouse

    Liu, Lanbo; Ma, Chunguang; Lane, John W.; Joesten, Peter K.

    2014-01-01

    Single-hole, multi-offset borehole-radar reflection (SHMOR) is an effective technique for fracture detection. However, commercial radar system limitations hinder the acquisition of multi-offset reflection data in a single borehole. Transforming cross-hole transmission mode radar data to virtual single-hole, multi-offset reflection data using a wave interferometric virtual source (WIVS) approach has been proposed but not fully demonstrated. In this study, we compare WIVS-derived virtual single-hole, multi-offset reflection data to real SHMOR radar reflection profiles using cross-hole and single-hole radar data acquired in two boreholes located at the University of Connecticut (Storrs, CT USA). The field data results are similar to full-waveform numerical simulations developed for a two-borehole model. The reflection from the adjacent borehole is clearly imaged by both the real and WIVS-derived virtual reflection profiles. Reflector travel-time changes induced by deviation of the two boreholes from the vertical can also be observed on the real and virtual reflection profiles. The results of this study demonstrate the potential of the WIVS approach to improve bedrock fracture imaging for hydrogeological and petroleum reservoir development applications.

  18. Ice shelf snow accumulation rates from the Amundsen-Bellingshausen Sea sector of West Antarctica derived from airborne radar

    NASA Astrophysics Data System (ADS)

    Medley, B.; Kurtz, N. T.; Brunt, K. M.

    2015-12-01

    The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.

  19. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  20. UAVSAR: An Airborne Window on Earth Surface Deformation

    NASA Technical Reports Server (NTRS)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  1. Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne in situ and Doppler radar measurements.

    PubMed

    Strauss, Lukas; Serafin, Stefano; Haimov, Samuel; Grubišić, Vanda

    2015-10-01

    Atmospheric turbulence generated in flow over mountainous terrain is studied using airborne in situ and cloud radar measurements over the Medicine Bow Mountains in southeast Wyoming, USA. During the NASA Orographic Clouds Experiment (NASA06) in 2006, two complex mountain flow cases were documented by the University of Wyoming King Air research aircraft carrying the Wyoming Cloud Radar. The structure of turbulence and its intensity across the mountain range are described using the variance of vertical velocity σw2 and the cube root of the energy dissipation rate ɛ 1/3 (EDR). For a quantitative analysis of turbulence from the cloud radar, the uncertainties in the Doppler wind retrieval have to be taken into account, such as the variance of hydrometeor fall speed and the contamination of vertical Doppler velocity by the horizontal wind. A thorough analysis of the uncertainties shows that 25% accuracy or better can be achieved in regions of moderate to severe turbulence in the lee of the mountains, while only qualitative estimates of turbulence intensity can be obtained outside the most turbulent regions. Two NASA06 events exhibiting large-amplitude mountain waves, mid-tropospheric wave breaking, and rotor circulations are examined. Moderate turbulence is found in a wave-breaking region with σw2 and EDR reaching 4.8 m 2 s -2 and 0.25 m 2/3 s -1 , respectively. Severe turbulence is measured within the rotor circulations with σw2 and EDR respectively in the ranges of 7.8-16.4 m 2 s -2 and 0.50-0.77 m 2/3 s -1 . A unique result of this study is the quantitative estimation of the intensity of turbulence and its spatial distribution in the interior of atmospheric rotors, provided by the radar-derived turbulence fields.

  2. Consistency analysis and correction of ground-based radar observations using space-borne radar

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Yiqing; Wang, Zhenhui; Wang, Yadong

    2018-04-01

    The lack of an accurate determination of radar constant can introduce biases in ground-based radar (GR) reflectivity factor data, and lead to poor consistency of radar observations. The geometry-matching method was applied to carry out spatial matching of radar data from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite to observations from a GR deployed at Nanjing, China, in their effective sampling volume, with 250 match-up cases obtained from January 2008 to October 2013. The consistency of the GR was evaluated with reference to the TRMM PR, whose stability is established. The results show that the below-bright-band-height data of the Nanjing radar can be split into three periods: Period I from January 2008 to March 2010, Period II from March 2010 to May 2013, and Period III from May 2013 to October 2013. There are distinct differences in overall reflectivity factor between the three periods, and the overall reflectivity factor in period II is smaller by a factor of over 3 dB than in periods I and III, although the overall reflectivity within each period remains relatively stable. Further investigation shows that in period II the difference between the GR and PR observations changed with echo intensity. A best-fit relation between the two radar reflectivity factors provides a linear correction that is applied to the reflectivity of the Nanjing radar, and which is effective in improving its consistency. Rain-gauge data were used to verify the correction, and the estimated precipitation based on the corrected GR reflectivity data was closer to the rain-gauge observations than that without correction.

  3. The USGS Side-Looking Airborne Radar (SLAR) program: CD-ROMs expand potential for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, A.N.; Schoonmaker, J.W. Jr.; Pohn. H.A.

    1991-03-01

    The United States Geological Survey (USGS) began the systematic collection of Side-Looking Airborne Radar (SLAR) data in 1980. The SLAR image data, useful for many geologic applications including petroleum exploration, are compiled into mosaics using the USGS 1:250,000-scale topographic map series for format and control. Mosaics have been prepared for over 35% of the United States. Image data collected since 1985 are also available as computer compatible tapes (CCTs) for digital analysis. However, the use of tapes is often cumbersome. To make digital data more readily available for use on a microcomputer, the USGS has started to prepare compact discs-readmore » only memory (CD-ROM). Several experimental discs have been compiled to demonstrate the utility of the medium to make available very large data sets. These discs include necessary nonproprietary software text, radar, and other image data. The SLAR images selected for these discs show significantly different geologic features and include the Long Valley caldera, a section of the San Andreas fault in the Monterey area, the Grand Canyon, and glaciers in southeastern Alaska. At present, several CD-ROMs are available as standard products distributed by the USGS EROS Data Center in Sioux Falls, South Dakota 57198. This is also the source for all USGS SLAR photographic and digital material.« less

  4. A data assimilation experiment of RASTA airborne cloud radar data during HyMeX IOP16

    NASA Astrophysics Data System (ADS)

    Saussereau, Gaël; Caumont, Olivier; Delanoë, Julien

    2015-04-01

    The main goal of HyMeX first special observing period (SOP1), which took place from 5 September to 5 November 2012, was to document the heavy precipitation events and flash floods that regularly affect the north-western Mediterranean coastal areas. In the two-month campaign, around twenty rainfall events were documented in France, Italy, and Spain. Among the instrumental platforms that were deployed during SOP1, the Falcon 20 of the Safire unit (http://www.safire.fr/) made numerous flights in storm systems so as to document their thermodynamic, microphysical, and dynamical properties. In particular, the RASTA cloud radar (http://rali.projet.latmos.ipsl.fr/) was aboard this aircraft. This radar measures vertical profiles of reflectivity and Doppler velocity above and below the aircraft. This unique instrument thus allows us to document the microphysical properties and the speed of wind and hydrometeors in the clouds, quasi-continuously in time and at a 60-m vertical resolution. For this field campaign, a special version of the numerical weather prediction (NWP) Arome system was developed to cover the whole north-western Mediterranean basin. This version, called Arome-WMed, ran in real time during the SOP in order to, notably, schedule the airborne operations, especially in storm systems. Like the operational version, Arome-WMed delivers forecasts at a horizontal resolution of 2.5 km with a one-moment microphysical scheme that predicts the evolution of six water species: water vapour, cloud liquid water, rainwater, pristine ice, snow, and graupel. Its three-dimensional variational (3DVar) data assimilation (DA) system ingests every three hours (at 00 UTC, 03 UTC, etc.) numerous observations (radiosoundings, ground automatic weather stations, radar, satellite, GPS, etc.). In order to provide improved initial conditions to Arome-WMed, especially for heavy precipitation events, RASTA data were assimilated in Arome-WMed 3DVar DA system for IOP16 (26 October 2012), to

  5. An X-Band Radar Terrain Feature Detection Method for Low-Altitude SVS Operations and Calibration Using LiDAR

    NASA Technical Reports Server (NTRS)

    Young, Steve; UijtdeHaag, Maarten; Campbell, Jacob

    2004-01-01

    To enable safe use of Synthetic Vision Systems at low altitudes, real-time range-to-terrain measurements may be required to ensure the integrity of terrain models stored in the system. This paper reviews and extends previous work describing the application of x-band radar to terrain model integrity monitoring. A method of terrain feature extraction and a transformation of the features to a common reference domain are proposed. Expected error distributions for the extracted features are required to establish appropriate thresholds whereby a consistency-checking function can trigger an alert. A calibration-based approach is presented that can be used to obtain these distributions. To verify the approach, NASA's DC-8 airborne science platform was used to collect data from two mapping sensors. An Airborne Laser Terrain Mapping (ALTM) sensor was installed in the cargo bay of the DC-8. After processing, the ALTM produced a reference terrain model with a vertical accuracy of less than one meter. Also installed was a commercial-off-the-shelf x-band radar in the nose radome of the DC-8. Although primarily designed to measure precipitation, the radar also provides estimates of terrain reflectivity at low altitudes. Using the ALTM data as the reference, errors in features extracted from the radar are estimated. A method to estimate errors in features extracted from the terrain model is also presented.

  6. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  7. Present and Future Airborne and Space-borne Systems

    DTIC Science & Technology

    2007-02-01

    Present and Future Airborne and Space-borne Systems Wolfgang Keydel Microwaves and Radar Institute German Aerospace Research Centre (DLR...airborne and space-borne SAR systems with polarimetric interferometry capability, their technological, system technical and application related...interferometry accuracies in the cm range have been obtained. In order to reach these values an exact system calibration is indispensable. The calibration of

  8. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  9. Radar research at University of Oklahoma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Yan R.; Weber, Mark E.

    2017-05-01

    This abstract is for the academic institution profiles session This presentation will focus on radar research programs at the University of Oklahoma, the radar research in OU has more than 50 years history of collaboration with NOAA, and has been through tremendous growth since early 2000. Before 2010, the focus was weather radar and weather surveillance, and since the Defense, Security and Intelligence (DSI) initiative in 2011, there have many new efforts on the defense and military radar applications. This presentation will focus on the following information: (1) The history, facilities and instrumentations of Advanced Radar Research Center, (2) Focus area of polarimetric phased array systems, (3) Focus area of airborne and spaceborne radars, (4) Intelligent radar information processing, (5) Innovative antenna and components.

  10. Airborne profiling of ice thickness using a short pulse radar

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.; Heighway, J. E.; Gedney, R. T.

    1973-01-01

    This paper describes helicopter-borne measurements of ice thickness in Lake Superior, Lake St. Clair, and the St. Clair river as part of NASA's program to develop an ice information system. The profiler described is a high resolution, nonimaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.

  11. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.; Lane, J.W.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature

  12. CLASS: Coherent Lidar Airborne Shear Sensor. Windshear avoidance

    NASA Technical Reports Server (NTRS)

    Targ, Russell

    1991-01-01

    The coherent lidar airborne shear sensor (CLASS) is an airborne CO2 lidar system being designed and developed by Lockheed Missiles and Space Company, Inc. (LMSC) under contract to NASA Langley Research Center. The goal of this program is to develop a system with a 2- to 4-kilometer range that will provide a warning time of 20 to 40 seconds, so that the pilot can avoid the hazards of low-altitude wind shear under all weather conditions. It is a predictive system which will warn the pilot about a hazard that the aircraft will experience at some later time. The ability of the system to provide predictive warnings of clear air turbulence will also be evaluated. A one-year flight evaluation program will measure the line-of-sight wind velocity from a wide variety of wind fields obtained by an airborne radar, an accelerometer-based reactive wind-sensing system, and a ground-based Doppler radar. The success of the airborne lidar system will be determined by its correlation with the windfield as indicated by the onboard reactive system, which indicates the winds actually experienced by the NASA Boeing 737 aircraft.

  13. Non-Cooperative Air Target Identification Using Radar (l’Identification radar des cibles aeriennes non cooperatives)

    DTIC Science & Technology

    1998-11-01

    are already operational in the radar domain , e.g. in airborne radars. NATO fighter aircraft are equipped with transponder systems answering on...Mise en forme et 6talonnage des donn6es SER moyenne pour un domaine de fr6quence (bande passante du code utilis6) et un secteur Ce module extrait les...cooperatives) Papers presented at the Symposium of the RTO Systems Concepts and Integration Panel (SCI) held in Mannheim, Germany, 22-24 April 1998. 1

  14. Calibration and Validation of Airborne InSAR Geometric Model

    NASA Astrophysics Data System (ADS)

    Chunming, Han; huadong, Guo; Xijuan, Yue; Changyong, Dou; Mingming, Song; Yanbing, Zhang

    2014-03-01

    The image registration or geo-coding is a very important step for many applications of airborne interferometric Synthetic Aperture Radar (InSAR), especially for those involving Digital Surface Model (DSM) generation, which requires an accurate knowledge of the geometry of the InSAR system. While the trajectory and attitude instabilities of the aircraft introduce severe distortions in three dimensional (3-D) geometric model. The 3-D geometrical model of an airborne SAR image depends on the SAR processor itself. Working at squinted model, i.e., with an offset angle (squint angle) of the radar beam from broadside direction, the aircraft motion instabilities may produce distortions in airborne InSAR geometric relationship, which, if not properly being compensated for during SAR imaging, may damage the image registration. The determination of locations of the SAR image depends on the irradiated topography and the exact knowledge of all signal delays: range delay and chirp delay (being adjusted by the radar operator) and internal delays which are unknown a priori. Hence, in order to obtain reliable results, these parameters must be properly calibrated. An Airborne InSAR mapping system has been developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS) to acquire three-dimensional geo-spatial data with high resolution and accuracy. To test the performance of the InSAR system, the Validation/Calibration (Val/Cal) campaign has carried out in Sichun province, south-west China, whose results will be reported in this paper.

  15. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  16. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  17. Retrieving current and wind vectors from ATI SAR data: airborne evidence and inversion strategy

    NASA Astrophysics Data System (ADS)

    Martin, Adrien; Gommenginger, Christine; Chapron, Bertrand; Marquez, José; Doody, Sam

    2017-04-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) sense the motion of the ocean surface by measuring the Doppler shift of reflected signals. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves. The WASV has been modelled theoretically in past studies but has been estimated empirically only once using Envisat ASAR. Here we propose, firstly, to evaluate this WASV from airborne ATI SAR data, secondly, to validate the airborne retrieved surface current after correction of the WASV against HF radar measurements and thirdly to examine the best inversion strategy for a an Ocean Surface Current (OSC) satellite mission to retrieve accurately both the ocean surface current vector (OSCV) and the wind vector in the frame of an OSC satellite mission. The airborne ATI SAR data were acquired in the tidally dominated Irish Sea using a Wavemill-type dual-beam SAR interferometer. A comprehensive collection of airborne Wavemill data acquired in a star pattern over a well-instrumented site made it possible to estimate the magnitude and dependence on azimuth and incidence angle of the WASV. The airborne results compare favourably with those reported for Envisat ASAR, empirical model, which has been used to correct for it. Validation of the current retrieval capabilities of the proof-of-concept has been conducted against HF radar giving a precisions typically better than 0.1 m/s for surface current speed and 7° for direction. Comparisons with POLCOMS (1.8 km) indicate that the model reproduces well the overall temporal evolution but does not capture the high spatial variability of ocean surface currents at the maximum ebb flow. Airborne retrieved currents highlight a short-scale spatial variability up to 100m related to bathymetry channels, which

  18. Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.

    2016-12-01

    The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.

  19. Replacing missing data between airborne SAR coherent image pairs

    DOE PAGES

    Musgrove, Cameron H.; West, James C.

    2017-07-31

    For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.

  20. Replacing missing data between airborne SAR coherent image pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron H.; West, James C.

    For synthetic aperture radar systems, missing data samples can cause severe image distortion. When multiple, coherent data collections exist and the missing data samples do not overlap between collections, there exists the possibility of replacing data samples between collections. For airborne radar, the known and unknown motion of the aircraft prevents direct data sample replacement to repair image features. Finally, this paper presents a method to calculate the necessary phase corrections to enable data sample replacement using only the collected radar data.

  1. Radar imaging of glaciovolcanic stratigraphy, Mount Wrangell caldera, Alaska - Interpretation model and results

    NASA Technical Reports Server (NTRS)

    Clarke, Garry K. C.; Cross, Guy M.; Benson, Carl S.

    1989-01-01

    Glaciological measurements and an airborne radar sounding survey of the glacier lying in Mount Wrangell caldera raise many questions concerning the glacier thermal regime and volcanic history of Mount Wrangell. An interpretation model has been developed that allows the depth variation of temperature, heat flux, pressure, density, ice velocity, depositional age, and thermal and dielectric properties to be calculated. Some predictions of the interpretation model are that the basal ice melting rate is 0.64 m/yr and the volcanic heat flux is 7.0 W/sq m. By using the interpretation model to calculate two-way travel time and propagation losses, radar sounding traces can be transformed to give estimates of the variation of power reflection coefficient as a function of depth and depositional age. Prominent internal reflecting zones are located at depths of approximately 59-91m, 150m, 203m, and 230m. These internal reflectors are attributed to buried horizons of acidic ice, possibly intermixed with volcanic ash, that were deposited during past eruptions of Mount Wrangell.

  2. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  3. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  4. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  5. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  6. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  7. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    NASA Astrophysics Data System (ADS)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  8. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  9. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    NASA Astrophysics Data System (ADS)

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-10-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  10. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms.

    PubMed

    Mirkovic, Djordje; Stepanian, Phillip M; Kelly, Jeffrey F; Chilson, Phillip B

    2016-10-20

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification.

  11. Estimating soil water content from ground penetrating radar coarse root reflections

    NASA Astrophysics Data System (ADS)

    Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.

    2016-12-01

    Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at

  12. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys.

    PubMed

    Albéri, Matteo; Baldoncini, Marica; Bottardi, Carlo; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia; Mantovani, Fabio

    2017-08-16

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35-2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%.

  13. Accuracy of Flight Altitude Measured with Low-Cost GNSS, Radar and Barometer Sensors: Implications for Airborne Radiometric Surveys

    PubMed Central

    Baldoncini, Marica; Chiarelli, Enrico; Fiorentini, Giovanni; Raptis, Kassandra Giulia Cristina; Realini, Eugenio; Reguzzoni, Mirko; Rossi, Lorenzo; Sampietro, Daniele; Strati, Virginia

    2017-01-01

    Flight height is a fundamental parameter for correcting the gamma signal produced by terrestrial radionuclides measured during airborne surveys. The frontiers of radiometric measurements with UAV require light and accurate altimeters flying at some 10 m from the ground. We equipped an aircraft with seven altimetric sensors (three low-cost GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers) and analyzed ~3 h of data collected over the sea in the (35–2194) m altitude range. At low altitudes (H < 70 m) radar and barometric altimeters provide the best performances, while GNSS data are used only for barometer calibration as they are affected by a large noise due to the multipath from the sea. The ~1 m median standard deviation at 50 m altitude affects the estimation of the ground radioisotope abundances with an uncertainty less than 1.3%. The GNSS double-difference post-processing enhanced significantly the data quality for H > 80 m in terms of both altitude median standard deviation and agreement between the reconstructed and measured GPS antennas distances. Flying at 100 m the estimated uncertainty on the ground total activity due to the uncertainty on the flight height is of the order of 2%. PMID:28813023

  14. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    pulse-limited radar altimeter that has a footprint that varies from a few meters to a few tens of meters depending on altitude and roughness of the reflective surface. Intercalibration of the two instruments was accomplished at leads in the ice and by multiple over-flights of four radar corner-cubes set ~ 2 m above the snow along the ground-truth line. Direct comparison of successive flights of the ground-truth line to flights done in a grid pattern over and adjacent to the line was complicated by the ~ 20-30 m drift of the ice-floe between successive flight-lines. This rapid ice movement required the laser and radar data be translated into an ice-fixed, rather than a geographic reference frame. This was facilitated by geodetic GPS receiver measurements at the ice-camp and Pt. Barrow. The NRL data set, in combination with the ground-truth line and submarine upward-looking sonar data, will aid in understanding the error budgets of our systems, the ICEBRIDGE airborne measurements (also flown over the ground-truth line), and the CRYOSAT-2 data over a wide range of ice types.

  15. Airborne precursor missions in support of SIR-C/X-SAR

    NASA Technical Reports Server (NTRS)

    Evans, D.; Oettl, H.; Pampaloni, P.

    1991-01-01

    The NASA DC-8 and DLR E-SAR airborne imaging radars have been deployed over several sites in Europe and the U.S. in support of SIR-C/X-SAR (Shuttle Imaging Radar-C/X-Synthetic Aperture Radar) science team investigations. To date, data have been acquired in support of studies of alpine glaciers, forests, geology, oceanography, and calibration. An experimental campaign with airborne sensors will take place in Europe in June to July 1991 which will allow multitemporal surveys of several Europeans sites. Current plans are for calibration and ecology experiments to be undertaken in Germany, the Netherlands, Italy, France, and the United Kingdom. Coordinated multitemporal aircraft and ground campaigns are planned in support of hydrology experiments in Italy, the United Kingdom, and Austria. Data will also be acquired in support of oceanogrqhy in the Gulf of Genova, North Atlantic, Straits of Messina and the North Sea. Geology sites will include Campi Flegrei and Vesuvio, Italy.

  16. Adaptive clutter rejection filters for airborne Doppler weather radar applied to the detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1989-01-01

    An optimum adaptive clutter rejection filter for use with airborne Doppler weather radar is presented. The radar system is being designed to operate at low-altitudes for the detection of windshear in an airport terminal area where ground clutter returns may mask the weather return. The coefficients of the adaptive clutter rejection filter are obtained using a complex form of a square root normalized recursive least squares lattice estimation algorithm which models the clutter return data as an autoregressive process. The normalized lattice structure implementation of the adaptive modeling process for determining the filter coefficients assures that the resulting coefficients will yield a stable filter and offers possible fixed point implementation. A 10th order FIR clutter rejection filter indexed by geographical location is designed through autoregressive modeling of simulated clutter data. Filtered data, containing simulated dry microburst and clutter return, are analyzed using pulse-pair estimation techniques. To measure the ability of the clutter rejection filters to remove the clutter, results are compared to pulse-pair estimates of windspeed within a simulated dry microburst without clutter. In the filter evaluation process, post-filtered pulse-pair width estimates and power levels are also used to measure the effectiveness of the filters. The results support the use of an adaptive clutter rejection filter for reducing the clutter induced bias in pulse-pair estimates of windspeed.

  17. Electromagnetic Model Reliably Predicts Radar Scattering Characteristics of Airborne Organisms

    PubMed Central

    Mirkovic, Djordje; Stepanian, Phillip M.; Kelly, Jeffrey F.; Chilson, Phillip B.

    2016-01-01

    The radar scattering characteristics of aerial animals are typically obtained from controlled laboratory measurements of a freshly harvested specimen. These measurements are tedious to perform, difficult to replicate, and typically yield only a small subset of the full azimuthal, elevational, and polarimetric radio scattering data. As an alternative, biological applications of radar often assume that the radar cross sections of flying animals are isotropic, since sophisticated computer models are required to estimate the 3D scattering properties of objects having complex shapes. Using the method of moments implemented in the WIPL-D software package, we show for the first time that such electromagnetic modeling techniques (typically applied to man-made objects) can accurately predict organismal radio scattering characteristics from an anatomical model: here the Brazilian free-tailed bat (Tadarida brasiliensis). The simulated scattering properties of the bat agree with controlled measurements and radar observations made during a field study of bats in flight. This numerical technique can produce the full angular set of quantitative polarimetric scattering characteristics, while eliminating many practical difficulties associated with physical measurements. Such a modeling framework can be applied for bird, bat, and insect species, and will help drive a shift in radar biology from a largely qualitative and phenomenological science toward quantitative estimation of animal densities and taxonomic identification. PMID:27762292

  18. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  19. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  20. Integrated Airborne and In-Situ Measurements Over Land-Fast Ice Near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Gardner, J. M.; Brozena, J. M.; Richter-Menge, J.; Abelev, A.; Liang, R.; Ball, D.; Claffey, K. J.; Hebert, D. A.; Jones, K.

    2015-12-01

    The Naval Research Laboratory has collected two field seasons of integrated airborne and in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. During the first season in March of 2014 the Cold Regions Research and Engineering Laboratory led the on-ice group including NRL personnel and Naval Academy midshipmen. The second season (March 2015) included only NRL scientists and midshipmen. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects a sites generally consisting of a 2 km long profile of Magnaprobe and EM31 measurements with periodic boreholes. A 60 m x 400 m swath of Magnaprobe measurements was centered on this profile. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown. The results of this ground-truth experiment will inform our analysis of grids of airborne data collected

  1. Application of Radar Data to Remote Sensing and Geographical Information Systems

    NASA Technical Reports Server (NTRS)

    vanZyl, Jakob J.

    2000-01-01

    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  2. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    the dual Doppler and multiple Doppler cases. Various filters and techniques, including statistical and variational approaches, are mentioned. Emphasis is placed on the importance of experiment design and procedures, technological improvements, incorporation of all information from supporting sensors, and analysis priority for physically simple cases. Integrated reliability is proposed as an objective tool for radar siting.Verification of multiple Doppler-derived vertical velocity is discussed in Part V. Three categories of verification are defined as direct, deductive, and theoretical/numerical. Direct verification consists of zenith-pointing radar measurements (from either airborne or ground-based systems), air motion sensing aircraft, instrumented towers, and tracking of radar chaff. Deductive sources include mesonetworks, aircraft (thermodynamic and microphysical) measurements, satellite observations, radar reflectivity, multiple Doppler consistency, and atmospheric soundings. Theoretical/numerical sources of verification include proxy data simulation, momentum checking, and numerical cloud models. New technology, principally in the form of wide bandwidth radars, is seen as a development that may reduce the need for extensive verification of multiple Doppler-derived vertical air motions. Airborne Doppler radar is perceived as the single most important source of verification within the bounds of existing technology.Nine stages of data processing and display are identified in Part VI. The stages are identified as field checks, archival, selection, editing, coordinate transformation, synthesis of Cartesian fields, filtering, display, and physical analysis. Display of data is considered to be a problem critical to assimilation of data at all stages. Interactive computing systems and software are concluded to be very important, particularly for the editing stage. Three- and 4-dimensional displays are considered essential for data assimilation, particularly at the

  3. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    NASA Astrophysics Data System (ADS)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses

  4. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  5. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  6. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  7. UAV-based Radar Sounding of Antarctic Ice

    NASA Astrophysics Data System (ADS)

    Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad

    2014-05-01

    We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of

  8. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  9. Hardware Design for a Fixed-Wing Airborne Gravity Measurement System

    DTIC Science & Technology

    1986-12-22

    worldwide navigation system currently available that is sufficiently accurate for deter- mining Eotvos correction in airborne gravimetry is the Global...better in defining the strength of precipitation . The radar display is compact enough to be mounted on the cockpit, thus giving the pilots better...of the proposed AGMS version 3 MISCELLANEOUS AIRCRAFT CONSIDERATIONS Autopilot One of the most important considerations in airborne gravimetry is

  10. Multi-frequency fine resolution imaging radar instrumentation and data acquisition. [side-looking radar for airborne imagery

    NASA Technical Reports Server (NTRS)

    Rendleman, R. A.; Champagne, E. B.; Ferris, J. E.; Liskow, C. L.; Marks, J. M.; Salmer, R. J.

    1974-01-01

    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording.

  11. The study of fresh-water lake ice using multiplexed imaging radar

    USGS Publications Warehouse

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  12. Soil moisture content estimation using ground-penetrating radar reflection data

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2005-06-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  13. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  14. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  15. Airborne lidar wind detection at 2 μm

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Hawley, James G.; Steakley, Bruce C.; Ames, Lawrence L.; Robinson, Paul A.

    1995-06-01

    NASA and the FAA have expressed interest in laser radar's capabilities to detect wind profiles at altitude. A number of programs have been addressing the technical feasibility and utility of laser radar atmospheric backscatter data to determine wind profiles and wind hazards for aircraft guidance and navigation. In addition, the U.S. Air Force is investigating the use of airborne lidar to achieve precision air drop capability, and to increase the accuracy of the AC- 130 gunship and the B-52 bomber by measuring the wind field from the aircraft to the ground. There are emerging capabilities of airborne laser radar to measure wind velocities and detect turbulence and other atmospheric disturbances out in front of an aircraft in real time. The measurement of these parameters can significantly increase fuel efficiency, flight safety, airframe lifetime, and terminal area capacity for new and existing aircraft. This is achieved through wind velocity detection, turbulence avoidance, active control utilization to alleviate gust loading, and detection of wingtip wake vortices produced by landing aircraft. This paper presents the first flight test results of an all solid-state 2-micrometers laser radar system measuring the wind field profile 1 to 2 km in front of an aircraft in real time. We find 0.7-m/s wind measurement accuracy for the system which is configured in a rugged, light weight, high- performance ARINC package.

  16. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.; Claffey, K. J.; Abelev, A.; Hebert, D. A.; Jones, K.

    2014-12-01

    During March of 2014, the Naval Research Laboratory and the Cold Regions Research and Engineering Laboratory collected an integrated set of airborne and in-situ measurements over two areas of floating, but land-fast ice near the coast of Barrow, AK. The near-shore site was just north of Point Barrow, and the "offshore" site was ~ 20 km east of Point Barrow. The in-situ data provided ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439) and a snow radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The objective of the survey was to aid our understanding of the use of the airborne data to calibrate/validate Cryosat-2 data. Sampling size or "footprint" plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Thus the in-situ data were arranged to minimize aliasing. Ground measurements were collected along transects at both sites consisting of a 2 km long profile of snow depth and ice thickness measurements with periodic boreholes. A 60 m x 400 m swath of snow depth measurements was centered on this profile. Airborne data were collected on five overflights of the two transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The radar measured snow thickness. The freeboard and snow thickness measurements are used to estimate ice thickness via isostasy and density estimates. The central swath of in situ snow depth data allows examination of the effects of cross-track variations considering the relatively large footprint of the snow radar. Assuming a smooth, flat surface the radar range resolution in air is < 4 cm, but the along-track sampling distance is ~ 3 m after unfocussed SAR processing. The width of the footprint varies from ~ 9 m up to about 40 m (beam-limited) for uneven surfaces. However, the radar could not resolve snow thickness

  17. Radar polarimetry - Analysis tools and applications

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Farr, Tom G.; Van Zyl, Jakob J.; Zebker, Howard A.

    1988-01-01

    The authors have developed several techniques to analyze polarimetric radar data from the NASA/JPL airborne SAR for earth science applications. The techniques determine the heterogeneity of scatterers with subregions, optimize the return power from these areas, and identify probable scattering mechanisms for each pixel in a radar image. These techniques are applied to the discrimination and characterization of geologic surfaces and vegetation cover, and it is found that their utility varies depending on the terrain type. It is concluded that there are several classes of problems amenable to single-frequency polarimetric data analysis, including characterization of surface roughness and vegetation structure, and estimation of vegetation density. Polarimetric radar remote sensing can thus be a useful tool for monitoring a set of earth science parameters.

  18. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  19. Comparison of in-situ Electric Field and Radar Derived Parameters for Stratiform Clouds in Central Florida

    NASA Astrophysics Data System (ADS)

    Bateman, M.; Mach, D.; Lewis, S.; Dye, J.; Defer, E.; Grainger, C.; Willis, P.; Christian, H.; Merceret, F.

    2003-12-01

    Airborne measurements of electric fields and particle microphysics were made during a field program at NASA's Kennedy Space Center. The aircraft, a Cessna Citation II jet operated by the University of North Dakota, carried six rotating-vane style electric field mills, several microphysics instruments, and thermodynamic instruments. In addition to the aircraft measurements, we also have data from both the Eastern Test Range WSR-74C (Patrick AFB) and the U.S. National Weather Service WSR-88D radars (primarily Melbourne, FL). One specific goal of this program was to try to develop a radar-based rule for estimating the hazard that an in-cloud electric field would present to a vehicle launched into the cloud. Based on past experience, and our desire to quantify the mixed-phase region of the cloud in question, we have assessed several algorithms for integrating radar reflectivity data in and above the mixed-phase region as a proxy for electric field. A successful radar proxy is one that can accurately predict the presence or absence of significant electric fields. We have compared various proxies with the measured in-cloud electric field strength in an attempt to develop a radar rule for assessing launch hazard. Assessment of the best proxy is presented.

  20. Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.

    1996-01-01

    We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.

  1. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    NASA Technical Reports Server (NTRS)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  2. Use of radar in urban studies

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1976-01-01

    The use of side-looking airborne radar for urban studies is reviewed with attention given to the work of Moore (1969) and Lewis (1968) which may be summarized as follows: (1) linear elements of the transportation net were easily defined, (2) gross patterns of industry, residential and open space land were identified, but it was not possible to map the land use boundaries in great detail, (3) commercial land areas were often difficult to identify, and (4) multiple polarized imagery was helpful in correctly interpreting the total scene. It is found that the sensitivity of radar to surface roughness and the availability of multiple wavelength data allow the discrimination of variations in the surface roughness of intra-urban areas. An L-band imaging radar (25 cm; 1215-1225 GHz) of 25 m resolution will be operating from satellite altitudes in 1978 and will increase the availability of radar data.

  3. Progress in Development of an Airborne Turbulence Detection System

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2006-01-01

    Aircraft encounters with turbulence are the leading cause of in-flight injuries (Tyrvanas 2003) and have occasionally resulted in passenger and crew fatalities. Most of these injuries are caused by sudden and unexpected encounters with severe turbulence in and around convective activity (Kaplan et al 2005). To alleviate this problem, the Turbulence Prediction and Warning Systems (TPAWS) element of NASA s Aviation Safety program has investigated technologies to detect and warn of hazardous in-flight turbulence. This effort has required the numerical modeling of atmospheric convection: 1) for characterizing convectively induced turbulence (CIT) environments, 2) for defining turbulence hazard metrics, and 3) as a means of providing realistic three-dimensional data sets that can be used to test and evaluate turbulence detection sensors. The data sets are being made available to industry and the FAA for certification of future airborne turbulence-detection systems (ATDS) with warning capability. Early in the TPAWS project, a radar-based ATDS was installed and flight tested on NASA s research aircraft, a B-757. This ATDS utilized new algorithms and hazard metrics that were developed for use with existing airborne predictive windshear radars, thus avoiding the installation of new hardware. This system was designed to detect and warn of hazardous CIT even in regions with weak radar reflectivity (i.e. 5-15 dBz). Results from an initial flight test of the ATDS were discussed in Hamilton and Proctor (2002a; 2002b). In companion papers (Proctor et al 2002a; 2002b), a numerical simulation of the most significant encounter from that flight test was presented. Since the presentation of these papers a second flight test has been conducted providing additional cases for examination. In this paper, we will present results from NASA s flight test and a numerical model simulation of a turbulence environment encountered on 30 April 2002. Progress leading towards FAA certification of

  4. Constraining Greenland basal water extent and drainage morphology from radar reflectivity and specularity analysis

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Bell, R. E.; Paden, J. D.

    2017-12-01

    Subglacial water has been observed and theorized to cause changes in basal sliding. Across Greenland, water drainage can produce massive speed-ups, or conversely, very little responses from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine where shifts in drainage occur and what controls them. By using routing models and the reflectivity and specularity of radar bed echoes from NASA IceBridge, we provide insight into the character of the subglacial water systems and their variability across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and Petermann Glacier as a northern example. In the south at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply. In winter, water is stored on bedrock ridges but is absent in the sediment-filled troughs. In the summer, water drains to the troughs that focus this water, flooding the bed to intensify sliding locally. The topography and material properties of the bed strongly determine the degree to which subglacial drainage focuses at Russell. Conversely, the drainage systems in northern Greenland are vastly different. In Petermann, radar reflectivity indicates a persistent water distribution beneath the fast moving ice trunk. We observe a widespread water distribution with only a weak drainage focusing along the shear margin. Contrasted to Russell, topography and bed materials exert minor roles in determining Petermann's drainage behavior. Instead, local heat production and heat transfer with the neighboring glaciers strongly determine the water distribution in Petermann. We also interpret the radar reflectivity and routing model results in the context of basal roughness and drainage morphology, which we estimate from a more detailed analysis of the specularity of the bed echoes. Together, our

  5. Radar scattering from desert terrains, Pisgah/Lavic Region, California: Implications for Magellan

    NASA Technical Reports Server (NTRS)

    Plaut, J. J.; Arvidson, R. E.; Wall, S.

    1989-01-01

    A major component of the 1988 Mojave Field Experiment involved the simultaneous acquisition of quad-polarization multifrequency airborne Synthetic Aperture Radar (SAR) imaging radar data and ground measurements thought to be relevant to the radar scattering behavior of a variety of desert surfaces. In preparation for the Magellan mission to Venus, the experiment was designed to explore the ability of SAR to distinguish types of geological surfaces, and the effects of varying incidence angles on the appearance of such surfaces. The airborne SAR system acquired images at approx. 10 m resolution, at 3 incidence angles (30, 40, 50 degs) and at 3 wavelengths (P:68 cm, L:24 cm, C:5.6 cm). The polarimetric capabilities of the instrument allow the simulation of any combination of transmit and receive polarizations during data reduction. Calibrated trihedral corner reflectors were deployed within each scene to permit absolute radiometric calibration of the image data. Initial analyses of this comprehensive radar data set is reported, with emphasis on implications for interpretation of Magellan data.

  6. Identification of corn fields using multidate radar data

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Ulaby, F. T.; Narayanan, V.; Dobson, C.

    1983-01-01

    Airborne C- and L-band radar data acquired over a test site in western kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85 percent for single channel, single-date data to 100 percent for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented.

  7. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  8. Storm Motion Tracking Over The Arno River Basin Through Multiscale Radar Reflectivity Classification and Correlation

    NASA Astrophysics Data System (ADS)

    Facheris, L.; Tanelli, S.; Giuli, D.

    differential reflectivity maps, mean Doppler velocity and Doppler spread maps with a resolution of 125/250 m [3]. [1] Li L. Schmid W. and Joss J., Nowcasting of motion and growth of precipitation with radar over a complex orography Journal of Applied Meteorology, vol. 34, pp. 1286-1300, 1995. [2] L.Facheris, S. Tanelli, F. Argenti, D.Giuli, SWavelet Applica- & cedil;tions to Multiparameter Weather Radar AnalysisT, to be published on SInformation & cedil;Processing for Remote SensingT, Prof. C.H. Chen Ed. for World Scientific Publish- 1 ing Co., pagg. 187-207, 1999 [3] Scarchilli G. Gorgucci E. Giuli D. Facheris L. Freni A. and Vezzani G., Arno Project: Radar System and objectives., Proceedings 25th In- ternational Conference on Radar Meteorology, Paris, France, 24-28 June 1991, pp. 805-808 2

  9. Classification and correction of the radar bright band with polarimetric radar

    NASA Astrophysics Data System (ADS)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  10. 77 FR 53962 - Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning Computer Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ..., Airborne Automatic Dead Reckoning Computer Equipment Utilizing Aircraft Heading and Doppler Ground Speed.... ACTION: Notice of cancellation of Technical Standard Order (TSO)-C68a, Airborne Automatic Dead Reckoning... . SUPPLEMENTARY INFORMATION: Background Doppler radar is a semiautomatic self-contained dead reckoning navigation...

  11. Polarimetric Measurements Over the Sea-Surface with the Airborne STORM Radar in the Context of the Geophysical Validation of the ENVISAT ASAR

    NASA Astrophysics Data System (ADS)

    Podvin, D. Hauser. T.; Dechambre, M.; Valentin, R.; Caudal, G.; Daloze, J.-F.; Mouche, A.

    2003-04-01

    Among the new specificities of the ENVISAT/ASAR particular polarization diversity make the instrument very promising, but require complementary studies in addition to those already completed with the ERS data. Moreover, in the context of the preparation of other missions which will embark polarimetric SAR (e.g. RADARSAT2) it is important to better assess the benefit of multi-polarization or polarimetric SAR systems. In particular, over the ocean the question remains open regarding the estimate of wind speed, directional spectra of surface ocean waves and maybe other parameters related to wave breaking. CETP has designed and developed a new airborne radar called STORM], which has a full polarimetric capability. STORM is a new-version of the RESSAC airborne radar already used in previous experiments (Hauser et al, JGR 1992). STORM is a real-aperture, C-Band system with a FM/CW transmission and with a rotating antenna to explore in azimuth. In addition to RESSAC (which was mono-polarized) it offers a polarization diversity (receiving simultaneously in H and V polarizations) which enables us to analyze the radar cross- section in HH, VV, HV, and other cross-polarized terms related to the scattering matrix. In the context of the validation of the ASAR wave mode of ENVISAT, a field experiment will be carried out in October and November 2002 over the ocean (offshore the coasts of Brittany, France), with STORM] embarked on the MERLIN-IV aircraft of Meteo-France. We intend to perform about 20 flights under the ENVISAT SAR swath during a one-month experiment, with overpasses over a directional wave buoy also equipped with wind measurements. The ASAR image mode (in HH or VV) or alternating polarization mode will be requested during these flights. STORM will be used in a mode which will permit to measure the full complex scattering matrix over the sea surface at incidence angles ranging from 10 to 35°. In addition to conventional analysis of the radar cross-sections in HH

  12. Shuttle radar images for geologic mapping in tropical rainforest

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Da Cunha, R.

    1986-01-01

    Images of forested low-relief terrain in the Amazon basin of Brazil, obtained with airborne imaging radar in the Radambrasil project, are compared with SIR-A and Landsat MSS band-7 images to evaluate their usefulness in constructing geologic maps. Sample images are shown, and it is found that Radam images are more useful in distinguishing drainage patterns and mapping the region distribution of stream channels due to their relatively low depression angles (less than 25 deg as opposed to 43-37 deg for SIR-A), but that SIR-A images give superior discrimination of alluvial forest, where trees stand in water, due to the higher reflectivity of branches and water at the SIR-A wavelength (23.5 cm as opposed to 3 cm for Radam). Alluvial forest is also identified by Landsat band 7.

  13. NASA Radar Images Show Continued Deformation from Mexico Quake

    NASA Image and Video Library

    2010-08-04

    This image shows a UAVSAR interferogram swath overlaid atop a Google Earth image. New NASA airborne radar images show the continuing deformation in Earth surface resulting from the magnitude 7.2 temblor in Baja California on April 4, 2010.

  14. Airborne surveys in the Arctic and Antarctic for geophysics, sea-ice thickness, and CryoSat validation

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Hvidegaard, S.; Skourup, H.

    2010-12-01

    Airborne laser and radar measurements over the Greenland ice sheet, Svalbard, and adjacent parts of the Arctic Ocean have been carried out by DTU-Space in a number of recent Danish/Greenlandic and European project campaigns, with the purpose to monitor ice sheet and sea-ice changes, support of Greenland societal needs (oil exploration and hydropower), and support of CryoSat pre-launch calibration and validation campaigns. The Arctic campaigns have been done using a Twin-Otter aircraft, carrying laser scanners and various radars. Since 2009 a new program of long-range gravity and magnetic surveys have been initiated using a Basler DC3 aircraft for large-scale surveys in the Arctic Ocean and Antarctica, with the 2010 cooperative Danish-Argentinean-Chilean-US ICEGRAV survey of the Antarctic Peninsula additionally including a UTIG 60 MHz ice-penetrating radar. In the paper we outline the recent and upcoming airborne survey activities, outline the usefulness of the airborne data for satellite validation (CryoSat and GOCE), and give examples of measurements and comparisons to satellite and in-situ data.

  15. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    NASA Technical Reports Server (NTRS)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  16. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  17. Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Torfs, P. J. J. F.; Leijnse, H.; Delrieu, G.; Uijlenhoet, R.

    2013-09-01

    This paper presents a novel approach to estimate the vertical profile of reflectivity (VPR) from volumetric weather radar data using both a traditional Eulerian as well as a newly proposed Lagrangian implementation. For this latter implementation, the recently developed Rotational Carpenter Square Cluster Algorithm (RoCaSCA) is used to delineate precipitation regions at different reflectivity levels. A piecewise linear VPR is estimated for either stratiform or neither stratiform/convective precipitation. As a second aspect of this paper, a novel approach is presented which is able to account for the impact of VPR uncertainty on the estimated radar rainfall variability. Results show that implementation of the VPR identification and correction procedure has a positive impact on quantitative precipitation estimates from radar. Unfortunately, visibility problems severely limit the impact of the Lagrangian implementation beyond distances of 100 km. However, by combining this procedure with the global Eulerian VPR estimation procedure for a given rainfall type (stratiform and neither stratiform/convective), the quality of the quantitative precipitation estimates increases up to a distance of 150 km. Analyses of the impact of VPR uncertainty shows that this aspect accounts for a large fraction of the differences between weather radar rainfall estimates and rain gauge measurements.

  18. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  19. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  20. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  1. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  2. Space-Time Adaptive Processing for Airborne Radar

    DTIC Science & Technology

    1994-12-13

    horizontal plane Uniform linear antenna array (possibly columns of a planar array) Identical element patterns 13 14 15 9 7 7,33 7 7 Target Model ...Parameters for Example Scenario 31 3 Assumptions Made for Radar System and Signal Model 52 4 Platform and Interference Scenario for Baseline Scenario. 61 5...pulses, is addressed first. Fully adaptive STAP requires the solution to a system of linear equations of size MN, where N is the number of array

  3. Integrated Airborne and In-Situ Measurements over Land-Fast Ice near Barrow, AK

    NASA Astrophysics Data System (ADS)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Vermillion, M.; Ball, D.; Stoudt, C. A.; Geiger, C. A.; Woods, J. E.; Samluk, J.; Deliberty, T. L.

    2013-12-01

    During March of 2013, the Naval Research Laboratory, the University of Delaware and the US Naval Academy collected an integrated set of measurements over the largely floating, but land-fast ice near the coast of Barrow, AK. The purpose of the collection was to compare airborne remote sensing methods of collection to in-situ ground-truth measurements. Airborne measurements include scanning LiDAR (Riegl Q 680i), digital photogrammetry (Applanix DSS-439) and a short-pulse (~ 1 nsec) 10 GHz radar altimeter. The LiDAR measures total freeboard (ice + snow) referenced to leads in the ice. The radar measures approximate ice freeboard with the difference with the LiDAR providing an estimate of snow thickness. The freeboard measurements are aimed at estimating ice thickness via estimates of densities and isostasy. The photogrammetry was used to measure ice motion over free-floating sea-ice, but provided only a velocity calibration and general situational awareness over the land-fast ice. Ground measurements were collected along a transect, and included boreholes, snow-thickness (Magnaprobe), and ice thickness (EM31). Airborne data were collected on six overflights of this transect over a three week period. LiDAR swath widths ranged from 200-300m (depending on altitude) and encompassed three grounded ridges which remained essentially stationary over the collection period, that together with the shoreline, provided fixed reference points to compare the heights of the floating ice that varied with the tide (and to some extent the snow conditions). Sampling size or 'footprint' plays a critical role in the attempt to compare in-situ measurements with airborne (or satellite) measurements. Boreholes are point measurements and are difficult enough to obtain, that only a limited number are practical during a survey period. EM31 and Magnaprobe instrumentation allows collection of snow and ice thickness along one-dimensional profiles, and several adjacent profiles can be collected to

  4. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  5. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  6. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    NASA Image and Video Library

    2002-10-11

    This image, taken by NASA Airborne Synthetic Aperture Radar AIRSAR in 2002, is of Cambodia Angkor region revealing a temple upper-right not depicted on early 19th Century French archeological survey maps and American topographic maps.

  7. An observation of sea-spray microphysics by airborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.

    2014-05-01

    This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.

  8. Determining Snow Depth Using Airborne Multi-Pass Interferometric Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    relatively low resolution 10m DEM of the survey area was obtained from the USDA NAIP and then geocorrected to match the SAR image area. Centered on...Propulsion Laboratory LiDAR Light Detection and Ranging METAR Meteorological reporting observations medivac Medical Evacuation NASA National...Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X- SAR) mission was a joint National Aeronautical and Space Administration ( NASA

  9. Assessing Zones of Low Radar Reflectivity Across the South Polar Cap of Mars

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Smith, I. B.; Whitten, J. L.; Campbell, B. A.

    2017-12-01

    The Mars Reconnaissance Orbiter Shallow Radar (SHARAD) revealed near-surface zones of low radar reflectivity (reflection-free zones, RFZs) in many areas of Planum Australe (Phillips et al., 2011, Science 332). The most poleward, RFZ3, corresponds geographically to geologic unit AA3 (Tanaka et al., 2007, 7th Int'l Mars Conf. abs. 3276) that exhibits sublimation features. Geometric considerations demonstrated that RFZ3 consists of three distinct layers of CO2 ice, preserved from earlier periods of atmospheric collapse (Bierson et al., 2016, GRL 43). However, the nature of other RFZs at lower latitudes remains undetermined, with none of the SHARAD observations examined to date providing definitive geometric constraints on their composition. While CO2-ice composition has not been ruled out, these RFZs differ in important ways from RFZ3. Surface imagery in the vicinity of the outlying RFZs does not generally exhibit sublimation features similar to those seen in AA3, SHARAD reflectivity exhibits a lower contrast with surrounding materials relative to RFZ3, and there are no indications of distinct layering within the outlying RFZs as there are in RFZ3. In addition, climate modeling of atmospheric collapse episodes (Wood et al., 2016, LPSC abs. 3074) suggests that CO2 accumulation is highly concentrated at the highest latitudes. An alternative explanation for the outlying RFZs is that they consist of nearly pure water ice deposited during times when atmospheric dust was nearly absent. Such conditions may occur coeval with eras of CO2 accumulation at the higher latitudes. To test these possibilities, we are working to constrain the composition of the outlying RFZs, using the recently produced 3-D SHARAD data volume that encompasses the entire Martian south polar ice cap (Foss et al., 2017, The Leading Edge, 36). Work is ongoing, but we expect that the geometric corrections and improvements to the overall signal-to-noise ratio provided by the 3-D radar imaging processing may

  10. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  11. Validation of Rain Rate Retrievals for the Airborne Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Jacob, Maria; Salemirad, Matin; Jones, Linwood; Biswas, Sayak; Cecil, Daniel

    2015-01-01

    NASA's Global Hawk aircraft (AV1)has two microwave sensors: the passive Hurricane Imaging Radiometer (HIRAD), and the active High-altitude Imaging Wind and Rain Airborne Profiler(HIWRAP). Results are presented for a rain measurement validation opportunity that occurred in 2013, when the AV1 flew over a tropical squall-line that was simultaneously observed by the Tampa NEXRAD radar. During this experiment, Global Hawk made 3 passes over the rapidly propagating thunderstorm, while the TAMPA NEXRAD performed volume scans every 5 minutes. In this poster, the three-way inter-comparison of HIRAD Tb (base temperature), HIWRAP dbZ (decibels relative to equivalent reflectivity) and NEXRAD rain rate imagery are presented. Also, observed HIRAD Tbs are compared with theoretical radiative transfer model results using HIWRAP Rain Rates.

  12. MAJOR SOURCE OF NEW RADAR DATA FOR EXPLORATION RESEARCH.

    USGS Publications Warehouse

    Kover, Allan N.; Jones, John Edwin; Southworth, C. Scott

    1984-01-01

    In 1980, the U. S. Geological Survey (USGS) initiated a program to acquire high-quality, side-looking, airborne-radar (SLAR) imagery of selected areas of the United States. The program goals were to demonstrate the usefulness of SLAR imagery for geologic exploration and geoscience applications and to make radar data readily available to the public for additional research and economic applications. Considerable SLAR imagery has been acquired already since 1980 under a mandate from the U. S. Congress. The U. S. Geological Survey is actively engaged in demonstrating the usefulness of radar imagery, and since 1980 has started more than 50 studies addressing geologic, cartographic, and hydrologic applications. All of the radar-imagery products acquired by the USGS during 1980 and 1982 have been archived and are available for public sale.

  13. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  14. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  15. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment requirements. 135.173 Section 135.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration...

  16. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  17. A Fast Smoothing Algorithm for Post-Processing of Surface Reflectance Spectra Retrieved from Airborne Imaging Spectrometer Data

    PubMed Central

    Gao, Bo-Cai; Liu, Ming

    2013-01-01

    Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022

  18. Radar research on thunderstorms and lightning

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Doviak, R. J.

    1982-01-01

    Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized lightning paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation predictions based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, lightning and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.

  19. The implementation of reverse Kessler warm rain scheme for radar reflectivity assimilation using a nudging approach in New Zealand

    NASA Astrophysics Data System (ADS)

    Zhang, Sijin; Austin, Geoff; Sutherland-Stacey, Luke

    2014-05-01

    Reverse Kessler warm rain processes were implemented within the Weather Research and Forecasting Model (WRF) and coupled with a Newtonian relaxation, or nudging technique designed to improve quantitative precipitation forecasting (QPF) in New Zealand by making use of observed radar reflectivity and modest computing facilities. One of the reasons for developing such a scheme, rather than using 4D-Var for example, is that radar VAR scheme in general, and 4D-Var in particular, requires computational resources beyond the capability of most university groups and indeed some national forecasting centres of small countries like New Zealand. The new scheme adjusts the model water vapor mixing ratio profiles based on observed reflectivity at each time step within an assimilation time window. The whole scheme can be divided into following steps: (i) The radar reflectivity is firstly converted to rain water, and (ii) then the rain water is used to derive cloud water content according to the reverse Kessler scheme; (iii) The cloud water content associated water vapor mixing ratio is then calculated based on the saturation adjustment processes; (iv) Finally the adjusted water vapor is nudged into the model and the model background is updated. 13 rainfall cases which occurred in the summer of 2011/2012 in New Zealand were used to evaluate the new scheme, different forecast scores were calculated and showed that the new scheme was able to improve precipitation forecasts on average up to around 7 hours ahead depending on different verification thresholds.

  20. ESA airborne campaigns in support of Earth Explorers

    NASA Astrophysics Data System (ADS)

    Casal, Tania; Davidson, Malcolm; Schuettemeyer, Dirk; Perrera, Andrea; Bianchi, Remo

    2013-04-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne earth observation missions, and applications development related to land, oceans and atmosphere. ESA has been conducting airborne and ground measurements campaigns since 1981 by deploying a broad range of active and passive instrumentation in both the optical and microwave regions of the electromagnetic spectrum such as lidars, limb/nadir sounding interferometers/spectrometers, high-resolution spectral imagers, advanced synthetic aperture radars, altimeters and radiometers. These campaigns take place inside and outside Europe in collaboration with national research organisations in the ESA member states as well as with international organisations harmonising European campaign activities. ESA campaigns address all phases of a spaceborne missions, from the very beginning of the design phase during which exploratory or proof-of-concept campaigns are carried out to the post-launch exploitation phase for calibration and validation. We present four recent campaigns illustrating the objectives and implementation of such campaigns. Wavemill Proof Of Concept, an exploratory campaign to demonstrate feasibility of a future Earth Explorer (EE) mission, took place in October 2011 in the Liverpool Bay area in the UK. The main objectives, successfully achieved, were to test Astrium UKs new airborne X-band SAR instrument capability to obtain high resolution ocean current and topology retrievals. Results showed that new airborne instrument is able to retrieve ocean currents to an accuracy of ± 10 cms-1. The IceSAR2012 campaign was set up to support of ESA's EE Candidate 7,BIOMASS. Its main objective was to document P-band radiometric signatures over ice-sheets, by upgrading ESA's airborne POLARIS P-band radar ice sounder with SAR capability. Campaign

  1. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5. The summaries are contained in Volumes 1, 2, and 3, respectively.

  2. Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2010-01-01

    Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions.

  3. Radar attenuation and temperature within the Greenland Ice Sheet

    USGS Publications Warehouse

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  4. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation

    NASA Astrophysics Data System (ADS)

    Das, Saurabh; Maitra, Animesh

    2018-04-01

    Characterization of precipitation is important for proper interpretation of rain information from remotely sensed data. Rain attenuation and radar reflectivity (Z) depend directly on the drop size distribution (DSD). The relation between radar reflectivity/rain attenuation and rain rate (R) varies widely depending upon the origin, topography, and drop evolution mechanism and needs further understanding of the precipitation characteristics. The present work utilizes 2 years of concurrent measurements of DSD using a ground-based disdrometer at five diverse climatic conditions in Indian subcontinent and explores the possibility of rain classification based on microphysical characteristics of precipitation. It is observed that both gamma and lognormal distributions are performing almost similar for Indian region with a marginally better performance by one model than other depending upon the locations. It has also been found that shape-slope relationship of gamma distribution can be a good indicator of rain type. The Z-R relation, Z = ARb, is found to vary widely for different precipitation systems, with convective rain that has higher values of A than the stratiform rain for two locations, whereas the reverse is observed for the rest of the three locations. Further, the results indicate that the majority of rainfall (>50%) in Indian region is due to the convective rain although the occurrence time of convective rain is low (<10%).

  5. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... more in passenger-carrying operations, except a helicopter operating under day VFR conditions, unless..., excluding any pilot seat, of 10 seats or more in passenger-carrying operations, under night VFR when current... approved airborne weather radar equipment. (c) No person may begin a flight under IFR or night VFR...

  6. The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-11-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  7. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  8. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Spectrometer (AVIRIS) workshop, on October 25-26, whose summaries appear in Volume 1; The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27, whose summaries appear in Volume 2; and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29, whose summaries appear in this volume, Volume 3.

  9. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  10. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  11. Modeling L-band synthetic aperture radar observations through dielectric changes in soil moisture and vegetation over shrublands

    USDA-ARS?s Scientific Manuscript database

    L-band airborne synthetic aperture radar observations were made over California shrublands to better understand the effects by soil and vegetation parameters on backscatter. Temporal changes in radar backscattering coefficient (s0) of up to 3 dB were highly correlated to surface soil moisture but no...

  12. A comparison of airborne GEMS/SAR with satellite-borne Seasat/SAR radar imagery - The value of archived multiple data sets

    NASA Technical Reports Server (NTRS)

    Hanson, Bradford C.; Dellwig, Louis F.

    1988-01-01

    In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.

  13. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  14. Low-Angle Radar Tracking

    DTIC Science & Technology

    1976-02-01

    Transition from Specular Reflection to Diffuse Scattering. . . 10 Composition of the Electric-Field Vector as Seen at the Radar...r t (16) R • FIGURE P COMPOSITION OF THE ELECTRIC-FIELD VECTOR AS SEEN AT THE RADAR, R, IN FIG. 2. The electric field at the radar, E, is the sum...wavelengths in the VHP and UHF ranges even subsurface characteristics can be important. So in a field experiment one must be careful to measure

  15. Site Characterization for Radar Experiments

    DTIC Science & Technology

    1990-08-01

    accomplished waz "New Mine Detection Technologies," Mr. Jack Stoll, Principal Investigator. The Environmental Systems Division (EST) of the Environmental...Mr. Steve Bong of Hilton Systems visiting the proposed study site in M’rch to select specific locations for the test plots. The field data coll in...Technology/Lincoln Laboratory (MIT/LL) described an airborne 35-Ghz radar imaging system . The MIT/LL would employ various kinds of processing on the

  16. Collation of earth resources data collected by ERIM airborne sensors

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1975-01-01

    Earth resources imagery from nine years of data collection with developmental airborne sensors is cataloged for reference. The imaging sensors include single and multiband line scanners and side-looking radars. The operating wavelengths of the sensors include ultraviolet, visible and infrared band scanners, and X- and L-band radar. Imagery from all bands (radar and scanner) were collected at some sites and many sites had repeated coverage. The multiband scanner data was radiometrically calibrated. Illustrations show how the data can be used in earth resource investigations. References are made to published reports which have made use of the data in completed investigations. Data collection sponsors are identified and a procedure described for gaining access to the data.

  17. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok Volcano, Alaska

    USGS Publications Warehouse

    Lu, Z.; Fielding, E.; Patrick, M.R.; Trautwein, C.M.

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) techniques are used to calculate the volume of extrusion at Okmok volcano, Alaska by constructing precise digital elevation models (DEMs) that represent volcano topography before and after the 1997 eruption. The posteruption DEM is generated using airborne topographic synthetic aperture radar (TOPSAR) data where a three-dimensional affine transformation is used to account for the misalignments between different DEM patches. The preeruption DEM is produced using repeat-pass European Remote Sensing satellite data; multiple interferograms are combined to reduce errors due to atmospheric variations, and deformation rates are estimated independently and removed from the interferograms used for DEM generation. The extrusive flow volume associated with the 1997 eruption of Okmok volcano is 0.154 ?? 0.025 km3. The thickest portion is approximately 50 m, although field measurements of the flow margin's height do not exceed 20 m. The in situ measurements at lava edges are not representative of the total thickness, and precise DEM data are absolutely essential to calculate eruption volume based on lava thickness estimations. This study is an example that demonstrates how InSAR will play a significant role in studying volcanoes in remote areas.

  18. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  19. Current test results for the Athena radar responsive tag

    NASA Astrophysics Data System (ADS)

    Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.

    2006-05-01

    Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.

  20. Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions

    NASA Technical Reports Server (NTRS)

    Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.

    2000-01-01

    This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.

  1. Estimation of forest fuel load from radar remote sensing

    USGS Publications Warehouse

    Saatchi, S.; Halligan, K.; Despain, Don G.; Crabtree, R.L.

    2007-01-01

    Understanding fire behavior characteristics and planning for fire management require maps showing the distribution of wildfire fuel loads at medium to fine spatial resolution across large landscapes. Radar sensors from airborne or spaceborne platforms have the potential of providing quantitative information about the forest structure and biomass components that can be readily translated to meaningful fuel load estimates for fire management. In this paper, we used multifrequency polarimetric synthetic aperture radar (SAR) imagery acquired over a large area of the Yellowstone National Park by the Airborne SAR sensor to estimate the distribution of forest biomass and canopy fuel loads. Semiempirical algorithms were developed to estimate crown and stem biomass and three major fuel load parameters, namely: 1) canopy fuel weight; 2) canopy bulk density; and 3) foliage moisture content. These estimates, when compared directly to measurements made at plot and stand levels, provided more than 70% accuracy and, when partitioned into fuel load classes, provided more than 85% accuracy. Specifically, the radar-generated fuel parameters were in good agreement with the field-based fuel measurements, resulting in coefficients of determination of R2 = 85 for the canopy fuel weight, R 2 = 0.84 for canopy bulk density, and R2 =0.78 for the foliage biomass. ?? 2007 IEEE.

  2. Validating Cryosat-2 elevation estimates with airborne laser scanner data for the Greenland ice sheet, Austfonna and Devon ice caps

    NASA Astrophysics Data System (ADS)

    Simonsen, Sebastian B.; Sandberg Sørensen, Louise; Nilsson, Johan; Helm, Veit; Langley, Kirsty A.; Forsberg, Rene; Hvidegaard, Sine M.; Skourup, Henriette

    2015-04-01

    The ESA CryoSat-2 satellite, launched in late 2010, carries a new type of radar altimeter especially designed for monitoring changes of sea and land ice. The radar signal might penetrate into the snow pack and the depth of the radar reflecting surface depends on the ratio between the surface and the volume backscatter, which is a function of several different properties such as snow density, crystal structure and surface roughness. In case of large volume scatter, the radar waveforms become broad and the determination of the range (surface elevation) becomes more difficult. Different algorithms (retrackers) are used for the range determination, and estimated surface penetration is highly dependent on the applied retracker. As part of the ESA-CryoVEx/CryoVal-Land Ice projects, DTU Space has gathered accurate airborne laser scanner elevation measurements. Sites on the Greenland ice sheet, Austfonna and Devon ice caps, has been surveyed repeatedly, aligned with Cryosat-2 ground tracks and surface experiments. Here, we utilize elevation estimates from available Cryosat-2 retrackers (ESA level-2 retracker, DTU retracker, etc.) and validate the elevation measurements against ESA-CryoVEx campaigns. A difference between laser and radar elevations is expected due to radar penetration issues, however an inter-comparison between retrackers will shed light on individual performances and biases. Additionally, the geo-location of the radar return will also be a determining factor for the precision. Ultimately, the use of multiple retrackers can provide information about subsurface conditions and utilize more of the waveform information than presently used in radar altimetry.

  3. Airborne microwave radar measurements of surface velocity in a tidally-driven inlet

    NASA Astrophysics Data System (ADS)

    Farquharson, G.; Thomson, J. M.

    2012-12-01

    A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.

  4. Structural geologic interpretations from radar imagery

    USGS Publications Warehouse

    Reeves, Robert G.

    1969-01-01

    Certain structural geologic features may be more readily recognized on sidelooking airborne radar (SLAR) images than on conventional aerial photographs, other remote sensor imagery, or by ground observations. SLAR systems look obliquely to one or both sides and their images resemble aerial photographs taken at low sun angle with the sun directly behind the camera. They differ from air photos in geometry, resolution, and information content. Radar operates at much lower frequencies than the human eye, camera, or infrared sensors, and thus "sees" differently. The lower frequency enables it to penetrate most clouds and some precipitation, haze, dust, and some vegetation. Radar provides its own illumination, which can be closely controlled in intensity and frequency. It is narrow band, or essentially monochromatic. Low relief and subdued features are accentuated when viewed from the proper direction. Runs over the same area in significantly different directions (more than 45° from each other), show that images taken in one direction may emphasize features that are not emphasized on those taken in the other direction; optimum direction is determined by those features which need to be emphasized for study purposes. Lineaments interpreted as faults stand out on radar imagery of central and western Nevada; folded sedimentary rocks cut by faults can be clearly seen on radar imagery of northern Alabama. In these areas, certain structural and stratigraphic features are more pronounced on radar images than on conventional photographs; thus radar imagery materially aids structural interpretation.

  5. Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998. Volume 1; AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1998-01-01

    This publication contains the summaries for the Seventh JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 12-16, 1998. The main workshop is divided into three smaller workshops, and each workshop has a volume as follows: (1) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop; (2) Airborne Synthetic Aperture Radar (AIRSAR) Workshop; and (3) Thermal Infrared Multispectral Scanner (TIMS) Workshop. This Volume 1 publication contains 58 papers taken from the AVIRIS workshop.

  6. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1993-01-01

    This publication contains the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D. C. October 25-29, 1993 The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, October 25-26 (the summaries for this workshop appear in this volume, Volume 1); The Thermal Infrared Multispectral Scanner (TMIS) workshop, on October 27 (the summaries for this workshop appear in Volume 2); and The Airborne Synthetic Aperture Radar (AIRSAR) workshop, October 28-29 (the summaries for this workshop appear in Volume 3).

  7. Planetary landing-zone reconnaissance using ice-penetrating radar data: Concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.

    2014-11-01

    The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.

  8. Comparison Between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports

    NASA Technical Reports Server (NTRS)

    Dworak, Richard; Bedka, Kristopher; Brunner, Jason; Feltz, Wayne

    2012-01-01

    Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-micrometer infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (less than 200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe

  9. Radar images of Mars

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.; Butler, Bryan J.; Grossman, Arie W.; Slade, Martin A.

    1991-01-01

    VLA radar-reflected flux-density mappings have yielded full disk images of Mars which reveal near-surface features, including a region in the Tharsis volcano area that displayed no echo to the very low level of the radar-system noise. This feature is interpreted as a deposit of dust or ash whose density is less than about 0.5 g/cu cm; it must be several meters thick, and may be much deeper. The most strongly reflecting geological feature was the south polar ice cap, which is interpretable as arising from nearly-pure CO2 or H2O ice, with less than 2 vol pct Martian dust. Only one anomalous reflecting feature was identified outside the Tharsis region.

  10. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  11. Assessment of Satellite-Derived Surface Reflectances by NASA's CAR Airborne Radiometer over Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Kharbouche, Said; Muller, Jan-Peter; Gatebe, Charles K.; Scanlon, Tracy; Banks, Andrew C.

    2017-01-01

    CAR (Cloud Absorption Radiometer) is a multi-angular and multi-spectral airborne radiometer instrument, whose radiometric and geometric characteristics are well calibrated and adjusted before and after each flight campaign. CAR was built by NASA (National Aeronautics and Space Administration) in 1984. On 16 May 2008, a CAR flight campaign took place over the well-known calibration and validation site of Railroad Valley in Nevada (38.504 deg N, 115.692 deg W).The campaign coincided with the overpasses of several key EO (Earth Observation) satellites such as Landsat-7, Envisat and Terra. Thus, there are nearly simultaneous measurements from these satellites and the CAR airborne sensor over the same calibration site. The CAR spectral bands are close to those of most EO satellites. CAR has the ability to cover the whole range of azimuth view angles and a variety of zenith angles depending on altitude and, as a consequence, the biases seen between satellite and CAR measurements due to both unmatched spectral bands and unmatched angles can be significantly reduced. A comparison is presented here between CARs land surface reflectance (BRF or Bidirectional Reflectance Factor) with those derived from Terra/MODIS (MOD09 and MAIAC), Terra/MISR, Envisat/MERIS and Landsat-7. In this study, we utilized CAR data from low altitude flights (approx. 180 m above the surface) in order to minimize the effects of the atmosphere on these measurements and then obtain a valuable ground-truth data set of surface reflectance. Furthermore, this study shows that differences between measurements caused by surface heterogeneity can be tolerated, thanks to the high homogeneity of the study site on the one hand, and on the other hand, to the spatial sampling and the large number of CAR samples. These results demonstrate that satellite BRF measurements over this site are in good agreement with CAR with variable biases across different spectral bands. This is most likely due to residual aerosol

  12. Enhancing Europa surface characterization with ice penetrating radar: A Comparative study in Antarctica

    NASA Astrophysics Data System (ADS)

    Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a

  13. Investigations on the links between rain intensity or reflectivity structures estimated from radar and drop size distributions

    NASA Astrophysics Data System (ADS)

    Hachani, Sahar; Boudevillain, Brice; Bargaoui, Zoubeida; Delrieu, Guy

    2015-04-01

    During the first Special Observation Period (SOP) of the Hydrological cycle in the Mediterranean Experiment (HyMeX, www.hymex.org) held in fall 2012 in the Northwestern Mediterranean region, an observation network dedicated to rain studies was implemented in the Cévennes region, France. It was mainly constituted by weather radars, micro rain radars, disdrometers and rain gauges. Observations are performed by a network of 25 OTT Parsivel optical disdrometers distributed with inter-distances ranging from a few meters up to about one hundred kilometers. This presentation focuses on the comparison of one optical disdrometer observations located at Villeneuve-de-berg to observations using weather Météo-France / ARAMIS radar located at Bollène which is in a neighborhood of 60 km from the disdrometer.The period from September to November 2012 is studied. To analyze the structure of the rain observed by radar, a window of investigation centered on the disdrometer was selected and the mean spatial values, standard deviation, gradients, and intermittency of radar reflectivity or rainfall intensity were computed for a time step of 5 minutes.Four different windowsizes were analyzed: 1 km², 25 km², 100 km² and 400 km². On the other hand, the total concentration of drops Nt, the characteristic diameter of drops Dc, and a Gamma distribution shape parameter µ were estimated. Gamma distribution for the DSD related to disdrometer observations was estimated according to the modeling framework proposed by Yu et al. (2014). Correlation coefficient between intensity R obtained by the disdrometer and windowaverage R estimated using radar data is nearly 0.70 whatever the window. The highest value is found for the window 25 km² (0.74). Correlation coefficients between Dc and window average R vary from 0.35 for the window 1 km² to 0.4 for the window 400 km². So, they areweak and not sensitive to the choice of the window. Contrarily, formean radar reflectivityZ, correlation

  14. Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, March 4-8, 1996. Volume 2; AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin (Editor)

    1996-01-01

    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2.

  15. Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery

    NASA Astrophysics Data System (ADS)

    Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.

    2016-12-01

    Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted

  16. Application of airborne laser scanner measurements of ocean roughness to the calibration and validation of a satellite bistatic radar experiment

    NASA Astrophysics Data System (ADS)

    Parrin, J.; Garrison, J. L.

    2006-12-01

    A high-resolution airborne laser scanner, from the National Center for Airborne Laser Mapping (NCALM) was used to profile the ocean surface in an attempt to experimentally measure the ocean height spectrum down to wavelengths as small as a few centimetres. In October of 2005, three data collections were scheduled, during overpasses of the UK-DMC satellite, off the coast of Virginia. UK-DMC carries an experimental bistatic radar receiver, which uses Global Navigation Satellite System (GNSS) signals as illumination sources. Most models for reflected GNSS signals relate the shape of the signal correlation waveforms to the ocean roughness, parameterized as a probability distribution (PDF) of surface slopes. This statistical description of the ocean surface must first be filtered to wavelengths greater than some fraction of the GNSS wavelength of 19 cm. Past experimental campaigns have used more common in-situ measurements, such as wind speed, for comparison with GNSS waveforms. These types of measurements will require the assumption of some empirical model for the ocean height spectrum, allowing the computation of the filtered slope statistics. Proposed applications of reflected GNSS signals include the correction of ocean roughness effects in passive microwave radiometry. To evaluate the feasibility of GNSS reflections for this measurement, it is important to make a more direct measurement of the ocean surface slope statistics, without the assumption of a spectrum model. In these experiments, a direct measurement of this spectrum was attempted, using the NCALM system. The laser scanner was operated on a low altitude (500 m) aircraft, at the highest sample rate (33KHz), generating ocean height measurements with an along-track separation of a few millimetres. The laser illuminates a spot on the ocean surface that is smaller than 10 cm, however, limiting the smallest resolvable wavelength to something on that order. Laser data were collected along multiple flight lines

  17. Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

    DTIC Science & Technology

    2012-01-01

    and Preamplifiers . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Audio Recorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 4...consuming less energy than active systems such as radar, lidar, or sonar [5]. Ground and marine-based acoustic arrays are currently employed in a variety of...factors for the performance of an airborne acoustic array. 3.3.1 Audio Microphones and Preamplifiers An audio microphone is a transducer that converts

  18. Accident investigation: Analysis of aircraft motions from ATC radar recordings

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1976-01-01

    A technique was developed for deriving time histories of an aircraft's motion from air traffic control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data (from an onboard Mode-C transponder), to derive an expanded set of data which includes airspeed, lift, thrust-drag, attitude angles (pitch, roll, and heading), etc. This method of analyzing aircraft motions was evaluated through flight experiments which used the CV-990 research aircraft and recordings from both the enroute and terminal ATC radar systems. The results indicate that the values derived from the ATC radar records are for the most part in good agreement with the corresponding values obtained from airborne measurements. In an actual accident, this analysis of ATC radar records can complement the flight-data recorders, now onboard airliners, and provide a source of recorded information for other types of aircraft that are equipped with Mode-C transponders but not with onboard recorders.

  19. Physical working principles of medical radar.

    PubMed

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  20. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  1. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  2. Low-frequency radar sounder over Glaciers in Alaska, Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Mouginot, J.; Rignot, E. J.; Gim, Y.; Kirchner, D. L.; Merritt, S.; Robison, W. T.

    2009-12-01

    Ice-thickness and basal layer topography measurements are needed to calculate fluxes through fast-flowing outlet glaciers in Greenland, Alaska, Patagonia and Antarctica. However, relatively high attenuation of radio waves by dielectric absorption and volume scattering from englacial water restrains detection of the bed through warm deep ice. Using a low-frequency (1-5 MHz) airborne radar, we have sounded outlet fast glaciers over Greenland (Store, Upernavik, Hellheim, …), East Antarctica (David, Mertz, Dibble, Byrd, …) and Alaska (Bering, Maslapina, Bagley, …). We will show that we detected the bed through temperate ice up to 1000m thick over Bering and Maslapina Glaciers and also point out difficulty in detecting bed of other Alaska glaciers due to off-nadir returns. We will also make direct comparison of this radar and previous airborne measurements in Greenland and Antarctica in order to discuss a potential improvement of bedrock detectability in temperate ice.

  3. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  4. Revealing Layers of Pristine Oriented Crystals Embedded Within Deep Ice Clouds Using Differential Reflectivity and the Copolar Correlation Coefficient

    NASA Astrophysics Data System (ADS)

    Keat, W. J.; Westbrook, C. D.

    2017-11-01

    Pristine ice crystals typically have high aspect ratios (≫ 1), have a high density and tend to fall preferentially with their major axis aligned horizontally. Consequently, they can, in certain circumstances, be readily identified by measurements of differential reflectivity (ZDR), which is related to their average aspect ratio. However, because ZDR is reflectivity weighted, its interpretation becomes ambiguous in the presence of even a few, larger aggregates or irregular polycrystals. An example of this is in mixed-phase regions that are embedded within deeper ice cloud. Currently, our understanding of the microphysical processes within these regions is hindered by a lack of good observations. In this paper, a novel technique is presented that removes this ambiguity using measurements from the 3 GHz Chilbolton Advanced Meteorological Radar in Southern England. By combining measurements of ZDR and the copolar correlation coefficient (ρhv), we show that it is possible to retrieve both the relative contribution to the radar signal and "intrinsic" ZDR (ZDRIP) of the pristine oriented crystals, even in circumstances where their signal is being masked by the presence of aggregates. Results from two case studies indicate that enhancements in ZDR embedded within deep ice clouds are typically produced by pristine oriented crystals with ZDRIP values between 3 and 7 dB (equivalent to 5-9 dB at horizontal incidence) but with varying contributions to the radar reflectivity. Vertically pointing 35 GHz cloud radar Doppler spectra and in situ particle images from the Facility for Airborne Atmospheric Measurements BAe-146 aircraft support the conceptual model used and are consistent with the retrieval interpretation.

  5. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1995-01-01

    This publication is the third containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in this volume; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  6. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 1: AVIRIS Workshop

    NASA Technical Reports Server (NTRS)

    Green, Robert O. (Editor)

    1995-01-01

    This publication is the first of three containing summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on January 23-24. The summaries for this workshop appear in this volume; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on January 25-26. The summaries for this workshop appear in Volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop, on January 26. The summaries for this workshop appear in Volume 2.

  7. Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1995-01-01

    This publication is the second volume of the summaries for the Fifth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on January 23-26, 1995. The main workshop is divided into three smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop on January 23-24. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop on January 25-26. The summaries for this workshop appear in volume 3; and (3) The Thermal Infrared Multispectral Scanner (TIMS) workshop on January 26. The summaries for this workshop appear in this volume.

  8. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    NASA Technical Reports Server (NTRS)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  9. Mesospheric radar wind comparisons at high and middle southern latitudes

    NASA Astrophysics Data System (ADS)

    Reid, Iain M.; McIntosh, Daniel L.; Murphy, Damian J.; Vincent, Robert A.

    2018-05-01

    We compare hourly averaged neutral winds derived from two meteor radars operating at 33.2 and 55 MHz to estimate the errors in these measurements. We then compare the meteor radar winds with those from a medium-frequency partial reflection radar operating at 1.94 MHz. These three radars are located at Davis Station, Antarctica. We then consider a middle-latitude 55 MHz meteor radar wind comparison with a 1.98 MHz medium-frequency partial reflection radar to determine how representative the Davis results are. At both sites, the medium-frequency radar winds are clearly underestimated, and the underestimation increases from 80 km to the maximum height of 98 km. Correction factors are suggested for these results.[Figure not available: see fulltext.

  10. Three-dimensional mosaicking of the South Korean radar network

    NASA Astrophysics Data System (ADS)

    Berenguer, Marc; Sempere-Torres, Daniel; Lee, GyuWon

    2016-04-01

    Dense radar networks offer the possibility of improved Quantitative Precipitation Estimation thanks to the additional information collected in the overlapping areas, which allows mitigating errors associated with the Vertical Profile of Reflectivity or path attenuation by intense rain. With this aim, Roca-Sancho et al. (2014) proposed a technique to generate 3-D reflectivity mosaics from the multiple radars of a network. The technique is based on an inverse method that simulates the radar sampling of the atmosphere considering the characteristics (location, frequency and scanning protocol) of each individual radar. This technique has been applied to mosaic the observations of the radar network of South Korea (composed of 14 S-band radars), and integrate the observations of the small X-band network which to be installed near Seoul in the framework of a project funded by the Korea Agency for Infrastructure Technology Advancement (KAIA). The evaluation of the generated 3-D mosaics has been done by comparison with point measurements (i.e. rain gauges and disdrometers) and with the observations of independent radars. Reference: Roca-Sancho, J., M. Berenguer, and D. Sempere-Torres (2014), An inverse method to retrieve 3D radar reflectivity composites, Journal of Hydrology, 519, 947-965, doi: 10.1016/j.jhydrol.2014.07.039.

  11. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  12. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  13. Summaries of the Third Annual JPL Airborne Geoscience Workshop. Volume 3: AIRSAR Workshop

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob (Editor)

    1992-01-01

    This publication contains the preliminary agenda and summaries for the Third Annual JPL Airborne Geoscience Workshop, held at the Jet Propulsion Laboratory, Pasadena, California, on 1-5 June 1992. This main workshop is divided into three smaller workshops as follows: (1) the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on June 1 and 2; the summaries for this workshop appear in Volume 1; (2) the Thermal Infrared Multispectral Scanner (TIMS) workshop, on June 3; the summaries for this workshop appear in Volume 2; and (3) the Airborne Synthetic Aperture Radar (AIRSAR) workshop, on June 4 and 5; the summaries for this workshop appear in Volume 3.

  14. Multiband radar characterization of forest biomes

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Ulaby, Fawwaz T.

    1990-01-01

    The utility of airborne and orbital SAR in classification, assessment, and monitoring of forest biomes is investigated through analysis of orbital synthetic aperature radar (SAR) and multifrequency and multipolarized airborne SAR imagery relying on image tone and texture. Preliminary airborne SAR experiments and truck-mounted scatterometer observations demonstrated that the three dimensional structural complexity of a forest, and the various scales of temporal dynamics in the microwave dielectric properties of both trees and the underlying substrate would severely limit empirical or semi-empirical approaches. As a consequence, it became necessary to develop a more profound understanding of the electromagnetic properties of a forest scene and their temporal dynamics through controlled experimentation coupled with theoretical development and verification. The concatenation of various models into a physically-based composite model treating the entire forest scene became the major objective of the study as this is the key to development of a series of robust retrieval algorithms for forest biophysical properties. In order to verify the performance of the component elements of the composite model, a series of controlled laboratory and field experiments were undertaken to: (1) develop techniques to measure the microwave dielectric properties of vegetation; (2) relate the microwave dielectric properties of vegetation to more readily measured characteristics such as density and moisture content; (3) calculate the radar cross-section of leaves, and cylinders; (4) improve backscatter models for rough surfaces; and (5) relate attenuation and phase delays during propagation through canopies to canopy properties. These modeling efforts, as validated by the measurements, were incorporated within a larger model known as the Michigan Microwave Canopy Scattering (MIMICS) Model.

  15. Using Airborne Radar Stratigraphy to Model Surface Accumulation Anomaly and Basal Control over Deformed Basal Ice in Greenland

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.

    2013-12-01

    Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance

  16. Multi Ray Model for Near-Ground Millimeter Wave Radar

    PubMed Central

    Litvak, Boris; Pinhasi, Yosef

    2017-01-01

    A quasi-optical multi-ray model for a short-range millimeter wave radar is presented. The model considers multi-path effects emerging while multiple rays are scattered from the target and reflected to the radar receiver. Among the examined scenarios, the special case of grazing ground reflections is analyzed. Such a case becomes relevant when short range anti-collision radars are employed in vehicles. Such radars operate at millimeter wavelengths, and are aimed at the detection of targets located several tens of meters from the transmitter. Reflections from the road are expected to play a role in the received signal strength, together with the direct line-of-sight beams illuminated and scattered from the target. The model is demonstrated experimentally using radar operating in the W-band. Controlled measurements were done to distinguish between several scattering target features. The experimental setup was designed to imitate vehicle near-ground millimeter wave radars operating in vehicles. A comparison between analytical calculations and experimental results is made and discussed. PMID:28867776

  17. Inflight calibration of the modular airborne imaging spectrometer (MAIS) and its application to reflectance retrieval

    NASA Astrophysics Data System (ADS)

    Min, Xiangjun; Zhu, Yonghao

    1998-08-01

    Inflight experiment of Modular Airborne Imaging Spectrometer (MAIS) and ground-based measurements using GER MARK-V spectroradiometer simultaneously with the MAIS overpass were performed during Autumn 1995 at the semiarid area of Inner Mongolia, China. Based on these measurements and MAIS image data, we designed a method for the radiometric calibration of MAIS sensor using 6S and LOWTRAN 7 codes. The results show that the uncertainty of MAIS calibration is about 8% in the visible and near infrared wavelengths (0.4 - 1.2 micrometer). To verify our calibration algorithm, the calibrated results of MAIS sensor was used to derive the ground reflectances. The accuracy of reflectance retrieval is about 8.5% in the spectral range of 0.4 to 1.2 micrometer, i.e., the uncertainty of derived near-nadir reflectances is within 0.01 - 0.05 in reflectance unit at ground reflectance between 3% and 50%. The distinguishing feature of the ground-based measurements, which will be paid special attention in this paper, is that obtaining simultaneously the reflectance factors of the calibration target, atmospheric optical depth, and water vapor abundance from the same one set of measurement data by only one suit of instruments. The analysis indicates that the method presented here is suitable to the quantitative analysis of imaging spectral data in China.

  18. Magneto-Radar Hidden Metal Detector

    DOEpatents

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  19. Ground and Space Radar Volume Matching and Comparison Software

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  20. Artifacts in Radar Imaging of Moving Targets

    DTIC Science & Technology

    2012-09-01

    CA, USA, 2007. [11] B. Borden, Radar imaging of airborne targets: A primer for Applied mathematicians and Physicists . New York, NY: Taylor and... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 21 September 2012 3. REPORT TYPE AND DATES COVERED...CW Continuous Wave DAC Digital to Analog Convertor DFT Discrete Fourier Transform FBP Filtered Back Projection FFT Fast Fourier Transform GPS

  1. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  2. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  3. Ku-band ocean radar backscatter observations during SWADE

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Lou, S. H.; Neumann, G.

    1993-01-01

    We present results obtained by an airborne Ku-band scatterometer during the Surface Wave Dynamics Experiment (SWADE). The specific objective of this study is to improve our understanding of the relationship between ocean radar backscatter and near surface winds. The airborne scatterometer, NUSCAT, was flown on the NASA Ames C-130 over an instrumented oceanic area near 37 deg N and 74 deg W. A total of 10 flights from 27 Feb. to 9 Mar. 1991 were conducted. Radar backscatter at incidence angles of 0 to 60 deg were obtained. For each incidence angle, the NUSCAT antenna was azimuthally scanned in multiple complete circles to measure the azimuthal backscatter modulations. Both horizontal and vertical polarization backscatter measurements were made. In some of the flights, the cross-polarization backscatter was measured as well. Internal calibrations were carried out throughout each of the flights. Preliminary results indicate that the radar was stable to +/-0.3 dB for each flight. In this paper, we present studies of the backscatter measurements over several crossings of the Gulf Stream. In these crossings, large air-sea temperature differences were encountered and substantial changes in the radar cross section were observed. We summarize the observations and compare them to the changes of several wind variables across the Gulf Stream boundary. In one of the flights, the apparent wind near the cold side of the Gulf Stream was very low (less than 3 m/s). The behavior of the radar cross sections at such low wind speeds and a comparison with models are presented. A case study of the effects of swell on the absolute cross section and the azimuthal modulation pattern is presented. Significant wave heights larger than m were observed during SWADE. The experimentally observed effects of the swell on the radar backscatter are discussed. The effects are used to assess the uncertainties in wind retrieval due to underlying waves. A summary of azimuthal modulation from our ten

  4. Planetary surface roughness derived from ice penetrating radar data: Method and concept validation in Antarctica

    NASA Astrophysics Data System (ADS)

    Grima, C.; Schroeder, D. M.; Blankenship, D. D.; Young, D. A.

    2013-12-01

    Geological and climatic processes shaping the landscape of planetary bodies imprint the surface with particular textures, i.e. continuous topographic entities at meters to decameters scales where the surface elevation is dominated by a stochastic behavior. The so-called roughness is a proxy to get insights into the type of surface terrain and its ongoing evolution. It is also an important descriptor involved in landing site selection processes to ensure the safe delivery of a lander/rover over a stable work zone. Planetary surface roughnesses are usually derived from point-to-point elevation models acquired by laser altimetry or stereo-imagery. However, in the last decade, nadir-looking penetrating radars have become another remote-sensing technology commonly used for planetary surface and sub-surface characterization (e.g. MARSIS/SHARAD on Mars, LRS on the Moon, and Ice Penetrating Radars for future missions to Europa). Here, we present a statistical method to extract the reflected and scattered components embedded in the surface echoes of HF (3-30 MHz) and VHF (30-300 MHz) penetrating radars in order to derive significant roughness information. We demonstrate the reliability of the method with an application to a radar dataset acquired during the 2004-05 austral summer campaign of the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica, (AGASEA) project with the High-Capability Radar Sounder (HiCARS, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG). Results are thoroughly compared with simultaneously acquired laser altimetry and nadir imagery of the surface. We emphasize the possibilities and advantages of the method in light of the future exploration of the Europa and Ganymede icy moons by multi-frequency ice penetrating radars.

  5. Determining the Best Method for Estimating the Observed Level of Maximum Detrainment Based on Radar Reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carletta, Nicholas D.; Mullendore, Gretchen L.; Starzec, Mariusz

    Convective mass transport is the transport of mass from near the surface up to the upper troposphere and lower stratosphere (UTLS) by a deep convective updraft. This transport can alter the chemical makeup and water vapor balance of the UTLS, which affects cloud formation and the radiative properties of the atmosphere. It is therefore important to understand the exact altitudes at which mass is detrained from convection. The purpose of this study was to improve upon previously published methodologies for estimating the level of maximum detrainment (LMD) within convection using data from a single ground-based radar. Four methods were usedmore » to identify the LMD and validated against dual-Doppler derived vertical mass divergence fields for six cases with a variety of storm types. The best method for locating the LMD was determined to be the method that used a reflectivity texture technique to determine convective cores and a multi-layer echo identification to determine anvil locations. Although an improvement over previously published methods, the new methodology still produced unreliable results in certain regimes. The methodology worked best when applied to mature updrafts, as the anvil needs time to grow to a detectable size. Thus, radar reflectivity is found to be valuable in estimating the LMD, but storm maturity must also be considered for best results.« less

  6. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 2: TIMS Workshop

    NASA Technical Reports Server (NTRS)

    Realmuto, Vincent J. (Editor)

    1993-01-01

    This is volume 2 of a three volume set of publications that contain the summaries for the Fourth Annual JPL Airborne Geoscience Workshop, held in Washington, D.C. on October 25-29, 1993. The main workshop is divided into three smaller workshops as follows: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on October 25-26. The summaries for this workshop appear in Volume 1. The Thermal Infrared Multispectral Scanner (TIMS) workshop, on October 27. The summaries for this workshop appear in Volume 2. The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on October 28-29. The summaries for this workshop appear in Volume 3.

  7. Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    NASA Technical Reports Server (NTRS)

    Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.

    1978-01-01

    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.

  8. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1984-07-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  9. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  10. Mapping Wintering Waterfowl Distributions Using Weather Surveillance Radar

    PubMed Central

    Buler, Jeffrey J.; Randall, Lori A.; Fleskes, Joseph P.; Barrow, Wylie C.; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998–1999 and 1999–2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of −5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998–1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents. PMID:22911816

  11. Mapping wintering waterfowl distributions using weather surveillance radar.

    PubMed

    Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

  12. Ground-Truthing a Next Generation Snow Radar

    NASA Astrophysics Data System (ADS)

    Yan, S.; Brozena, J. M.; Gogineni, P. S.; Abelev, A.; Gardner, J. M.; Ball, D.; Liang, R.; Newman, T.

    2016-12-01

    During the early spring of 2016 the Naval Research Laboratory (NRL) performed a test of a next generation airborne snow radar over ground truth data collected on several areas of fast ice near Barrow, AK. The radar was developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, and includes several improvements compared to their previous snow radar. The new unit combines the earlier Ku-band and snow radars into a single unit with an operating frequency spanning the entire 2-18 GHz, an enormous bandwidth which provides the possibility of snow depth measurements with 1.5 cm range resolution. Additionally, the radar transmits on dual polarizations (H and V), and receives the signal through two orthogonally polarized Vivaldi arrays, each with 128 phase centers. The 8 sets of along-track phase centers are combined in hardware to improve SNR and narrow the beamwidth in the along-track, resulting in 8 cross-track effective phase centers which are separately digitized to allow for beam sharpening and forming in post-processing. Tilting the receive arrays 30 degrees from the horizontal also allows the formation of SAR images and the potential for estimating snow-water equivalent (SWE). Ground truth data (snow depth, density, salinity and SWE) were collected over several 60 m wide swaths that were subsequently overflown with the snow radar mounted on a Twin Otter. The radar could be operated in nadir (by beam steering the receive antennas to point beneath the aircraft) or side-looking modes. Results from the comparisons will be shown.

  13. Interpreting Electromagnetic Reflections In Glaciology

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.

    Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physical­chemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.

  14. Radar Image with Color as Height, Sman Teng, Temple, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Cambodia's Angkor region, taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR), reveals a temple (upper-right) not depicted on early 19th Century French archeological survey maps and American topographic maps. The temple, known as 'Sman Teng,' was known to the local Khmer people, but had remained unknown to historians due to the remoteness of its location. The temple is thought to date to the 11th Century: the heyday of Angkor. It is an important indicator of the strategic and natural resource contributions of the area northwest of the capitol, to the urban center of Angkor. Sman Teng, the name designating one of the many types of rice enjoyed by the Khmer, was 'discovered' by a scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif., working in collaboration with an archaeological expert on the Angkor region. Analysis of this remote area was a true collaboration of archaeology and technology. Locating the temple of Sman Teng required the skills of scientists trained to spot the types of topographic anomalies that only radar can reveal.

    This image, with a pixel spacing of 5 meters (16.4 feet), depicts an area of approximately 5 by 4.7 kilometers (3.1 by 2.9 miles). North is at top. Image brightness is from the P-band (68 centimeters, or 26.8 inches) wavelength radar backscatter, a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 25 meters (82 feet) of elevation change, so going from blue to red to yellow to green and back to blue again corresponds to 25 meters (82 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data

  15. New observations of Bolivian wind streaks by JPL Airborne SAR: Preliminary results

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    In 1993 NASA's Jet Propulsion Laboratory Airborne Synthetic Aperture Radar system (AIRSAR) was deployed to South America to collect multi-parameter radar data over pre-selected targets. Among the sites targeted was a series of wind streaks located in the Altiplano of Bolivia. The objective of this investigation is to study the effect of wavelength, polarization, and incidence angle on the visibility of wind streaks in radar data. Because this is a preliminary evaluation of the recently acquired data we will focus on one scene and, thus, only on the effects of wavelength and polarization. Wind streaks provide information on the near-surface prevailing winds and on the abundance of winderodible material, such as sand. The potential for a free-flyer radar system that could provide global radar images in multiple wavelengths, polarizations, and incidence angles requires definition of system parameters for mission planning. Furthermore, thousands of wind streaks were mapped from Magellan radar images of Venus; their interpretation requires an understanding of the interaction of radar with wind streaks and the surrounding terrain. Our experiment was conducted on wind streaks in the Altiplano of Bolivia to address these issues.

  16. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  17. Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale

    NASA Technical Reports Server (NTRS)

    Fairall, Christopher W.; Thomson, Dennis W.

    1989-01-01

    Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.

  18. Initial assessment of an airborne Ku-band polarimetric SAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; Doerry, Armin Walter

    2013-02-01

    Polarimetric synthetic aperture radar (SAR) has been used for a variety of dual-use research applications since the 1940s. By measuring the direction of the electric field vector from radar echoes, polarimetry may enhance an analysts understanding of scattering effects for both earth monitoring and tactical surveillance missions. Polarimetry may provide insight into surface types, materials, or orientations for natural and man-made targets. Polarimetric measurements may also be used to enhance the contrast between scattering surfaces such as man-made objects and their surroundings. This report represents an initial assessment of the utility of, and applications for, polarimetric SAR at Ku-band formore » airborne or unmanned aerial systems.« less

  19. Analysis of synthetic aperture radar data acquired over a variety of land cover

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1984-01-01

    The results of Synthetic Aperture Radar (SAR) measurements over Kershaw County, South Carolina, using HH, HV, and VV polarization and two-incidence angle X-band airborne SAR system and over Baldwin County, Alabama, using HH polarization L-band Shuttle Imaging Radar (SIR-A) are presented. The X-band data indicate higher HH than VV radar return for cypress forest with standing water. Multipolarization (HH, HV, and VV) data help delineate several land-cover types that are difficult to delineate by the single polarization (HH) data. The L-band data indicate that radar return signal strength is highly correlated with tree height or age for three types of pine forest. It is found that delineation of urban/residential from deciduous forest is significantly improved by the inclusion of Landsat multispectral scanner data.

  20. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional view of Isabela, one of the Galapagos Islands located off the western coast of Ecuador, South America. This view was constructed by overlaying a Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) image on a digital elevation map produced by TOPSAR, a prototype airborne interferometric radar which produces simultaneous image and elevation data. The vertical scale in this image is exaggerated by a factor of 1.87. The SIR-C/X-SAR image was taken on the 40th orbit of space shuttle Endeavour. The image is centered at about 0.5 degree south latitude and 91 degrees west longitude and covers an area of 75 by 60 kilometers (47 by 37 miles). The radar incidence angle at the center of the image is about 20 degrees. The western Galapagos Islands, which lie about 1,200 kilometers (750 miles)west of Ecuador in the eastern Pacific, have six active volcanoes similar to the volcanoes found in Hawaii and reflect the volcanic processes that occur where the ocean floor is created. Since the time of Charles Darwin's visit to the area in 1835, there have been more than 60 recorded eruptions on these volcanoes. This SIR-C/X-SAR image of Alcedo and Sierra Negra volcanoes shows the rougher lava flows as bright features, while ash deposits and smooth pahoehoe lava flows appear dark. Vertical exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults, and fractures) and topography. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data

  1. Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis

    NASA Astrophysics Data System (ADS)

    Sheng, C.; Gao, S.; Xue, M.

    2006-11-01

    With the ARPS (Advanced Regional Prediction System) Data Analysis System (ADAS) and its complex cloud analysis scheme, the reflectivity data from a Chinese CINRAD-SA Doppler radar are used to analyze 3D cloud and hydrometeor fields and in-cloud temperature and moisture. Forecast experiments starting from such initial conditions are performed for a northern China heavy rainfall event to examine the impact of the reflectivity data and other conventional observations on short-range precipitation forecast. The full 3D cloud analysis mitigates the commonly known spin-up problem with precipitation forecast, resulting a significant improvement in precipitation forecast in the first 4 to 5 hours. In such a case, the position, timing and amount of precipitation are all accurately predicted. When the cloud analysis is used without in-cloud temperature adjustment, only the forecast of light precipitation within the first hour is improved. Additional analysis of surface and upper-air observations on the native ARPS grid, using the 1 degree real-time NCEP AVN analysis as the background, helps improve the location and intensity of rainfall forecasting slightly. Hourly accumulated rainfall estimated from radar reflectivity data is found to be less accurate than the model predicted precipitation when full cloud analysis is used.

  2. NASA's DC-8 Airborne Science research aircraft, in new colors and markings, takes off Feb. 24, 2004

    NASA Image and Video Library

    2004-02-24

    NASA's DC-8 Airborne Science research aircraft, in new colors and markings, takes off Feb. 24, 2004. Dark panels on lower fuselage are synthetic aperture radar antennas enabling sophisticated studies of Earth features.

  3. NASA's DC-8 Airborne Science research aircraft, in new colors and markings, in flight Feb. 24, 2004

    NASA Image and Video Library

    2004-02-24

    NASA's DC-8 Airborne Science research aircraft, in new colors and markings, in flight Feb. 24, 2004. Dark panels on lower fuselage are synthetic aperture radar antennas enabling sophisticated studies of Earth features.

  4. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  5. Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW).

    PubMed

    Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E

    2012-01-30

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  7. Orthogonal on-off control of radar pulses for the suppression of mutual interference

    NASA Astrophysics Data System (ADS)

    Kim, Yong Cheol

    1998-10-01

    Intelligent vehicles of the future will be guided by radars and other sensors to avoid obstacles. When multiple vehicles move simultaneously in autonomous navigational mode, mutual interference among car radars becomes a serious problem. An obstacle is illuminated with electromagnetic pulses from several radars. The signal at a radar receiver is actually a mixture of the self-reflection and the reflection of interfering pulses emitted by others. When standardized pulse- type radars are employed on vehicles for obstacle avoidance and so self-pulse and interfering pulses have identical pulse repetition interval, this SI (synchronous Interference) is very difficult to separate from the true reflection. We present a method of suppressing such a synchronous interference. By controlling the pulse emission of a radar in a binary orthogonal ON, OFF pattern, the true self-reflection can be separated from the false one. Two range maps are generated, TRM (true-reflection map) and SIM (synchronous- interference map). TRM is updated for every ON interval and SIM is updated for every OFF interval of the self-radar. SIM represents the SI of interfering radars while TRM keeps a record of a mixture of the true self-reflection and SI. Hence the true obstacles can be identified by the set subtraction operation. The performance of the proposed method is compared with that of the conventional M of N method. Bayesian analysis shows that the probability of false alarm is improved by order of 103 to approximately 106 while the deterioration in the probability of detection is negligible.

  8. Determination of antennae patterns and radar reflection characteristics of aircraft

    NASA Astrophysics Data System (ADS)

    Bothe, H.; MacDonald, D.; Pool, A.

    1986-05-01

    The different types of aircraft antennas, their radiation characteristics and their preferred siting on the airframe are described. Emphasis is placed on the various methods for determining aircraft antenna radiation patterns (ARP) and advantages, disadvantages and limitations of each method are indicated. Mathematical modelling, model measurements and in-flight measurements in conjunction with the applied flight test techniques are included. Examples of practical results are given. Methods of determining aircraft radar characteristics are also described, indicating advantages, disadvantages and limitations of each method. Relevant fundamentals of radar theory are included only as necessary to appreciation of the real meaning of radar cross section (RCS) and angular glint. The measuring methods included are dynamic full-scale, static full-scale, sub-scale optical, ultrasonic and radio modelling. References are made to RCS measuring facilities in the USA and Europe and the UK Radio Modelling Facility is used extensively to exemplify the sub scale technique.

  9. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Astrophysics Data System (ADS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-05-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  10. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk

    1994-01-01

    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  11. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    NASA Astrophysics Data System (ADS)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  12. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  13. Use of Airborne Hyperspectral Data in the Simulation of Satellite Images

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Jimenez, Marcos; Ruiz, Elena; Salido, Elena; Gutierrez de la Camara, Oscar

    2016-08-01

    The simulation of future images is part of the development phase of most Earth Observation missions. This simulation uses frequently as starting point images acquired from airborne instruments. These instruments provide the required flexibility in acquisition parameters (time, date, illumination and observation geometry...) and high spectral and spatial resolution, well above the target values (as required by simulation tools). However, there are a number of important problems hampering the use of airborne imagery. One of these problems is that observation zenith angles (OZA), are far from those that the misisons to be simulated would use.We examine this problem by evaluating the difference in ground reflectance estimated from airborne images for different observation/illumination geometries. Next, we analyze a solution for simulation purposes, in which a Bi- directional Reflectance Distribution Function (BRDF) model is attached to an image of the isotropic surface reflectance. The results obtained confirm the need for reflectance anisotropy correction when using airborne images for creating a reflectance map for simulation purposes. But this correction should not be used without providing the corresponding estimation of BRDF, in the form of model parameters, to the simulation teams.

  14. Maximum-likelihood spectral estimation and adaptive filtering techniques with application to airborne Doppler weather radar. Thesis Technical Report No. 20

    NASA Technical Reports Server (NTRS)

    Lai, Jonathan Y.

    1994-01-01

    This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.

  15. Vegetation canopy discrimination and biomass assessment using multipolarized airborne SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Held, D. N.

    1985-01-01

    Multipolarized airborne Synthetic Aperture Radar (SAR) data were acquired over a largely agricultural test site near Macomb, Illinois, in conjunction with the Shuttle Imaging Radar (SIR-B) experiment in October 1984. The NASA/JPL L-band SAR operating at 1.225 GHz made a series of daily overflights with azimuth view angles both parallel and orthogonal to those of SIR-B. The SAR data was digitally recorded in the quadpolarization configuration. An extensive set of ground measurements were obtained throughout the test site and include biophysical and soil measurements of approximately 400 agricultural fields. Preliminary evaluation of some of the airborne SAR imagery indicates a great potential for crop discrimination and assessment of canopy condition. False color composites constructed from the combination of three linear polarizations (HH, VV, and HV) were found to be clearly superior to any single polarization for purposes of crop classification. In addition, an image constructed using the HH return to modulate intensity and the phase difference between HH and VV returns to modulate chroma indicates a clear capability for assessment of canopy height and/or biomass. In particular, corn fields heavily damaged by infestations of corn borer are readily distinguished from noninfested fields.

  16. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring

    PubMed Central

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-01-01

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge. PMID:26437413

  17. Development of a Cost-Effective Airborne Remote Sensing System for Coastal Monitoring.

    PubMed

    Kim, Duk-jin; Jung, Jungkyo; Kang, Ki-mook; Kim, Seung Hee; Xu, Zhen; Hensley, Scott; Swan, Aaron; Duersch, Michael

    2015-09-30

    Coastal lands and nearshore marine areas are productive and rapidly changing places. However, these areas face many environmental challenges related to climate change and human-induced impacts. Space-borne remote sensing systems may be restricted in monitoring these areas because of their spatial and temporal resolutions. In situ measurements are also constrained from accessing the area and obtaining wide-coverage data. In these respects, airborne remote sensing sensors could be the most appropriate tools for monitoring these coastal areas. In this study, a cost-effective airborne remote sensing system with synthetic aperture radar and thermal infrared sensors was implemented to survey coastal areas. Calibration techniques and geophysical model algorithms were developed for the airborne system to observe the topography of intertidal flats, coastal sea surface current, sea surface temperature, and submarine groundwater discharge.

  18. Fusing enhanced radar precipitation, in-situ hydrometeorological measurements and airborne LIDAR snowpack estimates in a hyper-resolution hydrologic model to improve seasonal water supply forecasts

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.

    2015-12-01

    Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases

  19. Reconfigurable signal processor designs for advanced digital array radar systems

    NASA Astrophysics Data System (ADS)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  20. Generation of topographic terrain models utilizing synthetic aperture radar and surface level data

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L. (Inventor)

    1991-01-01

    Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.

  1. Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements

    NASA Technical Reports Server (NTRS)

    Monaldo, Frank M.; Lyzenga, David R.

    1988-01-01

    During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.

  2. The Utility and Validity of Kinematic GPS Positioning for the Geosar Airborne Terrain Mapping Radar System

    NASA Technical Reports Server (NTRS)

    Freedman, Adam; Hensley, Scott; Chapin, Elaine; Kroger, Peter; Hussain, Mushtaq; Allred, Bruce

    1999-01-01

    GeoSAR is an airborne, interferometric Synthetic Aperture Radar (IFSAR) system for terrain mapping, currently under development by a consortium including NASA's Jet Propulsion Laboratory (JPL), Calgis, Inc., a California mapping sciences company, and the California Department of Conservation (CaIDOC), with funding provided by the U.S. Army Corps of Engineers Topographic Engineering Center (TEC) and the U.S. Defense Advanced Research Projects Agency (DARPA). IFSAR data processing requires high-accuracy platform position and attitude knowledge. On 9 GeoSAR, these are provided by one or two Honeywell Embedded GPS Inertial Navigation Units (EGI) and an Ashtech Z12 GPS receiver. The EGIs provide real-time high-accuracy attitude and moderate-accuracy position data, while the Ashtech data, post-processed differentially with data from a nearby ground station using Ashtech PNAV software, provide high-accuracy differential GPS positions. These data are optimally combined using a Kalman filter within the GeoSAR motion measurement software, and the resultant position and orientation information are used to process the dual frequency (X-band and P-band) radar data to generate high-accuracy, high -resolution terrain imagery and digital elevation models (DEMs). GeoSAR requirements specify sub-meter level planimetric and vertical accuracies for the resultant DEMS. To achieve this, platform positioning errors well below one meter are needed. The goal of GeoSAR is to obtain 25 cm or better 3-D positions from the GPS systems on board the aircraft. By imaging a set of known point target corner-cube reflectors, the GeoSAR system can be calibrated. This calibration process yields the true position of the aircraft with an uncertainty of 20- 50 cm. This process thus allows an independent assessment of the accuracy of our GPS-based positioning systems. We will present an overview of the GeoSAR motion measurement system, focusing on the use of GPS and the blending of position data from the

  3. The design of broadband radar absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  4. Multi-variable X-band radar observation and tracking of ash plume from Mt. Etna volcano on November 23, 2013 event

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.

    2015-04-01

    Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar

  5. WSR-88D doppler radar detection of corn earworm moth migration.

    PubMed

    Westbrook, J K; Eyster, R S; Wolf, W W

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  6. WSR-88D doppler radar detection of corn earworm moth migration

    NASA Astrophysics Data System (ADS)

    Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.

    2014-07-01

    Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.

  7. Temperate Ice Depth-Sounding Radar

    NASA Astrophysics Data System (ADS)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    . It also digitizes the output signal from the receiver and stores the data in binary format using a portable computer. The RF-section consists of a high- power transmitter and a low-noise receiver with digitally controlled variable gain. The antenna is time-shared between the transmitter and receiver by means of a transmit/receive (T/R) switch. In regards to the antenna, we have made a survey study of various electrically small antennas (ESA) to choose the most suitable radiating structure for this application. Among the different alternatives that provide a good trade-off between electrical performance and small size, we have adopted an ESA dipole configuration for airborne platforms and a half-wavelength radiator for the surface-based version. The airborne antenna solution is given after studying the geometry of the aerial vehicle and its fuselage contribution to the antenna radiation pattern. Dipoles are made of 11.6 mm diameter cables (AWG 0000) or printed patches embedded into the aircraft fuselage, wings, or both. The system is currently being integrated and tested. TIDSoR is expected to be deployed during the spring 2008 either in Alaska or Greenland for surface based observations. In this paper, we will discuss our design considerations and current progress towards the development of this radar system. [1] Center for Remote Sensing of Ice Sheets (Cresis), Sept 2008, [Online]. Available: http://www.cresis.ku.edu

  8. Interferometric synthetic aperture radar imagery of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Ainsworth, T. L.; Cannella, M. E.; Jansen, R. W.; Chubb, S. R.; Carande, R. E.; Foley, E. W.; Goldstein, R. M.; Valenzuela, G. R.

    1993-01-01

    The advent of interferometric synthetic aperture radar (INSAR) imagery brought to the ocean remote sensing field techniques used in radio astronomy. Whilst details of the interferometry differ between the two fields, the basic idea is the same: Use the phase information arising from positional differences of the radar receivers and/or transmitters to probe remote structures. The interferometric image is formed from two complex synthetic aperture radar (SAR) images. These two images are of the same area but separated in time. Typically the time between these images is very short -- approximately 50 msec for the L-band AIRSAR (Airborne SAR). During this short period the radar scatterers on the ocean surface do not have time to significantly decorrelate. Hence the two SAR images will have the same amplitude, since both obtain the radar backscatter from essentially the same object. Although the ocean surface structure does not significantly decorrelate in 50 msec, surface features do have time to move. It is precisely the translation of scattering features across the ocean surface which gives rise to phase differences between the two SAR images. This phase difference is directly proportional to the range velocity of surface scatterers. The constant of proportionality is dependent upon the interferometric mode of operation.

  9. Radar Image with Color as Height, Ancharn Kuy, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Ancharn Kuy, Cambodia, was taken by NASA's Airborne Synthetic Aperture Radar (AIRSAR). The image depicts an area northwest of Angkor Wat. The radar has highlighted a number of circular village mounds in this region, many of which have a circular pattern of rice fields surrounding the slightly elevated site. Most of them have evidence of what seems to be pre-Angkor occupation, such as stone tools and potsherds. Most of them also have a group of five spirit posts, a pattern not found in other parts of Cambodia. The shape of the mound, the location in the midst of a ring of rice fields, the stone tools and the current practice of spirit veneration have revealed themselves through a unique 'marriage' of radar imaging, archaeological investigation, and anthropology.

    Ancharn Kuy is a small village adjacent to the road, with just this combination of features. The region gets slowly higher in elevation, something seen in the shift of color from yellow to blue as you move to the top of the image.

    The small dark rectangles are typical of the smaller water control devices employed in this area. While many of these in the center of Angkor are linked to temples of the 9th to 14th Century A.D., we cannot be sure of the construction date of these small village tanks. They may pre-date the temple complex, or they may have just been dug ten years ago!

    The image dimensions are approximately 4.75 by 4.3 kilometers (3 by 2.7 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color; that is going from blue to red to yellow to green and back to blue again; corresponds to 10 meters (32.8 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif

  10. Weather radar performance monitoring using a metallic-grid ground-scatterer

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Montopoli, Mario; Marzano, Frank Silvio; Baldini, Luca

    2017-10-01

    The use of ground return signals is investigated for checks on the calibration of power measurements of a polarimetric C-band radar. To this aim, a peculiar permanent single scatterer (PSS) consisting of a big metallic roof with a periodic mesh grid structure and having a hemisphere-like shape is considered. The latter is positioned in the near-field region of the weather radar and its use, as a reference calibrator, shows fairly good results in terms of reflectivity and differential reflectivity monitoring. In addition, the use of PSS indirectly allows to check for the radar antenna de-pointing which is another issue usually underestimated when dealing with weather radars. Because of the periodic structure of the considered PSS, simulations of its electromagnetic behavior were relatively easy to perform. To this goal, we used an electromagnetic Computer-Aided-Design (CAD) with an ad-hoc numerical implementation of a full-wave solution to model our PSS in terms of reflectivity and differential reflectivity factor. Comparison of model results and experimental measurements are then shown in this work. Our preliminary investigation can pave the way for future studies aiming at characterizing ground-clutter returns in a more accurate way for radar calibration purposes.

  11. Global search and rescue - A new concept. [orbital digital radar system with passive reflectors

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1976-01-01

    A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.

  12. Relating the microwave radar cross section to the sea surface stress - Physics and algorithms

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Plant, William J.; Brown, Robert A.; Davidson, Kenneth L.; Shaw, William J.

    1991-01-01

    The FASINEX (Frontal Air-Sea Interaction Experiment) provided a unique data set with coincident airborne measurements of the ocean surface radar cross section (at Ku-band) and surface windstress. It is being analyzed to create new algorithms and to better understand the air-sea variables that can have a strong influence on the RCS (radar cross section). Several studies of portions of data from the FASINEX indicate that the RCS is more dependent on the surface stress than on the wind speed. Radar data have been acquired by the JPL and NRL groups. The data span 12 different flight days. Stress measurements can be inferred from ship-board instruments and from aircraft closely following the scatterometers.

  13. Oil spill characterization thanks to optical airborne imagery during the NOFO campaign 2015

    NASA Astrophysics Data System (ADS)

    Viallefont-Robinet, F.; Ceamanos, X.; Angelliaume, S.; Miegebielle, V.

    2017-10-01

    One of the objectives of the NAOMI (New Advanced Observation Method Integration) research project, fruit of a partnership between Total and ONERA, is to work on the detection, the quantification and the characterization of offshore hydrocarbon at the sea surface using airborne remote sensing. In this framework, work has been done to characterize the spectral signature of hydrocarbons in lab in order to build a database of oil spectral signatures. The main objective of this database is to provide spectral libraries for data processing algorithms to be applied to airborne VNIRSWIR hyperspectral images. A campaign run by the NOFO institute (Norwegian Clean Seas Association for Operating Companies) took place in 2015 to test anti-pollution equipment. During this campaign, several hydrocarbon products, including an oil emulsion, were released into the sea, off the Norwegian coast. The NOFO team allowed the NAOMI project to acquire data over the resulting oil slicks using the SETHI system, which is an airborne remote sensing imaging system developed by ONERA. SETHI integrates a new generation of optoelectronic and radar payloads and can operate over a wide range of frequency bands. SETHI is a pod-based system operating onboard a Falcon 20 Dassault aircraft, which is owned by AvDEF. For these experiments, imaging sensors were constituted by 2 synthetic aperture radar (SAR), working at X and L bands in a full polarimetric mode (HH, HV, VH, VV) and 2 HySpex hyperspectral cameras working in the VNIR (0,4 to 1 μm) and SWIR (1 to 2,5 μm) spectral ranges. A sample of the oil emulsion that was used during the campaign was sent to our laboratory for analysis. Measurements of its transmission and of its reflectance in the VNIR and SWIR spectral domains have been performed at ONERA with a Perkin Elmer spectroradiometer and a spectrogoniometer. Several samples of the oil emulsion were prepared in order to measure spectral variations according to oil thickness, illumination angle

  14. Depositional and erosional architectures of gravelly braid bar formed by a flood in the Abe River, central Japan, inferred from a three-dimensional ground-penetrating radar analysis

    NASA Astrophysics Data System (ADS)

    Okazaki, Hiroko; Kwak, Youngjoo; Tamura, Toru

    2015-07-01

    We conducted a ground-penetrating radar (GPR) survey of gravelly braid bars in the Abe River, central Japan, to clarify the three-dimensional (3D) variations in their depositional facies under various geomorphologic conditions. In September 2011, a ten-year return-period flood in the study area reworked and deposited braid bars. After the flood, we surveyed three bars with different geomorphologies using a GPR system with a 250-MHz antenna and identified seven fundamental radar depositional facies: Inclined reflections (facies Ia and Ib), horizontal to subhorizontal reflections (facies IIa and IIb), discontinuous reflections (facies IIIa and IIIb), and facies assemblage with a large-scale channel-shaped lower boundary (facies IV). Combinations of these facies indicate bar formation processes: channel filling, lateral aggradation, and lateral and downstream accretion. In the Abe River, aerial photographs and airborne laser scanning data were obtained before and after the flood. The observed changes of the surface topography are consistent with the subsurface results seen in the GPR sections. This study demonstrated that the erosional and depositional architecture observed among bars with different channel styles was related to river width and represented depositional processes for high-sediment discharge. The quantitative characterizations of the sedimentary architecture will be useful for interpreting gravelly fluvial deposits in the rock record.

  15. Use of reflectance spectra of native plant species for interpreting airborne multispectral scanner data in the East Tintic Mountains, Utah.

    USGS Publications Warehouse

    Milton, N.M.

    1983-01-01

    Analysis of in situ reflectance spectra of native vegetation was used to interpret airborne MSS data. Representative spectra from three plant species in the E Tintic Mountains, Utah, were used to interpret the color components on a color ratio composite image made from MSS data in the visible and near-infrared regions. A map of plant communities was made from the color ratio composite image and field checked. -from Author

  16. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  17. Impact of multiple radar reflectivity data assimilation on the numerical simulation of a flash flood event during the HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Maiello, Ida; Gentile, Sabrina; Ferretti, Rossella; Baldini, Luca; Roberto, Nicoletta; Picciotti, Errico; Alberoni, Pier Paolo; Silvio Marzano, Frank

    2017-11-01

    An analysis to evaluate the impact of multiple radar reflectivity data with a three-dimensional variational (3-D-Var) assimilation system on a heavy precipitation event is presented. The main goal is to build a regionally tuned numerical prediction model and a decision-support system for environmental civil protection services and demonstrate it in the central Italian regions, distinguishing which type of observations, conventional and not (or a combination of them), is more effective in improving the accuracy of the forecasted rainfall. In that respect, during the first special observation period (SOP1) of HyMeX (Hydrological cycle in the Mediterranean Experiment) campaign several intensive observing periods (IOPs) were launched and nine of which occurred in Italy. Among them, IOP4 is chosen for this study because of its low predictability regarding the exact location and amount of precipitation. This event hit central Italy on 14 September 2012 producing heavy precipitation and causing several cases of damage to buildings, infrastructure, and roads. Reflectivity data taken from three C-band Doppler radars running operationally during the event are assimilated using the 3-D-Var technique to improve high-resolution initial conditions. In order to evaluate the impact of the assimilation procedure at different horizontal resolutions and to assess the impact of assimilating reflectivity data from multiple radars, several experiments using the Weather Research and Forecasting (WRF) model are performed. Finally, traditional verification scores such as accuracy, equitable threat score, false alarm ratio, and frequency bias - interpreted by analysing their uncertainty through bootstrap confidence intervals (CIs) - are used to objectively compare the experiments, using rain gauge data as a benchmark.

  18. Radar Image with Color as Height, Old Khmer Road, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows the Old Khmer Road (Inrdratataka-Bakheng causeway) in Cambodia extending from the 9th Century A.D. capitol city of Hariharalaya in the lower right portion of the image to the later 10th Century AD capital of Yasodharapura. This was located in the vicinity of Phnom Bakheng (not shown in image). The Old Road is believed to be more than 1000 years old. Its precise role and destination within the 'new' city at Angkor is still being studied by archeologists. But wherever it ended, it not only offered an immense processional way for the King to move between old and new capitols, it also linked the two areas, widening the territorial base of the Khmer King. Finally, in the past and today, the Old Road managed the waters of the floodplain. It acted as a long barrage or dam for not only the natural streams of the area but also for the changes brought to the local hydrology by Khmer population growth.

    The image was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Image brightness is from the P-band (68 cm wavelength) radar backscatter, which is a measure of how much energy the surface reflects back towards the radar. Color is used to represent elevation contours. One cycle of color represents 20 m of elevation change, that is going from blue to red to yellow to green and back to blue again corresponds to 20 m of elevation change. Image dimensions are approximately 3.4 km by 3.5 km with a pixel spacing of 5 m. North is at top.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate elevation data. Built, operated and managed by JPL, AIRSAR is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  19. Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets

    NASA Astrophysics Data System (ADS)

    Heister, Anton; Scheiber, Rolf

    2017-04-01

    Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.

  20. Phase-sensitive radar on thick Antarctic ice - how well does it work?

    NASA Astrophysics Data System (ADS)

    Binder, Tobias; Eisen, Olaf; Helm, Veit; Humbert, Angelika; Steinhage, Daniel

    2016-04-01

    Phase-sensitive radar (pRES) has become one of the mostly used tools to determine basal melt rates as well as vertical strain in ice sheets. Whereas most applications are performed on ice shelves, only few experiments were conducted on thick ice in Greenland or Antarctica. The technical constrains on an ice shelf to deduce basal melt rates are less demanding than on inland ice of more than 2 km thickness. First, the ice itself is usually only several 100s of meters thick; and, second, the reflection coefficient at the basal interface between sea water and ice is the second strongest one possible. Although the presence of marine ice with higher conductivities might increase attenuation in the lower parts, most experiments on shelves were successful. To transfer this technology to inland regions, either for the investigation of basal melt rates of subglacial hydrological networks or for determining vertical strain rates in basal regions, a reliable estimate of the current system performance is necessary. To this end we conducted an experiment at and in the vicinity of the EPICA deep ice core drill site EDML in Dronning Maud Land, Antarctica. That site has been explored in extraordinary detail with different geophysical methods and provides an already well-studied ice core and borehole, in particular with respect to physical properties like crystal orientation fabric, dielectric properties and matching of internal radar horizons with conductivity signals. We present data from a commercially available pRES system initially recorded in January 2015 and repeated measurements in January 2016. The pRES data are matched to existing and already depth-calibrated airborne radar data. Apart from identifying prominent internal layers, e.g. the one originating from the deposits of the Toba eruption at around 75 ka, we put special focus on the identification of the basal reflection at multiple polarizations. We discuss the potential uncertainty estimates and requirements to

  1. Knitted radar absorbing materials (RAM) based on nickel-cobalt magnetic materials

    NASA Astrophysics Data System (ADS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-05-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, Ku, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under -20 dB return loss over a moderate bandwidth).

  2. An Empirical Function for Bidirectional Reflectance Characterization for Smoke Aerosols Using Multi-angular Airborne Measurements

    NASA Astrophysics Data System (ADS)

    Poudyal, R.; Singh, M. K.; Gatebe, C. K.; Gautam, R.; Varnai, T.

    2015-12-01

    Using airborne Cloud Absorption Radiometer (CAR) reflectance measurements of smoke, an empirical relationship between reflectances measured at different sun-satellite geometry is established, in this study. It is observed that reflectance of smoke aerosol at any viewing zenith angle can be computed using a linear combination of reflectance at two viewing zenith angles. One of them should be less than 30° and other must be greater than 60°. We found that the parameters of the linear combination computation follow a third order polynomial function of the viewing geometry. Similar relationships were also established for different relative azimuth angles. Reflectance at any azimuth angle can be written as a linear combination of measurements at two different azimuth angles. One must be in the forward scattering direction and the other in backward scattering, with both close to the principal plane. These relationships allowed us to create an Angular Distribution Model (ADM) for smoke, which can estimate reflectances in any direction based on measurements taken in four view directions. The model was tested by calculating the ADM parameters using CAR data from the SCAR-B campaign, and applying these parameters to different smoke cases at three spectral channels (340nm, 380nm and 470nm). We also tested our modelled smoke ADM formulas with Absorbing Aerosol Index (AAI) directly computed from the CAR data, based on 340nm and 380nm, which is probably the first study to analyze the complete multi-angular distribution of AAI for smoke aerosols. The RMSE (and mean error) of predicted reflectance for SCAR-B and ARCTAS smoke ADMs were found to be 0.002 (1.5%) and 0.047 (6%), respectively. The accuracy of the ADM formulation is also tested through radiative transfer simulations for a wide variety of situations (varying smoke loading, underlying surface types, etc.).

  3. Nowcasting for a high-resolution weather radar network

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan

    Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the

  4. Assessing uncertainty in radar measurements on simplified meteorological scenarios

    NASA Astrophysics Data System (ADS)

    Molini, L.; Parodi, A.; Rebora, N.; Siccardi, F.

    2006-02-01

    A three-dimensional radar simulator model (RSM) developed by Haase (1998) is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM). The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.

  5. Saberliner flight test for airborne wind shear forward looking detection and avoidance radar systems

    NASA Technical Reports Server (NTRS)

    Mathews, Bruce D.

    1991-01-01

    Westinghouse conducted a flight test with its Sabreliner AN/APG-68 instrumented radar to assess the urban discrete/ground moving vehicle clutter environment. Glideslope approaches were flown into Washington National, BWI, and Georgetown, Delaware, airports employing radar mode timing, waveform, and processing configurations plausible for microburst windshear avoidance. The perceptions, both general and specific, of the clutter environment furnish an empirical foundation for beginning low false alarm detection algorithm development.

  6. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  7. Ka-Band ARM Zenith Radar Corrections Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen; Toto, Tami; Giangrande, Scott

    The KAZRCOR Value -added Product (VAP) performs several corrections to the ingested KAZR moments and also creates a significant detection mask for each radar mode. The VAP computes gaseous attenuation as a function of time and radial distance from the radar antenna, based on ambient meteorological observations, and corrects observed reflectivities for that effect. KAZRCOR also dealiases mean Doppler velocities to correct velocities whose magnitudes exceed the radar’s Nyquist velocity. Input KAZR data fields are passed through into the KAZRCOR output files, in their native time and range coordinates. Complementary corrected reflectivity and velocity fields are provided, along with amore » mask of significant detections and a number of data quality flags. This report covers the KAZRCOR VAP as applied to the original KAZR radars and the upgraded KAZR2 radars. Currently there are two separate code bases for the different radar versions, but once KAZR and KAZR2 data formats are harmonized, only a single code base will be required.« less

  8. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    NASA Astrophysics Data System (ADS)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  9. Radar Image with Color as Height, Nokor Pheas Trapeng, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nokor Pheas Trapeng is the name of the large black rectangular feature in the center-bottom of this image, acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Its Khmer name translates as 'Tank of the City of Refuge'. The immense tank is a typical structure built by the Khmer for water storage and control, but its size is unusually large. This suggests, as does 'city' in its name, that in ancient times this area was far more prosperous than today.

    A visit to this remote, inaccessible site was made in December 1998. The huge water tank was hardly visible. From the radar data we knew that the tank stretched some 500 meters (1,640 feet) from east to west. However, between all the plants growing on the surface of the water and the trees and other vegetation in the area, the water tank blended with the surrounding topography. Among the vegetation, on the northeast of the tank, were remains of an ancient temple and a spirit shrine. So although far from the temples of Angkor, to the southeast, the ancient water structure is still venerated by the local people.

    The image covers an area approximately 9.5 by 8.7 kilometers (5.9 by 5.4 miles) with a pixel spacing of 5 meters (16.4 feet). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches) wavelength radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going from blue to red to yellow to green and back to blue again corresponds to 20 meters (65.6 feet) of elevation change.

    AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. In the TOPSAR mode, AIRSAR collects radar interferometry data from two spatially separated antennas (2.6 meters, or 8.5 feet). Information from the two antennas is used to form radar backscatter imagery and to generate highly accurate

  10. Radar Image with Color as Height, Lovea, Cambodia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Lovea, Cambodia, was acquired by NASA's Airborne Synthetic Aperture Radar (AIRSAR). Lovea, the roughly circular feature in the middle-right of the image, rises some 5 meters (16.4 feet) above the surrounding terrain. Lovea is larger than many of the other mound sites with a diameter of greater than 300 meters (984.3 feet). However, it is one of a number highlighted by the radar imagery. The present-day village of Lovea does not occupy all of the elevated area. However, at the center of the mound is an ancient spirit post honoring the legendary founder of the village. The mound is surrounded by earthworks and has vestiges of additional curvilinear features. Today, as in the past, these harnessed water during the rainy season, and conserved it during the long dry months of the year.

    The village of Lovea located on the mound was established in pre-Khmer times, probably before 500 A.D. In the lower left portion of the image is a large trapeng and square moat. These are good examples of construction during the historical 9th to 14th Century A.D. Khmer period; construction that honored and protected earlier circular villages. This suggests a cultural and technical continuity between prehistoric circular villages and the immense urban site of Angkor. This connection is one of the significant finds generated by NASA's radar imaging of Angkor. It shows that the city of Angkor was a particularly Khmer construction. The temple forms and water management structures of Angkor were the result of pre-existing Khmer beliefs and methods of water management.

    Image dimensions are approximately 6.3 by 4.7 kilometers (3.9 by 2.9 miles). North is at top. Image brightness is from the C-band (5.6 centimeters, or 2.2 inches wavelength) radar backscatter, which is a measure of how much energy the surface reflects back toward the radar. Color is used to represent elevation contours. One cycle of color represents 20 meters (65.6 feet) of elevation change; that is, going

  11. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  12. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  13. Airborne ROWS data report for the high resolution experiment, June 1993

    NASA Technical Reports Server (NTRS)

    Vandemark, D.; Hines, D.; Bailey, S.; Stewart, K.

    1994-01-01

    Airborne radar ocean wave spectrometer (ROWS) data collected during the Office of Naval Research's High Resolution Remote Sensing Experiment of June 1993 are presented. This data summary covers six flights made using NASA's T-39 aircraft over a region of the North Atlantic off the coast of North Carolina and includes multiple crossings of the gulf stream. The Ku-band ROWS was operated in a configuration which continuously switched between an altimeter and a spectrometer channel. Data derived from the two channels include altimeter radar cross section, altimeter-derived sea surface mean square slope and wind speed, and directional and nondirectional longwave spectra. Discussion is provided for several events of particular interest.

  14. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  15. Combined Lidar-Radar Remote Sensing: Initial Results from CRYSTAL-FACE and Implications for Future Spaceflight Missions

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Li, Li-Hua; Hart, William D.; Heymsfield, Gerald M.; Hlavka, Dennis L.; Vaughan, Mark A.; Winker, David M.

    2003-01-01

    In the near future NASA plans to fly satellites carrying a multi-wavelength backscatter lidar and a 94-GHz cloud profiling radar in formation to provide complete global profiling of cloud and aerosol properties. The CRYSTAL-FACE field campaign, conducted during July 2002, provided the first high-altitude colocated measurements from lidar and cloud profiling radar to simulate these spaceborne sensors. The lidar and radar provide complementary measurements with varying degrees of measurement overlap. This paper presents initial results of the combined airborne lidar-radar measurements during CRYSTAL-FACE. The overlap of instrument sensitivity is presented, within the context of particular CRYSTAL-FACE conditions. Results are presented to quantify the portion of atmospheric profiles sensed independently by each instrument and the portion sensed simultaneously by the two instruments.

  16. A user's manual for the NASA/JPL synthetic aperture radar and the NASA/JPL L and C band scatterometers

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1983-01-01

    Airborne synthetic aperture radars and scatterometers are operated with the goals of acquiring data to support shuttle imaging radars and support ongoing basic active microwave remote sensing research. The aircraft synthetic aperture radar is an L-band system at the 25-cm wavelength and normally operates on the CV-990 research aircraft. This radar system will be upgraded to operate at both the L-band and C-band. The aircraft scatterometers are two independent radar systems that operate at 6.3-cm and 18.8-cm wavelengths. They are normally flown on the C-130 research aircraft. These radars will be operated on 10 data flights each year to provide data to NASA-approved users. Data flights will be devoted to Shuttle Imaging Radar-B (SIR-B) underflights. Standard data products for the synthetic aperture radars include both optical and digital images. Standard data products for the scatterometers include computer compatible tapes with listings of radar cross sections (sigma-nought) versus angle of incidence. An overview of these radars and their operational procedures is provided by this user's manual.

  17. Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Mudukutore, Ashok; Wissel, Vicki L. H.; Myers, Theodore

    1997-01-01

    This report documents a high risk, high pay-off experiment with the objective of detecting, for the first time, the presence of aircraft wake vortices in clear air using X-band Doppler radar. Field experiments were conducted in January 1995 at the Wallops Flight Facility (WFF) to demonstrate the capability of the 9.33 GHz (I=3 cm) radar, which was assembled using an existing nine-meter parabolic antenna reflector at VVTT and the receiver/transmitter from the NASA Airborne Windshear Radar-Program. A C-130-aircraft, equipped with wingtip smoke generators, created visually marked wake vortices, which were recorded by video cameras. A C-band radar also observed the wake vortices during detection attempts with the X-band radar. Rawinsonde data was used to calculate vertical soundings of wake vortex decay time, cross aircraft bearing wind speed, and water vapor mixing ratio for aircraft passes over the radar measurement range. This experiment was a pathfinder in predicting, in real time, the location and persistence of C-130 vortices, and in setting the flight path of the aircraft to optimize X-band radar measurement of the wake vortex core in real time. This experiment was conducted in support of the NASA Aircraft Vortex Spacing System (AVOSS).

  18. Radar Polarimetry: Theory, Analysis, and Applications

    NASA Astrophysics Data System (ADS)

    Hubbert, John Clark

    delta is present. Algorithms are presented for estimating delta and K_{DP} from range profiles of Psi_ {CO}. Also discussed are procedures for the estimation and interpretation of other radar measurables such as reflectivity, Z_{HH}, differential reflectivity, Z_{DR }, the magnitude of the copolar correlation coefficient, rho_{HV}(0), and Doppler spectrum width, sigma _{v}. The techniques are again illustrated with data collected by POLDIRAD.

  19. Phased Array Radar Network Experiment for Severe Weather

    NASA Astrophysics Data System (ADS)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  20. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    PubMed

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  1. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  2. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  3. Development of the ECOSAR P-Band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, R. F.; Fatoyinbo, T.; Ranson, K. J.; Sun, G.; Deshpande, M.; Hale, R. D.; Bhat, A.; Perrine, M.; DuToit, C. F.; Bonds, Q.; hide

    2012-01-01

    This paper describes objectives and recent progress on the development of the EcoSAR, a new P-band airborne radar instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. These measurements support science requirements for the study of the carbon cycle and its relationship to climate change. The instrument is scheduled to be completed and flight tested in 2013. Index Terms SAR, Digital Beamforming, Interferometry.

  4. Hybrid space-airborne bistatic SAR geometric resolutions

    NASA Astrophysics Data System (ADS)

    Moccia, Antonio; Renga, Alfredo

    2009-09-01

    Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.

  5. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  6. WSR-88D doppler radar detection of corn earworm moth migration

    USDA-ARS?s Scientific Manuscript database

    Flying insects, birds, and bats contribute to radar reflectivity and radial velocity measured by Doppler weather radars. A study was conducted in the Lower Rio Grande Valley of Texas to determine the capability of Weather Service Radar (version 88D) (WSR-88D) to monitor migratory flights of corn ea...

  7. Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.

    2012-01-01

    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing

  8. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  9. Contributions to Jarvis Creek Watershed, Alaska, from Winter Accumulation and Glacier Melt Inferred Through Airborne and Ground-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Liljedahl, A. K.; Douglas, T. A.; Bernsen, S.; Gatesman, T.; Gerbi, C. C.

    2017-12-01

    Glacier meltwater contributions to river discharge has been increasing in much of the Arctic, likely because of higher air temperatures. For small glaciers that provide a large portion of meltwater to downstream discharge, a sustained negative mass balance is concerning to surrounding ecosystems because the water budget will ultimately decline when glacier ice disappears. Separating components of the hydrological budget is important for predicting future discharge, particularly when major inputs such as glacier ice melt are at risk of total loss. Jarvis Glacier in Eastern Alaska offers an example of this potential scenario. It is a 6-km long glacier that has been in retreat since the 1950's, yet it accounts for 15% of the annual downstream discharge into Jarvis Creek (Liljedahl et al., 2017). In March 2012 through April 2017 we completed yearly airborne and ground-penetrating radar surveys over Jarvis Glacier and its surrounding non-glaciated watershed. These surveys were conducted to assess winter snow accumulation and its potential contribution to the hydrological budget of Jarvis Creek. We also surveyed glacier ice thicknesses to estimate ice volume and potential long term future meltwater contributions to Jarvis Creek based on its sustained negative mass balance. High-frequency radar collected across Jarvis Glacier reveal winter accumulation rates between 1.1-1.9 m SWE. Thickness of winter snow in the surrounding glacier-free valleys is highly variable but it tended to accumulate as drifts near ridge tops or low in the valleys. Low-frequency GPR reveals ice thickness reaching 250 m, mid-glacier, tapering to less than 100 m near the debris-rich terminus. Several over-deepened basins exist and an obvious polythermal structure with 20-30 m of cold ice overlaying temperate ice is also evident. Our presentation will summarize further details of these results in relation to current and potential future contributions of glacier ice and winter snowpack melt to Jarvis

  10. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  11. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  12. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Treesearch

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  13. Constraining Basal Conditions across the Amundsen Sea Embayment of West Antarctica using a Synthesis of the PASIN and HiCARS Radar Sounding Data

    NASA Astrophysics Data System (ADS)

    Hilger, A. M.; Schroeder, D. M.; Corr, H. F. J.; Blankenship, D. D.; Paden, J. D.

    2017-12-01

    Recent observational studies and models have shown that ocean forcing, bed topography, and basal conditions are major controls of the behavior of the Amundsen Sea Embayment of the West Antarctic Ice Sheet. This region contains Thwaites Glacier and Pine Island Glacier, the two most rapidly changing glaciers in Antarctica. Because they are adjacent, interactions between these two glaciers could potentially cause further destabilization as either glacier retreats. Accordingly, it is important to understand the basal conditions on the Thwaites-Pine Island boundary in order to accurately model the present and future behavior of these glaciers. Previous airborne geophysical surveys in this area have provided dense radar sounding coverage using multiple radar sounding systems, including the UTIG HiCARS system and the BAS PASIN system used in the 2004 AGASEA survey. Because the boundary region between Thwaites and Pine Island Glacier is at the respective boundaries of the UTIG and BAS surveys, accurate characterization of the basal conditions requires a synthesis of the data produced by the BAS and HiCARS systems. To this end, we present estimates of bed reflectivity spanning both glacier catchments. These estimates were produced using empirically determined attenuation rates. To improve the consistency of these attenuation rates, we fit across a two-dimensional area, rather than a one-dimensional line as in previous work. These estimates also include cross-calibration to account for the radar sounding systems' differing power and center frequency. This will provide the first cross-survey map of basal reflectivity spanning the entire Amundsen Sea Embayment.

  14. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  15. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    NASA Astrophysics Data System (ADS)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  16. Changes in the TRMM Version-5 and Version-6 Precipitation Radar Products Due to Orbit Boost

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    The performance of the version-5 and version-6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products before and after the satellite orbit boost is assessed through a series of comparisons with Weather Surveillance Radar (WSR)-88D ground-based radar in Melbourne, Florida. Analysis of the comparisons of radar reflectivity near the storm top from the ground radar and both versions of the PR indicates that the PR bias relative to the WSR radar at Melbourne is on the order of 1dB for both pre- and post-boost periods, indicating that the PR products maintain accurate calibration after the orbit boost. Comparisons with the WSR-88D near-surface reflectivity factors indicate that both versions of the PR products accurately correct for attenuation in stratiform rain. However, in convective rain, both versions exhibit negative biases in the near-surface radar reflectivity with version-6 products having larger negative biases than version-5. Rain rate comparisons between the ground and space radars show similar characteristics

  17. Exploring Liquid Water Beneath Glaciers and Permafrost in Antarctica Through Airborne Electromagnetic Surveys

    NASA Astrophysics Data System (ADS)

    Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.

    2015-12-01

    Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of

  18. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  19. Multifunctional millimeter-wave radar system for helicopter safety

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.

    2012-06-01

    A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.

  20. Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen

    2015-01-01

    Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.

  1. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    NASA Technical Reports Server (NTRS)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  2. Target scattering characteristics for OAM-based radar

    NASA Astrophysics Data System (ADS)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  3. Simulation of effect of anti-radar stealth principle

    NASA Astrophysics Data System (ADS)

    Zhao, Borao; Xing, Shuchen; Li, Chunyi

    1988-02-01

    The paper presents simulation methods and results of the anti-radar stealth principle, proving that anti-radar stealth aircraft can drastically reduce the combat efficiency of an air defense radar system. In particular, when anti-radar stealth aircraft are coordinated with jamming as a self-defense soft weapon, the discovery probability, response time and hit rate of the air defense radar system are much lower, with extensive reduction in jamming power and maximum exposure distance of self-defense and long-range support. The paper describes an assumed combat situation and construction of a calculation model for the aircraft survival rate, as well as simulation results and analysis. Four figures show an enemy bomber attacking an airfield, as well as the effects of the radar effective reflecting surface on discovery probability, guidance radius, aircraft survival and exposure distance (for long-range support and jamming).

  4. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    NASA Astrophysics Data System (ADS)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  5. Elliptical storm cell modeling of digital radar data

    NASA Technical Reports Server (NTRS)

    Altman, F. J.

    1972-01-01

    A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.

  6. Radar Evaluation of Optical Cloud Constraints to Space Launch Operations

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Short, David A.; Ward, Jennifer G.

    2005-01-01

    Weather constraints to launching space vehicles are designed to prevent loss of the vehicle or mission due to weather hazards (See, e.g., Ref 1). Constraints include Lightning Launch Commit Criteria (LLCC) designed to avoid natural and triggered lightning. The LLCC currently in use at most American launch sites including the Eastern Range and Kennedy Space Center require the Launch Weather Officer to determine the height of cloud bases and tops, the location of cloud edges, and cloud transparency. The preferred method of making these determinations is visual observation, but when that isn't possible due to darkness or obscured vision, it is permissible to use radar. This note examines the relationship between visual and radar observations in three ways: A theoretical consideration of the relationship between radar reflectivity and optical transparency. An observational study relating radar reflectivity to cloud edge determined from in-situ measurements of cloud particle concentrations that determine the visible cloud edge. An observational study relating standard radar products to anvil cloud transparency. It is shown that these three approaches yield results consistent with each other and with the radar threshold specified in Reference 2 for LLCC evaluation.

  7. Investigation of the Representation of OLEs and Terrain Effects Within the Coastal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective

    DTIC Science & Technology

    2013-10-07

    OLEs and Terrain Effects Within the Coastal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective Annual Report Under...UPP related investigations that will be carried out in Year 3. RELATED PROJECTS ONR contract to study the utilization of Doppler wind lidar (DWL...MATERHORN2012) Paper presented at the Coherent Laser Radar Conference, June 2013 Airborne DWL investigations of flow over complex terrain (MATERHORN

  8. Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1984-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  9. Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer

    NASA Technical Reports Server (NTRS)

    Weissman, D. E.; Johnson, J. W.

    1986-01-01

    The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.

  10. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  11. Potential use of weather radar to study movements of wintering waterfowl

    USGS Publications Warehouse

    Randall, Lori A.; Diehl, Robert H.; Wilson, Barry C.; Barrow, Wylie C.; Jeske, Clinton W.

    2011-01-01

    To protect and restore wintering waterfowl habitat, managers require knowledge of routine wintering waterfowl movements and habitat use. During preliminary screening of Doppler weather radar data we observed biological movements consistent with routine foraging flights of wintering waterfowl known to occur near Lacassine National Wildlife Refuge (NWR), Louisiana. During the winters of 2004–2005 and 2005–2006, we conducted field surveys to identify the source of the radar echoes emanating from Lacassine NWR. We compared field data to weather radar reflectivity data. Spatial and temporal patterns consistent with foraging flight movements appeared in weather radar data on all dates of field surveys. Dabbling ducks were the dominant taxa flying within the radar beam during the foraging flight period. Using linear regression, we found a positive log-linear relationship between average radar reflectivity (Z) and number of birds detected over the study area (P r2 = 0.62, n = 40). Ground observations and the statistically significant relationship between radar data and field data confirm that Doppler weather radar recorded the foraging flights of dabbling ducks. Weather radars may be effective tools for wintering waterfowl management because they provide broad-scale views of both diurnal and nocturnal movements. In addition, an extensive data archive enables the study of wintering waterfowl response to habitat loss, agricultural practices, wetland restoration, and other research questions that require multiple years of data.

  12. Unusual radar echoes from the Greenland ice sheet

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.

    1993-01-01

    In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.

  13. Introduction of a Ground Penetrating Radar System for Subsurface Investigation in Balik Pulau, Penang Island

    NASA Astrophysics Data System (ADS)

    Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM

    2018-04-01

    Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.

  14. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  15. Airborne Science personnel Walter Klein and David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    Airborne Science personnel Walter Klein and David Bushman at the Mission Manager's console onboard NASA's DC-8 during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  16. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  17. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  18. Polarimetric Radar Characteristics of Simulated and Observed Intense Convection Between Continental and Maritime Environment

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Dolan, B.; Tao, W. K.; Rutledge, S. A.; Iguchi, T.; Barnum, J. I.; Lang, S. E.

    2017-12-01

    This study presents polarimetric radar characteristics of intense convective cores derived from observations as well as a polarimetric-radar simulator from cloud resolving model (CRM) simulations from Midlatitude Continental Convective Clouds Experiment (MC3E) May 23 case over Oklahoma and a Tropical Warm Pool-International Cloud Experiment (TWP-ICE) Jan 23 case over Darwin, Australia to highlight the contrast between continental and maritime convection. The POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a state-of-art T-matrix-Mueller-Matrix-based polarimetric radar simulator that can generate synthetic polarimetric radar signals (reflectivity, differential reflectivity, specific differential phase, co-polar correlation) as well as synthetic radar retrievals (precipitation, hydrometeor type, updraft velocity) through the consistent treatment of cloud microphysics and dynamics from CRMs. The Weather Research and Forecasting (WRF) model is configured to simulate continental and maritime severe storms over the MC3E and TWP-ICE domains with the Goddard bulk 4ICE single-moment microphysics and HUCM spectra-bin microphysics. Various statistical diagrams of polarimetric radar signals, hydrometeor types, updraft velocity, and precipitation intensity are investigated for convective and stratiform precipitation regimes and directly compared between MC3E and TWP-ICE cases. The result shows MC3E convection is characterized with very strong reflectivity (up to 60dBZ), slight negative differential reflectivity (-0.8 0 dB) and near-zero specific differential phase above the freezing levels. On the other hand, TWP-ICE convection shows strong reflectivity (up to 50dBZ), slight positive differential reflectivity (0 1.0 dB) and differential phase (0 0.8 dB/km). Hydrometeor IDentification (HID) algorithm from the observation and simulations detect hail-dominant convection core in MC3E, while graupel-dominant convection core in TWP-ICE. This land-ocean contrast

  19. Application of ground-penetrating-radar methods in hydrogeologic studies

    USGS Publications Warehouse

    Beres, Milan; Haeni, F.P.

    1991-01-01

    A ground-penetrating-radar system was used to study selected stratified-drift deposits in Connecticut. Ground-penetrating radar is a surface-geophysical method that depends on the emission, transmission, reflection, and reception of an electromagnetic pulse and can produce continuous high-resolution profiles of the subsurface rapidly and efficiently. Traverse locations on land included a well field in the town of Mansfield, a sand and gravel pit and a farm overlying a potential aquifer in the town of Coventry, and Haddam Meadows State Park in the town of Haddam. Traverse locations on water included the Willimantic River in Coventry and Mansfield Hollow Lake in Mansfield. The penetration depth of the radar signal ranged from about 20 feet in fine-grained glaciolacustrine sediments to about 70 feet in coarse sand and gravel. Some land records in coarse-grained sediments show a distinct, continuous reflection from the water table about 5 to 11 feet below land surface. Parallel reflectors on the records are interpreted as fine-grained sediments. Hummocky or chaotic reflectors are interpreted as cross-bedded or coarse-grained sediments. Other features observed on some of the radar records include the till and bedrock surface. Records collected on water had distinct water-bottom multiples (more than one reflection) and diffraction patterns from boulders. The interpretation of the radar records, which required little or no processing, was verified by using lithologic logs from test holes located along some of the land traverses and near the water traverses.

  20. New distributed radar technology based on UAV or UGV application

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-05-01

    Regular micro and nano radars cannot provide reliable tracking of low altitude low profile aerial targets in urban and mountain areas because of reflection and re-reflections from buildings and terrain. They become visible and vulnerable to guided missiles if positioned on a tower or blimp. Doppler radar cannot distinguish moving cars and small low altitude aerial targets in an urban area. A new concept of pocket size distributed radar technology based on the application of UAV (Unmanned Air Vehicles), UGV (Unmanned Ground Vehicles) is proposed for tracking of low altitude low profile aerial targets at short and medium distances for protection of stadium, camp, military facility in urban or mountain areas.

  1. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  2. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  3. W-band spaceborne radar observations of atmospheric river events

    NASA Astrophysics Data System (ADS)

    Matrosov, S. Y.

    2010-12-01

    While the main objective of the world first W-band radar aboard the CloudSat satellite is to provide vertically resolved information on clouds, it proved to be a valuable tool for observing precipitation. The CloudSat radar is generally able to resolve precipitating cloud systems in their vertical entirety. Although measurements from the liquid hydrometer layer containing rainfall are strongly attenuated, special retrieval approaches can be used to estimate rainfall parameters. These approaches are based on vertical gradients of observed radar reflectivity factor rather than on absolute estimates of reflectivity. Concurrent independent estimations of ice cloud parameters in the same vertical column allow characterization of precipitating systems and provide information on coupling between clouds and rainfall they produce. The potential of CloudSat for observations atmospheric river events affecting the West Coast of North America is evaluated. It is shown that spaceborne radar measurements can provide high resolution information on the height of the freezing level thus separating areas of rainfall and snowfall. CloudSat precipitation rate estimates complement information from the surface-based radars. Observations of atmospheric rivers at different locations above the ocean and during landfall help to understand evolutions of atmospheric rivers and their structures.

  4. Evidence for highly reflecting materials on the surface and subsurface of Venus

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Slade, M. A.; Saunders, R. S.

    1988-01-01

    Radar images at a 12.5-centimeter wavelength made with the Goldstone radar interferometer in 1980 and 1986, together with lunar radar images and recent Venera 15 and 16 data, indicate that material on the surface and subsurface of Venus has a Fresnel reflectivity in excess of 50 percent. Such high reflectivities have been reported on the surface in mountainous regions. Material of high reflectivity may also underlie lower reflectivity surficial materials of the plains regions, where it has been excavated by impact cratering in some areas.

  5. Beyond Radar Backscatter: Estimating Forest Structure and Biomass with Radar Interferometry and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lavalle, M.; Ahmed, R.

    2014-12-01

    Mapping forest structure and aboveground biomass globally is a major challenge that the remote sensing community has been facing for decades. Radar backscatter is sensitive to biomass only up to a certain amount (about 150 tons/ha at L-band and 300 tons/ha at P-band), whereas lidar remote sensing is strongly limited by poor spatial coverage. In recent years radar interferometry, including its extension to polarimetric radar interferometry (PolInSAR), has emerged as a new technique to overcome the limitations of radar backscatter. The idea of PolInSAR is to use jointly interferometric and polarimetric radar techniques to separate different scattering mechanisms and retrieve the vertical structure of forests. The advantage is to map ecosystem structure continuously over large areas and independently of cloud coverage. Experiments have shown that forest height - an important proxy for biomass - can be estimated using PolInSAR with accuracy between 15% and 20% at plot level. At AGU we will review the state-of-art of repeat-pass PolInSAR for biomass mapping, including its potential and limitations, and discuss how merging lidar data with PolInSAR data can be beneficial not only for product cross-validation but also for achieving better estimation of ecosystem properties over large areas. In particular, lidar data are expected to aid the inversion of PolInSAR models by providing (1) better identification of ground under the canopy, (2) approximate information of canopy structure in limited areas, and (3) maximum tree height useful for mapping PolInSAR temporal decorrelation. We will show our tree height and biomass maps using PolInSAR L-band JPL/UAVSAR data collected in tropical and temperate forests, and P-band ONERA/TROPISAR data acquired in French Guiana. LVIS lidar data will be used, as well as SRTM data, field measurements and inventory data to support our study. The use of two different radar frequencies and repeat-pass JPL UAVSAR data will offer also the

  6. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  7. A Single-Radar Technique for Estimating the Winds in Tropical Cyclones.

    NASA Astrophysics Data System (ADS)

    Tuttle, John; Gall, Robert

    1999-04-01

    A method for determining horizontal wind speeds in hurricanes using ground-based radars is presented and evaluated. The method makes use of the tracking reflectivity echos by correlation (TREC) method where individual features in radar reflectivity are tracked, from radar sweeps several minutes apart, by finding the maxima in the cross-correlation function between the two times. This method has been applied successfully in determining motions within the clear boundary layer where reflectors are insects and refractive index variations, but it generally has failed when applied to determining air motions by tracking precipitation elements in strong environmental shear. It appears to work in the lower few kilometers of the hurricane where the vertical wind shear is relatively weak.Examples are presented where the TREC algorithm is applied to three landfalling hurricanes: Hurricanes Hugo and Erin in the United States and Typhoon Herb in Taiwan. The results from Hugo, where the radar data were provided by a WSR-57, were compared to in situ wind measurements by the National Oceanic and Atmospheric Administration P-3 research aircraft. In Erin and Herb, Doppler radar data are available and the radial winds (with respect to the radar) computed by TREC could be compared.The results were very promising. In Hugo, the agreement between the TREC analysis and the aircraft winds was generally to within 10%. In Erin and Herb less than 20% of the difference between radial-Doppler wind estimations by TREC and the actual Doppler wind measurements was greater than 5 m s-1. When Herb was closer to the radar, however, the error rates were much higher due to the interference of ground clutter.TREC promises to provide a quick and reasonably accurate method for continuously computing fully two-dimensional winds from land-based radars as hurricanes approach the coast. Such information would complement that provided by Doppler radars where it could estimate the tangential component to the

  8. Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis

    2015-02-01

    An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the

  9. Using TRMM and GPM precipitation radar for calibration of weather radars in the Philippines

    NASA Astrophysics Data System (ADS)

    Crisologo, Irene; Bookhagen, Bodo; Smith, Taylor; Heistermann, Maik

    2016-04-01

    Torrential and sustained rainfall from tropical cyclones, monsoons, and thunderstorms frequently impact the Philippines. In order to predict, assess, and measure storm impact, it is imperative to have a reliable and accurate monitoring system in place. In 2011, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) established a weather radar network of ten radar devices, eight of which are single-polarization S-band radars and two dual-polarization C-band radars. Because of a low-density hydrometeorological monitoring networks in the Philippines, calibration of weather radars becomes a challenging, but important task. In this study, we explore the potential of scrutinizing the calibration of ground radars by using the observations from the Tropical Rainfall Measuring Mission (TRMM). For this purpose, we compare different TRMM level 1 and 2 orbital products from overpasses over the Philippines, and compare these products to reflectivities observed by the Philippine ground radars. Differences in spatial resolution are addressed by computing adequate zonal statistics of the local radar bins located within the corresponding TRMM cell in space and time. The wradlib package (Heistermann et al. 2013; Heistermann et al. 2015) is used to process the data from the Subic S-band single-polarization weather radar. These data will be analyzed in conjunction with TRMM data for June to August 2012, three months of the wet season. This period includes the enhanced monsoon of 2012, locally called Habagat 2012, which brought sustained intense rainfall and massive floods in several parts of the country including the most populated city of Metro Manila. References Heistermann, M., Jacobi, S., Pfaff, T. (2013): Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863-871, doi: 10.5194/hess-17-863-2013. Heistermann, M., S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J

  10. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  11. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  12. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over

  13. Synergistic Measurement of Ice Cloud Microphysics using C- and Ka-Band Radars

    NASA Astrophysics Data System (ADS)

    Ewald, F.; Gross, S.; Hagen, M.; Li, Q.; Zinner, T.

    2017-12-01

    Ice clouds play an essential role in the climate system since they have a large effect on the Earth's radiation budget. Uncertainties associated with their spatial and temporal distribution as well as their optical and microphysical properties still account for large uncertainties in climate change predictions. Substantial improvement of our understanding of ice clouds was achieved with the advent of cloud radars into the field of ice cloud remote sensing. Here, highly variable ice crystal size distributions are one of the key issues remaining to be resolved. With radar reflectivity scaling with the sixth moment of the particle size, the assumed ice crystal size distribution has a large impact on the results of microphysical retrievals. Different ice crystal sizes distributions can, however, be distinguished, when cloud radars of different wavelength are used simultaneously.For this study, synchronous RHI scans were performed for a common measurement range of about 30 km between two radar instruments using different wavelengths: the dual-polarization C-band radar POLDIRAD operated at DLR and the Mira-36 Ka-band cloud radar operated at the University of Munich. For a measurement period over several months, the overlapping region for ice clouds turned out to be quite large. This gives evidence on the presence of moderate-sized ice crystals for which the backscatter is sufficient high to be visible in the C-band as well. In the range between -10 to +10 dBz, reflectivity measurements from both radars agreed quite well indicating the absence of large ice crystals. For reflectivities above +10 dBz, we observed differences with smaller values at the Ka-band due to Mie scattering effects at larger ice crystals.In this presentation, we will show how this differential reflectivity can be used to gain insight into ice cloud microphysics on the basis of electromagnetic scattering calculations. We will further explore ice cloud microphysics using the full polarization agility

  14. Derivation of Z-R equation using Mie approach for a 77 GHz radar

    NASA Astrophysics Data System (ADS)

    Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni

    2017-04-01

    The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A

  15. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s.

  16. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  17. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  18. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  19. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  20. Comparison between S. T. radar and in situ balloon measurements

    NASA Technical Reports Server (NTRS)

    Dalaudier, F.; Barat, J.; Bertin, F.; Brun, E.; Crochet, M.; Cuq, F.

    1986-01-01

    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity.