Science.gov

Sample records for airborne thermal magnetic

  1. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    SciTech Connect

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  2. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  3. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    SciTech Connect

    D. Yuan; E. Doak; P. Guss; A. Will

    2002-01-01

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images.

  4. Target detection algorithm for airborne thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Marwaha, R.; Kumar, A.; Raju, P. L. N.; Krishna Murthy, Y. V. N.

    2014-11-01

    Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.

  5. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  6. Thermal infrared spectral imager for airborne science applications

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Realmuto, Vincent; Eng, Bjorn T.

    2009-05-01

    An airborne thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz). A comparison is made using data from the ASTER spectral library.

  7. Towards HyTES: an airborne thermal imaging spectroscopy instrument

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Realmuto, Vincent; Eng, Bjorn T.

    2009-08-01

    An airborne thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz). A comparison is made using data from the ASTER spectral library.

  8. Application of airborne thermal imagery to surveys of Pacific walrus

    USGS Publications Warehouse

    Burn, D.M.; Webber, M.A.; Udevitz, M.S.

    2006-01-01

    We conducted tests of airborne thermal imagery of Pacific walrus to determine if this technology can be used to detect walrus groups on sea ice and estimate the number of walruses present in each group. In April 2002 we collected thermal imagery of 37 walrus groups in the Bering Sea at spatial resolutions ranging from 1-4 m. We also collected high-resolution digital aerial photographs of the same groups. Walruses were considerably warmer than the background environment of ice, snow, and seawater and were easily detected in thermal imagery. We found a significant linear relation between walrus group size and the amount of heat measured by the thermal sensor at all 4 spatial resolutions tested. This relation can be used in a double-sampling framework to estimate total walrus numbers from a thermal survey of a sample of units within an area and photographs from a subsample of the thermally detected groups. Previous methods used in visual aerial surveys of Pacific walrus have sampled only a small percentage of available habitat, resulting in population estimates with low precision. Results of this study indicate that an aerial survey using a thermal sensor can cover as much as 4 times the area per hour of flight time with greater reliability than visual observation.

  9. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  10. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public

  11. Thermal Infrared Spectral Imager for Airborne Science Applications

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-01-01

    An airborne thermal hyperspectral imager is under development which utilizes the compact Dyson optical configuration and quantum well infrared photo detector (QWIP) focal plane array. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray-light and large swath width. The configuration has the potential to be the optimal imaging spectroscopy solution for lighter-than-air (LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as design trade-offs. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of apparent emissivity for various known standard minerals (such as quartz). A comparison is made using data from the ASTER spectral library.

  12. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  13. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  14. Magnetic Approaches to Measuring and Mitigating Airborne Particulate Pollution

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2014-12-01

    Human exposure to airborne particulate matter (PM) generates adverse human health impacts at all life stages from the embryonic to the terminal, including damage to respiratory and cardiovascular health, and neurodevelopment and cognitive function. Detailed understanding of the causal links between PM exposure and specific health impacts, and possible means to reduce PM exposure require knowledge of PM concentrations, compositions and sources at the fine-scale; i.e. beyond the current resolution of spatially-sparse conventional PM monitoring, non-unique elemental analyses, or poorly-validated PM modelling. Magnetically-ordered iron oxide minerals appear to be a ubiquitous component of urban PM. These minerals derive partly from the presence of iron impurities in fuels, which form, upon combustion, a non-volatile residue, often dominated by magnetite, within glassy, spherical condensates. Iron-rich, magnetic PM also arises from abrasion from vehicle components, including disk brakes, and road dust. The ubiquity and diversity of these magnetic PM phases, and the speed and sensitivity of magnetic analyses (down to trace concentrations), makes possible rapid, cost-effective magnetic characterization and quantification of PM, a field of study which has developed rapidly across the globe over the last 2 decades. Magnetic studies of actively-sampled PM, on filters, and passively-sampled PM, on tree leaves and other depositional surfaces, can be used to: monitor and map at high spatial resolution ambient PM concentrations; address the controversial issue of the efficacy of PM capture by vegetation; and add a new, discriminatory dimension to PM source apportionment.

  15. An Algorithm to Atmospherically Correct Visible and Thermal Airborne Imagery

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Luvall, Jeffrey C.; Schiller, Stephen; Arnold, James E. (Technical Monitor)

    2000-01-01

    The program Watts implements a system of physically based models developed by the authors, described elsewhere, for the removal of atmospheric effects in multispectral imagery. The band range we treat covers the visible, near IR and the thermal IR. Input to the program begins with atmospheric pal red models specifying transmittance and path radiance. The system also requires the sensor's spectral response curves and knowledge of the scanner's geometric definition. Radiometric characterization of the sensor during data acquisition is also necessary. While the authors contend that active calibration is critical for serious analytical efforts, we recognize that most remote sensing systems, either airborne or space borne, do not as yet attain that minimal level of sophistication. Therefore, Watts will also use semi-active calibration where necessary and available. All of the input is then reduced to common terms, in terms of the physical units. From this it Is then practical to convert raw sensor readings into geophysically meaningful units. There are a large number of intricate details necessary to bring an algorithm or this type to fruition and to even use the program. Further, at this stage of development the authors are uncertain as to the optimal presentation or minimal analytical techniques which users of this type of software must have. Therefore, Watts permits users to break out and analyze the input in various ways. Implemented in REXX under OS/2 the program is designed with attention to the probability that it will be ported to other systems and other languages. Further, as it is in REXX, it is relatively simple for anyone that is literate in any computer language to open the code and modify to meet their needs. The authors have employed Watts in their research addressing precision agriculture and urban heat island.

  16. Airborne spectrograph for the thermal IR: Broadband Array Spectrograph System

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Hackwell, John; Lynch, David; Mazuk, Ann

    1995-01-01

    Spectroscopic studies in the 'fingerprint' region of the thermal IR from 3 to 14 microns of celestial dust components and the overall energy distribution of the sources are best served by moderate spectral resolution (R = lambda/Delta lambda approximately 30 to 200), high sensitivity observations. Spectral purity and the reproducibility of the spectral shape are critical as well, when using the spectral shape to assign temperatures to dust grains or to gas clouds based on the wavelength and shape of molecular bands. These sensor attributes are also important to the use of wavelengths and ratios of solid state features to derive compositions of dust grains in celestial sources. The advent of high quality linear arrays of blocked impurity band (BIB) detectors of Si:As permitted the development of a state-of-the-art, patented, cooled prism spectrograph. Developed at The Aerospace Corporation largely with in-house funds, the Broadband Array Spectrograph System (BASS) has been used for a variety of remote sensing applications, but especially for IR astronomical studies on the Kuiper Airborne Observatory and at the NASA Infrared Telescope Facility (IRTF). The attributes of the spectrograph, specifically having the pupil imaged onto the 2 linear 58 element detector arrays so that the effects of guiding errors are minimized, being able to maximally exploit the limited observing time by acquiring all 116 spectral channels simultaneously, and having all spectral channels imaged through the same aperture so that spectral mapping is readily and reliably accomplished, afford the scientist with a unique opportunity to conduct both surveys of examples of many different types of sources as well as in-depth studies of a given class of object by thoroughly sampling the class members. This duality was demonstrated with the BASS through a combination of KAO flights where spectral maps were obtained as part of in-depth studies of specific source regions (such as Orion and W3) and

  17. Quality Assessment of Building Textures Extracted from Oblique Airborne Thermal Imagery

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Stilla, U.

    2016-06-01

    Thermal properties of the building hull became an important topic of the last decade. Combining the thermal data with building models makes it possible to analyze thermal data in a 3D scene. In this paper we combine thermal images with 3D building models by texture mapping. We present a method for texture extraction from oblique airborne thermal infrared images. We put emphasis on quality assessment of these textures and evaluation of their usability for thermal inspections. The quality measures used for assessment are divided to resolution, occlusion and matching quality.

  18. Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours.

    PubMed

    GRIERSON

    1998-11-01

    / Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent's Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.KEY WORDS: Airborne video; Thermal imagery; Global positioning; Oil-spill monitoring; Tracking beacon PMID:9732519

  19. Thermal Infrared Airborne Field Studies: Applications to the Mars Global Surveyor Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Herr, K.; Kirkland, L.; Keim, E.; Hackwell, J.

    2002-12-01

    A primary goal of the Mars exploration program is to reconnoiter the planet from orbit using infrared remote sensing. Currently the Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer THEMIS provide this capability. Landing site selection and modeling of the geologic and climate history depend on accurate interpretations of these data sets. Interpretations use terrestrial analog remote sensing and laboratory studies. Until recently, there have been no airborne thermal infrared spectrometer ("hyspectral") data sets available to NASA researchers that are comparable to TES. As a result, studies relied on airborne multi-channel radiometer ("multispectral") measurements (e.g. TIMS, MASTER). A radiometer has the advantage that measurement of broad bands makes it easier to measure with higher sensitivity. However, radiometers lack the spectral resolution to investigate details of spectral signatures. This gap may be partially addressed using field samples collected and measured in the laboratory. However, that leaves questions unanswered about the field environment and potentially leaves important complicating issues undiscovered. Two questions that haunt thermal infrared remote sensing investigations of Mars are: (1) If a mineral is not detected in a given data set, how definitively should we state that it is not there? (2) When does the method provide quantitative mineral mapping? In order to address these questions, we began collaborating with Department of Defense (DoD) oriented researchers and drawing on the unique instrumentation they developed. Both Mars and DoD researchers have a common need to identify materials without benefit of ground truth. Such collaborations provide a fresh perspective as well as unique data. Our work addresses uncertainties in stand-off identification of solid phase surface materials when the identification must proceed without benefit of ground truth. We will report on the results applied to TES

  20. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours

    SciTech Connect

    Grierson, I.T.

    1998-11-01

    Trials were conducted using an airborne video system operating in the visible, near-infrared, and thermal wavelengths to detect two known oil spill releases during darkness at a distance of 10 nautical miles from the shore in St. Vincent`s Gulf, South Australia. The oil spills consisted of two 20-liter samples released at 2-h intervals, one sample consisted of paraffinic neutral material and the other of automotive diesel oil. A tracking buoy was sent overboard in conjunction with the release of sample 1, and its movement monitored by satellite relay. Both oil residues were overflown by a light aircraft equipped with thermal, visible, and infrared imagers at a period of approximately 1 h after the release of the second oil residue. Trajectories of the oil residue releases were also modeled and the results compared to those obtained by the airborne video and the tracking buoy. Airborne imagery in the thermal wavelengths successfully located and mapped both oil residue samples during nighttime conditions. Results from the trial suggest that the most advantageous technique would be the combined use of the tracking beacon to obtain an approximate location of the oil spill and the airborne imagery to ascertain its extent and characteristics.

  1. Thermal to electricity conversion using thermal magnetic properties

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  2. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  3. Numerical analysis of thermally actuated magnets for magnetization of superconductors

    NASA Astrophysics Data System (ADS)

    Li, Quan; Yan, Yu; Rawlings, Colin; Coombs, Tim

    2010-06-01

    Superconductors, such as YBCO bulks, have extremely high potential magnetic flux densities, comparing to rare earth magnets. Therefore, the magnetization of superconductors has attracted broad attention and contribution from both academic research and industry. In this paper, a novel technique is proposed to magnetize superconductors. Unusually, instead of using high magnetic fields and pulses, repeatedly magnetic waves with strength of as low as rare earth magnets are applied. These magnetic waves, generated by thermally controlling a Gadolinium (Gd) bulk with a rare earth magnet underneath, travel over the flat surface of a YBCO bulk and get trapped little by little. Thus, a very small magnetic field can be used to build up a very large magnetic field. In this paper, the modelling results of thermally actuated magnetic waves are presented showing how to transfer sequentially applied thermal pulses into magnetic waves. The experiment results of the magnetization of YBCO bulk are also presented to demonstrate how superconductors are progressively magnetized by small magnetic field

  4. Airborne magnetic mapping of volcanic areas - state-of-the-art and future perspectives

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Paoletti, Valeria; Okuma, Shigeo

    2015-04-01

    Traditionally airborne magnetics surveys in volcanology are used for mapping regional geological features, fault zones and to develop a magnetic model of the volcanic subsurface. Within an Austrian-Italian-Japanese cooperation, several volcanic areas including Mt. Vesuvius, Ischia, Campi Flegreii and Aeolian Islands in Italy and Socorro Island in Mexico were mapped by high-resolution magnetic mapping during the last 15 years. In this paper, general conclusions from this long-term cooperation project on airborne magnetics in volcanic areas will be summarised. Basically the results showed the results from airborne magnetics could be used for three major purposes: 1. Developing a rough model for the magnetisation below the volcano down to several kilometres by applying advanced magnetic inversion algorithms helped to define the possible depth of the current or past magma chamber. Due to the complexity of the subsurface of volcanic areas, inversion of data was much dependent on constraints coming from other geoscientific disciplines. 2. After applying certain steps of reduction (topographic correction, field transformation) and a combination of source selective filtering, important regional structural trends could be derived from the alignment of the residual magnetic anomalies. 3. On the other hand during recent years, research has also focused on repeated measurements of the magnetic field of volcanic areas (differential in respect of time = differential magnetic measurements - DMM) using airborne sensors. Long-term temporal magnetic field variations in active volcanic areas can be caused by a changing size of the magma chamber or a general rise in temperature. This is caused by the fact that magnetization disappears, when a magnetic material is warmed up over a certain temperature (Curie- temperature). In consequence the resulting total magnetic field changes. Therefore, determining areas showing changes in the magnetic field could help to select areas where a

  5. Airborne trace organic contaminant removal using thermally regenerable multi-media layered sorbents

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.

    1991-01-01

    A cyclic two-step process is described which forms the basis for a simple and highly efficient air purification technology. Low molecular weight organic vapors are removed from contaminated airstreams by passage through an optimized sequence of sorbent media layers. The contaminant loaded sorbents are subsequently regenerated by thermal desorption into a low volume inert gas environment. A mixture of airborne organic contaminants consisting of acetone, 2-butanone, ethyl acetate, Freon-113 and methyl chloroform has been quantitatively removed from breathing quality air using this technique. The airborne concentrations of all contaminants have been reduced from initial Spacecraft Maximum Allowable Concentration (SMAC) levels to below the analytical limits of detection. No change in sorption efficiency was observed through multiple cycles of contaminant loading and sorbent regeneration via thermal desorption.

  6. Thermal management of closed computer modules utilizing high density circuitry. [in Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1990-01-01

    This paper presents data on a preliminary analysis of the thermal dynamic characteristics of the Airborne Information Management System (AIMS), which is a continuing design project at NASA Dryden. The analysis established the methods which will be applied to the actual AIMS boards as they become available. The paper also describes the AIMS liquid cooling system design and presents a thermodynamic computer model of the AIMS cooling system, together with an experimental validation of this model.

  7. Radiative magnetized thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  8. Study of thermal insulation for airborne liquid hydrogen fuel tanks

    NASA Technical Reports Server (NTRS)

    Ruccia, F. E.; Lindstrom, R. S.; Lucas, R. M.

    1978-01-01

    A concept for a fail-safe thermal protection system was developed. From screening tests, approximately 30 foams, adhesives, and reinforcing fibers using 0.3-meter square liquid nitrogen cold plate, CPR 452 and Stafoam AA1602, both reinforced with 10 percent by weight of 1/16 inch milled OCF Style 701 Fiberglas, were selected for further tests. Cyclic tests with these materials in 2-inch thicknesses bonded on a 0.6-meter square cold plate with Crest 7410 adhesive systems, were successful. Zero permeability gas barriers were identified and found to be compatible with the insulating concept.

  9. Comparison of thermal data from airborne and vessel surveys of Lake Erie

    USGS Publications Warehouse

    Beeton, Alfred M.; Moffett, James W.; Parker, Dana C.

    1969-01-01

    A study of the applications of airborne infrared equipment for detecting water masses and currents of the Great Lakes is described. Infrared scanners were used to make thermal strip maps and an infrared radiometer was used to obtain surface temperatures of the western end of Lake Erie and the lower Detroit River. Simultaneously, surface water temperatures were taken and water samples were collected for chloride determinations from four vessels making a 4 day synoptic survey of the test area. The remote infrared measurements are compared with shipboard temperature data to evaluate their usefulness in demonstrating thermal structure, water masses, and currents in the test area.

  10. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  11. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  12. Real-time detection of airborne asbestos by light scattering from magnetically re-aligned fibers.

    PubMed

    Stopford, Christopher; Kaye, Paul H; Greenaway, Richard S; Hirst, Edwin; Ulanowski, Zbigniew; Stanley, Warren R

    2013-05-01

    Inadvertent inhalation of asbestos fibers and the subsequent development of incurable cancers is a leading cause of work-related deaths worldwide. Currently, there is no real-time in situ method for detecting airborne asbestos. We describe an optical method that seeks to address this deficiency. It is based on the use of laser light scattering patterns to determine the change in angular alignment of individual airborne fibers under the influence of an applied magnetic field. Detection sensitivity estimates are given for both crocidolite (blue) and chrysotile (white) asbestos. The method has been developed with the aim of providing a low-cost warning device to trades people and others at risk from inadvertent exposure to airborne asbestos. PMID:23669992

  13. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  14. Thermal modeling of the Tevatron magnet system

    SciTech Connect

    Jay C. Theilacker; Arkadiy L. Klebaner

    2004-07-20

    Operation of the Tevatron at lower temperatures, for the purpose of allowing higher energies, has resulted in a renewed interest in thermal modeling of the magnet strings. Static heat load and AC loses in the superconducting coils are initially transported through subcooled liquid helium. Heat exchange between the subcooled liquid and a counter flowing two-phase stream transfers the load to the latent heat. Stratification of the two-phase helium stream has resulted in considerably less heat exchange compared to the original design. Spool pieces have virtually no heat transfer to the two-phase resulting in a ''warm'' dipole just downstream. A model of the magnet string thermal behavior has been developed. The model has been used to identify temperature profiles within magnet strings. The temperature profiles are being used in conjunction with initial magnet quench performance data to predict the location of quench limiting magnets within the Tevatron. During thermal cycles of magnet strings, the model is being used to ''shuffle'' magnets within the magnet string in order to better match the magnets quench performance with its actual predicted temperature. The motivation for this analysis is to raise the operating energy of the Tevatron using a minimal number of magnets from the spares pool.

  15. Thermal modeling of the Tevatron magnet system

    NASA Astrophysics Data System (ADS)

    Theilacker, J. C.; Klebaner, A. L.

    2002-05-01

    Operation of the Tevatron at lower temperatures, for the purpose of allowing higher energies, has resulted in a renewed interest in thermal modeling of the magnet strings. Static heat load and AC loses in the superconducting coils are initially transported through subcooled liquid helium. Heat exchange between the subcooled liquid and a counter flowing two-phase stream transfers the load to the latent heat. Stratification of the two-phase helium stream has resulted in considerably less heat exchange compared to the original design. Spool pieces have virtually no heat transfer to the two-phase resulting in a "warm" dipole just downstream. A model of the magnet string thermal behavior has been developed. The model has been used to identify temperature profiles within magnet strings. The temperature profiles are being used in conjunction with initial magnet quench performance data to predict the location of quench limiting magnets within the Tevatron. During thermal cycles of magnet strings, the model is being used to "shuffle" magnets within the magnet string in order to better match the magnets quench performance with its actual predicted temperature. The motivation for this analysis is to raise the operating energy of the Tevatron using a minimal number of magnets from the spares pool.

  16. Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.

    2013-12-01

    In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate

  17. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  18. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  19. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  20. Drift reduction in strapdown airborne gravimetry using a simple thermal correction

    NASA Astrophysics Data System (ADS)

    Becker, David; Nielsen, J. Emil; Ayres-Sampaio, Diogo; Forsberg, René; Becker, Matthias; Bastos, Luísa

    2015-11-01

    Previous work has shown, that strapdown airborne gravimeters can have a comparable or even superior performance in the higher frequency domain (resolution of few kilometres), compared to classical stable-platform air gravimeters using springs, such as the LaCoste and Romberg (LCR) S-gravimeter. However, the longer wavelengths (tens of kilometres and more) usually suffer from drifts of the accelerometers of the strapdown inertial measurement unit (IMU). In this paper, we analyse the drift characteristics of the QA2000 accelerometers, which are the most widely used navigation-grade IMU accelerometers. A large portion of these drifts is shown to come from thermal effects. A lab calibration procedure is used to derive a thermal correction, which is then applied to data from 18 out of 19 flights from an airborne gravity campaign carried out in Chile in October 2013. The IMU-derived gravity closure error can be reduced by 91 % on average, from 3.72 mGal/h to only 0.33 mGal/h (RMS), which is an excellent long-term performance for strapdown gravimetry. Also, the IMU results are compared to the LCR S-gravimeter, which is known to have an excellent long-term stability. Again, the thermal correction yields a significant reduction of errors, with IMU and LCR aerogravity results being consistent at the 2 mGal level.

  1. Thermal potentiation of chemotherapy by magnetic nanoparticles

    PubMed Central

    Torres-Lugo, Madeline; Rinaldi, Carlos

    2014-01-01

    Clinical studies have demonstrated the effectiveness of hyperthermia as an adjuvant for chemotherapy and radiotherapy. However, significant clinical challenges have been encountered, such as a broader spectrum of toxicity, lack of patient tolerance, temperature control and significant invasiveness. Hyperthermia induced by magnetic nanoparticles in high-frequency oscillating magnetic fields, commonly termed magnetic fluid hyperthermia, is a promising form of heat delivery in which thermal energy is supplied at the nanoscale to the tumor. This review discusses the mechanisms of heat dissipation of iron oxide-based magnetic nanoparticles, current methods and challenges to deliver heat in the clinic, and the current work related to the use of magnetic nanoparticles for the thermal-chemopotentiation of therapeutic drugs. PMID:24074390

  2. Design and modeling of spectral-thermal unmixing targets for airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Clare, Phil

    2006-05-01

    Techniques to determine the proportions of constituent materials within a single pixel spectrum are well documented in the reflective (0.4-2.5μm) domain. The same capability is also desirable for the thermal (7-14μm) domain, but is complicated by the thermal contributions to the measured spectral radiance. Atmospheric compensation schemes for the thermal domain have been described along with methods for estimating the spectral emissivity from a spectral radiance measurement and hence the next stage to be tackled is the unmixing of thermal spectral signatures. In order to pursue this goal it is necessary to collect data of well-calibrated targets which will expose the limits of the available techniques and enable more robust methods to be designed. This paper describes the design of a set of ground targets for an airborne hyperspectral imager, which will test the effectiveness of available methods. The set of targets include panels to explore a number of difficult scenarios such as isothermal (different materials at identical temperature), isochromal (identical materials, but at differing temperatures), thermal adjacency and thermal point sources. Practical fabrication issues for heated targets and selection of appropriate materials are described. Mathematical modelling of the experiments has enabled prediction of at-sensor measured radiances which are used to assess the design parameters. Finally, a number of useful lessons learned during the fielding of these actual targets are presented to assist those planning future trials of thermal hyperspectral sensors.

  3. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-01

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models. PMID:25968800

  4. Magnetic resonance-guided thermal surgery.

    PubMed

    Cline, H E; Schenck, J F; Watkins, R D; Hynynen, K; Jolesz, F A

    1993-07-01

    A demonstration of MR guided thermal surgery involved experiments with imaging of focused ultrasound in an MRI system, measurements of the thermal transients and a thermal analysis of the resulting images. Both the heat distribution and the creation of focused ultrasound lesions in gel phantoms, in vitro bovine muscle and in vivo rabbit muscle were monitored with magnetic resonance imaging. Thermal surgical procedures were modeled by an elongated gaussian heat source where heat flow is controlled by tissue thermal properties and tissue perfusion. Temperature profiles were measured with thermocouples or calculated from magnetic resonance imaging in agreement with the model. A 2-s T1-weighted gradient-refocused acquisition provided thermal profiles needed to localize the heat distribution produced by a 4-s focused ultrasound pulse. Thermal analysis of the images give an effective thermal diffusion coefficient of 0.0015 cm2/s in gel and 0.0033 cm2/s in muscle. The lesions were detected using a T2-weighted spin-echo or fast spin-echo pulse sequence in agreement with muscle tissue sections. Potential thermal surgery applications are in the prostate, liver, kidney, bladder, breast, eye and brain. PMID:8371680

  5. Multispectral thermal airborne TASI-600 data to study the Pompeii (IT) archaeological area

    NASA Astrophysics Data System (ADS)

    Palombo, Angelo; Pascucci, Simone; Pergola, Nicola; Pignatti, Stefano; Santini, Federico; Soldovieri, Francesco

    2016-04-01

    The management of archaeological areas refers to the conservation of the ruins/buildings and the eventual prospection of new areas having an archaeological potential. In this framework, airborne remote sensing is a well-developed geophysical tool for supporting the archaeological surveys of wide areas. The spectral regions applied in archaeological remote sensing spans from the VNIR to the TIR. In particular, the archaeological thermal imaging considers that materials absorb, emit, transmit, and reflect the thermal infrared radiation at different rate according to their composition, density and moisture content. Despite its potential, thermal imaging in archaeological applications are scarce. Among them, noteworthy are the ones related to the use of Landsat and ASTER [1] and airborne remote sensing [2, 3, 4 and 5]. In view of these potential in Cultural Heritage applications, the present study aims at analysing the usefulness of the high spatial resolution thermal imaging on the Pompeii archaeological park. To this purpose TASI-600 [6] airborne multispectral thermal imagery (32 channels from 8 to 11.5 nm with a spectral resolution of 100nm and a spatial resolution of 1m/pixel) was acquired on December the 7th, 2015. Airborne survey has been acquired to get useful information on the building materials (both ancient and of consolidation) characteristics and, whenever possible, to retrieve quick indicators on their conservation status. Thermal images will be, moreover, processed to have an insight of the critical environmental issues impacting the structures (e.g. moisture). The proposed study shows the preliminary results of the airborne deployments, the pre-processing of the multispectral thermal imagery and the retrieving of accurate land surface temperatures (LST). LST map will be analysed to describe the thermal pattern of the city of Pompeii and detect any thermal anomalies. As far as the ongoing TASI-600 sensors pre-processing, it will include: (a) radiometric

  6. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  7. Micromagnetic simulations of thermally activated magnetization reversal of nanoscale magnets

    NASA Astrophysics Data System (ADS)

    Brown, Gregory; Novotny, M. A.; Rikvold, Per Arne

    2000-05-01

    Numerical integration of a stochastic Landau-Lifshitz-Gilbert equation is used to study dynamic processes in single-domain nanoscale magnets at nonzero temperatures. Special attention is given to including thermal fluctuations as a Langevin term, and the fast multipole method is used to calculate dipole-dipole interactions. It is feasible to simulate these dynamics on the nanosecond time scale for spatial discretizations that involve on the order of 104 nodes using a desktop workstation. The nanoscale magnets considered here are single pillars with large aspect ratio. Hysteresis-loop simulations are employed to study the stable and metastable configurations of the magnetization. Each pillar has magnetic end caps. In a time-dependent field the magnetization of the pillars is observed to reverse via nucleation, propagation, and coalescence of the end caps. In particular, the end caps propagate into the magnet and meet near the middle. A relatively long-lived defect is formed when end caps with opposite vorticity meet. Fluctuations are more important in the reversal of the magnetization for fields weaker than the zero-temperature coercive field, where the reversal is thermally activated. In this case, the process must be described by its statistical properties, such as the distribution of switching times, averaged over a large number of independent thermal histories.

  8. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  9. First Use of an Airborne Thermal Infrared Hyperspectral Scanner for Compositional Mapping

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel; Herr, Kenneth; Keim, Eric; Adams, Paul; Salisbury, John; Hackwell, John; Treiman, Allan

    2002-01-01

    In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mon-non Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25 microns band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.

  10. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements

    USGS Publications Warehouse

    Maus, S.; Barckhausen, U.; Berkenbosch, H.; Bournas, N.; Brozena, J.; Childers, V.; Dostaler, F.; Fairhead, J.D.; Finn, C.; von Frese, R.R.B; Gaina, C.; Golynsky, S.; Kucks, R.; Lu, Hai; Milligan, P.; Mogren, S.; Muller, R.D.; Olesen, O.; Pilkington, M.; Saltus, R.; Schreckenberger, B.; Thebault, E.; Tontini, F.C.

    2009-01-01

    A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from satellite, ship, and airborne magnetic measurements. EMAG2 is a significant update of our previous candidate grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2 arc min, and the altitude has been reduced from 5 km to 4 km above the geoid. Additional grid and track line data have been included, both over land and the oceans. Wherever available, the original shipborne and airborne data were used instead of precompiled oceanic magnetic grids. Interpolation between sparse track lines in the oceans was improved by directional gridding and extrapolation, based on an oceanic crustal age model. The longest wavelengths (>330 km) were replaced with the latest CHAMP satellite magnetic field model MF6. EMAG2 is available at http://geomag.org/models/EMAG2 and for permanent archive at http://earthref.org/ cgi-bin/er.cgi?s=erda.cgi?n=970. ?? 2009 by the American Geophysical Union.

  11. INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA

    SciTech Connect

    CUMMINS GD

    2010-11-11

    As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending

  12. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  13. Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data.

    PubMed

    Qian, Yong-Gang; Wang, Ning; Ma, Ling-Ling; Liu, Yao-Kai; Wu, Hua; Tang, Bo-Hui; Tang, Ling-Li; Li, Chuan-Rong

    2016-01-25

    Land surface temperature (LST) is one of the key parameters in the physics of land surface processes at local/global scales. In this paper, a LST retrieval method was proposed from airborne multispectral scanner data comparing one mid-infrared (MIR) channel and one thermal infrared (TIR) channel with the land surface emissivity given as a priori knowledge. To remove the influence of the direct solar radiance efficiently, a relationship between the direct solar radiance and water vapor content and the view zenith angle and solar zenith angle was established. Then, LST could be retrieved with a split-window algorithm from MIR/TIR data. Finally, the proposed algorithm was applied to the actual airborne flight data and validated with in situ measurements of land surface types in the Baotou site in China on 17 October 2014. The results demonstrate that the difference between the retrieved and in situ LST was less than 1.5 K. The bais, RMSE, and standard deviation of the retrieved LST were 0.156 K, 0.883 K, and 0.869 K, respectively, for samples. PMID:26832579

  14. COLLECTION OF AIRBORNE PARTICLES BY A HIGH-GRADIENT PERMANENT MAGNETIC METHOD

    SciTech Connect

    Cheng, Mengdawn; Allman, Steve L; Ludtka, Gerard Michael; Avens, Larry R

    2014-01-01

    We report on the use of magnetic force in collection of airborne particles by a high- gradient permanent magnetic separation (HGPMS) device. Three aerosol particles of different magnetic susceptibility (NaCl, CuO, and Fe2O3) were generated in the electrical mobility size range of 10 to 200 nm and were used to study HGPMS collection. One HGPMS matrix element, made of stainless steel wool, was used in the device configuration. Three flow rates were selected to simulate the environmental wind speeds of interest to the study. Magnetic force was found to exhibit an insignificant effect on the separation of NaCl particles, even in the HGPMS configuration. Diffusion was a major mechanism in the removal of the diamagnetic particles; however, diffusion is insignificant under the influence of a high-gradient magnetic field for paramagnetic or ferromagnetic particles. The HGPMS showed high-performance collection (> 99%) of paramagnetic CuO and ferromagnetic Fe2O3 particles for particle sizes greater than or equal to 60 nm. As the wind speed increases, the influence of the magnetic force weakens, and the capability to remove particles from the gas stream diminishes. The results suggest that the HGPMS principle could be explored for development of an advanced miniaturized passive aerosol collector.

  15. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    USGS Publications Warehouse

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-01-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 x 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each the. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared

  16. An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery

    NASA Astrophysics Data System (ADS)

    Burn, Douglas M.; Udevitz, Mark S.; Speckman, Suzann G.; Benter, R. Bradley

    2009-10-01

    In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus ( Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previously-established methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 × 200 pixel "tiles." We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each tile. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present. We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal

  17. Contribution of the source velocity to the scattering of electromagnetic fields caused by airborne magnetic dipoles

    NASA Astrophysics Data System (ADS)

    Emanoel Starteri Sampaio, Edson

    2014-08-01

    The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 104 A m2, its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s-1), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m-1), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources.

  18. Thermal magnetization reversal in arrays of nanoparticles

    SciTech Connect

    Brown, Gregory; Novotny, M. A.; Rikvold, Per Arne

    2001-06-01

    The results of large-scale simulations investigating the dynamics of magnetization reversal in arrays of single-domain nanomagnets after a rapid reversal of the applied field at nonzero temperature are presented. The numerical micromagnetic approach uses the Landau{endash}Lifshitz{endash}Gilbert equation including contributions from thermal fluctuations and long-range dipole{endash}dipole demagnetizing effects implemented using a fast-multipole expansion. The individual model nanomagnets are 9 nm{times}9 nm{times}150 nm iron pillars similar to those fabricated on a surface with scanning tunneling microscope assisted chemical vapor deposition [S. Wirth , J. Appl. Phys. 85, 5249 (1999)]. Nanomagnets oriented perpendicular to the surface and spaced 300 nm apart in linear arrays are considered. The applied field is always oriented perpendicular to the surface. When the magnitude of the applied field is less than the coercive value, about 2000 Oe for an individual nanomagnet, magnetization reversal in the nanomagnets can only occur by thermally activated processes. Even though the interaction from the dipole moment of neighboring magnets in this geometry is only about 1 Oe, less than 1% of the coercive field, it can have a large impact on the switching dynamics. What determines the height of the free-energy barrier is the difference between the coercive and applied fields, and 1 Oe can be a significant fraction of that. The magnetic orientations of the neighbors are seen to change the behavior of the nanomagnets in the array significantly. {copyright} 2001 American Institute of Physics.

  19. Locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation using piezoceramic microheaters

    NASA Astrophysics Data System (ADS)

    Visvanathan, Karthik; Gianchandani, Yogesh B.

    2011-12-01

    This paper reports the locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation. A finite element model has been developed to predict the variation of insect-stimulator interface temperature with input power. Piezothermal stimulators have been fabricated from lead zirconate titanate (PZT) using a batch mode micro ultrasonic machining process. Typical sizes range from 200 µm to 3.2 mm. For PZT stimulators, the temperature and thermal efficiency reach the maximum value around the resonance frequency which is typically in the range of 650 kHz to 47 MHz. Experiments have been conducted on green June beetles (GJBs), Madagascar hissing roaches and green diving beetles (GDBs) in order to show the versatility of the proposed technique. The stimulators have been implanted near the antennae of the GJBs and on either side of the thorax of the Madagascar hissing roaches and GDBs, respectively. In all cases, the insects move away from the direction of the actuated stimulator. The left and right turns are statistically similar. Thermal stimulation achieves an overall success rate of 78.7%, 92.8% and 61.6% in GJBs, roaches and GDBs, respectively. On average, thermal stimulation results in an angle turn of about 13.7°-16.2° on GJBs, 30°-45° on the roaches and 30°-50° on GDBs. The corresponding average input power is 360, 330 and 100 mW for GJBs, roach and GDBs, respectively. Scaling limits of the PZT stimulators for operating these stimulators are also discussed.

  20. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    NASA Technical Reports Server (NTRS)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  1. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    NASA Astrophysics Data System (ADS)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  2. Airborne detection of magnetic anomalies associated with soils on the Oak Ridge Reservation, Tennessee

    SciTech Connect

    Doll, W.E.; Beard, L.P.; Helm, J.M.

    1995-04-01

    Reconnaissance airborne geophysical data acquired over the 35,000-acre Oak Ridge Reservation (ORR), TN, show several magnetic anomalies over undisturbed areas mapped as Copper Ridge Dolomite (CRD). The anomalies of interest are most apparent in magnetic gradient maps where they exceed 0.06 nT/m and in some cases exceed 0.5 nT/m. Anomalies as large as 25nT are seen on maps. Some of the anomalies correlate with known or suspected karst, or with apparent conductivity anomalies calculated from electromagnetic data acquired contemporaneously with the magnetic data. Some of the anomalies have a strong correlation with topographic lows or closed depressions. Surface magnetic data have been acquired over some of these sites and have confirmed the existence of the anomalies. Ground inspections in the vicinity of several of the anomalies has not led to any discoveries of manmade surface materials of sufficient size to generate the observed anomalies. One would expect an anomaly of approximately 1 nT for a pickup truck from 200 ft altitude. Typical residual magnetic anomalies have magnitudes of 5--10 nT, and some are as large as 25nT. The absence of roads or other indications of culture (past or present) near the anomalies and the modeling of anomalies in data acquired with surface instruments indicate that man-made metallic objects are unlikely to be responsible for the anomaly. The authors show that observed anomalies in the CRD can reasonably be associated with thickening of the soil layer. The occurrence of the anomalies in areas where evidences of karstification are seen would follow because sediment deposition would occur in topographic lows. Linear groups of anomalies on the maps may be associated with fracture zones which were eroded more than adjacent rocks and were subsequently covered with a thicker blanket of sediment. This study indicates that airborne magnetic data may be of use in other sites where fracture zones or buried collapse structures are of interest.

  3. Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces

    NASA Astrophysics Data System (ADS)

    Gao, C. X.; Qian, Y. G.; Wang, N.; Ma, L. L.; Jiang, X. G.

    2015-12-01

    Land surface emissivity (LSE) is a key parameter for characterizing the land surface, and is vital for a wide variety of surface-atmosphere studies. This paper retrieved LSEs of land surfaces over the city of Madrid, Spain from airborne hyperspectral scanner (AHS) thermal infrared data using temperature emissivity separation (TES) method. Six different kinds of urban surfaces: asphalt, bare soil, granite, pavement, shrub and grass pavement, were selected to evaluate the performance of the TES method in urban areas. The results demonstrate that the TES method can be successfully applied to retrieve LSEs in urban area. The six urban surfaces have similar curve shape of emissivity spectra, with the lowest emissivity in band 73, and highest in band 78; the LSE for bare soil varies significantly with spectra, approximately from 0.90 in band 72 to 0.98 in band 78, whereas the LSE for grass has the smallest spectral variation, approximately from 0.965 in band 72 to 0.974 in band 78, and the shrub presents higher LSE than other surfaces in bands 72, 73, 75-77, but a little lower in bands 78 and 79. Furthermore, it is worth noting that band 73 is suitable for discriminating different urban surfaces because large LSE differences exist in this channel for different urban surfaces.

  4. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  5. Airborne Thermal Remote Sensing for Estimation of Groundwater Discharge to a River.

    PubMed

    Liu, Chuankun; Liu, Jie; Hu, Yue; Wang, Heshun; Zheng, Chunmiao

    2016-05-01

    Traditional methods for studying surface water and groundwater interactions have usually been limited to point measurements, such as geochemical sampling and seepage measurement. A new methodology is presented for quantifying groundwater discharge to a river, by using river surface temperature data obtained from airborne thermal infrared remote sensing technology. The Hot Spot Analysis toolkit in ArcGIS was used to calculate the percentage of groundwater discharge to a river relative to the total flow of the river. This methodology was evaluated in the midstream of the Heihe River in the arid and semiarid northwest China. The results show that the percentage of groundwater discharge relative to the total streamflow was as high as 28%, which is in good agreement with the results from previous geochemical studies. The data analysis methodology used in this study is based on the assumption that the river water is fully mixed except in the areas of extremely low flow velocity, which could lead to underestimation of the amount of groundwater discharge. Despite this limitation, this remote sensing-based approach provides an efficient means of quantifying the surface water and groundwater interactions on a regional scale. PMID:26281027

  6. Vicarious calibration of the moderate-resolution imaging spectroradiometer airborne simulator thermal-infrared channels.

    PubMed

    Wan, Z; Zhang, Y; Ma, X; King, M D; Myers, J S; Li, X

    1999-10-20

    We made an experimental vicarious calibration of the Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) thermal infrared (TIR) channel data acquired in the field campaign near Mono Lake, Calif. on 10 March 1998 to demonstrate the advantage of using high-elevation sites in dry atmospheric conditions for vicarious calibration. With three lake-surface sites and one snow-field site, we estimated the MAS noise-equivalent temperature difference as 0.7-1.0 degrees C for bands 30-32 in the 3.68-4.13-microm region and 0.1-0.5 degrees C for bands 42, 45, 46, and 48 in the 8-13.5-microm region. This study shows that the MAS calibration error is within +/-0.4 degrees C in the split-window channels (at 11 and 12 microm) and larger in other TIR channels based on the MAS data over Mono Lake and in situ measurement data over the snow-field site. PMID:18324156

  7. Extracting Roof Parameters and Heat Bridges Over the City of Oldenburg from Hyperspectral, Thermal, and Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bannehr, L.; Luhmann, Th.; Piechel, J.; Roelfs, T.; Schmidt, An.

    2011-09-01

    Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS) digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  8. Spatial Correlation of Airborne Magnetic Anomalies with Reservoir Temperatures of Geothermal Fields, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ertekin, Can; Ekinci, Yunus Levent

    2013-04-01

    Geothermal areas in Western Anatolia are remarkably located throughout Büyük Menderes Graben (BMG) and Gediz Graben (GG). These E-W trending grabens have been subjected to N-E stretching since Miocene. Except for these major outcomes of the extensional forces, NE-SW oriented and relatively short grabens take place in Western Anatolia as well. Among them, BMG and GG are remarkable with topographic escarpments that reveal footwall of steeply-dipping active normal faults. They manifest themselves via numerous earthquakes and geothermal activity (fluid discharges from springs and wells). Geothermal discharges are aligned along the rims of E-W trending normal faults trending over detachment faults. Concerning BMG, geothermal manifestations extend along the northern sector of the graben. Geothermal reservoirs inside BMG are the limestone and conglomerate units within Neogene sediments and the marble-quartzite units within The Menderes Massif rocks. The main high and low enthalpy geothermal fields along BMG and their reservoir temperatures are as follows: Kızıldere (242°C), Germencik (232°C), Aydın-Ilıcabası (101°C), Yılmazköy (142°C), Salavatlı (171°C), Söke (26°C), Pamukkale (36°C), Karahayıt (59°C), Gölemezli (101°C) and Yenice (70°C). Through GG, reservoir temperatures decrease from east to west. Geothermal reservoirs inside GG are metamorphics and granodiorite of the Menderes Massif rocks. The Neogene sediments act as cap rock of the geothermal reservoirs. Geothermal fields inside the graben and their reservoir temperatures are as follows: Alaşehir (215°C), Salihli (155°C), Urganlı (85°C), Kurşunlu (135°C), Caferbey (150°C), Sart (100°C). In order to investigate the spatial correlation of magnetic anomalies and the reservoir temperatures of geothermal fields in the region, we analysed airborne magnetic data which were collected by General Directorate of Mineral Research and Exploration (MTA) of Turkey. Airborne magnetic data were taken

  9. Temperature and emissivity separation and mineral mapping based on airborne TASI hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Cui, Jing; Yan, Bokun; Dong, Xinfeng; Zhang, Shimin; Zhang, Jingfa; Tian, Feng; Wang, Runsheng

    2015-08-01

    Thermal infrared remote sensing (8-12 μm) (TIR) has great potential for geologic remote sensing studies. TIR has been successfully used for terrestrial and planetary geologic studies to map surface materials. However, the complexity of the physics and the lack of hyperspectral data make the studies under-investigated. A new generation of commercial hyperspectral infrared sensors, known as Thermal Airborne Spectrographic Imager (TASI), was used for image analysis and mineral mapping in this study. In this paper, a combined method integrating normalized emissivity method (NEM), ratio algorithm (RATIO) and maximum-minimum apparent emissivity difference (MMD), being applied in multispectral data, has been modified and used to determine whether this method is suitable for retrieving emissivity from TASI hyperspectral data. MODTRAN 4 has been used for the atmospheric correction. The retrieved emissivity spectra matched well with the field measured spectra except for bands 1, 2, and 32. Quartz, calcite, diopside/hedenbergite, hornblende and microcline have been mapped by the emissivity image. Mineral mapping results agree with the dominant minerals identified by laboratory X-ray powder diffraction and spectroscopic analyses of field samples. Both of the results indicated that the atmospheric correction method and the combined temperature-emissivitiy method are suitable for TASI image. Carbonate skarnization was first found in the study area by the spatial extent of diopside. Chemical analyses of the skarn samples determined that the Au content was 0.32-1.74 g/t, with an average Au content of 0.73 g/t. This information provides an important resource for prospecting for skarn type gold deposits. It is also suggested that TASI is suitable for prospect and deposit scale exploration.

  10. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep

  11. Effectiveness of airborne multispectral thermal data for karst groundwater resources recognition in coastal areas

    NASA Astrophysics Data System (ADS)

    Pignatti, Stefano; Fusilli, Lorenzo; Palombo, Angelo; Santini, Federico; Pascucci, Simone

    2013-04-01

    Currently the detection, use and management of groundwater in karst regions can be considered one of the most significant procedures for solving water scarcity problems during periods of low rainfall this because groundwater resources from karst aquifers play a key role in the water supply in karst areas worldwide [1]. In many countries of the Mediterranean area, where karst is widespread, groundwater resources are still underexploited, while surface waters are generally preferred [2]. Furthermore, carbonate aquifers constitute a crucial thermal water resource outside of volcanic areas, even if there is no detailed and reliable global assessment of thermal water resources. The composite hydrogeological characteristics of karst, particularly directions and zones of groundwater distribution, are not up till now adequately explained [3]. In view of the abovementioned reasons the present study aims at analyzing the detection capability of high spatial resolution thermal remote sensing of karst water resources in coastal areas in order to get useful information on the karst springs flow and on different characteristics of these environments. To this purpose MIVIS [4, 5] and TASI-600 [6] airborne multispectral thermal imagery (see sensors' characteristics in Table 1) acquired on two coastal areas of the Mediterranean area interested by karst activity, one located in Montenegro and one in Italy, were used. One study area is located in the Kotor Bay, a winding bay on the Adriatic Sea surrounded by high mountains in south-western Montenegro and characterized by many subaerial and submarine coastal springs related to deep karstic channels. The other study area is located in Santa Cesarea (Italy), encompassing coastal cold springs, the main local source of high quality water, and also a noticeable thermal groundwater outflow. The proposed study shows the preliminary results of the two airborne deployments on these areas. The preprocessing of the multispectral thermal imagery

  12. Assessing stream temperature variation in the Pacific Northwest using airborne thermal infrared remote sensing.

    PubMed

    Tan, Jing; Cherkauer, Keith A

    2013-01-30

    The objective of this paper is to evaluate the temporal and spatial variability of stream temperatures and how stream temperatures are affected by land use through the use of airborne thermal infrared (TIR) imagery. Both five-meter and fifteen-meter MODIS/ASTER (MASTER) imagery were acquired along the main channel of the Green-Duwamish River in Washington State, U.S. in multiple straight line passes with image overlaps occurring at time intervals of between 3 and 45 min. Five- and fifteen-meter data were collected on August 25th, 2001, with a few additional five-meter images collected on August 27th. Image overlaps were studied to evaluate the time dependence between acquisition time and observed water temperature. Temperature change between adjacent images over the course of a few minutes was found to be negligible, but became significant at times greater than 45 min, with an estimated increase in water temperature of 2-3 °C between the first and last image collected for the complete five-meter resolution survey. Images captured from different days help identify persistent localized temperature differences. While accounting for temperature changes that occurred during the acquisition process, we still found that average stream reach temperatures increased with urbanization, while variability decreased. The same occurred in the immediate presence of a reservoir. This study suggests that urbanization affects stream temperature not only through the removal of riparian zone vegetation, but also through changes to sources in in-stream variability including the presence of rocks, woody debris and sandbars. PMID:23262409

  13. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.

    PubMed

    Daschewski, M; Kreutzbruck, M; Prager, J

    2015-12-01

    In this work we experimentally verify the theoretical prediction of the recently published Energy Density Fluctuation Model (EDF-model) of thermo-acoustic sound generation. Particularly, we investigate experimentally the influence of thermal inertia of an electrically conductive film on the efficiency of thermal airborne ultrasound generation predicted by the EDF-model. Unlike widely used theories, the EDF-model predicts that the thermal inertia of the electrically conductive film is a frequency-dependent parameter. Its influence grows non-linearly with the increase of excitation frequency and reduces the efficiency of the ultrasound generation. Thus, this parameter is the major limiting factor for the efficient thermal airborne ultrasound generation in the MHz-range. To verify this theoretical prediction experimentally, five thermo-acoustic emitter samples consisting of Indium-Tin-Oxide (ITO) coatings of different thicknesses (from 65 nm to 1.44 μm) on quartz glass substrates were tested for airborne ultrasound generation in a frequency range from 10 kHz to 800 kHz. For the measurement of thermally generated sound pressures a laser Doppler vibrometer combined with a 12 μm thin polyethylene foil was used as the sound pressure detector. All tested thermo-acoustic emitter samples showed a resonance-free frequency response in the entire tested frequency range. The thermal inertia of the heat producing film acts as a low-pass filter and reduces the generated sound pressure with the increasing excitation frequency and the ITO film thickness. The difference of generated sound pressure levels for samples with 65 nm and 1.44 μm thickness is in the order of about 6 dB at 50 kHz and of about 12 dB at 500 kHz. A comparison of sound pressure levels measured experimentally and those predicted by the EDF-model shows for all tested emitter samples a relative error of less than ±6%. Thus, experimental results confirm the prediction of the EDF-model and show that the model can

  14. Application of combined Landsat thematic mapper and airborne thermal infrared multispectral scanner data to lithologic mapping in Nevada

    USGS Publications Warehouse

    Podwysocki, M.H.; Ehmann, W.J.; Brickey, D.W.

    1987-01-01

    Future Landsat satellites are to include the Thematic Mapper (TM) and also may incorporate additional multispectral scanners. One such scanner being considered for geologic and other applications is a four-channel thermal-infrared multispectral scanner having 60-m spatial resolution. This paper discusses the results of studies using combined Landsat TM and airborne Thermal Infrared Multispectral Scanner (TIMS) digital data for lithologic discrimination, identification, and geologic mapping in two areas within the Basin and Range province of Nevada. Field and laboratory reflectance spectra in the visible and reflective-infrared and laboratory spectra in the thermal-infrared parts of the spectrum were used to verify distinctions made between rock types in the image data sets.

  15. Deterioration in effective thermal conductivity of aqueous magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Altan, Cem L.; Gurten, Berna; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2014-12-01

    Common heat transfer fluids have low thermal conductivities, which decrease their efficiency in many applications. On the other hand, solids have much higher thermal conductivity values. Previously, it was shown that the addition of different nanoparticles to various base fluids increases the thermal conductivity of the carrier fluid remarkably. However, there are limited studies that focus on the thermal conductivity of magnetic fluids. In this study, thermal conductivity of magnetic nanofluids composed of magnetite nanoparticles synthesized via co-precipitation and thermal decomposition methods is investigated. Results showed that the addition of magnetite nanoparticles decreased the thermal conductivity of water and ethylene glycol. This decrease was found to increase with increasing particle concentration and to be independent of the synthesis method, the type of surfactant, and the interfacial thermal resistance.

  16. Thermally driven spin torques in layered magnetic insulators

    NASA Astrophysics Data System (ADS)

    Bender, Scott A.; Tserkovnyak, Yaroslav

    2016-02-01

    Thermally driven spin-transfer torques have recently been reported in electrically insulating ferromagnet |normal -metal heterostructures. In this paper, we propose two physically distinct mechanisms for such torques. The first is a local effect: out-of-equilibrium, thermally activated magnons in the ferromagnet, driven by a spin Seebeck effect, exert a torque on the magnetization via magnon-magnon scattering with coherent dynamics. The second is a nonlocal effect which requires an additional magnetic layer to provide the symmetry breaking necessary to realize a thermal torque. The simplest structure in which to induce a nonlocal thermal torque is a spin valve composed of two insulating magnets separated by a normal metal spacer; there, a thermal flux generates a pure spin current through the spin valve, which results in a torque when the magnetizations of the layers are misaligned.

  17. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  18. Relationship of surface fuels to fire radiative energy as estimated from airborne lidar and thermal infrared imaging

    NASA Astrophysics Data System (ADS)

    Hudak, A. T.; Dickinson, M. B.; Kremens, R.; Loudermilk, L.; O'Brien, J.; Satterberg, K.; Strand, E. K.; Ottmar, R. D.

    2013-12-01

    Longleaf pine stand structure and function are dependent on frequent fires, so fire managers maintain healthy longleaf pine ecosystems by frequently burning surface fuels with prescribed fires. Eglin Air Force Base (AFB) in the Florida panhandle boasts the largest remnant of longleaf pine forest, providing a productive setting for fire scientists to make multi-scale measurements of fuels, fire behavior, and fire effects in collaboration with Eglin AFB fire managers. Data considered in this analysis were collected in five prescribed burn units: two forested units burned in 2011 and a forested unit and two grassland units burned in 2012. Our objective was to demonstrate the linear relationship between biomass and fire energy that has been shown in the laboratory, but using two independent remotely sensed airborne datasets collected at the unit level: 1) airborne lidar flown over the burn units immediately prior to the burns, and 2) thermal infrared image time series flown over the burn units at 2-3 minute intervals. Airborne lidar point cloud data were reduced to 3 m raster metrics of surface vegetation height and cover, which were in turn used to map surface fuel loads at 3 m resolution. Plot-based measures of prefire surface fuels were used for calibration/validation. Preliminary results based on 2011 data indicate airborne lidar can explain ~30% of variation in surface fuel loads. Multi-temporal thermal infrared imagery (WASP) collected at 3 m resolution were calibrated to units of fire radiative power (FRP), using simultaneous FRP measures from ground-based radiometers, and then temporally integrated to estimate fire radiative energy (FRE) release at the unit level. Prior to AGU, FRP and FRE will be compared to estimates of the same variables derived from ground-based FLIR thermal infrared imaging cameras, each deployed with a nadir view from a tripod, at three sites per burn unit. A preliminary proof-of-concept, comparing FRE derived from a tripod-based FLIR (3

  19. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. PMID:22381374

  20. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    USGS Publications Warehouse

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  1. Mapping Groundwater in an Alpine Drainage with Airborne Electromagnetic Methods and Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Hein, A.; Armstrong, R. S.; Holbrook, W. S.; Parsekian, A.

    2015-12-01

    The rivers that supply water to most of the West rise in the Rocky Mountains. As drought increases across the country, understanding the hydrology of these alpine regions becomes important to assuring water supplies in the future. Near surface geophysics can help in this effort. In this study, resistivity data from an airborne electromagnetic survey in the Snowy Range was analyzed to map groundwater distribution. The EM survey covered an area of approximately 60 km2 to a depth of around 150 m. Nuclear magnetic resonance (NMR) point soundings provided ground truthing by testing whether water was present, at what depth, and how much. The survey area contained vertically dipping metasedimentary rocks, covered in places by unconsolidated glacial and fluvial deposits. The resistivity data showed horizontal variation in water content much more clearly than vertical changes, which were best detected by NMR. To allow for comparisons across different lithologies and depths, resistivity measurements were first log transformed to produce a more normal distribution, then classed by depth and formation and assigned standardized scores using the mean and standard deviation for those classes. To determine the typical appearance of wet areas, points in the near surface were classed as wet or dry based on proximity to surface water. Logistic regression was used to determine the probability that points with a given standardized score were wet. Where a relationship existed between proximity to surface water and conductivity, this information was translated into a map of groundwater distribution at greater depths. NMR soundings provided quantitative measurements of water content, which were used as known points within these horizontal maps to determine the actual water levels being detected.

  2. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.

    PubMed

    Hirschberger, Max; Chisnell, Robin; Lee, Young S; Ong, N P

    2015-09-01

    At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity κ(xy). Here we report observation of a large κ(xy) in the kagome magnet Cu(1-3, bdc) which orders magnetically at 1.8 K. The observed κ(xy) undergoes a remarkable sign reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between κ(xy) and κ(xx) firmly precludes a phonon origin for the thermal Hall effect. PMID:26382691

  3. Analysis of thermal demagnetization behavior of Nd-Fe-B sintered magnets using magnetic domain observation

    NASA Astrophysics Data System (ADS)

    Takezawa, Masaaki; Ikeda, Soichiro; Morimoto, Yuji; Kabashima, Hisayuki

    2016-05-01

    We used magnetic domain observation to statistically observe the thermal demagnetization behavior of Nd-Fe-B sintered magnets at elevated temperatures up to 150 °C. Simultaneous magnetization reversal in a hundred adjacent grains occurred at 90 °C because of the magnetic interaction among the grains beyond grain boundaries in the Dysprosium (Dy)-free low-coercivity magnet. Conversely, simultaneous magnetization reversal in a hundred grains did not occur in the Dy-added high-coercivity magnets, and the demagnetizing ratio steadily increased with temperature. Furthermore, the addition of Dy induced high thermal stability by eliminating the simultaneous thermal demagnetization, which was caused by the magnetic interaction among the grains.

  4. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  5. Thermal magnetic field noise: electron optics and decoherence.

    PubMed

    Uhlemann, Stephan; Müller, Heiko; Zach, Joachim; Haider, Max

    2015-04-01

    Thermal magnetic field noise from magnetic and non-magnetic conductive parts close to the electron beam recently has been identified as a reason for decoherence in high-resolution transmission electron microscopy (TEM). Here, we report about new experimental results from measurements for a layered structure of magnetic and non-magnetic materials. For a simplified version of this setup and other situations we derive semi-analytical models in order to predict the strength, bandwidth and spatial correlation of the noise fields. The results of the simulations are finally compared to previous and new experimental data in a quantitative manner. PMID:25499019

  6. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  7. Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California

    USGS Publications Warehouse

    McCafferty, A.E.; Van Gosen, B. S.

    2009-01-01

    Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between

  8. Airborne electromagnetic and magnetic geophysical survey data of the Yukon Flats and Fort Wainwright areas, central Alaska, June 2010

    USGS Publications Warehouse

    Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.

    2011-01-01

    In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.

  9. The thermal structure of the magnetized solar transition region

    NASA Technical Reports Server (NTRS)

    Mok, Y.; Van Hoven, G.

    1993-01-01

    The detailed thermal structure of the magnetized solar transition region, as measured by its differential emission measure DEM(T), is unknown. Proposals have been made that envision a significant lower-temperature contribution to the energy balance from cross-field (ion) heat flux. In this paper, we describe a self-consistent 2D MHD simulation (including the full effects of anisotropic thermal conduction) of a conceptual model due to Athay (1990). We display the detailed irregular thermal and magnetic structure of the transition region and demonstrate that the predicted DEM agrees with observations, particularly in the T less than 10 exp 5 K regime where previous theories had difficulty.

  10. Thermal spin-transfer torque in magnetic tunnel junctions (invited)

    SciTech Connect

    Heiliger, Christian Franz, C.; Czerner, Michael

    2014-05-07

    The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering Fe{sub x}Co{sub 1–x} alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO, a thermal switching is imaginable. However, even for such a thin barrier, the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagnetic layer. In our current study, it turns out that at the chosen thickness of the ferromagnetic layer, pure Fe gives the highest thermal spin-transfer torque.

  11. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  12. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  13. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  14. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    SciTech Connect

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH){sub max} of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  15. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-01-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  16. High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.

    2013-06-01

    A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008-2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.

  17. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement.

    PubMed

    Chiang, Yuan-Ching; Chieh, Jen-Jie; Ho, Chia-Che

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  18. The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement

    PubMed Central

    2012-01-01

    This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909

  19. Thermal and structural coupling analysis of magnetically suspended flywheel rotor

    NASA Astrophysics Data System (ADS)

    Zhang, Shuna; Han, Bangcheng; Li, Hong; Fang, Jiancheng

    2006-11-01

    Magnetically suspended flywheel (MSFW) is used in spacecraft to control the attitude. The mechanical structure of MSFW must accommodate thermal strains due to the temperature differences. And both the thermal stresses and the thermal loads change as the size and shape of the structure changes. Therefore, coupling exists between the heat transfer and the static stress analysis problems. In this paper finite element method (FEM) is used to process the thermal and structural analysis of the MSFW rotor and motor stator. The solution is performed by ANSYS software code. The temperature distribution is determined by the steady state thermal analysis. Based on the temperature field results, the thermal stress and deformation fields are calculated as well. The results provide the theoretical basis for the thermal design and can also be a guide for the structural optimization of the MSFW.

  20. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints

    PubMed Central

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-01-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  1. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints.

    PubMed

    Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc

    2014-10-01

    As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086

  2. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Duren, Riley M.; Hopkins, Francesca M.; Hook, Simon J.; Vance, Nick; Guillevic, Pierre; Johnson, William R.; Eng, Bjorn T.; Mihaly, Jonathan M.; Jovanovic, Veljko M.; Chazanoff, Seth L.; Staniszewski, Zak K.; Kuai, Le; Worden, John; Frankenberg, Christian; Rivera, Gerardo; Aubrey, Andrew D.; Miller, Charles E.; Malakar, Nabin K.; Sánchez Tomás, Juan M.; Holmes, Kendall T.

    2016-06-01

    Currently large uncertainties exist associated with the attribution and quantification of fugitive emissions of criteria pollutants and greenhouse gases such as methane across large regions and key economic sectors. In this study, data from the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) have been used to develop robust and reliable techniques for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution that permits direct attribution to sources. HyTES is a pushbroom imaging spectrometer with high spectral resolution (256 bands from 7.5 to 12 µm), wide swath (1-2 km), and high spatial resolution (˜ 2 m at 1 km altitude) that incorporates new thermal infrared (TIR) remote sensing technologies. In this study we introduce a hybrid clutter matched filter (CMF) and plume dilation algorithm applied to HyTES observations to efficiently detect and characterize the spatial structures of individual plumes of CH4, H2S, NH3, NO2, and SO2 emitters. The sensitivity and field of regard of HyTES allows rapid and frequent airborne surveys of large areas including facilities not readily accessible from the surface. The HyTES CMF algorithm produces plume intensity images of methane and other gases from strong emission sources. The combination of high spatial resolution and multi-species imaging capability provides source attribution in complex environments. The CMF-based detection of strong emission sources over large areas is a fast and powerful tool needed to focus on more computationally intensive retrieval algorithms to quantify emissions with error estimates, and is useful for expediting mitigation efforts and addressing critical science questions.

  3. Road Asphalt Pavements Analyzed by Airborne Thermal Remote Sensing: Preliminary Results of the Venice Highway

    PubMed Central

    Pascucci, Simone; Bassani, Cristiana; Palombo, Angelo; Poscolieri, Maurizio; Cavalli, Rosa

    2008-01-01

    This paper describes a fast procedure for evaluating asphalt pavement surface defects using airborne emissivity data. To develop this procedure, we used airborne multispectral emissivity data covering an urban test area close to Venice (Italy).For this study, we first identify and select the roads' asphalt pavements on Multispectral Infrared Visible Imaging Spectrometer (MIVIS) imagery using a segmentation procedure. Next, since in asphalt pavements the surface defects are strictly related to the decrease of oily components that cause an increase of the abundance of surfacing limestone, the diagnostic absorption emissivity peak at 11.2μm of the limestone was used for retrieving from MIVIS emissivity data the areas exhibiting defects on asphalt pavements surface.The results showed that MIVIS emissivity allows establishing a threshold that points out those asphalt road sites on which a check for a maintenance intervention is required. Therefore, this technique can supply local government authorities an efficient, rapid and repeatable road mapping procedure providing the location of the asphalt pavements to be checked.

  4. A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leaves

    NASA Astrophysics Data System (ADS)

    Szönyi, Michael; Sagnotti, Leonardo; Hirt, Ann M.

    2008-04-01

    Elevated levels of airborne particulate matter (PM) are a current problem for air quality in many major metropolitan areas. Many European cities have tightened the PM limits in the air, due to advances in monitoring PM levels. In order to establish guidelines for monitoring and curbing anthropogenic PM output, a better understanding of its origin, composition and diffusion is required. Biomonitoring of magnetic properties of tree leaves has been suggested previously to be a good approach to measure pollution levels in cities both in space and time. We report on a magnetic biomonitoring study of PM in the city of Rome, conducted from 2005 October to December. We collected approximately 180 different sample sets of tree leaves of Quercus ilex, an evergreen oak widely distributed in Rome, at 112 different locations. Specific magnetic susceptibility χ of the leaf is used as a fast, easy and cost-effective proxy to assess levels of primary anthropogenic airborne PM pollution. Highly polluted areas correlate with high traffic areas, with an average susceptibility value of χ = 3.2 × 10-7 m3 kg-1. Low traffic zones are characterized by values more than an order of magnitude lower at χ = 1.4 × 10-8 m3 kg-1, and the background magnetic susceptibility is around χ = 2.6 × 10-9 m3 kg-1. The data show that distance dependence from the source is the most significant factor for the concentration of magnetic PM, and that pollution levels and sources can be reliably delineated by measuring magnetic susceptibility values on tree leaf samples of Q. ilex. A new protocol for magnetic susceptibility measurements is proposed, in order to account for changes due to water evaporation in the leaves as a function of time after collection of the samples. Additional magnetic analyses, such as acquisition of artificial remanences and hysteresis properties, were used to characterize the mineralogy and grain size of the magnetic PM. The results indicate that the population of ferrimagnetic

  5. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-01-01

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  6. An algorithm for the estimation of water temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    A method for water temperature estimation on the basis of thermal data is presented and tested against NASA's Thermal IR Multispectral Scanner. Using realistic bounds on emissivities, temperature bounds are calculated and refined to estimate a tighter bound on the emissivity of the source. The method is useful only when a realistic set of bounds can be obtained for the emissivities of the data.

  7. Boosting magnetic reconnection by viscosity and thermal conduction

    NASA Astrophysics Data System (ADS)

    Minoshima, Takashi; Miyoshi, Takahiro; Imada, Shinsuke

    2016-07-01

    Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number P r m > 1 ), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for P r m > 1 . The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently, boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.

  8. Experimental investigation of thermal conductivity of magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Lee, H. S.

    2012-06-01

    Two different magnetic nanofluids comprising of magnetite and Mn-Zn ferrite particles were synthesized in light hydrocarbon oil using continuous chemical process. Powder XRD and TEM image show single phase spinel structure with size of 10 nm and 6.7 nm, respectively for magnetite and Mn-Zn ferrite. Thermal conductivity of nanofluids has been studied as a function of volume fraction under transverse magnetic field. Magnetite nanofluid shows 17% enhancements in thermal conductivity for 4.7% volume fraction while Mn-Zn ferrite shows 45% enhancement at 10% volume fraction. In presence of transverse magnetic field the magnetite nanofluids shows further enhancement from 17% to 30% while no change in thermal conductivity has been observed for Mn-Zn ferrite. These results are explained considering the dipolar coupling co-efficient which for magnetite particles favors chain structures.

  9. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  10. Thermal expansion of several materials for superconducting magnets

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the consruction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducitng wire/epoxy. The conductor expansions are typical of metals and the composite expansions are highy anisotropic. Both graphic and tabular values are provided by a computer fitting of the experimental data. The importnce of thermal expansion differences in critical current measurement apparatus and superconducting magnet design are discussed. 12 refs.

  11. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  12. Field mapping for heat capacity mapping determinations: Ground support for airborne thermal surveys

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1976-01-01

    Thermal models independently derived by Watson, Outcalt, and Rosema were compared using similar input data and found to yield very different results. Each model has a varying degree of sensitivity to any specified parameter. Data collected at Pisgah Crater-Lavic Lake was re-examined to indicate serious discrepancy in results for thermal inertia from Jet Lab Propulsion Laboratory calculations, when made using the same orginal data sets.

  13. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    USGS Publications Warehouse

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D. Phillips; Vidotti, Roberta M.; Bezerra, Francisco H.R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  14. Physics for the Correction of a Calibrated Airborne Scanner, Visible to Thermal Bands

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Schiller, Stephen; Luvall, Jeffrey C.; Arnold, James E. (Technical Monitor)

    2000-01-01

    To use remote sensing modalities in a reproducible manner it is essential that extraneous phenomena be removed from the signal. For those interested in the surface of the Earth, airborne and satellite systems, which are sensitive in wavelengths ranging from the visible to the infrared are significantly degraded by the atmosphere. The authors have developed a series of mathematical models to describe and correct the degradation. The models are based directly on the physics of the systems and are computationally tractable. Modeling of the atmosphere is done using public domain code, loaded with data and configured using information form systems developed by Schiller and Luvall. The results of this are then integrated with a physical model of the sensor to permit reduction of data to geophysically meaningful units. The components of the overall modeling, the logic of the components, and the limitations of the approach are discussed. The authors are employing there technology on applications ranging from measurements of urban heat islands to precision agriculture.

  15. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    SciTech Connect

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-08-20

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.

  16. Thermal characterization of magnetically aligned carbonyl iron/agar composites.

    PubMed

    Diaz-Bleis, D; Vales-Pinzón, C; Freile-Pelegrín, Y; Alvarado-Gil, J J

    2014-01-01

    Composites of magnetic particles into polymeric matrices have received increasing research interest due to their capacity to respond to external magnetic or electromagnetic fields. In this study, agar from Gelidium robustum has been chosen as natural biocompatible polymer to build the matrix of the magnetic carbonyl iron particles (CIP) for their uses in biomedical fields. Heat transfer behavior of the CIP-agar composites containing different concentrations (5, 10, 15, 20, 25 and 30% w/w) of magnetically aligned and non-aligned CIP in the agar matrix was studied using photothermal radiometry (PTR) in the back-propagation emission configuration. The morphology of the CIP-agar composites with aligned and non-aligned CIP under magnetic field was also evaluated by scanning electron microscopy (SEM). The results revealed a dominant effect of CIP concentration over the alignment patterns induced by the magnetic field, which agrees with the behavior of the thermal diffusivity and thermal conductivity. Agar served as a perfect matrix to be used with CIP, and CIP-agar composites magnetically aligned at 20% CIP concentration can be considered as promising 'smart' material for hyperthermia treatments in the biomedical field. PMID:24274482

  17. An airborne robotic platform for mapping thermal structure in surface water bodies

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.

    2015-12-01

    The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.

  18. Evaluation of airborne thermal-infrared image data for monitoring aquatic habitats and cultural resources within the Grand Canyon

    USGS Publications Warehouse

    Davis, Philip A.

    2002-01-01

    This study examined thermal-infrared (TIR) image data acquired using the airborne Advanced Thematic Mapper (ATM) sensor in the afternoon of July 25th, 2000 over a portion of the Colorado River corridor to determine the capability of these 100-cm resolution data to address some biologic and cultural resource requirements for GCMRC. The requirements investigated included the mapping of warm backwaters that may serve as fish habitats and the detection (and monitoring) of archaeological structures and natural springs that occur on land. This report reviews the procedure for calibration of the airborne TIR data to obtain surface water temperatures and shows the results for various river reaches within the acquired river corridor. With respect to mapping warm backwater areas, our results show that TIR data need to be acquired with a gain setting that optimizes the range of temperatures found within the water to increase sensitivity of the resulting data to a level of 0.1 °C and to reduce scan-line noise. Data acquired within a two-hour window around maximum solar heating (1:30 PM) is recommended to provide maximum solar heating of the water and to minimize cooling effects of late-afternoon shadows. Ground-truth data within the temperature range of the warm backwaters are necessary for calibration of the TIR data. The ground-truth data need to be collected with good locational accuracy. The derived water-temperature data provide the capability for rapid, wide-area mapping of warm-water fish habitats using a threshold temperature for such habitats. The collected daytime TIR data were ineffective in mapping (detecting) both archaeological structures and natural springs (seeps). The inability of the daytime TIR data to detect archaeological structures is attributed to the low thermal sensitivity (0.3 °C) of the collected data. The detection of subtle thermal differences between geologic materials requires sensitivities of at least 0.1 °C, which can be obtained by most TIR

  19. Thermoelectric Measurements of Magnetic Nanostructures Using Thermal Isolation Platforms

    NASA Astrophysics Data System (ADS)

    Avery, A. D.; Sultan, R.; Bassett, D.; Pufall, M. R.; Zink, B. L.

    2010-03-01

    The effective design of next-generation memory storage and logic devices based on spin necessitates a thorough understanding of transport properties of their potential components. Although electrical transport in magnetic materials is well-understood, thermal transport is historically difficult to measure. Using micromachined thermal isolation structures, we make direct measurements of thermal and electrical transport in these systems. Our technique offers a method for accurately measuring films and other low-dimensional geometries from the microscale down to the nano regime. We will present in-plane thermal conductivity, resistivity, and thermopower results, as well as direct comparisons with the Wiedemann-Franz law for films of various thicknesses and preparation techniques. We will also present the extension of our technique to explore an evaporated multilayer film. Finally, we discuss the application of our method to examining the fundamental physics underlying thermoelectric effects, such as thermally driven spin currents, to further the emerging sub-field of spin caloritronics.

  20. Electrical and thermal control of magnetic exchange interactions.

    PubMed

    Fransson, Jonas; Ren, Jie; Zhu, Jian-Xin

    2014-12-19

    We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model, these magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising, and anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background nonequilibrium electronic structures. We further demonstrate that both the magnetic self- and exchange interactions can be controlled either electrically by gating and tuning the voltage bias, or thermally by adjusting the temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while the Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength. The interactions scale linearly with the effective spin polarizations of the leads and the molecular coherence. Our results pave a way for smart control of magnetic exchange interactions at atomic and molecular levels. PMID:25554904

  1. Thermal analysis of the cryocooled superconducting magnet for the liquid helium-free hybrid magnet

    NASA Astrophysics Data System (ADS)

    Ishizuka, Masayuki; Hamajima, Takataro; Itou, Tomoyuki; Sakuraba, Junji; Nishijima, Gen; Awaji, Satoshi; Watanabe, Kazuo

    2010-12-01

    The liquid helium-free hybrid magnet, which consists of an outer large bore cryocooled superconducting magnet and an inner water-cooled resistive magnet, was developed for magneto-science in high fields. The characteristic features of the cryogen-free outsert superconducting magnet are described in detail in this paper. The superconducting magnet cooled by Gifford-McMahon cryocoolers, which has a 360 mm room temperature bore in diameter, was designed to generate high magnetic fields up to 10 T. The hybrid magnet has generated the magnetic field of 27.5 T by combining 8.5 T generation of the cryogen-free superconducting magnet with 19 T generation of the water-cooled resistive magnet. The superconducting magnet was composed of inner NbSn coils and outer NbTi coils. In particular, inner NbSn coils were wound using high-strength CuNi-NbTi/NbSn wires in consideration of large hoop stress. Although the cryocooled outsert superconducting magnet achieved 9.5 T, we found that the outsert magnet has a thermal problem to generate the designed maximum field of 10 T in the hybrid magnet operation. This problem is associated with unexpected AC losses in NbSn wires.

  2. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    archaeological area (southern Italy). We identify, for the selected sites, three main land cover overlying the buried structures: (a) photosynthetic (i.e. green low vegetation), (b) non-photosynthetic vegetation (i.e. yellow, dry low vegetation), and (c) dry bare soil. Afterwards, we analyse the spectral regions showing an inherent potential for the archaeological detection as a function of the land cover characteristics. The classified land cover units have been used in a spectral mixture analysis to assess the land cover fractional abundance surfacing the buried structures (i.e. mark-background system). The classification and unmixing results for the CASI, MIVIS and ATM remote sensing data processing showed a good accordance both in the land cover units and in the subsurface structures identification. The integrated analysis of the unmixing results for the three sensors allowed us to establish that for the land cover characterized by green and dry vegetation (occurrence higher than 75%), the visible and near infrared (VNIR) spectral regions better enhance the buried man-made structures. In particular, if the structures are covered by more than 75% of vegetation the two most promising wavelengths for their detection are the chlorophyll peak at 0.56 m (Visible region) and the red edge region (0.67 to 0.72 m; NIR region). This result confirms that the variation induced by the subsurface structures (e.g., stone walls, tile concentrations, pavements near the surface, road networks) to the natural vegetation growth and/or colour (i.e., for different stress factors) is primarily detectable by the chlorophyll peak and the red edge region applied for the vegetation stress detection. Whereas, if dry soils cover the structures (occurrence higher than 75%), both the VNIR and thermal infrared (TIR) regions are suitable to detect the subsurface structures. This work demonstrates that airborne reflectances and emissivities data, even though at different spatial/spectral resolutions and

  3. Thermal expansion of several materials for superconducting magnets. Final report

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the construction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducting wire/epoxy.

  4. Simplified thermal model of the ITER magnet system

    NASA Astrophysics Data System (ADS)

    Furci, Hernán; Luongo, Cesar

    2014-09-01

    A simplified thermal model of the ITER magnet system has been developed to capture the essence of the magnet heat load dynamics without the need for extensive computations. Idealization of the magnets has been made using mainly two standard types of elements, solids and tubes. No Navier-Stokes equations have been solved for the hydraulics, but instead a simple transport model with approximation for pressure evolution has been used. The model was implemented in C language and used to investigate the important features needed to implement a computationally efficient and fast magnet thermal model capturing overall behavior in terms of superconductor cooling channel description (thermal coupling with jackets, presence of the conductor, importance of the central channel, etc.). Furthermore, the model was benchmarked against validated simulation tools such as SuperMagnet and Vincenta using the ITER Central Solenoid normal operation scenario for comparison. Dynamics were shown to be reproduced in good agreement with results attainable with these more detailed codes, considering the high level of uncertainty on the input parameters, namely the heat transfer coefficients and the values of heat loads.

  5. Thermal busbar assembly in a cryostat dual penetration for refrigerated superconductive magnets

    SciTech Connect

    Herd, K.G.; Laskaris, T.E.

    1993-06-29

    A thermal busbar assembly for refrigerated superconductive magnets is described, said assembly comprised of: a vacuum enclosure means; a thermal shield means; a superconductive magnet; a first and second heat station means; a lead busbar means electrically connected to said magnet means and thermally connected to said first heat station means; a first thermal busbar means thermally connected to said magnet means and said second heat station means; and a second thermal busbar means thermally connected to said thermal shield means and said first heat station means.

  6. Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown

    NASA Astrophysics Data System (ADS)

    Coffey, William T.; Kalmykov, Yuri P.

    2012-12-01

    The reversal time, superparamagnetic relaxation time, of the magnetization of fine single domain ferromagnetic nanoparticles owing to thermal fluctuations plays a fundamental role in information storage, paleomagnetism, biotechnology, etc. Here a comprehensive tutorial-style review of the achievements of fifty years of development and generalizations of the seminal work of Brown [Phys. Rev. 130, 1677 (1963)] on thermal fluctuations of magnetic nanoparticles is presented. Analytical as well as numerical approaches to the estimation of the damping and temperature dependence of the reversal time based on Brown's Fokker-Planck equation for the evolution of the magnetic moment orientations on the surface of the unit sphere are critically discussed while the most promising directions for future research are emphasized.

  7. Very high resolution airborne imagery for characterising spatial and temporal thermal patterns of braided rivers

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, V.; Piégay, H.; Allemand, P.; Grandjean, P.

    2011-12-01

    At the catchment scale water temperature is influenced by geographical factors, but at the reach scale superficial and groundwater hydrology and channel geometry strongly affect thermal patterns. During the last 30 years, studies have been pointed out the significance and complexity of water exchanges between the channel and the hyporheic and phreatic zones. These surface-subsurface water exchanges influence water temperature patterns. Braided rivers present particular thermal conditions with very high spatial water temperature variability. This high thermal variability is difficult to comprehend using only in situ measurements and so thermal infrared (TIR) remote sensing is particularly suited to assessing the thermal patterns associated with these rivers. The aims of this study are to evaluate temperature patterns of nine braided reaches at very high spatial resolution (~20 cm) and to link temperature and water-body types. We hypothesized that river type has an influence of the spatial patterns of water temperature and that the patterns change through the day. All reaches are located in France, in the Rhône catchment. The nine reaches were selected based on high aquatic habitat diversities and are located in three regional areas: the massif des Écrins, the Rhône valley, and south Alps. They are about 1 km long. We have three distinct temporal approaches. The first one is a multi-site approach which proposes one survey of each site during summers 2010 or 2011. Three reaches were selected for the second phase (a multi-annual analysis and were therefore imaged both in summers 2010 and 2011. The last phase is an intra-day survey of two reaches with several flights at different times of day. This presentation focuses on the last approach with two reaches of the Drôme and Drac Noir rivers. To observe the evolution of the thermal patterns of these two reaches through the day, four flights within a day were realized during summer 2011 for both sites. The Drôme reach

  8. Thermally driven magnetic precession in spin valves

    NASA Astrophysics Data System (ADS)

    Luc, David; Waintal, Xavier

    2014-10-01

    We investigate the angular dependence of the spin torque generated when applying a temperature difference across a spin valve. Our study shows the presence of a nontrivial fixed point in this angular dependence. This fixed point opens the possibility for a temperature gradient to stabilize radio frequency oscillations without the need for an external magnetic field. This so-called "wavy" behavior can already be found upon applying a voltage difference across a spin valve but we find that this effect is much more pronounced with a temperature difference. We find that a spin asymmetry of the Seebeck coefficient of the order of 20 μ VK -1 should be large enough for a temperature gradient of a few degrees to trigger the radio-frequency oscillations. Our semiclassical theory is fully parametrized with experimentally measured(able) parameters and allows one to quantitatively predict the amplitude of the torque.

  9. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and Gamma-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Paoletti, V.; Gruber, S.; Varley, N.; D'Antonio, M.; Supper, R.; Motschka, K.

    2016-05-01

    The island of Socorro is located in the eastern Pacific Ocean, 650 km off the coast of Mexico. It is a rare example of an oceanic volcanic island whose above sea level volume is made up mostly of peralkaline trachytes and rhyolites, with subordinate mafic rocks. Subaerial volcanism started several hundred thousand years ago and continues until recent times. We present an investigation of surface and subsurface geology of the island, based on the first detailed extensive geophysical survey on the island. Acquired airborne magnetic and gamma-ray data were compared to existing geological information and supplemented with field investigations and satellite imagery. Magnetic data show a wide minimum in the central part of the island, possibly connected to a high-temperature zone in the deeper central portion of the volcano, likely to be due to a still hot magma body. The data also depict two parallel edges possibly suggesting the existence of a nested caldera. Analysis on upward continued magnetic data by recent imaging techniques highlighted two deep sources located around 5 km b.s.l., interpreted as feeding structures that are now filled with crystalline rocks. Gamma-ray data have been interpreted through integration with the geological survey results. Several previously known volcanic deposits have been identified based on radioelement distribution, and others have been redefined based on field evidence. A new succession of volcanic members is proposed, to be verified through more detailed geological mapping, geochemical analyses of rock samples and radiometric dating.

  10. On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy

    NASA Astrophysics Data System (ADS)

    Sagnotti, Leonardo; Winkler, Aldo

    2012-11-01

    The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles.

  11. Magnetic domain structure and thermal stabilization of laser treatment zones in soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Pudov, V. I.; Dragoshanskii, Yu. N.

    2016-02-01

    A combined effect of laser treatment and introduced fine-grained weakly magnetic impurity Mg-P-B defects on the magnetic structure and physical properties of anisotropic electrotechnical materials has been investigated. Specific features of changes in the type and behavior of the magnetic domain structure under different types of deformation (laser irradiation, scratching, and introduction of interstitial defects) have been revealed. The physical basis and optimum conditions of increase in thermal stability of local laser treatment zones in soft magnetic alloys have been determined. The obtained results open the prospects of decreasing magnetic losses in soft magnetic alloys and producing magnetic materials with a high level of physical and mechanical properties that are more resistant to operating conditions.

  12. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    NASA Astrophysics Data System (ADS)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  13. Perpendicular propagation of electromagnetic solitons in magnetized thermal pair plasmas

    NASA Astrophysics Data System (ADS)

    Verheest, Frank

    2016-02-01

    The properties of perpendicularly propagating large amplitude electromagnetic solitons are investigated in a thermal, magnetized pair plasma. To obtain a tractable description, these solitons are assumed to be charge neutral and have a linearly polarized magnetic field, and thus represent the nonlinear extension of part of the linear extraordinary mode. From a Sagdeev pseudopotential analysis it transpires that these solitons are compressive and characterized by a wave magnetic field parallel to the static field. The existence domain in compositional parameter space shows pressure-dependent maxima for the soliton velocities, densities and total magnetic field. Physically, an increase in pressure yields a decrease in the acceptable maxima. This is also illustrated on typical pseudopotential and soliton profiles.

  14. Thermal properties of stellar matter in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Piloyan, Arpine

    2012-07-01

    Low statistics and selection effects of the existing observational records of neutron stars ( NSs) do not allow to draw a coherent picture of the NSs typology only from observations. From theoretical point of view the unsufficient understanding of the mechanism of Supernovae explosion as well as the uncertainties in the modeling of the stellar matter equation of state make the knowledge of the parameters of the NS's structure and thermal, magnetic field or spin evolution non robust. The model's which are including the effects of superfluidity, superconductivity in dense matter and electro dynamics of super strong magnetic fields due to The complicated physics of matter under extrim conditions need further detailed investigations. The results are demonstrating the influence of magnetic field on the cooling regulators of NSs such as neutrino emissivity, heat conductivity and specific heat in the presence of magnetic fields for the investigations of cooling evolution of magnetars.

  15. Hexapole magnet system for thermal energy 3He atom manipulation

    NASA Astrophysics Data System (ADS)

    Jardine, A. P.; Fouquet, P.; Ellis, J.; Allison, W.

    2001-10-01

    We present design and construction details for a novel high field, small bore permanent hexapole magnet. The design is intended for focusing atomic beams of 3He at thermal energies. The magnet uses an optimized polepiece design which includes vacuum gaps to enable its use with high intensity atomic and molecular beams. The 0.3 m long, 1 mm internal radius magnet achieves a polepiece tip field of 1.1 T using NdFeB permanent magnets and Permendur 49 polepieces. The polepiece shanks are designed to saturate so that the hexapole properties are determined predominantly by the shape of the polepiece tip. The performance of the hexapole assembly is demonstrated with an 8 meV 3He beam in the beam source of the Cambridge spin echo spectrometer and the measured focused beam results show excellent agreement with theoretical predictions and negligible beam attenuation.

  16. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives

  17. TOPICAL REVIEW: Ultimate limits to thermally assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    McDaniel, Terry W.

    2005-02-01

    The application of thermal energy to enable recording on extremely high anisotropy magnetic media appears to be a viable means of extending the density of stored information. The central physical issue facing the technology is what gain can be realized in writability along with long-term data stability using imaginable media materials. We reasonably expect the material properties M(T) and Hk(T) to determine this, since a stability metric for media with characteristic magnetization switching unit volume V is MV Hk/2kBT. This matter is controversial owing to still open questions related to thermomagnetic recording with temperature elevation above the Curie point and optimal cooling rates. There are indications that multi-component magnetic media may offer advantages in achieving performance goals. Beyond the physical issues lie engineering matters related to the correct system architecture to yield a practical storage device to meet future customer expectations. Here one must address a detailed means of delivering localized heating to the magnetic medium to perform efficient recording. To date, magnetic recording devices have been highly mechanical systems, so it is natural to inquire how a need for an aggressively heated head-medium interface could impact the evolution of future systems. Eventually elements of thermally assisted recording could be combined with patterned media approaches such as self-organized magnetic arrays to push toward ultimate limits where the thermal instability of bits overtakes engineered media materials. Finally, a practical recording system cannot be realized unless a means of finding, following, and reading the smallest bits with a usable signal-to-noise ratio exists—engineering issues separate from an ability to reliably record those bits. This paper is based on an invited presentation of the same title given at the meeting of the American Physical Society, 22-26 March 2004, in Montreal, Quebec, Canada.

  18. Dynamic compact model of thermally assisted switching magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    El Baraji, M.; Javerliac, V.; Guo, W.; Prenat, G.; Dieny, B.

    2009-12-01

    The general purpose of spin electronics is to take advantage of the electron's spin in addition to its electrical charge to build innovative electronic devices. These devices combine magnetic materials which are used as spin polarizer or analyzer together with semiconductors or insulators, resulting in innovative hybrid CMOS/magnetic (Complementary MOS) architectures. In particular, magnetic tunnel junctions (MTJs) can be used for the design of magnetic random access memories [S. Tehrani, Proc. IEEE 91, 703 (2003)], magnetic field programmable gate arrays [Y. Guillement, International Journal of Reconfigurable Computing, 2008], low-power application specific integrated circuits [S. Matsunaga, Appl. Phys. Express 1, 091301 (2008)], and rf oscillators. The thermally assisted switching (TAS) technology requires heating the MTJ before writing it by means of an external field. It reduces the overall power consumption, solves the data writing selectivity issues, and improves the thermal stability of the written information for high density applications. The design of hybrid architectures requires a MTJ compact model, which can be used in standard electrical simulators of the industry. As a result, complete simulations of CMOS/MTJ hybrid circuits can be performed before experimental realization and testing. This article presents a highly accurate model of the MTJ based on the TAS technology. It is compatible with the Spectre electrical simulator of Cadence design suite.

  19. Thermal field fluctuations in a magnetic tip / implications for magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Hannay, J. D.; Chantrell, R. W.; Rugar, D.

    2000-05-01

    Thermally excited magnetic fluctuations are fundamental to the behavior of small ferromagnetic particles and have practical consequences for the proposed detection of individual spins by magnetic resonance force microscopy (MRFM). In particular, fluctuating fields from a nearby magnetic tip can increase the relaxation rate of spins in a sample if there is significant spectral density of field fluctuation at the Larmor frequency of the target spin. As an initial step toward understanding this issue, magnetic field fluctuations have been simulated which emanate from a magnetic tip with dimensions 60 nm×60 nm×2 μm. It was found that the fluctuations in a cobalt magnetic tip were too strong for MRFM experiments aimed at detecting individual electron spins. However, the results obtained for a PrFeB tip fell within the tolerance required.

  20. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  1. Beneficiation of Turkish lignites by thermal treatment and magnetic separation

    SciTech Connect

    Onal, G.; Renda, D.; Mustafaev, I.; Dogan, Z.

    1999-07-01

    In this paper, the improvement of Turkish lignites by semi-coking and REMS magnetic separation, in two stages, is discussed. The oxidation and decomposition of pyrite through the thermal treatment result in the formation of iron oxide and pyrrhotite on the surface. In addition to pyrite, part of the organic sulfur is also removed. After thermal treatment of lignites at temperatures ranging from 370 to 650 C, the application of REMS magnetic separator produces a product higher in calorific value and lower in sulfur content. The product can be utilized after briquetting. The volatile gases can also be used after sulfur removal. This process appears to be feasible as a clean coal manufacture from the point of energy efficiency. A short economic analysis is also presented.

  2. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

    2014-04-01

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  3. Mass production of magnetic nickel nanoparticle in thermal plasma reactor

    SciTech Connect

    Kanhe, Nilesh S.; Nawale, Ashok B.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-04-24

    We report the mass production of Ni metal nanoparticles using dc transferred arc thermal plasma reactor by homogeneous gas phase condensation process. To increase the evaporation rate and purity of Ni nanoparticles small amount of hydrogen added along with argon in the plasma. Crystal structure analysis was done by using X-ray diffraction technique. The morphology of as synthesized nanoparticles was carried out using FESEM images. The magnetic properties were measured by using vibrating sample magnetometer at room temperature.

  4. THERMAL EQUILIBRIA OF MAGNETICALLY SUPPORTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Oda, H.; Machida, M.; Nakamura, K. E.; Matsumoto, R.

    2009-05-20

    We present new thermal equilibrium solutions for optically thin and optically thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in black hole candidates. On the basis of the results of three-dimensional magnetohydrodynamic simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total (gas, radiation, and magnetic) pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. Local thermal equilibrium solutions are obtained by equating the heating, radiative cooling, and heat advection terms. We find magnetically supported ({beta} = (p {sub gas} + p {sub rad})/p {sub mag} < 1), thermally stable solutions for both optically thin disks and optically thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-{beta} disk (T {approx} 10{sup 7}-10{sup 11}K) is lower than that in an advection-dominated accretion flow (or radiatively inefficient accretion flow) but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-{beta} branch extends to M-dot{approx}>0.1 M-dot{sub Edd}, where M-dot is the mass accretion rate and M-dot{sub Edd} is the Eddington mass accretion rate, in which the temperature anticorrelates with the mass accretion rate. Thus, optically thin low-{beta} disks can explain the bright hard state. Optically thick, low-{beta} disks have the radial dependence of the effective temperature T {sub eff} {proportional_to} piv{sup -3/4}. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-{beta} disk and a slim disk will occur because

  5. Magnetized thermal conduction fronts. [between hot and cold astrophysical plasma

    NASA Technical Reports Server (NTRS)

    Balbus, S. A.

    1986-01-01

    The evolution of planar thermal conduction fronts in the presence of a dynamically weak, but otherwise self-consistent, magnetic field is considered. The field is assumed to be connected and untangled. In the diffusion limit for the thermal conductivity, these fronts exhibit self-similar behavior, even in the presence of a field. The role of the field is restricted to channeling the heat flux along its lines of force, and it enters into the problem as a dimensionless angle variable. 'Combing' (or opening) of insulating field lines by the evaporative flow is explicitly demonstrated. Unless the field is nearly perpendicular to the front normal in the hot gas, insulating effects are not profound. Self-similarity breaks down if the front becomes saturated, and under certain conditions magnetized saturated conduction fronts cannot propagate: the solution characteristics of the wave equation form caustics. The physical resolution is the advent of two-fluid (nonlocal) heating. Such Coulomb-heated fronts are expected to be relatively rare in typical astrophysical systems. The large-scale effects of a magnetic field on cloud evaporation in the interstellar medium are briefly discussed, and it is suggested that these fields preclude the presence of time-independent evaporative solutions. Thermal interfaces may then continue to evolve until radiative cooling halts their development; large tracts of warm 10,000 K gas may result.

  6. Thermal motion of magnetic iron nanoparticles in a frozen solvent.

    PubMed

    Klokkenburg, Mark; Erné, Ben H; Philipse, Albert P

    2005-02-15

    The thermal rotation of iron nanoparticles dispersed in cyclohexane was studied by measuring the dynamic magnetic susceptibility above and below the freezing point of the solvent. Above the freezing point, the orientation of the magnetic dipoles changes mainly by reorientation of the entire particle. Below the freezing point, complete arrest of particle motion was expected, such that the magnetic dipoles would only be able to reorient themselves inside the nanoparticles (Neel relaxation). However, we find that thermal motion continues well below the temperature at which the bulk of the solvent is frozen. We ascribe this to local lowering of the freezing point, due to the presence of polymers in the close vicinity of the colloids. Furthermore, because strong dipole-dipole interactions result in the formation of dipolar chains, we have systematically studied the effect of particle size on dynamics in a frozen solvent. For the larger particles, our data indicate that local wiggling of the individual particles in a chain may become the dominating mode of thermal motion. PMID:15697259

  7. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  8. A Study of the Magnetic and Thermal Properties of Ln

    SciTech Connect

    Harada, Daijitsu; Hinatsu, Yukio

    2001-05-01

    Crystal structures, and magnetic, electric, and thermal properties of fluorite related compounds Ln{sub 3}RuO{sub 7} (Ln=Sm, Eu) have been investigated. For Eu{sub 3}RuO{sub 7}, a magnetic transition due to Ru{sup 5+} ions is found at T{sub N}=22.5 K on the susceptibility-temperature curve. Specific heat measurements also exhibit a {lambda}-type anomaly at the same temperature. The Moessbauer spectrum measured at 10 K shows broadening of the line corresponding to magnetic splitting. For Sm{sub 3}RuO{sub 7}, two magnetic anomalies have been observed at 10.5 and 22.5 K from its magnetic susceptibility measurements. Below 22.5 K Ru{sup 5+} ions are antiferromagnetically coupled, and when the temperature is decreased through 10.5 K the ordering of Sm{sup 3+} ions occurs rapidly. Specific heat measurements show first-order transition peaks at T=280 and 190 K for Eu{sub 3}RuO{sub 7} and Sm{sub 3}RuO{sub 7}, respectively. T he results of magnetic susceptibility and electric resistivity measurements indicate that these transitions are structural phase transitions.

  9. Thermal Stability of MnBi Magnetic Materials

    SciTech Connect

    Cui, Jun; Choi, Jung-Pyung; Li, Guosheng; Polikarpov, Evgueni; Darsell, Jens T.; Overman, Nicole R.; Olszta, Matthew J.; Schreiber, Daniel K.; Bowden, Mark E.; Droubay, Timothy C.; Kramer, Matthew J.; Zarkevich, Nikolai; Wang, L. L.; Johnson, Duane D.; Marinescu, Melania; Takeuchi, Ichiro; Huang, Qingzhen; Wu, Hui; Reeve, Hayden; Vuong, Nguyen V.; Liu, J.Ping

    2014-01-01

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase for exchange coupling nanocomposite magnet. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn is easy to react with oxygen. MnO formation is irreversible and causes degradation to the magnetic properties. In this paper, we report our effort on developing MnBi permanent magnet. High purity MnBi (>90%) can be routinely produced in large quantity. The obtained powder exhibit 74 emu/g saturation magnetization at room temperature with 9 T applied field. After alignment, the powder exhibits 11.6 MGOe, and the sintered bulk magnet exhibit 7.8 MGOe at room temperature. Thermal stability study shows that the MnBi is stable up to 473 K in air.

  10. Thermal stability of MnBi magnetic materials

    SciTech Connect

    Cui, Jinfang; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J.; Overman, N.; Olszta, M.; Schreiber, D.; Bowden, M.; Droubay, T.; Kramer, Matthew J.; Zarkevich, Nikolay A.; Wang, L L.; Johnson, Duane D.; Marinescu, M.; Takeuchi, I.; Huang, Q. Z.; Wu, H.; Reeve, H.; Vuong, N. V.; Liu, J P.

    2014-01-27

    MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74:6 emu g1 saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH) max of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air.

  11. Comparison of Magnetic Anomalies of Lithospheric Origin Measured by Satellite and Airborne Magnetometers over Western Canada

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Coles, R. L.; Mayhew, M. A.

    1979-01-01

    Crustal magnetic anomaly data from the OGO 2, 4 and 6 (Pogo) satellites are compared with upward-continued aeromagnetic data between 50 deg -85 deg N latitude and 220 deg - 260 deg E longitude. Agreement is good both in anomaly location and in amplitude, giving confidence that it is possible to proceed with the derivation and interpretation of satellite anomaly maps in all parts of the globe. The data contain a magnetic high over the Alpha ridge suggesting continental composition and a magnetic low over the southern Canada basin and northern Canadian Arctic islands (Sverdrup basin). The low in the Sverdrup basin corresponds to a region of high heat flow, suggesting a shallow Curie isotherm. A ridge of high field, with two distinct peaks in amplitude, is found over the northern portion of the platform deposits and a relative high is located in the central portion of the Churchill province. No features are present to indicate a magnetic boundary between Slave and Bear provinces, but a trend change is evident between Slave and Churchill provinces. South of 60 deg latitude a broad magnetic low is located over very thick (40-50 km) crust, interpreted to be a region of low magnetization.

  12. Exposure to airborne isocyanates and other thermal degradation products at polyurethane-processing workplaces.

    PubMed

    Henriks-Eckerman, Maj-Len; Välimaa, Jarmo; Rosenberg, Christina; Peltonen, Kimmo; Engström, Kerstin

    2002-10-01

    The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented. PMID:12400920

  13. Analysis and Application of Airborne Thermal Data at the Local Level Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    Dudley-Murphy, Elizabeth A.

    1999-01-01

    Expanding cities are transforming periurban environments such as agricultural land, natural grasslands, forests, wetlands, and and land, into urban surfaces, such as asphalt and concrete. This transformation is part of a process defined as "urban heat island". The urban surfaces get much hotter during the daylight hours in the summer than the natural or vegetated environment. The heat builds up creating a dome effect over the city making it many degrees hotter than it's surrounding area. The impacts from this, which include higher usage of air conditioners, water, etc., are numerous and costly. As cities expand, this problem is exacerbated. It is necessary to incorporate better quality data into urban analysis and for establishing methods that systematically and objectively monitor growth and change due to increased urbanization. NASA initiated Project Atlanta in 1997 "as an interdisciplinary remote sensing study to observe and measure the growth and development of the urban heat island effect over Atlanta, and its associated impacts". This project has recently included Salt Lake City, among others, in the study of the development and effects of "urban heat islands". NASA has made available to Salt Lake City, high resolution, 10 meter, multispectral thermal data collected in June 1998. The data collection was part of a special NASA over-flight, a mission supported by the U.S. EPA in conjunction with their Urban Heat Island (UHI) Mitigation Initiative. Salt Lake City is one of three pilot cities selected to participate in this unique initiative. Hence, this project constitutes a rare opportunity to capitalize upon state-of-the-art NASA technology and link it to an urban community very concerned about rapid growth and development. This data will enhance existing data and be used for improving technical tools used to plan for Utah's future.

  14. Airborne thermal degradation products of polyurethene coatings in car repair shops.

    PubMed

    Karlsson, D; Spanne, M; Dalene, M; Skarping, G

    2000-10-01

    A methodology for workplace air monitoring of aromatic and aliphatic, mono- and polyisocyanates by derivatisation with di-n-butylamine (DBA) is presented. Air sampling was performed using midget impinger flasks containing 10 ml of 0.01 mol l(-1) DBA in toluene and a glass-fibre filter in series after the impinger flask, thereby providing the possibility of collecting and derivatising isocyanates in both the gas and particle phases. Quantification was made by LC-MS, monitoring the molecular ions [MH]+. Air samples taken with this method in car repair shops showed that many different isocyanates are formed during thermal decomposition of polyurethane (PUR) coatings. In addition to isocyanates such as hexamethylene (HDI), isophorone (IPDI), toluene (TDI) and methylenediphenyl diisocyanate (MDI), monoisocyanates such as methyl (MIC), ethyl (EIC), propyl (PIC), butyl (BIC) and phenyl isocyanate (PhI) were found. In many air samples the aliphatic monoisocyanates dominated. During cutting and welding operations, the highest levels of isocyanates were observed. In a single air sample from a welding operation in a car repair shop, the highest concentrations found were: MIC, 290; EIC, 60; PIC, 20; BIC, 9; PhI, 27; HDI, 105; IPDI, 39; MDI, 4; and 2,4-TDI and 2,6-TDI 140 microg m(-3). Monitoring the particle size distribution and concentration during grinding, welding and cutting operations showed that ultrafine particles (< 0.1 microm) were formed at high concentrations. Isocyanates with low volatility were mainly found in the particle phase, but isocyanates with a relatively high volatility such as TDI, were found in both the particle and gas phases. PMID:11254051

  15. Thermal contact conductance and thermal shield design for superconducting magnet systems

    SciTech Connect

    Nilles, M.J.; Lehmann, G.A.

    1994-12-31

    The aluminum radiation shields in the SSC Quadrupole magnets are conductively cooled from the cryogen flow in the 80 K and 20 K flow circuits. As the shield temperature is very sensitive to the effective heat transfer rate between the shield-piping interface, the method of shield mounting and heat sinking is critical. Cost and reliability concerns also drive the design. Here, the authors discuss critical issues that can have a limiting effect on the shield thermal performance. The spring-type action of the shield clamps it in place and heat transfer across the interface depends on thermal contact conductance. Thermally induced stresses can be relieved by allowing the shield and piping to slide relative to each other. Test results are presented on stainless steel-aluminum thermal contact conductance and its effect on the shield performance is discussed.

  16. Change from inverse to normal magnetic fabrics through thermal treatment

    NASA Astrophysics Data System (ADS)

    Kim, H.; Cho, H.; Jeong, J. O.; Son, M.; Sohn, Y. K.

    2014-12-01

    The Gusandong Tuff is an extensive rhyolitic ignimbrite that has been used as an excellent key bed in the Cretaceous Gyeongsang Basin, SE Korea. Magnetic fabric analysis in the tuff, using AMS (Anisotropy of Magnetic Susceptibility) technique, shows an anomalous fabric which has horizontal k3 and vertical k1 axes in several sites. The fabric is interpreted to be an inverse one attributed to single-domain magnetites. We attempted a stepwise thermal treatment to investigate the changes of AMS axes and parameters (T, PJ) in four sites (KT11B, KT11M, KT18B, KT18M). All these sites dominantly include the specimens showing the anomalous fabric. Rock magnetism shows that magnetites are the main carrier of the AMS fabric. The changing patterns of magnetic fabric during heating are classified into 4 types: (1) Type-0 is characterized by unchanged three principal axes (k1, k2, k3) over all heating steps. (2) Type-I shows the exchange of k1 and k2 axes each other. (3) Type-II is characterized by the exchange of k2 and k3 axes each other. (4) Type-III shows that three principal axes switch their positions with one another. Except for Type-0, most of the magnetic fabrics are transformed gradually. The directional changes of the axes begin between 450-580°C and then terminate near 670°C. After the thermal treatment, all the fabrics become geologically normal as vertical k3 and horizontal k1 axes. It is also notable that the beginning temperatures are nearly equal to those of inflection points in the T-PJ plots. In the sites KT18B and KT18M which showed girdle-distributed and vertical k1 axes, respectively, before the treatment, all the k1 axes become horizontally and co-directionally clustered after the treatment. This result indicates that the thermal treatment can be a strongly useful tool for eliminating the inverse AMS magnetic fabric of natural rocks. The changes of axis orientation and magnitude observed in this study can be reasonably explained with the theoretical

  17. Thermal stability of a thin disk with magnetically driven winds

    SciTech Connect

    Li, Shuang-Liang; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-05-01

    The absence of thermal instability in the high/soft state of black hole X-ray binaries, in disagreement with the standard thin disk theory, has been a long-standing riddle for theoretical astronomers. We have tried to resolve this question by studying the thermal stability of a thin disk with magnetically driven winds in the M-dot −Σ plane. It is found that disk winds can greatly decrease the disk temperature and thus help the disk become more stable at a given accretion rate. The critical accretion rate, M-dot {sub crit}, corresponding to the thermal instability threshold, is significantly increased in the presence of disk winds. For α = 0.01 and B {sub φ} = 10B {sub p}, the disk is quite stable even for a very weak initial poloidal magnetic field [β{sub p,0}∼2000,β{sub p}=(P{sub gas}+P{sub rad})/(B{sub p}{sup 2}/8π)]. However, when B {sub φ} = B {sub p} or B {sub φ} = 0.1B {sub p}, a somewhat stronger (but still weak) field (β{sub p,} {sub 0} ∼ 200 or β{sub p,} {sub 0} ∼ 20) is required to make the disk stable. Nevertheless, despite the great increase of M-dot {sub crit}, the luminosity threshold, corresponding to instability, remains almost constant or decreases slowly with increasing M-dot {sub crit} due to decreased gas temperature. The advection and diffusion timescales of the large-scale magnetic field threading the disk are also investigated in this work. We find that the advection timescale can be smaller than the diffusion timescale in a disk with winds, because the disk winds take away most of the gravitational energy released in the disk, resulting in the decrease of the magnetic diffusivity η and the increase of the diffusion timescale.

  18. Magnetic-resonance-guided directional transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Ross, Anthony; Diederich, Chris J.; Nau, William H.; Tyreus, Per Daniel; Gill, Harchi; Bouley, Donna; Butts, R. K.; Rieke, Viola; Daniel, Bruce; Sommer, Graham

    2003-06-01

    Two catheter-based transurethral ultrasound applicators designed for selective thermal coagulation of prostate tissue were evaluated. The first applicator utilized two 3.5 mm piezoelectric sectored tubes with the active transducer surface forming 90°. The second applicator's transducer assembly consisted of a linear array of 3.5 x 10 mm planar transducer elements. Both applicators operated at 8 MHz and were positioned on a 4 mm diameter catheter within an integrated expandable balloon (10 mm). Manual rotation of the transducer assembly within the balloon allowed for angular control and/or sweeping of the treatment volume. Ambient temperature degassed cooling water (~120 ml/min) was circulated inside the balloon to preserve the urethral mucosa. Acoustic efficiencies of 20-54% and acoustic beam distributions were measured. The thermal treatment characteristics of the applicator were investigated in vivo (canine prostate) under MRI guidance in an interventional open magnet (0.5 T). Magnetic resonance thermal imaging (MRTI) monitored the treatments (GRE phase mapping, multiple planes, 15 sec update intervals). Post-treatment imaging (T1 w/contrast) and TTC staining of the prostate were used to verify zones of thermal damage. Single sonications lasting 8-15 min produced coagulated zones of tissue extending to the outer boundary of the prostate while preserving 2-3 mm of urethral mucosa. Multiple sonications in sequence produced larger contiguous sectors of coagulated tissue (~ 3/4 of the gland). In summary, highly directional transurethral applicators under MRI guidance were able to produce selective and controllable thermal coagulation.

  19. GMinterp, A Matlab Based Toolkit for Gravity and Magnetic Data Analysis: Example Application to the Airborne Magnetic Anomalies of Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ekinci, Y. L.; Yiǧitbaş, E.

    2012-04-01

    developed toolkit. Additionally some experiments on real data sets were performed to interpret the geological structure of Biga Peninsula, NW part of Anatolia, Turkey. Keywords: GMinterp, GUI, airborne magnetic data, geology, Biga Peninsula

  20. Magnetic constraints on the thermal evolution of a collapsing orogen

    NASA Astrophysics Data System (ADS)

    Platzman, Ellen

    2002-06-01

    The thermal evolution of an orogen undergoing late-stage extension was investigated using rock magnetic properties of a suite of mafic dyke rocks affected by greenschist facies metamorphism in the internal zones of the Betic Cordillera, southern Spain. The natural remanent magnetization (NRM) in the dykes intruded into the lowest geological unit is made up of up to three components. The lowest temperature component (LT) is in the direction of the present day magnetic field and is believed to be a chemical remanent magnetization (CRM) or viscous remanent magnetization (VRM) acquired in the recent magnetic field. The intermediate temperature (IT) component unblocked between 200°C and 450°C is thought to be largely a thermoviscous overprint acquired during metamorphism. This component is carried by either primary or authogenic sulfides and low-unblocking temperature magnetite. The component of magnetization with the highest blocking temperature (HT) is isolated above 450°C and is interpreted as the primary component of remanent magnetization. It is most likely that this component is carried by magnetite that resides in the plagioclase and has been shielded from the metamorphism, which transformed most of the original magnetite to metamorphic amphibole, chlorite and biotite. Thermal demagnetization of these dykes separates the IT overprint from the HT primary remanence at a sharp junction occurring at 450°C. For single domain grains this translates to a peak palaeotemperature in the natural sample of approximately 370°C, which is close to the estimated temperature experienced by the greenschist facies country rocks (400°C). In contrast, results obtained from a dyke that is intruded into an overlying weakly metamorphosed geological unit, indicates that temperatures only reached about 175°C in this unit. These results are consistent with temperatures deduced from geological constraints and they imply that between 4 and 6 km of section has been removed between the

  1. Thermal instability in a magnetically levitated doubly overhung rotor

    NASA Astrophysics Data System (ADS)

    Takahashi, Naohiko; Kaneko, Shigehiko

    2013-03-01

    This paper deals with a synchronous vibration instability that occurred in a two-stage overhung centrifugal compressor supported by magnetic bearings. The authors encountered an unbalance vibration that increased spirally in a polar plot at/near the first bending critical speed. The concentration of iron loss and thermal bending due to heat have been identified as the causes of the phenomenon, because the vibration stopped increasing when unbalance force rejection control (UFRC) was applied. In this paper, prior to an in-depth discussion of experiments on the above phenomenon, the compressor and magnetic bearing system are described. To provide a theoretical perspective, a model of the thermally induced vibration is presented and the stability is discussed. In the experiments, to exceed the first bending critical speed stably, balancing of the rotor under UFRC was carried out and rapid acceleration/deceleration was applied to the variable-speed drive system. The vibration behaviors around the critical speed were measured and the results verified the theoretical model. To evaluate the stability limit of the thermal bending, a method of measuring the model parameter that determines the stability is proposed and the measured data are compared with calculated results. Finally, methods for improving the stability are discussed.

  2. Langevin simulation of thermally activated magnetization reversal in nanoscale pillars

    SciTech Connect

    Brown, Gregory; Novotny, M. A.; Rikvold, Per Arne

    2001-10-01

    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the fast multipole method) are presented for systems composed of nanoscale iron pillars of dimension 9nm x 9nm x 150nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979{+-}14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only {approx}1 Oe, the interactions have a significant effect on the switching of the magnets.

  3. Magnetization Reversal and Thermal Activation in Co/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Meldrim, J. Mark; Kirby, Roger; Sellmyer, David

    2000-03-01

    Co/Pt multilayers not only display interesting intrinsic magnetic properties such as perpendicular anisotropy but also have technological applications. As grain sizes become smaller and smaller, the role of thermal activation becomes important in understanding magnetization reversal [1,2]. We have prepared [Co 3 Å/Pt 9 Å] x N thin films where N ranges from 6 to 24 by DC magnetron sputtering at various Ar pressures. As the sputtering gas pressure is changed, we find the lateral grain size changes from 20 nm to 45 nm. At the same time, the hysteresis loops become less square and the coercivity increases from a few hundred Oe to above 5 kOe. Activation volumes were determined for the samples both by the field sweep rate method and viscosity measurements. These results will be discussed in terms of simple models of thermally assisted magnetization reversal. This work is supported by NFS grant DMR 9623992 and CMRA. [1] J. S. Shen, R. D. Kirby, K. Wierman, Z. S. Shan, and D. J. Sellmyer, J. App. Phys. 73, 6418 (1993). [2] X. Chen and M. H. Kryder. J. App. Phys. 85, 5006 (1999).

  4. Thermal Instability and Magnetic Pressure in the Turbulent Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Vázquez-Semadeni, E.; Gazol, A.; Passot, T.; et al.

    We review recent results on the nonlinear development of thermal instability (TI) in the context of the turbulent atomic interstellar medium (ISM), in which correlated density and velocity fluctuations are present, as well as forces other than the thermal pressure gradient. First, we present a brief summary of the linear theory, remarking that, in the atomic ISM, the condensation mode is unstable but the wave mode is stable at small scales. Next, we revisit the growth of isolated entropy perturbations in initially unstable gas, as a function of the ratio of the cooling to the dynamical crossing times eta. The time for the dynamical transient state to subside ranges from 4 to 30 Myr for initial density perturbations of 20% and sizes 3 to 75 pc. When eta ≪ 1, the condensation produces locally supersonic motions and a shock propagates off the c ondensation, bringing the surrounding medium out of thermal equilibrium. Third, we consider the evolution of velocity perturbations, maintained by a random forcing, representing turbulent energy injection to the ISM from stellar sources. These perturbations correspond to the wave mode, and are stable at moderate amplitudes and small scales, as confirmed numerically. We then consider the behavior of magnetic pressure in turbulent regimes. Various observational and numerical results suggest that the magnetic pressure does not correlate well with density at low and intermediate densities. We propose that this is a consequence of the slow and fast modes of nonlinear MHD waves being characterized by different scalings of the magnetic field strength versus density. This lack of correlation suggests that, in fully turbulent regimes, the magnetic field may not be a very efficient source of pressure, and that polytropic descriptions of magnetic pressure are probably not adequate. Finally, we discuss simulations of the ISM (and resolution issues) tailored to investigate the possible existence of significant amounts of gas in the

  5. The use of high resolution ground and airborne magnetic surveys to evaluate the geometry of hydrothermal alteration zones over volcanic provinces (Invited)

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2013-12-01

    Geophysical methods can provide critical constraints on the distribution and volume of hydrothermal alteration, important parameters in understanding the evolution of geothermal systems. Because hydrothermal alteration modifies the magnetic properties of the volcanic substratum, magnetic surveys can be used to provide constraints on the distribution of hydrothermal alteration at depth. Using Yellowstone caldera as an example, we show that both ground and airborne magnetic surveys can be used to map and assess the volume of hydrothermal alteration. Ground magnetic surveys over unaltered volcanic terranes display high-amplitude, short-wavelength anomalies, in contrast to smooth, subdued magnetic anomalies over volcanic substrata demagnetized by hydrothermal alteration. We use this contrast to map areas of hydrothermal alteration in detail. Inverse methods applied to high-resolution airborne and ground magnetic data can be used to create three-dimensional models of the distribution of magnetization and thus illuminate the geometry of hydrothermal alteration. Because of the non-uniqueness of potential fields, the construction of inverse models requires simplifying assumptions on the distribution of magnetization, knowledge of induced and remanent magnetization of fresh and altered geological units, and detailed geological and geophysical data. Within the three hydrothermal sites that we investigated in Yellowstone National Park, subdued short-wavelength signal indicates pervasive demagnetization (alteration) of the shallow substratum that extends over larger areas than initially mapped by geology. These data also reveal that the largest degree of demagnetization (alteration) and maximum thicknesses of demagnetized (altered) substratum, reaching a few hundred meters, are associated with hydrothermal vents and with superficial hydrothermal alteration. Our three dimensional models of magnetization provide estimates of the volume of buried hydrothermal alteration ranging

  6. Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV

    NASA Astrophysics Data System (ADS)

    Isezaki, N.; Matsuo, J.; Sayanagi, K.

    2012-04-01

    The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises

  7. Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching

    SciTech Connect

    Atxitia, U.; Ostler, T. A.; Chantrell, R. W.; Chubykalo-Fesenko, O.

    2015-11-09

    Using large-scale computer simulations, we thoroughly study the minimum energy required to thermally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated electrons is increased, the minimum power required to produce TIMS can be reduced by an order of magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic heterostructures.

  8. Optimal electron, phonon, and magnetic characteristics for low energy thermally induced magnetization switching

    NASA Astrophysics Data System (ADS)

    Atxitia, U.; Ostler, T. A.; Chantrell, R. W.; Chubykalo-Fesenko, O.

    2015-11-01

    Using large-scale computer simulations, we thoroughly study the minimum energy required to thermally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated electrons is increased, the minimum power required to produce TIMS can be reduced by an order of magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic heterostructures.

  9. Magnetism and thermal evolution of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Spohn, T.; Schubert, G.

    1983-01-01

    The absence in the cases of Venus and Mars of the substantial intrinsic magnetic fields of the earth and Mercury is considered, in light of thermal history calculations which suggest that, while the cores of Mercury and the earth are continuing to freeze, the cores of Venus and Mars may still be completely liquid. It is noted that completely fluid cores, lacking intrinsic heat sources, are not likely to sustain thermal convection for the age of the solar system, but cool to a subadiabatic, conductive state that cannot maintain a dynamo because of the gravitational energy release and the chemically driven convection that accompany inner core growth. The models presented include realistic pressure- and composition-dependent freezing curves for the core, and material parameters are chosen so that correct present-day values of heat outflow, upper mantle temperature and viscosity, and inner core radius, are obtained for the earth.

  10. Thermal effects on transverse domain wall dynamics in magnetic nanowires

    SciTech Connect

    Leliaert, J.; Van de Wiele, B.; Vandermeulen, J.; Coene, A.; Dupré, L.; Vansteenkiste, A.; Waeyenberge, B. Van; Laurson, L.; Durin, G.

    2015-05-18

    Magnetic domain walls are proposed as data carriers in future spintronic devices, whose reliability depends on a complete understanding of the domain wall motion. Applications based on an accurate positioning of domain walls are inevitably influenced by thermal fluctuations. In this letter, we present a micromagnetic study of the thermal effects on this motion. As spin-polarized currents are the most used driving mechanism for domain walls, we have included this in our analysis. Our results show that at finite temperatures, the domain wall velocity has a drift and diffusion component, which are in excellent agreement with the theoretical values obtained from a generalized 1D model. The drift and diffusion component are independent of each other in perfect nanowires, and the mean square displacement scales linearly with time and temperature.

  11. Laser-induced photo-thermal magnetic imaging

    NASA Astrophysics Data System (ADS)

    Thayer, David A.; Lin, Yuting; Luk, Alex; Gulsen, Gultekin

    2012-08-01

    Due to the strong scattering nature of biological tissue, optical imaging beyond the diffusion limit suffers from low spatial resolution. In this letter, we present an imaging technique, laser-induced photo-thermal magnetic imaging (PMI), which uses laser illumination to induce temperature increase in a medium and magnetic resonance imaging to map the spatially varying temperature, which is proportional to absorbed energy. This technique can provide high-resolution images of optical absorption and can potentially be used for small animal as well as breast cancer and lymph node imaging. First, we describe the theory of PMI, including the modeling of light propagation and heat transfer in tissue. We also present experimental data with corresponding predictions from theoretical models, which show excellent agreement.

  12. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciTech Connect

    Love, E.; Hammack, R.; Harbert, W.; Sams, J.; Veloski, G.; Ackman, T.

    2005-12-01

    The Kettle Creek watershed contains 50-100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  13. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    SciTech Connect

    Love, E.; Hammack, R.W.; Harbert, W.P.; Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  14. Thermal convection in a nonlinear non-Newtonian magnetic fluid

    NASA Astrophysics Data System (ADS)

    Laroze, D.; Pleiner, H.

    2015-09-01

    We report theoretical and numerical results on thermal convection of a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties are described by a general nonlinear viscoelastic model that contains as special cases the standard phenomenological constitutive equations for the stress tensor. In order to explore numerically the system we perform a truncated Galerkin expansion obtaining a generalized Lorenz system with ten modes. We find numerically that the system has stationary, periodic and chaotic regimes. We establish phase diagrams to identify the different dynamical regimes as a function of the Rayleigh number and the viscoelastic material parameters.

  15. Control of Thermal Convection in Layered Fluids Using Magnetic fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.

  16. Magnetic Charge Organization and Screening in Thermalized Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian

    2014-03-01

    Artificial spin ice is a material-by-design in which interacting single-domain ferromagnetic nanoislands are used to model Ising spins in frustrated spin systems. Artificial spin ice has proved a useful system in which to directly probe the physics of geometrical frustration, allowing us to better understand materials such as spin ice. Recently, several new experimental techniques have been developed that allow effective thermalization of artificial spin ice. Given the intense interest in magnetic monopole excitations in spin ice materials and artificial spin ice's success in modeling these materials, it should not come as a surprise that interesting monopole physics emerges here as well. The first experimental investigation of thermalized artificial square spin ice determined that the system's monopole-like excitations obeyed a Boltzmann distribution and also found evidence for monopole-antimonopole interactions. Further experiments have implicated these monopole excitations in the growth of ground state domains. Our recent study of artificial kagome spin ice, whose odd-coordinated vertices always possess a net magnetic charge, has revealed a theoretically-predicted magnetic charge ordering transition which has not been previously observed experimentally. We have also investigated the details of magnetic charge interactions in lattices of mixed coordination number. This work was done in collaboration with Sheng Zhang, Cristiano Nisoli, Gia-Wei Chern, Michael Erickson, Liam O'Brien, Chris Leighton, Paul Lammert, Vincent Crespi, and Peter Schiffer. This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, grant no. DE-SC0005313.

  17. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    SciTech Connect

    Not Available

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  18. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of

  19. Thermal equilibrium of a cryogenic magnetized pure electron plasma

    NASA Technical Reports Server (NTRS)

    Dubin, D. H. E.; Oneil, T. M.

    1986-01-01

    The thermal equilibrium correlation properties of a magnetically confined pure electron plasma (McPEP) are related to those of a one-component plasma (OCP). The N-particle spatial distribution rho sub s and the Helmholtz free energy F are evaluated for the McPEP to O(lambda sub d-squared/a-squared), where lambda sub d is the thermal de Broglie wavelength and is an interparticle spacing. The electron gyromotion is allowed to be fully quantized while the guiding center motion is quasi-classical. The distribution rho sub s is shown to be identical to that of a classical OCP with a slightly modified potential. To O(lambda sub d-squared/a-squared) this modification does not affect that part of F that is caused by correlations, as long as certain requirements concerning the size of the plasma are met. This theory is motivated by a current series of experiments that involve the cooling of a magnetically confined pure electron plasma to the cryogenic temperature range.

  20. Ferroelectric, Thermal, and Magnetic Characteristics of Praseodymium Malonate Hexahydrate Crystals

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2016-04-01

    Gel-grown single crystals of [Pr2(C3H2O4)3(H2O)6] exhibit remarkably flat habit faces, the most predominant being {110}. High-resolution x-ray diffraction analysis showed that the crystals are free from structural grain boundaries, which is the key requirement for single crystals for use in the microelectronics industry to serve as low-dielectric-constant ferroelectric material. The dielectric behavior recorded on {110} planes of single crystals shows that the crystal is ferroelectric with transition temperature T c = 135°C, which differs from the Curie-Weiss temperature T 0 by 2°C (T 0 < T c). Material in pellet form is shown to exhibit slightly different dielectric behavior. Polarization versus electric field confirms the ferroelectric behavior of the material. The dielectric behavior is also supported by the results of thermal studies, viz. thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The magnetic susceptibility and magnetic moment are calculated to be 30.045 × 10-6 emu and 3.092 BM, respectively.

  1. Atom interferometry in space: Thermal management and magnetic shielding

    SciTech Connect

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman Rievers, Benny; Herrmann, Sven; Schuldt, Thilo; Braxmaier, Claus

    2014-08-15

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  2. Atom interferometry in space: thermal management and magnetic shielding.

    PubMed

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman; Rievers, Benny; Herrmann, Sven; Schuldt, Thilo; Braxmaier, Claus

    2014-08-01

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10(-4) % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10(5). We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space. PMID:25173244

  3. Atom interferometry in space: Thermal management and magnetic shielding

    NASA Astrophysics Data System (ADS)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman; Rievers, Benny; Herrmann, Sven; Schuldt, Thilo; Braxmaier, Claus

    2014-08-01

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10-4 % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 105. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  4. Magnetic nanoparticles for thermal lysis and application in cancer treatment

    NASA Astrophysics Data System (ADS)

    Das, Sumana; Javvaji, Brahmanandam; Veerla, Sarath Chandra; Roy Mahapatra, D.

    2016-03-01

    Chemotherapy and radiation-therapy are conventional treatment procedure of cancer. Though radiation therapy is very common practice for cancer treatment, it has limitations including incomplete and non specific destruction. Heating characteristics of magnetic nanoparticle (MNP) is modelled using molecular dynamics simulation setup. This model would give an understanding for the treatment of cancer cell through MNP associated radiation-therapy. In this paper, alternating magnetic field driven heat generation of MNP is studied using classical molecular dynamics. Temperature is measured as an ensemble average of velocity of the atoms. Temperature stabilization is achieved. Under this simulation setting with certain parameters, 45°C temperature was obtained in our simulations. Simulation data would be helpful for experimental analysis to treat cancerous cell in presence of MNP under exposure to radiofrequency. The in vitro thermal characteristics of magnetite nanoparticles using magnetic coil of various frequencies (5, 7.5, 10 and 15 kHz), the saturation temperature was found at 0.5 mg/mL concentration. At frequency 50 kHz the live/dead and MTT assay was performed on magnetite nanoparticles using MC3T3 cells for 10 min duration. Low radio frequency (RF) radiation induced localized heat into the metallic nanoparticles which is clearly understood using the molecular dynamics simulation setup. Heating of nanoparticle trigger the killing of the tumor cells, acts as a local therapy, as it generates less side effects in comparison to other treatments like chemotherapy and radiation therapy.

  5. A moving hum filter to suppress rotor noise in high-resolution airborne magnetic data

    USGS Publications Warehouse

    Xia, J.; Doll, W.E.; Miller, R.D.; Gamey, T.J.; Emond, A.M.

    2005-01-01

    A unique filtering approach is developed to eliminate helicopter rotor noise. It is designed to suppress harmonic noise from a rotor that varies slightly in amplitude, phase, and frequency and that contaminates aero-magnetic data. The filter provides a powerful harmonic noise-suppression tool for data acquired with modern large-dynamic-range recording systems. This three-step approach - polynomial fitting, bandpass filtering, and rotor-noise synthesis - significantly reduces rotor noise without altering the spectra of signals of interest. Two steps before hum filtering - polynomial fitting and bandpass filtering - are critical to accurately model the weak rotor noise. During rotor-noise synthesis, amplitude, phase, and frequency are determined. Data are processed segment by segment so that there is no limit on the length of data. The segment length changes dynamically along a line based on modeling results. Modeling the rotor noise is stable and efficient. Real-world data examples demonstrate that this method can suppress rotor noise by more than 95% when implemented in an aeromagnetic data-processing flow. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  6. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    NASA Astrophysics Data System (ADS)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  7. Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview

    NASA Astrophysics Data System (ADS)

    Sobrino, J. A.; Jiménez-Muñoz, J. C.; Zarco-Tejada, P. J.; Sepulcre-Cantó, G.; de Miguel, E.; Sòria, G.; Romaguera, M.; Julien, Y.; Cuenca, J.; Hidalgo, V.; Franch, B.; Mattar, C.; Morales, L.; Gillespie, A.; Sabol, D.; Balick, L.; Su, Z.; Jia, L.; Gieske, A.; Timmermans, W.; Olioso, A.; Nerry, F.; Guanter, L.; Moreno, J.; Shen, Q.

    2009-06-01

    The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration.

  8. Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview

    NASA Astrophysics Data System (ADS)

    Sobrino, J. A.; Jiménez-Muñoz, J. C.; Zarco-Tejada, P. J.; Sepulcre-Cantó, G.; de Miguel, E.; Sòria, G.; Romaguera, M.; Julien, Y.; Cuenca, J.; Hidalgo, V.; Franch, B.; Mattar, C.; Morales, L.; Gillespie, A.; Sabol, D.; Balick, L.; Su, Z.; Jia, L.; Gieske, A.; Timmermans, W.; Olioso, A.; Nerry, F.; Guanter, L.; Moreno, J.; Shen, Q.

    2009-11-01

    The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration.

  9. Buffer influence on magnetic dead layer, critical current, and thermal stability in magnetic tunnel junctions with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Żywczak, Antoni; Czapkiewicz, Maciej; Zietek, Sławomir; Kanak, Jarosław; Banasik, Monika; Powroźnik, Wiesław; Skowroński, Witold; Checiński, Jakub; Wrona, Jerzy; Głowiński, Hubert; Dubowik, Janusz; Ansermet, Jean-Philippe; Stobiecki, Tomasz

    2015-06-01

    We present a detailed study of Ta/Ru-based buffers and their influence on features crucial from the point of view of applications of Magnetic Tunnel Junctions (MTJs) such as critical switching current and thermal stability. We study buffer/FeCoB/MgO/Ta/Ru and buffer/MgO/FeCoB/Ta/Ru layers, investigating the crystallographic texture, the roughness of the buffers, the magnetic domain pattern, the magnetic dead layer thickness, and the perpendicular magnetic anisotropy fields for each sample. Additionally, we examine the effect of the current induced magnetization switching for complete nanopillar MTJs with lateral dimensions of 270 × 180 nm. Buffer Ta 5/Ru 10/Ta 3 (thicknesses in nm), which has the thickest dead layer, exhibits a much larger thermal stability factor (63 compared to 32.5) while featuring a slightly lower critical current density value (1.25 MA/cm2 compared to 1.5 MA/cm2) than the buffer with the thinnest dead layer Ta 5/Ru 20/Ta 5. We can account for these results by considering the difference in damping which compensates for the difference in the switching barrier heights.

  10. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  11. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  12. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  13. Thermally induced magnetization switching in Gd/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ostler, T. A.; Chantrell, R. W.

    2016-02-01

    A theoretical model of Gd/Fe multilayers is constructed using the atomistic spin dynamics formalism. By varying the thicknesses and number of layers we have shown that a strong dependence of the energy required for thermally induced magnetization switching (TIMS) is present; with a larger number of interfaces, lower energy is required. The results of the layer resolved dynamics show that the reversal process of the multilayered structures, similar to that of a GdFeCo alloy, is driven by the antiferromagnetic interaction between the transition-metal and rare-earth components. Finally, while the presence of the interface drives the reversal process, we show here that the switching process does not initiate at the surface but from the layers furthest from it, a departure from the alloy behavior which expands the classes of material types exhibiting TIMS.

  14. Thermal conductivity prediction of magnetic composite sheet for near-field electromagnetic absorption

    SciTech Connect

    Lee, Joonsik; Nam, Baekil; Ko, Frank K.; Kim, Ki Hyeon

    2015-05-07

    The magnetic composite sheets were designed by using core-shell structured magnetic fillers instead of uncoated magnetic fillers to resolve concurrently the electromagnetic interference and thermal radiation problems. To predict the thermal conductivity of composite sheet, we calculated the thermal conductivity of the uncoated magnetic fillers and core-shell structured fillers. And then, the thermal conductivity of the magnetic composites sheet filled with core-shell structured magnetic fillers was calculated and compared with that of the uncoated magnetic fillers filled in composite sheet. The magnetic core and shell material are employed the typical Fe-Al-Si flake (60 μm × 60 μm × 1 μm) and 250 nm-thick AlN with high thermal conductivity, respectively. The longitudinal thermal conductivity of the core-shell structured magnetic composite sheet (2.45 W/m·K) enhanced about 33.4% in comparison with that of uncoated magnetic fillers (1.83 W/m·K) for the 50 vol. % magnetic filler in polymer matrix.

  15. Thermal and magnetic properties of chitosan-iron oxide nanoparticles.

    PubMed

    Soares, Paula I P; Machado, Diana; Laia, César; Pereira, Laura C J; Coutinho, Joana T; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-09-20

    Chitosan is a biopolymer widely used for biomedical applications such as drug delivery systems, wound healing, and tissue engineering. Chitosan can be used as coating for other types of materials such as iron oxide nanoparticles, improving its biocompatibility while extending its range of applications. In this work iron oxide nanoparticles (Fe3O4 NPs) produced by chemical precipitation and thermal decomposition and coated with chitosan with different molecular weights were studied. Basic characterization on bare and chitosan-Fe3O4 NPs was performed demonstrating that chitosan does not affect the crystallinity, chemical composition, and superparamagnetic properties of the Fe3O4 NPs, and also the incorporation of Fe3O4 NPs into chitosan nanoparticles increases the later hydrodynamic diameter without compromising its physical and chemical properties. The nano-composite was tested for magnetic hyperthermia by applying an alternating current magnetic field to the samples demonstrating that the heating ability of the Fe3O4 NPs was not significantly affected by chitosan. PMID:27261762

  16. Giant thermal spin-torque-assisted magnetic tunnel junction switching.

    PubMed

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P; Yang, See-Hun; Parkin, Stuart S P

    2015-05-26

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  17. Giant thermal spin-torque–assisted magnetic tunnel junction switching

    PubMed Central

    Pushp, Aakash; Phung, Timothy; Rettner, Charles; Hughes, Brian P.; Yang, See-Hun; Parkin, Stuart S. P.

    2015-01-01

    Spin-polarized charge currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin currents from temperature gradients, and their associated thermal-spin torques (TSTs), have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. PMID:25971730

  18. Magnetic fluctuations due to thermally excited Alfven waves

    SciTech Connect

    Agim, Y.Z.; Prager, S.C.

    1990-01-01

    Magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber due to dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion due to the finite ion-gyrofrequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-{beta} regimes. 21 refs., 6 figs.

  19. Magnetic fluctuations due to thermally excited Alfven waves

    SciTech Connect

    Agim, Y.Z.; Prager, S.C. )

    1990-06-01

    Magnetic fluctuations resulting from the thermally excited magnetohydrodynamic waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities that are roughly Lorentzian and exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10{sup {minus}10}. Physical mechanisms to obtain decay profiles of the spectra with increasing wavenumber as a result of dispersion and/or different forms of damping are investigated analytically in a cold fluid approximation and numerically, with a kinetic model. The mode dispersion resulting from the finite ion gyro-frequency is identified as the leading effect determining the spectral profile shapes. It is found that the amplitude of fluctuations may be within a factor of the value suggested by the cold plasma model. The results from both models are presented and compared in low- and high-beta regimes.

  20. Thermal Conductivity of Fe2O3 and Fe3O4 Magnetic Nanofluids Under the Influence of Magnetic Field

    NASA Astrophysics Data System (ADS)

    Karimi, Amir; Goharkhah, Mohammad; Ashjaee, Mehdi; Shafii, Mohammad Behshad

    2015-11-01

    In this paper, the thermal conductivity of water-based hematite (Fe2O3) and magnetite (Fe3O4) nanofluids have been investigated in the absence and presence of a uniform magnetic field. The experiments have been performed in the volume concentration range of 0 % to 4.8 % and the temperature range of 20°C to 60°C. The effects of the particle volume fraction, temperature, and magnetic field strength on the thermal conductivity have been analyzed. Results show that the thermal conductivity of iron oxide nanofluids has a direct relation with the particle volume fraction and temperature, without the presence of a magnetic field. But surprisingly, when the magnetic field is applied, it is observed that the thermal conductivity decreases with increasing temperature and it is also higher for a magnetite nanofluid than for a hematite nanofluid. Moreover, changes in the strength of the magnetic field cause the thermal-conductivity ratio of the ferrofluid with respect to pure water to increase from 15 % to 38.5 % and from 13 % to 175 % for magnetite and hematite nanofluids, respectively. Based on the obtained experimental results, a correlation has been developed for the thermal conductivity of iron oxide magnetic nanofluids as a function of the volume fraction, temperature, and magnetic field strength.

  1. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging.

    PubMed

    Tetienne, Jean-Philippe; Lombard, Alain; Simpson, David A; Ritchie, Cameron; Lu, Jianing; Mulvaney, Paul; Hollenberg, Lloyd C L

    2016-01-13

    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes. PMID:26709529

  2. Chiral charge erasure via thermal fluctuations of magnetic helicity

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Sabancilar, Eray

    2016-05-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  3. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  4. Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids

    NASA Astrophysics Data System (ADS)

    Altan, Cem L.; Elkatmis, Alper; Yüksel, Merve; Aslan, Necdet; Bucak, Seyda

    2011-11-01

    Enhancement of thermal conductivity of fluids upon addition of nanoparticles has been previously observed. In this study, Fe3O4 magnetite particles were used and thermal conductivity enhancements both in water and in heptane with increasing volume fraction have been shown. Upon measuring thermal conductivity under externally applied magnetic field, it has been shown experimentally that thermal conductivity can be further increased even at low concentrations and low magnetic field strengths in both fluids. Theoretical calculations are presented to support the effect of magnetic field on the thermal conductivity enhancement. This enhancement is attributed to the thermomagnetic convection which due to a temperature gradient, results in a non-uniform magnetic body force resulting in more efficient thermal conductance.

  5. Magnetic and thermal properties of high Tc superconductors

    SciTech Connect

    Lee, Wonchoon.

    1990-09-21

    Measurements of the normal state magnetic susceptibility {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 1.8}Pb{sub 0.2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, and Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} (x = 0.2 and 0.25) were carried out. All {chi}(T) data show negative curvature below {approximately}2{Tc}. The data for YBa{sub 2}Cu{sub 3}O{sub 7} are in excellent agreement with a new calculation of the superconducting fluctuation diamagnetism. From the analysis, we infer s-wave pairing and microscopic parameters are obtained. For {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, part of the negative curvature is inferred to arise from the normal state background. We find a strong temperature dependent anisotropy {delta}{chi} {equivalent to} {chi}{sub c} {minus} {chi}{sub ab} and estimate the normal state spin contributions to {chi}(T). The heat capacity C(T) of YBa{sub 2}Cu{sub 3}O{sub 7} is reported for 0.4 K < T < 400 K in zero and 70 kG magnetic fields. In addition to the feature associated with the onset of the superconductivity at {Tc}, two anomalies in C(T) were observed near 74 K and 330 K, with another possible anomaly near 102 K; the temperatures at which they occur correlate with anomalies in {chi}(T) and ultransonic measurements. The occurrence of the anomaly at {approx equal} 330 K is found to be sample-dependent. The influences of a magnetic field and the thermal and/or magnetic field treatment history dependence of a pellet sample on C(T), the entropy and the influence of superconducting fluctuations on C(T) near {Tc}, and the possible source of the observed intrinsic nonzero {gamma}(0) at low T are discussed.

  6. Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control

    PubMed Central

    Spezzani, Carlo; Vidal, Franck; Delaunay, Renaud; Eddrief, Mahmoud; Marangolo, Massimiliano; Etgens, Victor H.; Popescu, Horia; Sacchi, Maurizio

    2015-01-01

    Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth–transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations. PMID:25631753

  7. Thermally induced magnetization switching in Fe/MnAs/GaAs(001): selectable magnetic configurations by temperature and field control.

    PubMed

    Spezzani, Carlo; Vidal, Franck; Delaunay, Renaud; Eddrief, Mahmoud; Marangolo, Massimiliano; Etgens, Victor H; Popescu, Horia; Sacchi, Maurizio

    2015-01-01

    Spintronic devices currently rely on magnetization control by external magnetic fields or spin-polarized currents. Developing temperature-driven magnetization control has potential for achieving enhanced device functionalities. Recently, there has been much interest in thermally induced magnetisation switching (TIMS), where the temperature control of intrinsic material properties drives a deterministic switching without applying external fields. TIMS, mainly investigated in rare-earth-transition-metal ferrimagnets, has also been observed in epitaxial Fe/MnAs/GaAs(001), where it stems from a completely different physical mechanism. In Fe/MnAs temperature actually modifies the surface dipolar fields associated with the MnAs magnetic microstructure. This in turn determines the effective magnetic field acting on the Fe overlayer. In this way one can reverse the Fe magnetization direction by performing thermal cycles at ambient temperatures. Here we use element selective magnetization measurements to demonstrate that various magnetic configurations of the Fe/MnAs/GaAs(001) system are stabilized predictably by acting on the thermal cycle parameters and on the presence of a bias field. We show in particular that the maximum temperature reached during the cycle affects the final magnetic configuration. Our findings show that applications are possible for fast magnetization switching, where local temperature changes are induced by laser excitations. PMID:25631753

  8. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems II. Extension to the thermal infrared: equations and methods

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.

    2011-10-01

    In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.

  9. Magnetic structure of Fe-based amorphous and thermal annealed microwires

    NASA Astrophysics Data System (ADS)

    Olivera, J.; Provencio, M.; Prida, V. M.; Hernando, B.; Santos, J. D.; Pérez, M. J.; Gorria, P.; Sánchez, M. L.; Belzunce, F. J.

    2005-07-01

    The magnetic structure of amorphous and thermal annealed glass coated microwires is studied by thermomagnetic, DSC, and Bitter domain pattern techniques. The long-range dipolar interaction between parallel aligned microwires and the appearance of large Barkhausen jumps steps in the axially magnetized loops are discussed in terms of reversal magnetization process.

  10. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd–Fe–B magnets

    NASA Astrophysics Data System (ADS)

    Xiang-Bin, Li; Shuo, Liu; Xue-Jing, Cao; Bei-Bei, Zhou; Ling, Chen; A-Ru, Yan; Gao-Lin, Yan

    2016-07-01

    To increase coercivity and thermal stability of sintered Nd–Fe–B magnets for high-temperature applications, a novel terbium sulfide powder is added into (Pr0.25Nd0.75)30.6Cu0.15FebalB1 (wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd–Fe–B magnets are investigated. The experimental results show that by adding 3 wt.% Tb2S3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer (EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of H A, which accounts for the coercivity enhancement. Moreover, compared with Tb2S3-free magnets, the reversible temperature coefficients of remanence (α) and coercivity (β) and the irreversible flux loss of magnetic flow (h irr) values of Tb2S3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved. Project supported by the Science Funds from the Ministry of Science and Technology, China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  11. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.

    PubMed

    Fang, Kun; Song, Lina; Gu, Zhuxiao; Yang, Fang; Zhang, Yu; Gu, Ning

    2015-12-01

    Controlled drug delivery systems have been extensively investigated for cancer therapy in order to obtain better specific targeting and therapeutic efficiency. Herein, we developed doxorubicin-loaded magnetic PLGA microspheres (DOX-MMS), in which DOX was encapsulated in the core and high contents (28.3 wt%) of γ-Fe2O3 nanoparticles (IOs) were electrostatically assembled on the surface of microsphere to ensure the high sensitivity to response of an external alternating current magnetic field (ACMF). The IOs in PLGA shell can both induce the heat effect and trigger shell permeability enhancement to release drugs when DOX-MMs was activated by ACMF. Results show that the cumulative drug release from DOX-MMs exposed to ACMF for 30 min (21.6%) was significantly higher (approximately 7 times higher) than that not exposed to ACMF (2.8%). The combination of hyperthermia and enhanced DOX release from DOX-MMS is beneficial for in vitro 4T1 breast cancer cell apoptosis as well as effective inhibition of tumor growth in 4T1 tumor xenografts. Therefore, the DOX-MMS can be optimized as powerful delivery system for efficient magnetic responsive drug release and chemo-thermal therapy. PMID:26513754

  12. Mechanical and Thermal Characteristics of Insulation Materials for the KSTAR Magnet System at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Chung, Wooho; Lim, Bungsu; Kim, Myungkyu; Park, Hyunki; Kim, Keeman; Chu, Yong; Lee, Sangil

    2004-06-01

    The KSTAR(Korea Superconducting Tokamak Advanced Research) superconducting magnet is electrically insulated by the composite material of epoxy resin and glass fiber (2.5 kV/mm) and Kapton (8 kV/mm). The insulation composite material of epoxy resin and glass fiber is prepared using a VPI (Vacuum Pressure Impregnation) process. The superconducting magnet is under mechanical stress caused by the large temperature difference between the operation temperature of the magnet and room temperature. The large electro-magnetic force during the operation of the magnet is also exerted on the magnet. Therefore, the characteristics of the insulation material at cryogenic temperatures are very important and the tensile stress and thermal expansion coefficient for the insulation materials of the KSTAR superconducting magnet are measured. This paper presents results on mechanical properties of the insulation material for KSTAR magnets, such as density, ultimate tensile stress and thermal contraction between room temperature and cryogenic temperatures.

  13. Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip

    NASA Astrophysics Data System (ADS)

    Deng, Ming-Xun; Zhong, Ming; Zheng, Shi-Han; Qiu, Jian-Ming; Yang, Mou; Wang, Rui-Qiang

    2016-02-01

    We theoretically study thermally driven transport of the Dirac fermions on the surface of a topological insulator capped with a ferromagnet strip. The generation and manipulation of anomalous Hall and Nernst effects are analyzed, in which the in-plane magnetization of the ferromagnet film is found to take a decisive role. This scenario is distinct from that modulated by Berry phase where the in-plane magnetization is independent. We further discuss the thermal spin-transfer torque as a backaction of the thermoelectric transports on the magnetization and calculate the dynamics of the anomalous Hall and Nernst effects self-consistently. It is found that the magnitude of the long-time steady Hall and Nernst conductance is determined by competition between the magnetic anisotropy and current-induced effective anisotropy. These results open up a possibility of magnetically controlling the transverse thermoelectric transports or thermally manipulating the magnet switching.

  14. Performance metrics for state-of-the-art airborne magnetic and electromagnetic systems for mapping and detection of unexploded ordnance

    NASA Astrophysics Data System (ADS)

    Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie

    2010-04-01

    Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.

  15. Ultrafast thermally induced magnetic switching in synthetic ferrimagnets

    SciTech Connect

    Evans, Richard F. L. Ostler, Thomas A.; Chantrell, Roy W.; Radu, Ilie; Rasing, Theo

    2014-02-24

    Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field.

  16. Thermally assisted electric field control of magnetism in flexible multiferroic heterostructures

    PubMed Central

    Liu, Yiwei; Zhan, Qingfeng; Dai, Guohong; Zhang, Xiaoshan; Wang, Baomin; Liu, Gang; Zuo, Zhenghu; Rong, Xin; Yang, Huali; Zhu, Xiaojian; Xie, Yali; Chen, Bin; Li, Run-Wei

    2014-01-01

    Thermal and electrical control of magnetic anisotropy were investigated in flexible Fe81Ga19 (FeGa)/Polyvinylidene fluoride (PVDF) multiferroic heterostructures. Due to the large anisotropic thermal deformation of PVDF (α1 = −13 × 10−6 K−1 and α2 = −145 × 10−6 K−1), the in-plane uniaxial magnetic anisotropy (UMA) of FeGa can be reoriented 90° by changing the temperature across 295 K where the films are magnetically isotropic. Thus, the magnetization of FeGa can be reversed by the thermal cycling between 280 and 320 K under a constant magnetic field lower than coercivity. Moreover, under the assistance of thermal deformation with slightly heating the samples to the critical temperature, the electric field of ± 267 kV cm−1 can well align the UMA along the two orthogonal directions. The new route of combining thermal and electrical control of magnetic properties realized in PVDF-based flexible multiferroic materials shows good prospects in application of flexible thermal spintronic devices and flexible microwave magnetic materials. PMID:25370605

  17. Magnetic thermal stability of permalloy microstructures with shape-induced bi-axial anisotropy

    NASA Astrophysics Data System (ADS)

    Telepinsky, Yevgeniy; Sinwani, Omer; Mor, Vladislav; Schultz, Moty; Klein, Lior

    2016-02-01

    We study the thermal stability of the magnetization states in permalloy microstructures in the form of two crossing elongated ellipses, a shape which yields effective bi-axial magnetic anisotropy in the overlap area. We prepare the structure with the magnetization along one of the easy axes of magnetization and measure the waiting time for switching when a magnetic field favoring the other easy axis is applied. The waiting time for switching is measured as a function of the applied magnetic field and temperature. We determine the energy barrier for switching and estimate the thermal stability of the structures. The experimental results are compared with numerical simulations. The results indicate exceptional stability which makes such structures appealing for a variety of applications including magnetic random access memory based on the planar Hall effect.

  18. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation

  19. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  20. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.

    PubMed

    Albisetti, E; Petti, D; Pancaldi, M; Madami, M; Tacchi, S; Curtis, J; King, W P; Papp, A; Csaba, G; Porod, W; Vavassori, P; Riedo, E; Bertacco, R

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method. PMID:26950242

  1. Calibration and measurement of the thermal reflection coefficient of heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2015-08-01

    With increased interest in heat assisted magnetic recording (HAMR), the thermal reflection coefficient of HAMR media becomes more important, as it is related to the change of optical parameters of the media at different temperatures and can potentially be used for non-contact temperature measurement. In this report, we introduce a method to calibrate the thermal reflection coefficient of magnetic thin films by in situ measurement of the thermal reflectance as well as the magneto-optic Kerr effect (MOKE) signal from the media. In the measurement, we use one beam to locally heat up the media, while using a second beam, whose diameter and intensity is much smaller, to measure in situ the MOKE and thermal reflectance signal of the heated media. We characterize the media temperature by heating up the magnetic media with prewritten magnetic patterns in an ultra-high vacuum system and the resulting magnetic remanence in the prewritten area is measured by magnetic force microscopy. Thus the thermal reflection coefficient is measured by performing a pump-probe experiment, with the temperature calibrated at the zero thermoremanence temperature of the HAMR media, at which temperature all grains under test have reached Curie temperature. This method can be extended to comparative studies of the thermo-optical properties of magnetic thin films, whose magnetic properties are sensitive to temperature.

  2. Magnetization reversal and negative volume thermal expansion in Fe doped Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Qi, T. F.; Yuan, S. J.; Ye, F.; Chi, S.; Terzic, J.; Zhang, H.; Zhao, Z.; Liu, X.; Parkin, S.; Mao, W. L.; Cao, G.

    We report structural, magnetic, transport and thermal properties of single-crystal Ca2Ru1-xFexO4 (0 <= x <= 0.2) as functions of pressure, magnetic field and temperature. The central findings of this work are a pronounced magnetization reversal and a negative thermal expansion that are induced by Fe doping. Our results including neutron diffraction data suggest that the magnetization reversal is primarily a result of different temperature dependences of two antiparallel, competing Ru and Fe sublattices and that the negative thermal expansion is achieved via magnetic and metal-insulator transitions. We will present and discuss our results with comparison drawn with relevant systems. This work was supported by the NSF via Grant No. DMR-1265162.

  3. A note on the effect of reflected solar radiation on airborne and ground measurements in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.

    1971-01-01

    The magnitude of thermal solar radiation reflected from water surfaces is considered. It is shown both theoretically and by field observation that, for instruments with small fields of view, the reflected thermal solar radiation can contribute significantly to the measured energy. Comparison of thermal scanner data taken from aircraft at a 16 deg azimuth angle from the mirror point of the sun over the open ocean with data taken at a 164 deg anzimuth angle from the mirror point of the sun at the same angle from nadir is indicative of a difference of 2.8 K in the equivalent black body radiation temperature. Observations taken from a surface vessel into sunglint 80 deg from nadir are indicative of an equivalent black body radiation temperature that is 34 K warmer than the temperature obtained at a similar nadir angle away from the sunglint.

  4. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  5. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  6. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  7. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  8. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    SciTech Connect

    Simões, F. J. R. Jr.; Pavan, J.; Gaelzer, R.; Ziebell, L. F.; Yoon, P. H.

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  9. Threshold for Thermal Ionization of an Aluminum Surface by Pulsed Megagauss Magnetic Field

    SciTech Connect

    Awe, T. J.; Bauer, B. S.; Fuelling, S.; Siemon, R. E.

    2010-01-22

    The first measurement of the threshold for thermal ionization of the surface of thick metal by pulsed magnetic field (B) is reported. Thick aluminum - with depth greater than the magnetic skin layer - was pulsed with partial derivB/partial derivt from 30-80 MG/mus. Novel loads avoided nonthermal plasma (from electron avalanche, or energetic particles or photons from arcs). Thermal plasma forms from 6061-alloy aluminum when the surface magnetic field reaches 2.2 MG, in qualitative agreement with numerical simulation results by Garanin et al.[J. Appl. Mech. Tech. Phys. 46, 153 (2005)].

  10. CHANGE IN FIELD HARMONICS AFTER QUENCH AND THERMAL CYCLES IN SUPERCONDUCTING MAGNETS.

    SciTech Connect

    GUPTA,R.; JAIN,A.; MURATORE,J.; WANDERER,P.; WILLEN,E.; WYSS,C.

    1997-05-12

    A change in field harmonics after quench and thermal cycles has been observed in superconducting magnets for the Relativistic Heavy Ion Collider (RHIC). This paper presents the results of a systematic investigation of this effect in a number of RHIC dipole and quadrupole magnets. These changes in field harmonics may limit the ultimate field quality and its reproducibility in superconducting magnets. A change in pre-stress has also been observed after quench and thermal cycles. A possible link between these two changes is explored.

  11. Investigate the magnetic behaviour of thermal treated carbon steel

    NASA Astrophysics Data System (ADS)

    Kanelopoulos, N. P.

    2016-03-01

    The present paper investigates the utilization of the magnetic hysteresis loops and Barkhausen Noise for the non-destructive characterization of annealed and quenched carbon steels samples. The resulting magnetic properties were further evaluated by examining the microstructure of the samples by using scanning electron microscopy.

  12. The Use of the Airborne Thermal/Visible Land Application Sensor (ATLAS) to Determine the Thermal Response Numbers for Urban Areas

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug; Quattroch, Dale; Estes. Maury

    2007-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., < 15m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number)(Luvall and Holbo 1989) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for several cities in the United States.

  13. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu

    2015-01-01

    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  14. Airborne multispectral and thermal remote sensing for detecting the onset of crop stress caused by multiple factors

    NASA Astrophysics Data System (ADS)

    Huang, Yanbo; Thomson, Steven J.

    2010-10-01

    Remote sensing technology has been developed and applied to provide spatiotemporal information on crop stress for precision management. A series of multispectral images over a field planted cotton, corn and soybean were obtained by a Geospatial Systems MS4100 camera mounted on an Air Tractor 402B airplane equipped with Camera Link in a Magma converter box triggered by Terraverde Dragonfly® flight navigation and imaging control software. The field crops were intentionally stressed by applying glyphosate herbicide via aircraft and allowing it to drift near-field. Aerial multispectral images in the visible and near-infrared bands were manipulated to produce vegetation indices, which were used to quantify the onset of herbicide induced crop stress. The vegetation indices normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) showed the ability to monitor crop response to herbicide-induced injury by revealing stress at different phenological stages. Two other fields were managed with irrigated versus nonirrigated treatments, and those fields were imaged with both the multispectral system and an Electrophysics PV-320T thermal imaging camera on board an Air Tractor 402B aircraft. Thermal imagery indicated water stress due to deficits in soil moisture, and a proposed method of determining crop cover percentage using thermal imagery was compared with a multispectral imaging method. Development of an image fusion scheme may be necessary to provide synergy and improve overall water stress detection ability.

  15. The Spokane fault, Washington, Imaged with High-Resolution Airborne Magnetic Data—Implications for the 2001 Spokane Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.; Stephenson, W. J.

    2015-12-01

    A newly acquired, high-resolution aeromagnetic survey provides insights into the near-surface lithology and tectonic structure throughout the greater Spokane area of northeastern Washington and northwestern Idaho. The region has a diverse array of magnetic lithologies, ranging from highly magnetic flood basalts of the Columbia River Basalt Group (CRBG) to weakly magnetic Mesozoic plutonic and metamorphic rocks. Faults within these magnetic lithologies produce linear magnetic anomalies that permit mapping of geologic structures over tens of kilometers. A high-amplitude, linear magnetic anomaly overlies the NW- striking Cheney fracture zone 37 km southwest of Spokane and is interpreted as a basaltic dike swarm intruded during the extensional event that opened the fractures, possibly feeder dikes for overlying CRBG flows. A sub-parallel anomaly near the town of Cheney reflects another dike swarm, likely formed during the same extensional event. The Latah fault is seen as a discontinuous alignment of magnetic anomalies extending north-northwestward from south of Spokane to the northern edge of the magnetic survey, a distance of 44 km. An arcuate, north-striking magnetic lineament ~20 km northeast of Spokane may mark the Newport fault, the detachment that promoted exhumation of the Priest River metamorphic complex. A subtle northeast-striking magnetic lineament passes through downtown Spokane and may indicate the trace of the Spokane fault, suspected of producing more than 105 small (M≤4), shallow earthquakes within Spokane city limits in 2001, accompanied by 15 mm of vertical uplift. This magnetic lineament extends 22 km and, to the northwest, merges with the lineament interpreted as the Newport fault. The Spokane fault may represent a reactivated section of the Newport fault that otherwise is not known to be active today. New LiDAR data from the Spokane area does not show distinct fault scarps associated with these magnetic anomalies, but a more comprehensive

  16. Influence of thermal agitation on the electric field induced precessional magnetization reversal with perpendicular easy axis

    SciTech Connect

    Cheng, Hongguang Deng, Ning

    2013-12-15

    We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermal stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.

  17. Infrared thermography analysis of thermal diffusion induced by RF magnetic field on agar phantoms loaded with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bante-Guerra, Jose; Macías, J. D.; Caballero-Aguilar, L.; Vales-Pinzón, C.; Alvarado-Gil, J. J.

    2013-02-01

    Recently, several treatments for fighting malignant tumors have been designed. However these procedures have well known inconveniences, depending on their applicability, tumor size and side effects, among others. Magnetic hyperthermia is a safe, non-invasive method for cancer therapy. This treatment is applied via elevation of target tissue temperature by dissipation of heat from Magnetic Nanoparticles (MNPs), previously located within the tumor. The induction of heat causes cell death and therefore the removal of the tumor. In this work the thermal diffusion in phantoms of agar loaded with magnetic nanoparticles (MNPs) is studied using the infrared thermography technique, which is widely used in biology/medicine (e.g. skin temperature mapping). Agar is one of the materials used to simulate different types of body tissues, these samples are known as "phantoms". Agar is of natural origin, low cost and high degree of biocompatibility. In this work the agar gel was embedded with MNPs by coprecipitation and placed in an alternating magnetic field radiation. As a consequence, the energy from the radiation source is dissipated as heat and then transferred from the MNP to the gel, increasing its temperature. For the temperature analysis, the samples of agar gel were stimulated by RF magnetic field generated by coils. Heating was measured with infrared thermography using a Thermovision A20M infrared camera. Thermographic images allowed obtaining the dependence of thermal diffusion in the phantom as a function of the magnitude of the applied RF magnetic field and the load of magnetic particles.

  18. Effect of Magnetic Field on Thermal Instability of Oldroydian Viscoelastic Rotating Fluid in Porous Medium

    NASA Astrophysics Data System (ADS)

    Thakur, R. C.; Rana, G. C.

    2013-06-01

    In this paper, we investigate the effect of a vertical magnetic field on thermal instability of an Oldroydian visco-elastic rotating fluid in a porous medium. By applying the normal mode analysis method, the dispersion relation governing the effects of rotation, magnetic field and medium permeability is derived and solved analytically and numerically. For the case of stationary convection, the Oldroydian viscoelastic fluid behaves like an ordinary Newtonian fluid and it is observed that rotation has a stabilizing effect while the magnetic field and medium permeability have a stabilizing/destabilizing effect under certain conditions on thermal instability of the Oldroydian viscoelastic fluid in a porous medium. The oscillatory modes are introduced due to the presence of rotation, the magnetic field and gravity field. It is also observed that the `principle of exchange of stability' is invalid in the presence of rotation and the magnetic field.

  19. Simulation of Electromagnetic and Thermal Processes in Fastcycling Magnets for Calculation Parameters of Stability

    NASA Astrophysics Data System (ADS)

    Zubko, V.; Kozub, S.; Tkachenko, L.

    SIS300 fast-cycling superconducting quadrupole magnet is developed at IHEP. Temperature margin and minimum quench energy are main parameters of stability of superconducting magnets. These parameters are important for the design and safe operation of superconducting magnets. But additional understanding for fast-cycling superconducting magnets is needed. To calculate the temperature margin one needs coupled numerical transient simulation of electromagnetic and thermal processes in the coil because critical temperature, operating temperature and AC losses are nonuniform over turns and their magnitudes vary in time during accelerator cycles. For calculation of the minimum quench energy the combination of the network model with thermal analysis is necessary, which allows one to model quench dynamics, including the effects of a current redistribution between strands of cable and spatial inhomogeneity of cable. Results for the temperature margin and the minimum quench energy for the magnet are presented and theirs dependence on various parameters is discussed.

  20. Effects of high magnetic fields on thermal convection of conductive aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Hirota, Noriyuki; Okada, Hidehiko; Sakka, Yoshio

    2015-07-01

    Effects of magnetic fields on the thermal convection in conductive aqueous solutions at ambient temperatures have been studied through heat transport measurements combined with shadowgraph technique-based visualization. The suppression of thermal convection by magnetic field was in fact observed in conductive diamagnetic aqueous solutions of ammonium sulfate. The magnitude of the suppression was found to depend on the applied magnetic field and the electrical conductivity of the sample fluid. These effects are qualitatively understood by assuming that Lorentz force acting on the fluid is a main player. Based on these results, a control method of heat transfer process using high magnetic fields has been demonstrated. It seems feasible to understand the behaviors of liquid metals by using electrolytes aqueous solution combined with a superconducting magnet, since flow conditions thereby are regarded as similar to those for liquid metals in industrial electromagnets.

  1. Resolving magnetic field line stochasticity and parallel thermal transport in MHD simulations

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-31

    Heat transport along braided, or chaotic magnetic field lines is a key to understand the disruptive phase of tokamak operations, both the major disruption and the internal disruption (sawtooth oscillation). Recent sawtooth experimental results in the Tokamak Fusion Test Reactor (TFTR) have inferred that magnetic field line stochasticity in the vicinity of the q = 1 inversion radius plays an important role in rapid changes in the magnetic field structures and resultant thermal transport. In this study, the characteristic Lyapunov exponents and spatial correlation of field line behaviors are calculated to extract the characteristic scale length of the microscopic magnetic field structure (which is important for net radial global transport). These statistical values are used to model the effect of finite thermal transport along magnetic field lines in a physically consistent manner.

  2. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    The effective flux incident upon the detectors of a thermal sensor, after it has been corrected for atmospheric effects, is a function of a non-linear combination of the emissivity of the target for that channel and the temperature of the target. The sensor system cannot separate the contribution from the emissivity and the temperature that constitute the flux value. A method that estimates the bounds on these temperatures and emissivities from thermal data is described. This method is then tested with remotely sensed data obtained from NASA's Thermal Infrared Multispectral Scanner (TIMS) - a 6 channel thermal sensor. Since this is an under-determined set of equations i.e. there are 7 unknowns (6 emissivities and 1 temperature) and 6 equations (corresponding to the 6 channel fluxes), there exist theoretically an infinite combination of values of emissivities and temperature that can satisfy these equations. Using some realistic bounds on the emissivities, bounds on the temperature are calculated. These bounds on the temperature are refined to estimate a tighter bound on the emissivity of the source. An error analysis is also carried out to quantitatively determine the extent of uncertainty introduced in the estimate of these parameters. This method is useful only when a realistic set of bounds can be obtained for the emissivities of the data. In the case of water the lower and upper bounds were set at 0.97 and 1.00 respectively. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected with the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. Ground truth temperatures using thermometers and radiometers were also obtained over an area of the reservoir. The results of two independent runs of the radiometer data averaged

  3. Thermal Sensitivity of MD Hematite: Implication for Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Kletetschka, Gunther; Wasilewski, Peter J.; Taylor, Patrick T.

    1999-01-01

    Magnetic remanence of crustal rocks can reside in three common rock-forming magnetic minerals: magnetite, pyrrhotite, and hematite. Thermoremanent magnetization (TRM) of magnetite and pyrrhotite is carried mostly by single domain (SD) grains. The TRM of hematite grains, however, is carried mostly by multidomain (NM) grains. This characteristic is illustrated by TRM acquisition curves for hematite of variable grainsizes. The transition between truly NM behavior and tendency towards SD behavior his been established between hematite grainsizes of 0. 1 and 0.05 mm. Coarse grainsize of lower crustal rocks and the large sensitivity of MD hematite grains to acquire TRM indicates that hematite could be a significant contributor to long-wavelength magnetic anomalies.

  4. Understanding the thermal and tectonic evolution of Marie Byrd Land from a reanalysis of airborne geophysical data in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Quartini, E.; Powell, E. M.; Richter, T.; Damiani, T.; Burris, S. G.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The West Antarctic Rift System (WARS) is a region characterized by a significant topographic range, a complex tectonic history, and active subglacial volcanism. Those elements exert a large influence on the stability of the West Antarctic Ice Sheet, which flows within the cradle-shaped rift system and is currently grounded well below sea level. This potentially unstable configuration is the motivation for gaining a better understanding of the ice sheet boundary conditions dictated by rift evolution and how they impact the ice flow. In this study we focus on characterizing the distribution of and transition between sedimentary basins and inferred geothermal heat flux from the flanks to the floor of the rift system. We do so through analysis of gravity data both for sources within the deep lithosphere and near surface targets in the crust. A compilation of gravity datasets over West and Central Antarctica and the analysis thereof is presented. In particular we use gravity data collected during several airborne geophysical surveys: CASERTZ (1994-1997), SOAR/WMB (1997-1998), AGASEA (2004-2005), ICEBRIDGE (2008-2011), and GIMBLE (2012-2013). New processing and data reduction methodologies are applied to the older gravity surveys to improve the high frequency signal content and to make these surveys compatible with modern works (i.e. AGASEA, ICEBRIDGE, GIMBLE). The high frequency signal provides better resolution of small-scale features within survey blocks but long-wavelength integrity is retained by registering the airborne free-air disturbance within those blocks to the gravity disturbance derived from the GOCE global satellite gravity field. This allows for consistent long wavelength interpretation across the merged surveys and provides improved gravity analysis of the deep lithosphere while retaining the capacity to study smaller scale features. A crustal model for the area is produced using the Bouguer anomaly and spectral analyses of the Bouguer anomaly and free

  5. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  6. Influence of pre-existing topography on downflow lava discharge rates estimated from thermal infrared airborne data

    NASA Astrophysics Data System (ADS)

    Lombardo, V.

    2016-04-01

    Remote sensing thermal data of active lava flows allow the evaluation of effusion rates. This is made possible by a simple formula relating the lava effusion rate to the heat flux radiated per unit time from the surface of the flow. Due to the assumptions of the model, this formula implies that heat flux, surface temperature and lava temperature vary as a function of the flow thickness. These relationships, never verified or validated before, have been used by several authors as a proof of the weakness of the model. Here, multispectral infrared and visible imaging spectrometer (MIVIS) high spatial resolution (5-10 m) thermal data acquired during Etna's 2001 eruption were used to investigate downflow heat flux variations in the lava flow emitted from a vent located at 2100 m a.s.l. A high correlation between the downflow heat flux and the lava flow thickness (measured from a pre-existing digital elevation model) was found. Topography beneath the flow appears to play an important role both in lava emplacement mechanisms and flow dynamics. MIVIS-derived downflow effusion rates are consistent with the law of conservation of mass assessing the reliability of remote sensing techniques.

  7. Thermal behavior of hard-axis magnetization in noninteracting particles with uniaxial anisotropy

    NASA Astrophysics Data System (ADS)

    Ilievski, F.; Cuchillo, A.; Nunes, W.; Knobel, M.; Ross, C. A.; Vargas, P.

    2009-11-01

    Experimental evidence is presented to support predictions made by an analytical model describing the temperature-dependent behavior of an assembly of noninteracting magnetic nanoparticles with uniaxial anisotropy under an external field. When the applied field is smaller than the anisotropy field of the particles and is oriented perpendicular to the easy axis, a maximum of the magnetization occurs at finite temperature. The theory shows good agreement with measurements of an array of CoCrPt nanoislands with uniaxial anisotropy. Deviations are discussed taking into account the thermal dependencies of the saturation magnetization and the anisotropy of the magnetic material.

  8. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    NASA Astrophysics Data System (ADS)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  9. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  10. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    PubMed

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. PMID:27262984

  11. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan

    2016-08-01

    A magnetic skyrmion is a topological magnetization structure with a nanometric size and a well-defined swirling spin distribution, which is anticipated to be an essential building block for novel skyrmion-based device applications. We study the motion of magnetic skyrmions in multilayer synthetic antiferromagnetic (SAF) racetracks as well as in conventional monolayer ferromagnetic (FM) racetracks at finite temperature. There is an odd-even effect of the constituent FM layer number on the skyrmion Hall effect (SkHE). Namely, due to the suppression of the SkHE, the magnetic skyrmion has no transverse motion in multilayer SAF racetracks packed with even FM layers. It is shown that a moving magnetic skyrmion is stable even at room temperature (T =300 K) in a bilayer SAF racetrack but it is destructed at T =100 K in a monolayer FM racetrack. Our results indicate that the SAF structures are reliable and promising candidates for future applications in skyrmion electronics and skyrmion spintronics.

  12. High-coercivity, thermally stable and low unblocking temperature magnetic phase: Implications for Archeomagnetic studies

    NASA Astrophysics Data System (ADS)

    Hartmann, G. A.; Gallet, Y.; Trindade, R. I.; Genevey, A.; Berquo, T. S.; Neumann, R.; Le Goff, M.

    2013-05-01

    The thermoremanent magnetization in baked clay archeological materials provide very useful information on the time evolution of the Earth's magnetic field over the past few millennia. In these materials, a thermally stable magnetic phase characterized by high coercivities (>400 mT) and low unblocking temperatures (~200 degrees Celsius) has recently been recognized in European bricks, tiles, kilns and hearth samples. Both the identification and the origin of this phase remain, however, poorly constrained. The very same high-coercivity, thermally stable, low unblocking temperature (HCSLT) magnetic phase has been identified in Brazilian bricks fragments dated of the past five centuries. We report here a large set of measurements on a selected collection of samples showing variable contributions of the HCSLT phase. These measurements include low-field magnetic susceptibility vs. temperature curves, hysteresis loops, isothermal remanent magnetization (IRM) acquisition, thermal demagnetization of the three-axis IRM, first order reversal curves (FORC), low-temperature magnetization experiments (remanent magnetization curves and alternating current susceptibility), Mössbauer spectroscopy and X-ray diffraction. Results show the coexistence of low-coercivity magnetic minerals (magnetite and titanomagnetite) and high-coercivity minerals (hematite, HCSLT phase and, in some cases, goethite). We note that the HCSLT magnetic phase is always found in association with hematite. We further observe that the Mössbauer spectroscopy, X-ray diffraction spectra, and the FORC diagrams are also very similar to results previously obtained from annealed clays in which nontronite or iron-rich montmorillonite was transformed into Al-substituted hematite by heating. The HCSLT magnetic phase is thus confidently identified as being hematite with Al substitution. Moreover, considering the abundance of montmorillonite in clay mining settings, we suggest that the widespread occurrence of HCSLT in

  13. Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Zhu, Jiawu; Gao, Xiang; Shen, Fengshun; Chen, Siming

    2015-09-01

    The Chinese Fusion Engineering Test Reactor (CFETR) superconducting magnet system was designed by the National Integration Design Group for Magnetic Confinement Fusion Reactor. The CFETR magnet system consists mainly of a central solenoid (CS) coil with six modules, 16 toroidal field (TF) coils, 8 poloidal field (PF) coils, and a set of correction coils (CC). The electromagnetic stresses and stored magnetic energy are huge on the CFETR magnets since they experience both large current densities and high magnetic field. The electromagnetic, structural and thermal performance needs to be evaluated to ensure that the magnetic field, stress, and hot spot temperature of the magnet system are within the allowed criteria. The evaluation of the electromagnetic performance of the CFETR superconducting magnet system under normal operation and fault conditions was performed. The two-dimensional finite element method was adopted to analyse the stress/strain behaviour of the CFETR CS coils. In addition, the thermal-hydraulic behaviour on quench propagation performance of the CFETR CS and TF coils was analysed to evaluate the hot spot temperature of the cable and the helium pressure inside a jacket during a quench.

  14. Anomalous thermalization of fast ions in magnetized plasma

    SciTech Connect

    Chen, K.R.

    1993-11-01

    A novel anomalous process causing the perpendicular energy of fast ions to be thermalized and lost on average to bulk ion heating, instead of classical slowing down and bulk electron heating, is investigated with PIC simulations. More than half of the fast ions are slowed down to the thermal ion level, although some are heated to twice their birth energy. The fast ion density perturbation is large. This process is excited by a new two-gyro-stream instability and may continually occur in a burning plasma. The implications for fusion ignition and fast ion confinement are assessed.

  15. Second Harmonic Technique for Thermal Conductivity Measurement in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Betts, Jonathan B.; Migliori, Albert

    2009-03-01

    We describe a second-harmonic technique to be used eventually to probe the thermal conductivity of LSCO with superconductivity suppressed by high magnetic fields. The technique is suitable for the high-noise environment of pulsed magnets. Unlike the 3φ technique, a heater and a thermometer are mounted separately. Therefore, the 2φ signal is the dominant signal in the thermometer output. The frequencies are chosen so that the thermal penetration depth is smaller than the sample thickness. The thermometer response time and thermal impedance associated with material interfaces are carefully tested and compared to calculation. The calculations are based on exact solutions of the full bulk heat transport equations and produce results different from the lumped-constant approximations often used in ac calorimetry. Work performed under the auspices of the National High Magnetic Field Laboratory.

  16. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  17. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lapas, Panteleimon; Stamokostas, Georgios; Fiete, Gregory

    2015-03-01

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  18. Dust-acoustic shock waves in a magnetized non-thermal dusty plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Mamun, A. A.; Mamun

    2014-08-01

    A theoretical investigation is carried out to study the basic properties of dust-acoustic (DA) shock waves propagating in a magnetized non-thermal dusty plasma (containing cold viscous dust fluid, non-thermal ions, and non-thermal electrons). The reductive perturbation method is used to derive the Korteweg-de Vries-Burgers equation. It is found that the basic properties of DA shock waves are significantly modified by the combined effects of dust fluid viscosity, external magnetic field, and obliqueness (angle between external magnetic field and DA wave propagation direction). It is shown that the dust fluid viscosity acts as a source of dissipation, and is responsible for the formation of DA shock structures in the dusty plasma system under consideration. The implications of our results in some space and laboratory plasma situations are briefly discussed.

  19. Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography.

    PubMed

    Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Goto, Taichi; Lim, Pang Boey; Inoue, Mitsuteru

    2016-01-11

    Holographic memory is expected to become a high-capacity data storage. Magnetic volumetric holograms are rewritable holograms that are recorded as magnetization directions through thermomagnetic recording. However, the effective depth of magnetic holograms is limited by thermal diffusion that causes merging of magnetic fringes. In this study, we propose the insertion of heat-sink layers (HSLs) for retaining well-defined magnetic fringes during volumetric writing. Magnetophotonic microcavity media were used for demonstrating the HSL effect, and the structural design principle was established in numerical calculations. The results indicate that deep and clear magnetic fringes and an improvement in the diffraction efficiency can be achieved by the insertion of HSLs. PMID:26832282

  20. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation

    NASA Astrophysics Data System (ADS)

    Pan, Yongxin; Zhu, Rixiang; Banerjee, Subir K.; Gill, J.; Williams, Q.

    2000-01-01

    Detailed analyses of rock magnetic experiments were conducted on the oxidation products of high-purity natural crystalline siderite that were thermally treated in air atmosphere. Susceptibilities increase sharply between 400° and 530°C indicative of some new ferrimagnetic mineral phase generation. Both a drop (between 540° and 590°C) on the heating cycle and a dramatic increase (from 590°C to 520°C) on the cooling cycle occurred and are well consistent with the characteristic of magnetite. A distinct Hopkinson-type susceptibility peak indicates that hematite is the terminal product if siderite is heated to 700°C over and over. It has been revealed in detail that the original inverse magnetic susceptibility fabric contributed by the crystalline anisotropy of siderite in siderite-bearing specimens is changed to a normal magnetic fabric during incremental heating over 410°-490°C. This is a result of dominant contributions from the distribution anisotropy of newly transformed ferromagnetic minerals. A strong chemical-viscous remanent magnetization could be produced during siderite oxidation in an external field. Rock magnetic experimental results show that magnetite, maghemite, and hematite are the transformation products of high-temperature oxidation of siderite in air. Maghemite was not completely inverted to hematite even at temperature as high as 690°C during incremental thermal treatments. The mineral transformation processes were confirmed by conventional optical microscopic observation, X-ray diffractometry and Mössbauer spectroscopic analyses. These results indicate that the rock magnetic methods used here are reliable and highly sensitive in detecting very small magnetic phase changes in rocks. We conclude that these temperaturedependent variations of magnetic properties can be used as criteria for identification of siderite in rocks and sediments. Furthermore, it is clear that great care should be exercised in thermal demagnetization of siderite

  1. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Ryu, K. S.; Kobayashi, S.; Takahashi, S.; Cheong, Y. M.

    2010-05-01

    The variation in magnetic properties of a Fe-1%Cu model alloy due to a cold rolling and a thermal aging has been evaluated to simulate the radiation damage of reactor pressure vessel of nuclear power plant. The thermal aging was conducted at 500 °C with different aging times in series. The hysteresis loops, magnetic Barkhausen noise (BN) and Vickers microhardness were measured for prestrained, strained, and thermal aged samples. The coercivity increased by a plastic strain and decreased by thermal aging, The BN decreased in the prestrained and strained samples but large changes were observed in the strained sample. These results were interpreted in terms of the domain wall motion signified by a change in the mean free path associated with microinternal stress and copper rich precipitates.

  2. The use of magnetic nanoparticles in thermal therapy monitoring and screening: Localization and imaging (invited)

    NASA Astrophysics Data System (ADS)

    Weaver, John B.

    2012-04-01

    Magnetic nanoparticles have many diagnostic and therapeutic applications. A method termed magnetic spectroscopy of nanoparticle Brownian motion (MSB) was developed to interrogate in vivo the microscopic environment surrounding magnetic nanoparticles. We can monitor several effects that are important in thermal therapy and screening including temperature measurement and the bound state distribution. Here we report on simulations of nanoparticle localization. Measuring the spatial distribution of nanoparticles would allow us to identify ovarian cancer much earlier when it is still curable or monitor thermal therapies more accurately. We demonstrate that with well-designed equipment superior signal to noise ratio (SNR) can be achieved using only two harmonics rather than using all the harmonics containing signal. Alternatively, smaller magnetic field amplitudes can be used to achieve the same SNR. The SNR is improved using fewer harmonics because the noise is limited.

  3. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  4. Estimating the relationship between urban 3D morphology and land surface temperature using airborne LiDAR and Landsat-8 Thermal Infrared Sensor data

    NASA Astrophysics Data System (ADS)

    Lee, J. H.

    2015-12-01

    Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.

  5. Simultaneous determination of airborne carbonyls and aromatic hydrocarbons using mixed sorbent collection and thermal desorption-gas chromatography/mass spectrometric analysis.

    PubMed

    Chien, Yeh-Chung; Yin, Ko-Ghun

    2009-05-01

    Volatile organic chemicals (VOC) such as aromatics and carbonyls are ubiquitous, and have environmental and health significance. This work presents a novel analytical method for simultaneously monitoring airborne carbonyls compounds and aromatic hydrocarbons. Carbonyls were collected onto an adsorbent (Tenax TA, coated with pentafluorophenyl hydrazine (PFPH)) that reacted with carbonyl groups to form thermo-stable derivatives that are suitable for subsequent analysis by thermal-desorption and GC/MS. Aromatic hydrocarbons were collected onto Tenax TA that was packed in the same sampling tube, and analyzed using the same method as carbonyls. Six carbonyls (formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone and methyl isobutyl ketone) and five aromatics (benzene, toluene, ethylbenzene, xylenes and styrene) were evaluated following standard test protocols. Calibration ranges were 30-200 ng per tube for most test chemicals, and 200-1000 ng per tube for formaldehyde. The analytical precision was 7% or better, and the collection efficiency, tested using a static sampling bag, was between 94 and 98%. PFPH-coated Tenax TA (for collecting carbonyls) needs to be placed in the front section of the tube, and Tenax TA in the back section (for collecting aromatics). The method detection limits of the current method ranged between 0.2 and 25 ng per tube, which corresponded to sub- to 17.2 ppbv (for formaldehyde), based on a typical 6 l sample from a sampling rate of 25 ml/min. Samples were stable for at least ten days under ambient conditions. The proposed method was also tested in the field and proved satisfactory. The proposed method is simple, feasible and has an acceptable accuracy and precision. It can thus be adopted as a reference method for making relevant measurements. PMID:19436859

  6. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  7. Fully integrated surface-subsurface flow modelling of groundwater-lake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-03-01

    Water resources management is moving towards integration, where groundwater (GW), surface water (SW) and related aquatic ecosystems are considered one management unit. Because of this paradigm shift, more information and new tools are needed to understand the ecologically relevant fluxes (water, heat, solutes) at the GW-SW interface. This study estimated the magnitude, temporal variability and spatial distribution of water fluxes at the GW-SW interface using a fully integrated hydrological modelling code (HydroGeoSphere). The model domain comprised a hydrologically complex esker aquifer in Northern Finland with interconnected lakes, streams and wetlands. The model was calibrated in steady state for soil hydraulic conductivity and anisotropy and it reproduced the hydraulic head and stream baseflow distribution throughout the aquifer in both transient and steady state modes. In a novel analysis, model outputs were compared with the locations and magnitude of GW discharge to lakes estimated using field techniques. Spatial occurrence of GW-lake interaction was interpreted from airborne thermal infrared imaging. The observed GW inflow locations coincided well with model nodes showing positive exchange flux between surface and subsurface domains. Order of magnitude of simulated GW inflow to lakes showed good agreement with flux values calculated with a stable water isotope technique. Finally, time series of GW inflow, extracted as model output, showed moderate annual variability and demonstrated different interannual inflow changes in seepage and drainage lakes of the aquifer. Overall, this study demonstrated the ability of a fully integrated numerical model to reproduce observed GW-SW exchange processes in a complex unconfined aquifer system. The model-based estimates obtained for GW influx magnitude and spatial distribution, along with information on GW quality can be used to estimate ecologically relevant fluxes in future water resources management.

  8. Magnetic detonation structure in crystals of nanomagnets controlled by thermal conduction and volume viscosity

    NASA Astrophysics Data System (ADS)

    Jukimenko, O.; Modestov, M.; Marklund, M.; Bychkov, V.

    2015-03-01

    Experimentally detected ultrafast spin avalanches spreading in crystals of molecular (nano)magnets [Decelle et al., Phys. Rev. Lett. 102, 027203 (2009), 10.1103/PhysRevLett.102.027203] have recently been explained in terms of magnetic detonation [Modestov et al., Phys. Rev. Lett. 107, 207208 (2011), 10.1103/PhysRevLett.107.207208]. Here magnetic detonation structure is investigated by taking into account transport processes of the crystals such as thermal conduction and volume viscosity. The transport processes result in smooth profiles of the most important thermodynamical crystal parameters, temperature, density, and pressure, all over the magnetic detonation front, including the leading shock, which is one of the key regions of magnetic detonation. In the case of zero volume viscosity, thermal conduction leads to an isothermal discontinuity instead of the shock, for which temperature is continuous while density and pressure experience jump. It is also demonstrated that the thickness of the magnetic detonation front may be controlled by applying the transverse-magnetic field, which is important for possible experimental observations of magnetic detonation.

  9. Performance of Nb3Sn quadrupole magnets under localized thermal load

    SciTech Connect

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  10. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  11. Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, Jon M.

    2014-04-01

    Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single-domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650-450 °C interval for higher petrographic types (consistent with an onion-shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock-related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging

  12. Realizing exactly solvable SU (N ) magnets with thermal atoms

    NASA Astrophysics Data System (ADS)

    Beverland, Michael E.; Alagic, Gorjan; Martin, Michael J.; Koller, Andrew P.; Rey, Ana M.; Gorshkov, Alexey V.

    2016-05-01

    We show that n thermal fermionic alkaline-earth-metal atoms in a flat-bottom trap allow one to robustly implement a spin model displaying two symmetries: the Sn symmetry that permutes atoms occupying different vibrational levels of the trap and the SU (N ) symmetry associated with N nuclear spin states. The symmetries make the model exactly solvable, which, in turn, enables the analytic study of dynamical processes such as spin diffusion in this SU (N ) system. We also show how to use this system to generate entangled states that allow for Heisenberg-limited metrology. This highly symmetric spin model should be experimentally realizable even when the vibrational levels are occupied according to a high-temperature thermal or an arbitrary nonthermal distribution.

  13. Bohm's criterion in a collisional magnetized plasma with thermal ions

    SciTech Connect

    Hatami, M. M.; Shokri, B.

    2012-08-15

    Using the hydrodynamic model and considering a planar geometry, the modified Bohm's sheath criterion is investigated in a magnetized, collisional plasma consisting of electron and positive ions with finite temperature. It is assumed that the singly charged positive ions enter into the sheath region obliquely, i.e., their velocity at the sheath edge is not normal to the wall, and the electron densities obey Boltzmann relations. It is shown that there are both upper and lower limit for the Bohm entrance velocity of ions in this case and both of these limits depend on the magnitude and direction of the applied magnetic field. To determine the accuracy of our derived generalized Bohm's criterion, it reduced to some familiar physical condition. Also, using this generalized Bohm's criterion, the behavior of the electron and positive ion density distributions are studied in the sheath region.

  14. Magnetic changes accompanying the thermal decomposition of nontronite /in air/ and its relevance to Martian mineralogy

    NASA Technical Reports Server (NTRS)

    Moskowitz, B. M.; Hargraves, R. B.

    1982-01-01

    It is found that the thermal treatment of nontronite in air, for long periods at 700 C or short periods at 900 C, results in the destruction of the nontronite structure, a distinct reddening in color, and a large increase in magnetic susceptibility and saturation magnetization. Measurements and calculations of the magnetic properties suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3. The highly magnetic thermally treated nontronite is amorphous to X-rays consistent with an ultrafine grain size. Prolonged heating results in the growth of alpha Fe2O3, while reflectivity spectra of a sample heated for 1 hr at 900 C indicate the presence of an opaque, magnetite-like phase in addition to alpha Fe2O3. It is found that the thermally treated nontronite has chemical, color, and magnetic properties similar to those found by Viking on Mars. It is concluded that these results indicate an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith (Weldon et al., 1980).

  15. Magnetic changes accompanying the thermal decomposition of nontronite /in air/ and its relevance to Martian mineralogy

    NASA Astrophysics Data System (ADS)

    Moskowitz, B. M.; Hargraves, R. B.

    1982-11-01

    It is found that the thermal treatment of nontronite in air, for long periods at 700 C or short periods at 900 C, results in the destruction of the nontronite structure, a distinct reddening in color, and a large increase in magnetic susceptibility and saturation magnetization. Measurements and calculations of the magnetic properties suggest that the magnetism is due to the presence of ultrafine particles of alpha or gamma Fe2O3. The highly magnetic thermally treated nontronite is amorphous to X-rays consistent with an ultrafine grain size. Prolonged heating results in the growth of alpha Fe2O3, while reflectivity spectra of a sample heated for 1 hr at 900 C indicate the presence of an opaque, magnetite-like phase in addition to alpha Fe2O3. It is found that the thermally treated nontronite has chemical, color, and magnetic properties similar to those found by Viking on Mars. It is concluded that these results indicate an origin for the fine grained Martian surface material by repeated impacts into an Fe-rich smectite-charged regolith (Weldon et al., 1980).

  16. Nuclear magnetic resonance study of thermal oxidation of polyisoprene

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Hsu, M. S.

    1975-01-01

    An investigation was conducted concerning the microstructural changes occurring in cis- and trans-1,4-polyisoprenes during uncatalized thermal oxidation in the solid phase. The investigation made use of approaches based on proton and carbon-13 NMR spectroscopy. The oxidation of squalene and dihydromyrcene in the liquid phase was also studied. The studies provide the first NMR spectroscopic evidence for the presence of epoxy and peroxide, hydroperoxide, and alcohol groups within the oxidized polyisoprene chain.

  17. A thermal distribution function for relativistic magnetically insulated electron flows

    SciTech Connect

    Desjarlais, M.P.; Sudan, R.N.

    1986-05-01

    A distribution function is presented that may be used to study the effects of finite temperature on the equilibrium and stability properties of magnetically insulated electron flows. This distribution function has the useful property that it generates the thoroughly studied class of constant Q = ..omega../sup 2//sub p//..cap omega../sup 2/ equilibria in its zero-temperature limit. Analytic solutions are given for the general, constant Q, zero-temperature equilibria.

  18. Using airborne magnetic data to map folding and faulting in sedimentary layers: implications for seismic hazard (Invited)

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Phelps, G. A.; Simpson, R. W.

    2010-12-01

    Aeromagnetic surveys are increasingly used to map structure within sedimentary rocks important for seismic assessment as better magnetometers, positioning, and techniques are developed. We present three examples in which aeromagnetic data are used to map folding and faulting within Cenozoic sedimentary rocks and deposits. In the Salton Trough, detailed aeromagnetic data collected in 1990 suffered from leveling problems that obscured low-amplitude (less than 2-3 nT) magnetic anomalies arising from Tertiary sedimentary rocks. Decorrugation and subtraction of a regional field (upward continuation of 100 m) isolated and enhanced these low-amplitude anomalies, some of which extend the length of the Clark fault, a major strand of the San Jacinto fault zone in southern California, another 20-25 km southwest of its termination point. Other anomalies point to distributed deformation confirmed by detailed surficial mapping by geologists. Detailed aeromagnetic data in the San Ramon Valley, California area show curvilinear anomalies that arise from folding and faulting of the Neroly sandstone, a Miocene unit whose magnetization is due to andesitic detritus. Detailed geologic maps and drillholes locally constrain the geometry of the Neroly Formation at the surface and subsurface, but constrained inversion of aeromagnetic data identified folds not earlier seen. In northern California (e.g. Ukiah), similar long (up to 50 km), curvilinear magnetic anomalies also occur, but in an area where drillholes are absent and geologic mapping is limited by dense vegetation, steep slopes, abundant landsliding, and thick soils. Magnetic susceptibility measurements from sparse outcrops show that the anomalies arise from lithic, volcanic-rich graywacke and metabasalt within the Franciscan Complex. The similarity in anomaly characteristics between the San Ramon and Ukiah areas suggests that the graywackes are folded, coherent bodies within an assemblage that at the surface is termed

  19. Evaluation of SEVIRI Thermal Infra-Red data for airborne dust detection in an arid regions: the UAE case study

    NASA Astrophysics Data System (ADS)

    Gherboudj, I.; Parajuli, S. P.; Ghedira, H.

    2011-12-01

    Our interest in the study of the dust emission cycle over arid area results from the impacts that they have on the climate and atmospheric processes. Large dust concentration emitted even naturally or anthropogenic may reduce surface insolation by extinction of solar radiation. In addition, the knowledge of its spatio-temporal distribution is essential for monitoring several applications such as solar energy potential and health effect. Satellite-based remote sensing is an efficient tool to improve our understanding of the interaction of the desert dust and surrounding climate over regional and global scales with high frequency measurements. Thermal infrared (TIR) channels (3μm -15μm) of different satellites (MVIRI, AVHRR, MODIS, ADEOS-2/POLDER, TOMS, and MSG/SERIVI) were widely used for dust detection. Several dust detection and forecasting algorithms have been proposed based on these satellite data. However, the spatial and temporal variability of the physical characteristics of dust (concentrations, particle size distribution, location in the atmosphere, and chemical composition) has limited their estimations particularly with the dependence of the dust emission on the wind, soil water content, vegetation, and sediment availability. This study focuses on the analysis of the sensitivity of the MSG/SEVIRI TIR observation to dust generation, surface wind, soil moisture, and surface emissivity over the United Arab Emirates (UAE). SEVIRI observations were acquired in 2009 with temporal and spatial resolutions of 30 minutes and about 3km respectively. While the soil moisture is extracted from the AMSR-E data (1:30 AM and 1:30 PM) at spatial resolution of 25 km, the surface emissivity and Aerosol Optical Thickness were extracted from the MODIS products at spatial resolutions of 1 km and 100 km respectively. In coincidence with the satellites acquisitions, meteorological measurements were collected from seven met stations distributed over the selected study area (wind

  20. Theoretical study of thermally activated magnetization switching under microwave assistance: Switching paths and barrier height

    NASA Astrophysics Data System (ADS)

    Suto, H.; Kudo, K.; Nagasawa, T.; Kanao, T.; Mizushima, K.; Sato, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.

    2015-03-01

    Energy barrier height for magnetization switching is theoretically studied for a system with uniaxial anisotropy in a circularly polarized microwave magnetic field. A formulation of the Landau-Lifshitz-Gilbert equation in a rotating frame introduces an effective energy that includes the effects of both the microwave field and static field. This allows the effective-energy profiles to rigorously describe the switching paths and corresponding barrier height, which govern thermally activated magnetization switching under microwave assistance. We show that fixed points and limit cycles in the rotating frame lead to various switching paths and that under certain conditions, switching becomes a two-step process with an intermediate state.

  1. Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers

    SciTech Connect

    Shen, J.; Shi, M.; Tanaka, T. Matsuyama, K.

    2015-05-07

    The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau–Lifshitz–Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.

  2. Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers

    NASA Astrophysics Data System (ADS)

    Shen, J.; Shi, M.; Tanaka, T.; Matsuyama, K.

    2015-05-01

    The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau-Lifshitz-Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.

  3. A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.

  4. Towards a table-top microscope for nanoscale magnetic imaging using picosecond thermal gradients

    PubMed Central

    Bartell, J. M.; Ngai, D. H.; Leng, Z.; Fuchs, G. D.

    2015-01-01

    Research advancement in magnetoelectronics is challenged by the lack of a table-top magnetic measurement technique with the simultaneous temporal and spatial resolution necessary for characterizing magnetization dynamics in devices of interest, such as magnetic memory and spin torque oscillators. Although magneto-optical microscopy provides superb temporal resolution, its spatial resolution is fundamentally limited by optical diffraction. To address this challenge, we study heat rather than light as a vehicle to stroboscopically transduce a local magnetic moment into an electrical signal while retaining picosecond temporal resolution. Using this concept, we demonstrate spatiotemporal magnetic microscopy using the time-resolved anomalous Nernst effect (TRANE). Experimentally and with supporting numerical calculations, we find that TRANE microscopy has temporal resolution below 30 ps and spatial resolution determined by the area of thermal excitation. Based on these findings, we suggest a route to exceed the limits imposed by far-field optical diffraction. PMID:26419515

  5. Towards a table-top microscope for nanoscale magnetic imaging using picosecond thermal gradients.

    PubMed

    Bartell, J M; Ngai, D H; Leng, Z; Fuchs, G D

    2015-01-01

    Research advancement in magnetoelectronics is challenged by the lack of a table-top magnetic measurement technique with the simultaneous temporal and spatial resolution necessary for characterizing magnetization dynamics in devices of interest, such as magnetic memory and spin torque oscillators. Although magneto-optical microscopy provides superb temporal resolution, its spatial resolution is fundamentally limited by optical diffraction. To address this challenge, we study heat rather than light as a vehicle to stroboscopically transduce a local magnetic moment into an electrical signal while retaining picosecond temporal resolution. Using this concept, we demonstrate spatiotemporal magnetic microscopy using the time-resolved anomalous Nernst effect (TRANE). Experimentally and with supporting numerical calculations, we find that TRANE microscopy has temporal resolution below 30 ps and spatial resolution determined by the area of thermal excitation. Based on these findings, we suggest a route to exceed the limits imposed by far-field optical diffraction. PMID:26419515

  6. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    NASA Astrophysics Data System (ADS)

    Palagin, Dennis; Doye, Jonathan P. K.

    2014-12-01

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni-Al clusters, Ni-Ag clusters preserve high spin states (up to 8 μB in case of Ni13Ag32 cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni7Ag27 cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni13Ag38 clusters adsorbed on the Si(111)-(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  7. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    SciTech Connect

    Palagin, Dennis Doye, Jonathan P. K.

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  8. Radiative tearing - Magnetic reconnection on a fast thermal-instability time scale

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Van Hoven, G.

    1984-01-01

    Two energy modification mechanisms which are known to occur in sheared magnetic fields are the tearing and thermal instabilities. These processes can be studied separately with formalisms incorporating just the effective driving mechanism of interest (finite resistivity for the tearing mode and unstable radiation for the thermal mode). A model which includes both effects, and a temperature-dependent resistivity, indicates that modified forms of these two instabilities may coexist for identical physical conditions. When they are isolated computationally, one can show that their limiting growth rates are approximately those of the uncoupled instabilities. The spatial structure and energy content of these two new hybrid processes are then individually examined and are found to differ considerably from those obtained from separate treatments of the driving mechanisms. The faster radiative instability, which has a hydromagnetically scaled growth rate like the condensation mode of the thermal instability, is shown to involve a substantial amount of magnetic field reconnection. This can be partially explained by a large temperature drop (or resistivity rise) at the X-point. The island width of the Coulomb-coupled radiative mode is 30 percent of that produced by a comparable level of the slower tearing instability. In addition, the perturbed magnetic energy in the radiative instability is 5 times that of the perturbed thermal energy, indicating an appreciable modification of the initial magnetic structure.

  9. Purification of condenser water in thermal power station by superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Ha, D. W.; Kwon, J. M.; Baik, S. K.; Lee, Y. J.; Han, K. S.; Ko, R. K.; Sohn, M. H.; Seong, K. C.

    2011-11-01

    Thermal power station is made up of a steam turbine and a steam condenser which need a lot of water. The water of steam condenser should be replaced, since scales consisting of iron oxide mainly are accumulated on the surface of condenser pipes as it goes. Superconducting high gradient magnetic separation (HGMS) system has merits to remove paramagnetic substance like iron oxides because it can generate higher magnetic field strength than electromagnet or permanent magnet. In this paper, cryo-cooled Nb-Ti superconducting magnet that can generate up to 6 T was used for HGMS systems. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The result of X-ray analysis showed contaminants were mostly α-Fe 2O 3 (hematite) and γ-Fe 2O 3 (maghemite). The higher magnetic field was applied up to 6 T, the more iron oxides were removed. As the wire diameter of magnetic filter decreased, the turbidity removal of the sample was enhanced.

  10. Magnetic field gradients from the ST-5 constellation: Improving magnetic and thermal models of the lithosphere

    NASA Astrophysics Data System (ADS)

    Purucker, M.; Sabaka, T.; Le, G.; Slavin, J. A.; Strangeway, R. J.; Busby, C.

    2007-12-01

    We report the development of a new technique (magnetic gradiometry) for satellite-based remote sensing of the lithosphere. The measurements reported here represent the first systematic measurements of lithospheric magnetic field gradients, and were collected from a spinning spacecraft. The three-satellite ST-5 mission collected vector magnetic field observations at 300-800+ km altitudes over mid and high-northern latitudes in 2006. Away from the auroral oval, and over the continents, the gradients of the low altitude (<400 km) total anomaly field are dominated by lithospheric magnetic fields. Using a seismic starting model, and magnetic field observations from ST-5 and other recent satellite missions, we demonstrate how these techniques can be used to improve our knowledge of the processes involved in the thickened crust of the Colorado Plateau and the Sierra Madre Occidental.

  11. Thermodynamic theory for thermally driven domain wall motion in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong

    2015-03-01

    It is well-established now that a thermal gradient can be used to manipulate spins in a magnetic texture like skyrmions and domain walls (DWs). A thermal gradient can interact with spins through different channels. For example, a thermal gradient can affect spins through the thermoelectric effects by which spin polarized electric current is generated in a ferromagnetic metal. In turn, the thermally generated electric current can interact with magnetic texture via spin-transfer torque (STT). A thermal gradient can also generate magnons or spin waves that interact with magnetic textures. This effect should be important in a ferromagnetic insulator. Spin waves (or magnons) interact with magnetic domain walls (DWs) in a complicated way that a DW can propagate either along or against magnon flow, similar to its electron counterpart. Probably differ from its electron counterpart where one may attribute the ``wrong'' DW propagation direction to the Dzyaloshinskii-Moriya interaction and various types of torques due to spin-orbit interactions, it will be very difficult to understand why a DW can move along the magnon flow if the angular momentum transfer is the only mechanism behind the magnon driven DW motion. It will also be difficulty to explain why ``wrong'' DW propagation direction has not been observed in thermally driven DW motion in both simulations and experiments. Thus, there must be other interaction(s) between spin waves and magnetic textures. In terms of thermal gradient driven DW propagation along a nanowire, a DW always propagates to the hot region of a magnetic insulator wire. We theoretically illustrate why it is surely so from thermodynamic viewpoint. It is shown that DW entropy is always larger than that of a domain. Equivalently, the free energy difference of a DW and a domain decreases as the temperature increases. The larger DW entropy is related to the increase of magnon density of states at low energy originated from the gapless bound spin waves in

  12. Relation between Thermal and Magnetic Properties of Active Regions as a Probe of Coronal Heating Mechanisms

    NASA Astrophysics Data System (ADS)

    Yashiro, Seiji; Shibata, Kazunari

    2001-03-01

    We study the relation between thermal and magnetic properties of active regions in the corona observed with the soft X-ray telescope aboard Yohkoh. We derive the mean temperature and pressure of 64 mature active regions using the filter ratio technique, and examine the relationship of region size with temperature and pressure. We find that the temperature T of active regions increases with increasing region size L as T~L0.28, while the pressure P slightly decreases with the region size as P~L-0.16. We confirm the scaling law T~(PL)1/3 for mature active regions found by R. Rosner, W. H. Tucker, & G. S. Vaiana. We examined the magnetic properties of active regions by analyzing 31 active regions observed with the Solar and Heliospheric Observatory/Michelson Doppler Imager and find the following empirical scaling law between thermal and magnetic properties,Uth~Φ1.33,P~B0.78,where Uth, Φ, and B are the total thermal energy content, total magnetic flux, and average magnetic flux density of active regions, respectively. The former is consistent with the results of L. Golub et al., but the latter is not. Implications of our findings for coronal heating mechanisms are discussed.

  13. Utilization of the magnetogranulometric analysis to estimate the thermal conductivity of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Holotescu, S.; Stoian, F. D.; Marinica, O.; Kubicar, L.; Kopcansky, P.; Timko, M.

    2011-05-01

    In this study, the semi-empirical equation for the effective thermal conductivity of the Holotescu-Stoian model was applied to a set of four dilutions of a transformer oil based magnetic fluid with magnetite nanoparticles as magnetic phase, using the results obtained for the size distributions from the magnetogranulometry analysis, followed by a comparison with the measured values of the effective thermal conductivity obtained by the hot ball method. The link between the size distribution by number and by volume used in the magnetogranulometry analysis and the Holotescu-Stoian model adaptation to the lognormal distribution were presented. The comparison between the results given by the model and the corresponding experimental data showed that by using the approximated size distribution to calculate the effective thermal conductivity the analytical results much closer to the experimental ones are obtained, compared to those given by the Maxwell classical model.

  14. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  15. Using thermal boundary conditions to engineer the quantum state of a bulk magnet.

    PubMed

    Schmidt, M A; Silevitch, D M; Aeppli, G; Rosenbaum, T F

    2014-03-11

    The degree of contact between a system and the external environment can alter dramatically its proclivity to quantum mechanical modes of relaxation. We show that controlling the thermal coupling of cubic-centimeter-sized crystals of the Ising magnet LiHo(x)Y(1-x)F4 to a heat bath can be used to tune the system between a glassy state dominated by thermal excitations over energy barriers and a state with the hallmarks of a quantum spin liquid. Application of a magnetic field transverse to the Ising axis introduces both random magnetic fields and quantum fluctuations, which can retard and speed the annealing process, respectively, thereby providing a mechanism for continuous tuning between the destination states. The nonlinear response of the system explicitly demonstrates quantum interference between internal and external relaxation pathways. PMID:24567389

  16. Using thermal boundary conditions to engineer the quantum state of a bulk magnet

    PubMed Central

    Schmidt, M. A.; Silevitch, D. M.; Aeppli, G.; Rosenbaum, T. F.

    2014-01-01

    The degree of contact between a system and the external environment can alter dramatically its proclivity to quantum mechanical modes of relaxation. We show that controlling the thermal coupling of cubic-centimeter–sized crystals of the Ising magnet LiHoxY1-xF4 to a heat bath can be used to tune the system between a glassy state dominated by thermal excitations over energy barriers and a state with the hallmarks of a quantum spin liquid. Application of a magnetic field transverse to the Ising axis introduces both random magnetic fields and quantum fluctuations, which can retard and speed the annealing process, respectively, thereby providing a mechanism for continuous tuning between the destination states. The nonlinear response of the system explicitly demonstrates quantum interference between internal and external relaxation pathways. PMID:24567389

  17. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  18. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Tupelo quadrangle, Mississippi, Alabama, and Tennessee. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Tupelo quadrangle covers a region immediately east of the Mississippi River flood plain in the northernmost Gulf Coastal Physiographic Province. Sediments of Teritary and Paleozoic basins shoal eastward. Tertiary exposures dominate the western half of the quadrangle. Cretaceous strata are exposed over most of the eastern half. A search of available literature revealed no known uranium deposits. A total of eighty-six uranium anomalies were detected and are discussed briefly. Few were considered significant, and most appear to relate to some cultural feature. Magnetic data appears, for the most part, to be in agreement with existing structural interpretations of the region.

  19. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Blytheville quadrangle, Tennessee, Arkansas, Alabama, and Missouri. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Blytheville quadrangle covers a region east of the Mississippi River in the northernmost Gulf Coastal Province. The Tertiary Mississippi Embayment and the older Black Warrior - Arkoma Basins all shoal to the northeast in this area. Surficial exposures are dominantly Cretaceous or younger. Older strata are exposed in the northeast. A search of available literature revealed no known uranium deposits. Ninety uranium anomalies were detected and are discussed briefly. Few were considered significant,and almost all appear to relate to some cultural feature. Magnetic data appears, for the most part, to be in agreement with existing structural interpretations of the region.

  20. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Nashville quadrangle, Tennessee, and Kentucky. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Nashville quadrangle covers a portion of the interior lowland plateau region of the Midwestern Physiographic Province. The quadrangle contains a shallow to moderately thick Paleozoic section that overlies a Precambrian basement complex. Paleozoic carbonates dominate surficial exposures. A search of available literature revealed no known uranium deposits. Fifty-five uranium anomalies were detected and are discussed briefly. Most anomalies appear to relate to cultural features. Some have relatively high uranium concentration levels that may be significant despite their correlation with culture. Magnetic data appear to illustrate complexities in the Precambrian basement.

  1. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  2. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  3. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses.

    PubMed

    Kimel, A V; Kirilyuk, A; Usachev, P A; Pisarev, R V; Balbashov, A M; Rasing, Th

    2005-06-01

    The demand for ever-increasing density of information storage and speed of manipulation has triggered an intense search for ways to control the magnetization of a medium by means other than magnetic fields. Recent experiments on laser-induced demagnetization and spin reorientation use ultrafast lasers as a means to manipulate magnetization, accessing timescales of a picosecond or less. However, in all these cases the observed magnetic excitation is the result of optical absorption followed by a rapid temperature increase. This thermal origin of spin excitation considerably limits potential applications because the repetition frequency is limited by the cooling time. Here we demonstrate that circularly polarized femtosecond laser pulses can be used to non-thermally excite and coherently control the spin dynamics in magnets by way of the inverse Faraday effect. Such a photomagnetic interaction is instantaneous and is limited in time by the pulse width (approximately 200 fs in our experiment). Our finding thus reveals an alternative mechanism of ultrafast coherent spin control, and offers prospects for applications of ultrafast lasers in magnetic devices. PMID:15917826

  4. Macroscopic Artificial Magnetic Honeycomb Lattice of Thermally Controlled Ultra-Small Bonds

    NASA Astrophysics Data System (ADS)

    Summers, Brock; Dahal, Ashutosh; Debeer-Schitt, Lisa; Gunasekera, Jagath; Singh, Deepak

    The two-dimensional artificial magnetic honeycomb lattice system is evolving into a new research arena to explore a plethora of novel magnetism that are predicted to occur as functions of temperature and magnetic field: a long-range spin ice, spin liquid, an entropy-driven magnetic charge-ordered state involving topological vortex pairs and a spin-order due to the spin chirality. We have created macroscopic samples of artificial magnetic honeycomb lattices of Cobalt and Permalloy having connected ultra-small elements (bonds), with length scales of sub-10 nm to 30 nm, which have never before been possible. The equivalent energy of the resulting systems is 10-100 K and is thus amenable to both temperature- and field-dependent exploration of novel magnetic phenomena. We have performed detailed magnetic and small angle neutron scattering measurements (SANS) on the newly fabricated honeycomb lattice of Permalloy that show the thermal character of the system. Furthermore, the experimental data reveals the onset of magnetic ordered regimes in temperature that are consistent with the predicted novel phase diagram in artificial honeycomb lattice. Research is supported by U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0014461.

  5. Airborne Sensor Thermal Management Solution

    SciTech Connect

    Ng, K. K.

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  6. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    PubMed

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  7. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Helena quadrangle of Arkansas, Mississippi and Tennessee. Final report

    SciTech Connect

    Not Available

    1980-09-01

    The Helena quadrangle covers a region largely within the Mississippi River flood plain in the extreme northern Gulf Coastal Province. Tertiary sediments in this area are relatively thick, and overlie a Paleozoic basin gradually shoaling to the northeast. The Oachita Tectonic Zone strikes southeasterly through the center of the quadrangle. The exposed sequence is almost entirely Quaternary sediments of the flood plain area. Older Cenozoic deposits crop out in upland areas on the west side of the river valley. A search of available literature revealed no known uranium deposits. Sixty uranium anomalies were detected and are discussed briefly. None were considered significant, and all appeared to occur as the result of cultural and/or weather effects. Magnetic data appear to be in agreement with existing structural interpretations of the region.

  8. Scalable and thermally robust perpendicular magnetic tunnel junctions for STT-MRAM

    SciTech Connect

    Gottwald, M.; Kan, J. J.; Lee, K.; Zhu, X.; Park, C.; Kang, S. H.

    2015-01-19

    Thermal budget, stack thickness, and dipolar offset field control are crucial for seamless integration of perpendicular magnetic junctions (pMTJ) into semiconductor integrated circuits to build scalable spin-transfer-torque magnetoresistive random access memory. This paper is concerned with materials and process tuning to deliver thermally robust (400 °C, 30 min) and thin (i.e., fewer layers and integration-friendly) pMTJ utilizing Co/Pt-based bottom pinned layers. Interlayer roughness control is identified as a key enabler to achieve high thermal budgets. The dipolar offset fields of the developed film stacks at scaled dimensions are evaluated by micromagnetic simulations. This paper shows a path towards achieving sub-15 nm-thick pMTJ with tunneling magnetoresistance ratio higher than 150% after 30 min of thermal excursion at 400 °C.

  9. Effects of neutrals on internal forces and thermal conduction of a plasma in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hirano, K.

    1984-08-01

    Using the Chapman-Enskog approximation the Boltzmann equation was solved to obtain friction and thermal forces appearing between ions and their parent atoms remaining in a plasma. The heat fluxes due to thermal conduction through ions and atoms were also evaluated. Charge transfer and the elastic scattering assuming the Sutherland potential were adopted as the basic collision process between ions and atoms. It was demonstrated that thermal force on neutrals always pushes them toward higher temperature region across a strong magnetic field but colder place along the field lines if the temperature is higher than 25 eV. A very small amount of neutrals, e.g., 1 ppm to the ion density, is found to be enough for neutrals transfering even much larger heat flux than the one by ion thermal conduction loss at a fusion temperature.

  10. Thermal annealing effect on FeCoB soft underlayer for perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Chang, Chunghee; Karns, Duane; Ju, Ganping; Kubota, Yukiko; Eppler, Walter; Brucker, Charles; Weller, Dieter

    2002-05-01

    We study the noise performance of amorphous FeCoB soft underlayers (SULs) with radial magnetic anisotropy. 200 nm thick FeCoB films are sputter deposited and optionally postannealed for 8 s at different annealing powers. The correlation of SUL read-back noise with the magnetic and structural properties is studied using spin stand testing, in-plane magneto-optical Kerr effect measurements, magnetic force microscopy, and x-ray diffraction. The effects of annealing to achieve low read-back noise are examined. It is found that as-prepared films show large dc noise associated with stripe domains due to stress-induced perpendicular anisotropy. Thermal annealing reduces the internal stress and the films become magnetically anisotropic in the radial direction. The SUL-induced dc noise drops to the electronic noise floor. dc noise is found to decrease with an increase in annealing power until the films start to crystallize.

  11. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    SciTech Connect

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-15

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  12. Influence of the backreaction of streaming cosmic rays on magnetic field generation and thermal instability

    SciTech Connect

    Nekrasov, Anatoly K.; Shadmehri, Mohsen E-mail: nekrasov.anatoly@gmail.com

    2014-06-10

    Using a multifluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays propagating perpendicular to the background magnetic field. Perturbations are also considered to be across the magnetic field. The backreaction of cosmic rays resulting in strong streaming instabilities is taken into account. It is shown that, for sufficiently short wavelength perturbations, the growth rates can exceed the growth rate of cosmic-ray streaming instability along the magnetic field, found by Nekrasov and Shadmehri, which is in turn considerably larger than the growth rate of the Bell instability. The thermal instability is shown not to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived, which includes sound velocities of plasma and cosmic rays and Alfvén and cosmic-ray streaming velocities. The relation between these parameters determines the kind of thermal instability ranging from the Parker to the Field instabilities. The results obtained can be useful for a more detailed investigation of electron-ion astrophysical objects, such as supernova remnant shocks, galaxy clusters, and others, including the dynamics of streaming cosmic rays.

  13. Magnetic and Thermal Contributions to Helioseismic Travel times in Simulated Sunspots

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Felipe, Tobias; Birch, Aaron; Crouch, Ashley D.

    2016-05-01

    The interpretation of local helioseismic measurements of sunspots has long been a challenge, since waves propagating through sunspots are potentially affected by both mode conversion and changes in the thermal structure of the spots. We carry out numerical simulations of wave propagation through a variety of models which alternately isolate either the thermal or magnetic structure of the sunspot or include both of these. We find that helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. Using insight from ray theory, we find that travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level of the measurements) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it suggests a path towards inversions for sunspot structure. This research has been funded by the Spanish MINECO through grant AYA2014-55078-P, by the NASA Heliophysics Division through NNX14AD42G and NNH12CF23C, and the NSF Solar Terrestrial program through AGS-1127327.

  14. Super-paramagnetic nanoparticles synthesis in a thermal plasma reactor assisted by magnetic bottle

    NASA Astrophysics Data System (ADS)

    Cartaya, R.; Puerta, J.; Martín, P.

    2015-03-01

    The present work is a study of the synthesis of super-paramagnetic particles. A preliminary study based on thermodynamic diagrams of Gibbs free energy minimization, was performed with the CSIRO Thermochemical System. In this way, the synthesis of magnetite nanoparticles from precursor powder of ore iron in a thermal reactor, was performed. Then the process was simulated mathematically using magnetohydrodynamic and kinetic equations, in order to predict the synthesis process. A cylindrical reactor assisted by magnetic mirrors was used. The peak intensity of 0.1 tesla (1000 Gauss) was measured at the end of the solenoid. A PlazjetTM 105/15 thermal plasma torch was used. The precursor powder was iron oxide and the plasma gas, nitrogen. The magnetite powder was magnetized whit rare-earth super-magnets, alloy of neodymium-iron boron (NdFeB) grade N-42. The synthesized nanoparticles diameters was measured with a scanning electron microscope LECO and the permanent magnetization with a YOKOGAWA gauss meter, model 325i. Our experimental results show that it is possible the synthesis of super-paramagnetic nanoparticles in thermal plasma reactors.

  15. Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2016-05-01

    We study electrical and thermal conductivities of degenerate electrons emitting and absorbing phonons in a strongly magnetized crystalline neutron star crust. We take into account modification of the phonon spectrum of a Coulomb solid of ions caused by a strong magnetic field. Boltzmann transport equation is solved using a generalized variational method. The ensuing 3D integrals over the transferred momenta are evaluated by two different numerical techniques, the Monte Carlo method and a regular integration over the first Brillouin zone. The results of the two numerical approaches are shown to be in a good agreement. An appreciable growth of electrical and thermal resistivities is reported at quantum and intermediate temperatures T ≲ 0.1Tp (Tp is the ion plasma temperature) in a wide range of chemical compositions and mass densities of matter even for moderately magnetized crystals ωB ˜ ωp (ωB and ωp are the ion cyclotron and plasma frequencies). This effect is due to an appearance of a soft (ω ∝ k2) phonon mode in the magnetized ion Coulomb crystal, which turns out to be easier to excite than acoustic phonons characteristic of the field-free case. These results are important for modelling magneto-thermal evolution of neutron stars.

  16. Thermal electric and magnetic fields at the surface of an electron beam target

    SciTech Connect

    Garcia, M

    1999-06-09

    A relativistic electron beam pulse of high current density will heat a thin target plate to a plasma state as it traverses. The gradient of plasma temperature--Te is predominantly radial, and the gradient of plasma density--ne is predominantly axial. The cross product of these terms is significant at the vacuum-to-metal interface through which the beam enters. This cross product is a thermal source of magnetization, which can be much larger than the vacuum magnetic field of the electron beam, and it is of opposite polarity. The thermal energy density in the target can be hundreds of times larger than the energy density of the vacuum magnetic field of the beam. If the nose of the electron beam current pulse rises linearly with time then the thermal magnetization increases as time squared. Heat pushes electrons axially from the interior of the plate to the surfaces, and radially away from the beam axis. The electric field that arises from this effect is essentially the negative of the pressure gradient, it points outward.

  17. THE INFLUENCE OF THERMAL EVOLUTION IN THE MAGNETIC PROTECTION OF TERRESTRIAL PLANETS

    SciTech Connect

    Zuluaga, Jorge I.; Bustamante, Sebastian; Cuartas, Pablo A.; Hoyos, Jaime H. E-mail: sbustama@pegasus.udea.edu.co E-mail: jhhoyos@udem.edu.co

    2013-06-10

    Magnetic protection of potentially habitable planets plays a central role in determining their actual habitability and/or the chances of detecting atmospheric biosignatures. Here we develop a thermal evolution model of potentially habitable Earth-like planets and super-Earths (SEs). Using up-to-date dynamo-scaling laws, we predict the properties of core dynamo magnetic fields and study the influence of thermal evolution on their properties. The level of magnetic protection of tidally locked and unlocked planets is estimated by combining simplified models of the planetary magnetosphere and a phenomenological description of the stellar wind. Thermal evolution introduces a strong dependence of magnetic protection on planetary mass and rotation rate. Tidally locked terrestrial planets with an Earth-like composition would have early dayside magnetopause distances between 1.5 and 4.0 R{sub p} , larger than previously estimated. Unlocked planets with periods of rotation {approx}1 day are protected by magnetospheres extending between 3 and 8 R{sub p} . Our results are robust in comparison with variations in planetary bulk composition and uncertainties in other critical model parameters. For illustration purposes, the thermal evolution and magnetic protection of the potentially habitable SEs GL 581d, GJ 667Cc, and HD 40307g were also studied. Assuming an Earth-like composition, we found that the dynamos of these planets are already extinct or close to being shut down. While GL 581d is the best protected, the protection of HD 40307g cannot be reliably estimated. GJ 667Cc, even under optimistic conditions, seems to be severely exposed to the stellar wind, and, under the conditions of our model, has probably suffered massive atmospheric losses.

  18. Rock magnetic finger-printing of soil from a coal-fired thermal power plant.

    PubMed

    Gune, Minal; Harshavardhana, B G; Balakrishna, K; Udayashankar, H N; Shankar, R; Manjunatha, B R

    2016-05-01

    We present seasonal rock magnetic data for 48 surficial soil samples collected seasonally around a coal-fired thermal power plant on the southwest coast of India to demonstrate how fly ash from the power plant is transported both spatially and seasonally. Sampling was carried out during pre-monsoon (March), early-monsoon (June), monsoon (September) and post-monsoon (December) seasons. Low- and high-frequency magnetic susceptibility (χlf and χhf), frequency-dependent magnetic susceptibility (χfd), χfd %, isothermal remanent magnetization (IRM), "hard" IRM (HIRM), saturation IRM (SIRM) and inter-parametric ratios were determined for the samples. Scanning electron microscopy (SEM) was used on limited number of samples. NOAA HYSPLIT MODEL backward trajectory analysis and principal component analysis were carried out on the data. Fly ash samples exhibit an average HIRM value (400.07 × 10(-5) Am(2) kg(-1)) that is comparable to that of soil samples. The pre- and post-monsoon samples show a consistent reduction in the concentration of magnetically "hard" minerals with increasing distance from the power plant. These data suggest that fly ash has indeed been transported from the power plant to the sampling locations. Hence, HIRM may perhaps be used as a proxy for tracking fly ash from coal-fired thermal power plants. Seasonal data show that the distribution of fly ash to the surrounding areas is minimum during monsoons. They also point to the dominance of SP magnetite in early-monsoon season, whereas magnetic depletion is documented in the monsoon season. This seasonal difference is attributable to both pedogenesis and anthropogenic activity i.e. operation of the thermal power plant. PMID:27056477

  19. Electron thermal transport within magnetic islands in the reversed-field pinch

    SciTech Connect

    Stephens, H. D.; Reusch, J. A.; Den Hartog, D. J.; Hegna, C. C.

    2010-05-15

    Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field pinch (RFP). New Thomson scattering diagnostic capability on the Madison Symmetric Torus (MST) RFP has enabled measurement of the thermal transport characteristics of islands. Electron temperature (T{sub e}) profiles can now be acquired at 25 kHz, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. In standard MST plasmas with a spectrum of unstable tearing modes, remnant islands are present in the core between sawtoothlike reconnection events. Associated with these island remnants is flattening of the T{sub e} profile inside the island separatricies. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. In striking contrast, a temperature gradient within an m=1, n=5 island is observed in these same plasmas just after a sawtooth event when the m=1, n=5 mode may briefly come into resonance near the magnetic axis. This suggests local heating and relatively good confinement within the island. Local power balance calculations suggest reduced thermal transport within this island relative to the confinement properties of standard MST discharges between reconnection events. The magnetic field and island structure is modeled with three-dimensional nonlinear resistive magnetohydrodynamic simulations (DEBS code) with Lundquist numbers matching those in MST during standard discharges. During improved confinement plasmas with reduced tearing mode activity, temperature fluctuations correlated with magnetic signals are small with characteristic fluctuation amplitudes of order T-tilde{sub e}/T{sub e}approx2%.

  20. SELF-SIMILAR STRUCTURE OF A HOT MAGNETIZED FLOW WITH THERMAL CONDUCTION

    SciTech Connect

    Ghasemnezhad, M.; Khajavi, M.; Abbassi, S.

    2012-05-01

    We have explored the structure of a hot magnetized accretion flow with thermal conduction. The importance of thermal conduction in hot accretion flows has been confirmed by observations of the hot gas surrounding Sgr A* and a few other nearby galactic nuclei. For a steady state structure of such accretion flows, a set of self-similar solutions is presented. In this paper, we have actually tried to re-check the solution presented by Abbassi et al. using a physical constraint. In this study, we find that Equation (29) places a new constraint that limits answers presented by Abbassi et al. In that paper, the parameter space, which is established in the new constraint, was plotted. However, the new requirement makes up only a small parameter space with physically acceptable solutions. And now in this paper, we have followed the idea with more effort and tried to find out how thermal conduction influences the structure of the disks in a physical parameter space. We have found that the existence of thermal conduction will lead to the reduction of accretion and radial and azimuthal velocities as well as the vertical thickness of the disk, which is slightly reduced. Moreover, the surface density of the disk will increase when thermal conduction becomes important in hot magnetized flow.

  1. Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method

    PubMed Central

    2013-01-01

    By means of thermal decomposition, we prepared single-phase spherical Ni nanoparticles (23 to 114 nm in diameter) that are face-centered cubic in structure. The magnetic properties of the Ni nanoparticles were experimentally as well as theoretically investigated as a function of particle size. By means of thermogravimetric/differential thermal analysis, the Curie temperature TC of the 23-, 45-, 80-, and 114-nm Ni particles was found to be 335°C, 346°C, 351°C, and 354°C, respectively. Based on the size-and-shape dependence model of cohesive energy, a theoretical model is proposed to explain the size dependence of TC. The measurement of magnetic hysteresis loop reveals that the saturation magnetization MS and remanent magnetization increase and the coercivity decreases monotonously with increasing particle size, indicating a distinct size effect. By adopting a simplified theoretical model, we obtained MS values that are in good agreement with the experimental ones. Furthermore, with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer. PMID:24164907

  2. Two-photon annihilation of thermal pairs in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.

    1992-01-01

    The annihilation spectrum of pairs with 1-D thermal distributions in the presence of a strong magnetic field is calculated. Numerical analysis of the spectrum are performed for mildly relativistic temperatures and for different angles of emission with respect to field lines. Teragauss magnetic fields are assumed so that conditions are typical of gamma ray burst and pulsar environments. The spectra at each viewing angle reveal asymmetric line profiles that are signatures of the magnetic broadening and red shifting of the line: these asymmetries are more prominent for small viewing angles. Thermal Doppler broadening tends to dominate in the right wing of the line and obscures the magnetic broadening more at high temperatures and smaller viewing angles. This angular dependence of the line asymmetry may prove a valuable diagnostic tool. For low temperatures and magnetic field strengths, useful analytic expressions are presented for the line width, and also for the annihilation spectrum at zero viewing angle. The results presented find application in gamma ray burst and pulsar models, and may prove very helpful in deducing field strengths and temperatures of the emission regions of these objects from line observations made by Compton GRO and future missions.

  3. The Mechanical and Thermal Design for the MICE Focusing SolenoidMagnet System

    SciTech Connect

    Yang, S.Q.; Green, M.A.; Barr, G.; Bravar, U.; Cobb, J.; Lau, W.; Senanayake, R.S.; White, A.E.; Witte, H.

    2004-05-07

    The focusing solenoids for MICE surround energy absorbers that are used to reduce the transverse momentum of the muon beam that is being cooled within MICE. The focusing solenoids will have a warm-bore diameter of 470 mm. Within this bore is a flask of liquid hydrogen or a room temperature beryllium absorber. The focusing solenoid consists of two coils wound with a copper matrix Nb-Ti conductor originally designed for MRI magnets. The two coils have separate leads, so that they may be operated at the same polarity or at opposite polarity. The focusing magnet is designed so that it can be cooled with a pair of 1.5 W (at 4.2 K) coolers. The MICE cooling channel has three focusing magnets with their absorbers. The three focusing magnets will be hooked together in series for a circuit stored-energy of about 9.0 MJ. Quench protection for the focusing magnets is discussed. This report presents the mechanical and thermal design parameters for this magnet, including the results of finite element calculations of mechanical forces and heat flow in the magnet cold mass.

  4. Along-track gradients from ST-5: Improving magnetic and thermal models of the lithosphere

    NASA Astrophysics Data System (ADS)

    Sabaka, T. J.; Le, G.

    2006-12-01

    The three-satellite ST-5 mission collected vector magnetic field observations in a string-of-pearls configuration at low (300+ km) altitudes over selected regions at mid and high-northern latitudes in early (March-June) 2006. The spin-stabilized, polar-orbiting satellites flew in the dawn-dusk meridian, and utilized miniature, high-quality, UCLA fluxgate magnetometers that were mounted on a novel boom. The mission was not designed to do geomagnetism, and contained no absolute magnetometer, no GPS, and no star camera. This technology demonstration mission tested a new miniature but high resolution sun sensor that was utilized for the despinning of the magnetic field observations (0.1 degree accuracy). Satellite location was estimated by tracking, and enhanced via post-processing to accuracies of about 0.1 km. Many of the magnetic field observations were collected in magnetically quiet times. After pre- and in-flight calibrations of this spinner, the along-track gradient of the total field derived from two of the three satellites was calculated, and exhibited favorable comparisons with the Comprehensive model (CM4) of the near-Earth magnetic field. CM4 was developed from high resolution geomagnetic field satellites such as CHAMP, Orsted, and Magsat. We utilize the gradient data to construct a model of the lithospheric magnetic field in several N-S bands of dense ST-5 coverage, and illustrate how these models can be used to improve magnetic and thermal models of the lithosphere.

  5. Inter/intra granular exchange and thermal activation in nanoscale granular magnetic materials

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Saharan, L.; Hrkac, G.; Schrefl, T.; Ikeda, Y.; Takano, K.; Miles, J. J.; Thomson, T.

    2011-09-01

    We explain the effect of inter/intra granular exchange coupling and thermal activation on the switching behavior of nano-scale granular magnetic materials. For an ideal, non-interacting granular system, the minimum switching field occurs at 45° from the easy axis of the grains. We show through simulation and measurements, using a CoCrPt oxide-segregated granular film as a model system, that there is a clear shift in the angle of applied field at which the minimum switching field occurs. This arises solely due to incoherent reversal induced by inter-granular exchange coupling or incoherency within larger grains, rather than thermal activation.

  6. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    SciTech Connect

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs.

  7. Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field

    NASA Astrophysics Data System (ADS)

    Snetkov, Ilya; Palashov, Oleg

    2015-04-01

    A Faraday isolator based on a terbium scandium aluminum garnet (TSAG) single crystal with compensation of thermally induced depolarization inside magnetic field was demonstrated. An isolation ratio of 32 dB at 350 W cw laser radiation power was achieved. Thermally induced depolarization and thermal lens were studied and compared with similar thermal effects arising in the widely used terbium gallium garnet crystal (TGG) for the first time.

  8. Direct Imaging of Thermally Driven Domain Wall Motion in Magnetic Insulators

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Fan, Yabin; Zhao, Jing; Wang, Minsheng; Chang, Li-Te; Lang, Murong; Wong, Kin L.; Lewis, Mark; Lin, Yen-Ting; Tang, Jianshi; Cherepov, Sergiy; Zhou, Xuezhi; Tserkovnyak, Yaroslav; Schwartz, Robert N.; Wang, Kang L.

    2013-04-01

    Thermally induced domain wall motion in a magnetic insulator was observed using spatiotemporally resolved polar magneto-optical Kerr effect microscopy. The following results were found: (i) the domain wall moves towards hot regime; (ii) a threshold temperature gradient (5K/mm), i.e., a minimal temperature gradient required to induce domain wall motion; (iii) a finite domain wall velocity outside of the region with a temperature gradient, slowly decreasing as a function of distance, which is interpreted to result from the penetration of a magnonic current into the constant temperature region; and (iv) a linear dependence of the average domain wall velocity on temperature gradient, beyond a threshold thermal bias. Our observations can be qualitatively explained using a magnonic spin transfer torque mechanism, which suggests the utility of magnonic spin transfer torque for controlling magnetization dynamics.

  9. Observation of thermally driven field-like spin torque in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bose, Arnab; Shukla, Amit Kumar; Konishi, Katsunori; Jain, Sourabh; Asam, Nagarjuna; Bhuktare, Swapnil; Singh, Hanuman; Lam, Duc Duong; Fujii, Yuya; Miwa, Shinji; Suzuki, Yoshishige; Tulapurkar, Ashwin A.

    2016-07-01

    We report the thermally driven giant field-like spin-torque in magnetic tunnel junctions (MTJ) on application of heat current from top to bottom. The field-like term is detected by the shift of the magneto-resistance hysteresis loop applying temperature gradient. We observed that the field-like term depends on the magnetic symmetry of the MTJ. In asymmetric structures, with different ferromagnetic materials for free and fixed layers, the field-like term is greatly enhanced. Our results show that a pure spin current density of the order of 109 A/m2 can be produced by creating a 120 mK temperature difference across 0.9 nm thick MgO tunnelling barrier. Our results will be useful for writing MTJ and domain wall-based memories using thermally driven spin torque.

  10. Multichannel Magnetorelaxometry In Vivo Monitoring of Magnetic Nanoparticle Quantity for Thermal Ablation Studies

    NASA Astrophysics Data System (ADS)

    Richter, Heike; Kettering, Melanie; Wiekhorst, Frank; Kosch, Olaf; Hilger, Ingrid; Trahms, Lutz

    2010-12-01

    To inactivate cancer cells with minimal side-effects to the normal tissue, cancer therapy as magnetic thermal ablation utilizes superparamagnetic iron oxide nanoparticles (MNP) injected into the tumor. When exposed to an externally applied alternating magnetic field MNP generate heat, which deactivates cellular processes or even generates lethal thermal doses. Hence, the intratumoral quantity of MNP needs to be thoroughly controlled to govern adequate heat production in the carcinoma region. Here, we investigate the capability of multichannel magnetorelaxometry (MRX) for quantitative measurement of MNP accumulation in the tumor region performed in vivo on a carcinoma mouse, and moreover, the feasibility of quantitative long-term monitoring of MNP amount in a conscious, freely moving mouse.

  11. Unique Properties of Thermally Tailored Copper: Magnetically Active Regions and Anomalous X-ray Fluorescence Emissions

    PubMed Central

    2009-01-01

    When high-purity copper (≥99.98%wt) is melted, held in its liquid state for a few hours with iterative thermal cycling, then allowed to resolidify, the ingot surface is found to have many small regions that are magnetically active. X-ray fluorescence analysis of these regions exhibit remarkably intense lines from “sensitized elements” (SE), including in part or fully the contiguous series V, Cr, Mn, Fe, and Co. The XRF emissions from SE are far more intense than expected from known impurity levels. Comparison with blanks and standards show that the thermal “tailoring” also introduces strongly enhanced SE emissions in samples taken from the interior of the copper ingots. For some magnetic regions, the location as well as the SE emissions, although persistent, vary irregularly with time. Also, for some regions extraordinarily intense “sensitized iron” (SFe) emissions occur, accompanied by drastic attenuation of Cu emissions. PMID:20037657

  12. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  13. Effects of thermal annealing on structural and magnetic properties of thin Pt/Cr/Co multilayers

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Satpati, B.; Oskar Liedke, Maciej; Gupta, A.; Som, T.

    2010-11-01

    Thermal stability of thin Pt/Cr/Co multilayers and the subsequent changes in their structural, magnetic, and magneto-optical properties are reported. We observe CoCrPt ternary alloy phase formation due to annealing at temperatures about 773 K, which is accompanied by enhancement in the coercivity value. In addition, 360° domain wall superimposed on a monodomain like background has been observed in the pristine multilayer, which changes into a multidomain upon annealing at 873 K.

  14. Thermal entanglement in a four-qubit Heisenberg spin model with external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wu, Ke-Dong; Zhou, Bin; Cao, Wan-Qiang

    2007-03-01

    The entanglement properties both in the four-qubit anisotropic Heisenberg XY chain with uniform external magnetic fields and in the Heisenberg XX model with two external fields are investigated. The analytical expressions for the measures of entanglement are obtained. In Heisenberg XY chain, the effects of the anisotropy on the thermal entanglement are studied. In the Heisenberg XX ring with two external fields, it is found that a high pair entanglement can be obtained.

  15. EXPLORING MAGNETIC FIELD STRUCTURE IN STAR-FORMING CORES WITH POLARIZATION OF THERMAL DUST EMISSION

    SciTech Connect

    Kataoka, Akimasa; Machida, Masahiro N.; Tomisaka, Kohji

    2012-12-10

    The configuration and evolution of the magnetic field in star-forming cores are investigated in order to directly compare simulations and observations. We prepare four different initial clouds having different magnetic field strengths and rotation rates, in which magnetic field lines are aligned/misaligned with the rotation axis. First, we calculate the evolution of such clouds from the prestellar stage until long after protostar formation. Then, we calculate the polarization of thermal dust emission expected from the simulation data. We create polarization maps with arbitrary viewing angles and compare them with observations. Using this procedure, we confirmed that the polarization distribution projected on the celestial plane strongly depends on the viewing angle of the cloud. Thus, by comparing the observations with the polarization map predicted by the simulations, we can roughly determine the angle between the direction of the global magnetic field and the line of sight. The configuration of the polarization vectors also depends on the viewing angle. We find that an hourglass configuration of magnetic field lines is not always realized in a collapsing cloud when the global magnetic field is misaligned with the cloud rotation axis. Depending on the viewing angle, an S-shaped configuration of the magnetic field (or the polarization vectors) appears early in the protostellar accretion phase. This indicates that not only the magnetic field but also the cloud rotation affects the dynamical evolution of such a cloud. In addition, by comparing the simulated polarization with actual observations, we can estimate properties of the host cloud such as the evolutionary stage, magnetic field strength, and rotation rate.

  16. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  17. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    SciTech Connect

    Chagas, E. F. Ponce, A. S.; Prado, R. J.; Silva, G. M.; Bettini, J.; Baggio-Saitovitch, E.

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  18. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    NASA Astrophysics Data System (ADS)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  19. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids.

    PubMed

    Wang, Baodui; Wang, Baogang; Wei, Pengfei; Wang, Xiaobo; Lou, Wenjing

    2012-01-21

    The effect of nanoparticle size (4~44 nm) on the thermal conductivities of heat transfer oils has been systematically examined using iron oxide nanoparticles. Such Fe(3)O(4) nanoparticles were synthesized by a simple one-pot pyrolysis method. The size (16~44 nm), shape and assembly patterns of monodisperse Fe(3)O(4) nanoparticles were modulated by only controlling the amount of Fe(acac)(3). After the as-prepared Fe(3)O(4) NPs were dispersed in heat transfer oils, the prepared magnetic nanofluids exhibit higher thermal conductivity than heat transfer oils, and the enhanced values increase with a decrease in particle size. In addition, the viscosities of all nanofliuids are remarkably lower than that of the base fluid, which has been found for the first time in the nanofluid field. The promising features offer potential application in thermal energy engineering. PMID:22086086

  20. Thermally activated switching of perpendicular magnet by spin-orbit spin torque

    SciTech Connect

    Lee, Ki-Seung; Lee, Seo-Won; Min, Byoung-Chul; Lee, Kyung-Jin

    2014-02-17

    We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10 ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

  1. The thermal instability in a sheared magnetic field - Filament condensation with anisotropic heat conduction. [solar physics

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Mok, Y.

    1984-01-01

    The condensation-mode growth rate of the thermal instability in an empirically motivated sheared field is shown to depend upon the existence of perpendicular thermal conduction. This typically very small effect (perpendicular conductivity/parallel conductivity less than about 10 to the -10th for the solar corona) increases the spatial-derivative order of the compressible temperature-perturbation equation, and thereby eliminates the singularities which appear when perpendicular conductivity = 0. The resulting growth rate is less than 1.5 times the controlling constant-density radiation rate, and has a clear maximum at a cross-field length of order 100 times and a width of about 0.1 the magnetic shear scale for solar conditions. The profiles of the observable temperature and density perturbations are independent of the thermal conductivity, and thus agree with those found previously. An analytic solution to the short-wavelength incompressible case is also given.

  2. Thermally activated phase slips in superfluid spin transport in magnetic wires

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Takei, So; Tserkovnyak, Yaroslav

    2016-01-01

    We theoretically study thermally activated phase slips in superfluid spin transport in easy-plane magnetic wires within the stochastic Landau-Lifshitz-Gilbert phenomenology, which runs parallel to the Langer-Ambegaokar-McCumber-Halperin theory for thermal resistances in superconducting wires. To that end, we start by obtaining the exact solutions for free-energy minima and saddle points. We provide an analytical expression for the phase-slip rate in the zero spin-current limit, which involves a detailed analysis of spin fluctuations at the extrema of the free energy. An experimental setup for a magnetoelectric circuit is proposed, in which thermal phase slips can be inferred by measuring nonlocal magnetoresistance.

  3. Effect of long-term thermal aging on magnetic property in reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Sato, H.; Iwawaki, T.; Yamamoto, T.; Klingensmith, D.; Odette, G. R.; Kikuchi, H.; Kamada, Y.

    2013-08-01

    Effect of long-term thermal aging at 290 and 500 °C on magnetic hysteresis property in reactor pressure vessel steels and simple model alloys have been investigated for times up to 8800 h. While Vickers hardness is insensitive to thermal aging at both temperatures, coercivity generally exhibits a slight decrease after aging at 290 °C. In particular, at a higher temperature of 500 °C a steady increase of coercivity was observed for reactor pressure vessel steels, whereas coercivity for simple model alloys exhibits an abrupt drop just after aging and the decrease was 20-30% of that before aging. The results were interpreted by the thermally-assisted formation of Cu-rich precipitates and recovery, but the latter has the dominant effect for simple model alloys because of their ferritic microstructure. The possible effect of relaxation of lattice strain created by dissolved interstitial atoms during neutron irradiation is proposed.

  4. A Field Evaluation of Airborne Techniques for Detection of Unexploded Ordnance

    SciTech Connect

    Bell, D.; Doll, W.E.; Hamlett, P.; Holladay, J.S.; Nyquist, J.E.; Smyre, J.; Gamey, T.J.

    1999-03-14

    US Defense Department estimates indicate that as many as 11 million acres of government land in the U. S. may contain unexploded ordnance (UXO), with the cost of identifying and disposing of this material estimated at nearly $500 billion. The size and character of the ordnance, types of interference, vegetation, geology, and topography vary from site to site. Because of size or composition, some ordnance is difficult to detect with any geophysical method, even under favorable soil and cultural interference conditions. For some sites, airborne methods may provide the most time and cost effective means for detection of UXO. Airborne methods offer lower risk to field crews from proximity to unstable ordnance, and less disturbance of sites that maybe environmentally sensitive. Data were acquired over a test site at Edwards AFB, CA using airborne magnetic, electromagnetic, multispectral and thermal sensors. Survey areas included sites where trenches might occur, and a test site in which we placed deactivated ordnance, ranging in size from small ''bomblets'' to large bombs. Magnetic data were then acquired with the Aerodat HM-3 system, which consists of three cesium magnetometers within booms extending to the front and sides of the helicopter, and mounted such that the helicopter can be flown within 3m of the surface. Electromagnetic data were acquired with an Aerodat 5 frequency coplanar induction system deployed as a sling load from a helicopter, with a sensor altitude of 15m. Surface data, acquired at selected sites, provide a comparison with airborne data. Multispectral and thermal data were acquired with a Daedelus AADS 1268 system. Preliminary analysis of the test data demonstrate the value of airborne systems for UXO detection and provide insight into improvements that might make the systems even more effective.

  5. Calculation of the Thermal Footprint of Resonant Magnetic Perturbations in DIII-D

    SciTech Connect

    Joseph, I; Evans, T; Moyer, R; Fenstermacher, M; Groth, M; Kasilov, S; Lasnier, C; Porter, G; Runov, A; Schaffer, M; Schneider, R; Watkins, J

    2007-09-14

    The effect of resonant magnetic perturbations on heat transport in DIII-D H-mode plasmas has been calculated by combining the TRIP3D field-line tracing code with the E3D two-fluid transport code. Simulations show that the divertor heat flux distribution becomes non-axisymmetric because heat flux is efficiently guided to the divertor along the three-dimensional invariant manifolds of the magnetic field. Calculations demonstrate that heat flux is spread over a wider area of the divertor target, thereby reducing the peak heat flux delivered during steady-state operation. Filtered optical cameras have observed non-axisymmetric particle fluxes at the strike-point and Langmuir probes have observed non-axisymmetric floating potentials. On the other hand, the predicted magnitude of stochastic thermal transport is too large to match the pedestal plasma profiles measured by Thomson scattering and charge exchange recombination spectroscopy. The Braginskii thermal conductivity overestimates the expected heat transport in the pedestal because the mean free path is longer than estimates of the parallel thermal correlation length, and collisionless transport models are probably required for accurate description. However, even the collisionless estimates for electron thermal transport are too large by one to two orders of magnitude. Thus, it is likely that another mechanism such as rotational screening of resonant perturbations limits the stochastic region and reduces transport inside of the pedestal.

  6. STREAMING COLD COSMIC-RAY BACK-REACTION AND THERMAL INSTABILITIES ALONG THE BACKGROUND MAGNETIC FIELD

    SciTech Connect

    Nekrasov, Anatoly K.; Shadmehri, Mohsen E-mail: nekrasov.anatoly@gmail.com

    2012-09-01

    Using a multi-fluid approach, we investigate the streaming and thermal instabilities of electron-ion-cosmic-ray astrophysical objects in which homogeneous cold cosmic rays have a drift velocity perpendicular to the background magnetic field. One-dimensional perturbations along the magnetic field are considered. The induced return current of the background plasma and back-reaction of cosmic rays are taken into account. It is shown that the cosmic-ray back-reaction results in a streaming instability with considerably higher growth rates than that due to the return current of the background plasma. This increase is by a factor of the square root of the ratio of the background plasma mass density to the cosmic-ray mass density. The maximal growth rate and the corresponding wavenumber are then found. Thermal instability is shown to be not subject to the action of cosmic rays in the model under consideration. The dispersion relation for thermal instability includes ion inertia. In the limit of a fast thermal energy exchange between electrons and ions, the isobaric and isochoric growth rates are obtained. The results can be useful for the investigation of electron-ion astrophysical objects such as galaxy clusters, including the dynamics of streaming cosmic rays.

  7. Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Bai, Lihui; Chen, Xiaobin; Guo, Hong; Fan, X. L.; Xue, D. S.; Houssameddine, D.; Hu, C.-M.

    2016-08-01

    The thermal spin-transfer torque (TSTT) in magnetic tunneling junctions (MTJs) was systematically studied using electrical detection of ferromagnetic resonance (FMR). Evidence for the existence of TSTT in MTJs is observed. A temperature difference was applied across an MTJ acting as a TSTT on the free layer of the MTJ. The FMR of the free layer was then excited by a microwave current and electrically detected as a dc voltage. We found that the FMR line shape was changed by the TSTT, indicated by the ratio of dispersive and Lorentz components of the FMR spectra (D /L ). D /L increases by increasing the temperature difference. In addition, we analyze the magnetization orientation dependence of TSTT and provide solid evidence that this dependence differs from the magnetization orientation dependence of spin-transfer torque driven by a dc bias.

  8. The electronic, magnetic and thermal properties of actinide monocarbides: A first principles study

    NASA Astrophysics Data System (ADS)

    Soni, Pooja; Pagare, Gitanjali; Rajagopalan, M.; Sanyal, Sankar P.

    2012-06-01

    A theoretical study on structural, electronic, magnetic and thermal properties of actinide monocarbides AnCs (An= Np and Cm), which crystallize in NaCl-type structure, has been performed using self consistent tight binding linear muffin tin orbital (TB-LMTO) method at ambient as well as at high pressure. Both non-spin and spin polarized calculations have been performed to check the magnetic stability. We observe that both the compounds are metallic in nature and ferro-magnetically stable at ambient pressure. The calculated ground state properties such as lattice constants and bulk modulus are compared with the available results. The Debye temperature is also estimated for the first time.

  9. The effect of ballooning modes on thermal transport and magnetic field diffusion in the solar corona

    NASA Technical Reports Server (NTRS)

    Strauss, H. R.

    1989-01-01

    Presently favored mechanisms of coronal heating (current sheet dissipation and Alfven wave resonant heating) deposit heat in thin layers. Classical thermal conduction cannot explain how heat is transported across the magnetic field. If heating occurs in thin layers, large pressure gradients can be created which can give rise to ballooning modes. These instabilities are caused by the pressure gradient and the curvature of the magnetic field, and are stabilized by magnetic tension. The modes are broad band in wavelength and should produce turbulence. A mixing length expression for the turbulent heat transport shows that it is more than adequate to rapidly convect heat into much broader layers. Furthermore, the turbulent resistivity implies that heating occurs over most of the width of these broadened layers. The broadening also implies that much shorter time scales are required for heating. The beta values in the corona suggest that 1-10 turbulent layers are formed in typical loop or arch structures.

  10. Model atmospheres and radiation of magnetic neutron stars: Anisotropic thermal emission

    NASA Technical Reports Server (NTRS)

    Pavlov, G. G.; Shibanov, Yu. A.; Ventura, J.; Zavlin, V. E.

    1994-01-01

    We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.

  11. THERMAL EQUILIBRIA OF OPTICALLY THIN, MAGNETICALLY SUPPORTED, TWO-TEMPERATURE, BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Oda, H.; Machida, M.; Nakamura, K. E.; Matsumoto, R.

    2010-03-20

    We obtained thermal equilibrium solutions for optically thin, two-temperature black hole accretion disks incorporating magnetic fields. The main objective of this study is to explain the bright/hard state observed during the bright/slow transition of galactic black hole candidates. We assume that the energy transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung, synchrotron, and inverse Compton scattering are considered as the radiative cooling processes. In order to complete the set of basic equations, we specify the magnetic flux advection rate instead of beta = p{sub gas}/p{sub mag}. We find magnetically supported (low-beta), thermally stable solutions. In these solutions, the total amount of the heating via the dissipation of turbulent magnetic fields goes into electrons and balances the radiative cooling. The low-beta solutions extend to high mass accretion rates ({approx}>alpha{sup 2}M-dot{sub Edd}) and the electron temperature is moderately cool (T{sub e} {approx} 10{sup 8}-10{sup 9.5} K). High luminosities ({approx}>0.1L{sub Edd}) and moderately high energy cutoffs in the X-ray spectrum ({approx}50-200 keV) observed in the bright/hard state can be explained by the low-beta solutions.

  12. Time-Resolved Magneto-Optical Kerr Effect of Magnetic Thin Films for Ultrafast Thermal Characterization.

    PubMed

    Chen, Jun-Yang; Zhu, Jie; Zhang, Delin; Lattery, Dustin M; Li, Mo; Wang, Jian-Ping; Wang, Xiaojia

    2016-07-01

    Thermomagnetic and magneto-optical effects are two fundamental but unique phenomena existing in magnetic materials. In this work, we demonstrate ultrafast time-resolved magneto-optical Kerr effect (TR-MOKE) as an advanced thermal characterization technique by studying the original factors of the MOKE signal from four magnetic transducers, including TbFe, GdFeCo, Co/Pd, and CoFe/Pt. A figure of merit is proposed to evaluate the performance of the transducer layers, corresponding to the degree of the signal-to-noise ratio in TR-MOKE measurements. We observe improved figure of merit for rare-earth transition-metal-based TbFe and GdFeCo transducers and attribute this improvement to their relatively larger temperature-dependent magnetization and the Kerr rotation angle at the saturated magnetization state. Furthermore, an optimal thickness of TbFe is found to be ∼18.5 nm to give the best performance. Our findings will facilitate the nanoscale thermal characterization and the device design where the thermo-magneto-optical coupling plays an important role. PMID:27269127

  13. Methotrexate conjugated magnetic nanoparticle for targeted drug delivery and thermal therapy

    NASA Astrophysics Data System (ADS)

    Gupta, Jagriti; Bhargava, Parag; Bahadur, D.

    2014-05-01

    A simple soft chemical approach is used for the preparation of citrate functionalized iron oxide (Fe3O4) aqueous colloidal magnetic nanoparticles (CA-MNPs) of average size ˜10 nm. The CA-MNPs exhibit superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. The CA-MNPs can be conjugated with Methotrexate (MTX) drug through amide bonds between the carboxylic group on the surface of MNPs and amine group of MTX. The surface functionalization of Fe3O4 nanoparticles with citric acid and conjugation of MTX drug is evident from FTIR spectroscopy, zeta-potential measurement, and elemental and thermal analyses. From the drug release study, it has been observed that this bonding of MTX conjugated MNPs (MTX-MNPs) is cleaved by the intracellular enzymes in lysosome, and MTX is delivered largely inside target cancerous cells at lower pH, thereby reducing toxicity to normal cells. Also, it has been observed that the intercellular uptake of MTX-MNPs is higher compared to CA-MNPs. In addition, the aqueous colloidal stability, optimal magnetization, and good specific absorption rate (under external AC magnetic field) of CA-MNPs act as effective heating source for thermal therapy. Cytotoxicity study of MTX-MNPs shows the reduction of cellular viability for human cervical cancer cells (HeLa). Further, a synergistic effect of MTX-MNPs shows a more effective tumor cell death due to the combined effect of thermo-chemotherapy.

  14. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors

    SciTech Connect

    Henry, Laurence L

    2006-02-27

    The project investigated superconductivity in non-cuprate materials with critical temperatures, T{sub c}, in excess of 20 K in order to understand the thermodynamics of several of these materials. The project is a cooperative effort between investigators at Southern University (SU), Louisiana State University (LSU), and Los Alamos National Laboratory (LANL). It involved synthesis of high quality samples, and subsequent detailed magnetic, thermal and electrical measurements on them. The project provided a PhD Thesis research experience and training for a graduate student, Ms. Robin Macaluso. High quality, single crystal samples were synthesized by Ms. Macaluso under the direction of one of the CO-PIS, John Sarao, during the summer while she was a visitor at LANL being supported by this grant. On these samples magnetic measurements were performed at SU, thermal and electrical measurements were made in the LSU Physics and Astronomy Department. The crystallographic properties were determined in the LSU Chemistry Department by Ms. Macaluso under the direction of her dissertation advisor, Dr. Julia Chan. Additional high field magnetic measurements on other samples were performed at the National High Magnetic Field Laboratory (NHMFL) both in Tallahassee and at LANL. These measurements involved another graduate student, Umit Alver, who used some of the measurements as part of his PhD dissertation in Physics at LSU.

  15. Magnetic and Thermal Properties of SmRh2Zn20 Single Crystal

    NASA Astrophysics Data System (ADS)

    Isikawa, Yosikazu; Mizushima, Toshio; Fujita, Aika; Kuwai, Tomohiko

    2016-02-01

    The magnetization, magnetic susceptibility, and specific heat of the single crystalline sample SmRh2Zn20 were measured. The valence of Sm ions in SmRh2Zn20 was found to be trivalent. No evidence of valence fluctuations was detected. SmRh2Zn20 is an antiferromagnet with TN = 2.46 K. The observed magnetic phase transition temperature in the C(T,H) curves showed that TN splits into two in the external field H along the [001] and [101] directions. On the other hand, TN in H along the [111] direction did not split, decreasing to 2.20 K at H = 7 T. At 2 K, the magnetization M111 in H along the [111] direction increased linearly with increasing field, while M001 and M101 deviated upward slightly from the linear dependence. We analyzed the observed magnetic and thermal properties of SmRh2Zn20 taking into account the crystalline-electric-field effect, the Zeeman energy, and the exchange interaction. The theoretical calculation well reproduced the experimental χ(T), M(H), C(T,H), and TN(H), suggesting that the energy scheme of Sm3+ is composed of the ground state Γ7 and the excited state Γ8 with an energy gap of 10.8 K. The sublattice magnetic moments are expected to be along the <111> direction below TN at H = 0 T. Variations of the magnetic structures induced by the external magnetic fields in a narrow temperature region around TN are inferred on the basis of theoretical calculations.

  16. Magnetic cristobalite (?) - A possible new magnetic phase produced by the thermal decomposition of nontronite

    NASA Technical Reports Server (NTRS)

    Moskowitz, B. M.; Hargraves, R. B.

    1984-01-01

    The effect of heat treatment for 1 h or more at 900-1000 C on the magnetic properties of nontronite, an iron-rich smectite clay thought to be an important component of Martian regolith, is investigated experimentally, extending the findings of Moskowitz and Hargraves (1982). The results are presented in graphs and tables and discussed. A phase with Curie temperature 200-220 C, remanent coercivity greater than 800 mT, and a type-2 room-temperature-coercivity response to thermomagnetic cycling is observed and attributed to an iron-substituted cristobalite which may form by topotactic growth from a smectite precursor.

  17. Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling

    NASA Astrophysics Data System (ADS)

    Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean

    2003-09-01

    The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.

  18. Thermally Enhanced Magnetic Fabrics of Basaltic Dikes from Kapaa Quarry, Koolau Volcano, Oahu, Hawaii, USA.

    NASA Astrophysics Data System (ADS)

    Lau, J.; Herrero-Bervera, E.; Urrutia Fucugauchi, J.

    2007-05-01

    Progressive thermal treatment has been used to investigate the anisotropy of magnetic susceptibility (AMS) of a wide range of lithologies. Initial results on e.g., red sandstones, glacial tillites, granites and gneisses showed that laboratory stepwise heating resulted in thermal enhancement of AMS, showing the potential of thermal treatment in studying weak AMS and masked or cryptic fabrics. Studies have however shown that heating induced changes in AMS may be more complex that simple enhancement of the magnetic fabric In general, thermal induced magneto-mineralogical alterations are complex and not well understood, and further investigation of heating induced effects in mineralogy, grain size and texture systematically investigated for different lithologies is needed. For our experiment we have used a suite of samples from eight basaltic dikes from the Kappa Quarry, Koolau volcanic range in Oahu, Hawaii. The AMS fabric was determined as part of a study to investigate the influence of hydrothermal alteration by Krasa and Herrero-Bervera (2005). They found that hydrothermal alteration changes the bulk susceptibility and anisotropy degree, but AMS ellipsoid principal axes are not affected. Since hydrothermal alteration transforms the primary Ti-poor titanomagnetites into granular intergrowths of titanomagnetites, titanomaghemite and hematite, and that samples show varying degrees of alteration, the samples react differently to laboratory stepwise heating permitting study of thermal effects on the magnetic mineralogy, and AMS parameters and principal susceptibility axes. Further, thermal treatment results in fabric enhancement with reduced axial scatter associated with weak bulk susceptibilities and anisotropy degrees in the dikes. For the AMS experiment samples were heated progressively to temperatures up to 400° C or 560° C and the AMS measured after each step. AMS parameters and bulk susceptibility show changes with increasing temperature while the AMS

  19. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. PMID:26393398

  20. Magnetic thermal ablation using ferrofluids: influence of administration mode on biological effect in different porcine tissues.

    PubMed

    Bruners, Philipp; Hodenius, Michael; Baumann, Martin; Oversohl, Jessica; Günther, Rolf W; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2008-01-01

    The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique. PMID:18592306

  1. Magnetic Thermal Ablation Using Ferrofluids: Influence of Administration Mode on Biological Effect in Different Porcine Tissues

    SciTech Connect

    Bruners, Philipp Hodenius, Michael Baumann, Martin Oversohl, Jessica; Guenther, Rolf W.; Schmitz-Rode, Thomas Mahnken, Andreas H.

    2008-11-15

    The purpose of this study was to compare the effects of magnetic thermal ablation in different porcine tissues using either a singular injection or a continuous infusion of superparamagnetic iron oxide nanoparticles. In the first setting samples of three ferrofluids containing different amounts of iron (1:171, 2:192, and 3:214 mg/ml) were singularly interstitially injected into specimens of porcine liver, kidney, and muscle (n = 5). Then the specimens were exposed to an alternating magnetic field (2.86 kA/m, 190 kHz) generated by a circular coil for 5 min. In the second experimental setup ferrofluid samples were continuously interstitially infused into the tissue specimens during the exposure to the magnetic field. To measure the temperature increase two fiber-optic temperature probes with a fixed distance of 0.5 cm were inserted into the specimens along the puncture tract of the injection needle and the temperature was measured every 15 s. Finally, the specimens were dissected, the diameters of the created thermal lesions were measured, and the volumes were calculated and compared. Compared to continuous infusion, a single injection of ferrofluids resulted in smaller coagulation volumes in all tissues. Significant differences regarding coagulation volume were found in kidney and muscle specimens. The continuous infusion technique led to more elliptically shaped coagulation volumes due to larger diameters along the puncture tract. Our data show the feasibility of magnetic thermal ablation using either a single interstitial injection or continuous infusion for therapy of lesions in muscle, kidney, and liver. Continuous infusion of ferrofluids results in larger zones of necrosis compared to a single injection technique.

  2. Protection heater design validation for the LARP magnets using thermal imaging

    DOE PAGESBeta

    Marchevsky, M.; Turqueti, M.; Cheng, D. W.; Felice, H.; Sabbi, G.; Salmi, T.; Stenvall, A.; Chlachidze, G.; Ambrosio, G.; Ferracin, P.; et al

    2016-03-16

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less

  3. Spin-wave thermal population as temperature probe in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Le Goff, A.; Nikitin, V.; Devolder, T.

    2016-07-01

    We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm2 nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.

  4. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words

  5. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-07-01

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κxy changes sign as a function of magnetic field or temperature on the kagome lattice, and κxy changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κxy has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T2 law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  6. Thermal conditions on the International Space Station: Effects of operations of the station Main Radiators on the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Burger, Joseph

    2016-04-01

    A thermal model of the Alpha Magnetic Spectrometer on the International Space Station (ISS) has been developed, and Thermal Desktop® (with RadCAD®) and SINDA/FLUINT software have been used to calculate the effects of the operations of the ISS Main Radiators on AMS temperatures. We find that the ISS Starboard Main Radiator has significant influence on temperatures on the port side of AMS. The simulation results are used in AMS thermal control operations.

  7. Electron thermal conductance in a ballistic nanowire in the presence of Rashba interaction and an in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Koeik, Zeinab; Sakr, M. R.

    2015-11-01

    We report on the thermal conductance of electrons in ballistic nanowires at low temperatures. The thermal conductance is calculated using the single-particle formalism taking into account local maxima in the dispersion relation. As the chemical potential increases, the thermal conductance follows the step-like quantization of the electric conductance that is dependent on the direction of the magnetic field. Results indicate that the Wiedemann-Franz law is violated at the jump of the electric conductance at very low temperatures.

  8. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and arsenides

    NASA Astrophysics Data System (ADS)

    Das, Supriyo

    Several transition metal oxides and arsenides have been synthesized and their magnetic, thermal, structural, and transport properties have been studied in this thesis. Magnetically pure spinel compound LiV2O4 is a rare d-electron heavy fermion. The presence of small concentrations of magnetic defects, which are produced by the crystal defects in the spinel structure, strongly affect the physical properties of LiV2O 4. The phase relations in the Li2O-V2O3-V 2O5 ternary system at 700°C for compositions in equilibrium with LiV2O4 are reported. This study clarified the synthesis conditions under which low and high magnetic defect concentrations can be obtained within the spinel structure of LiV2O4. We confirmed that the LiV2O4 phase can be obtained containing low (0.006 mol%) to high (0.83 mol%) magnetic defect concentrations ndefect and with consistently high magnetic defect spin S values between 3 and 6.5. The high ndefect values were obtained in the LiV 2O4 phase in equilibrium with V2O3, Li3VO4, or LiVO2 and the low values in the LiV2O4 phase in equilibrium with V3O 5. A model is suggested to explain this correlation. We grew single crystals of LiV2O4 using Li3VO4 as a self-flux. The magnetic susceptibility of some as-grown crystals show a Curie-like upturn at low temperatures, showing the presence of magnetic defects within the spinel structure. The magnetic defects could be removed in some of the crystals by annealing them at 700°C. A very high specific heat coefficient gamma = 450 mJ/(mol K2) was obtained at a temperature of 1.8 K for a crystal containing a magnetic defect concentration ndefect = 0.5 mol%. A crystal with ndefect = 0.01 mol% showed a residual resistivity ratio of 50. To search for superstructure peaks or other evidence of spatial correlations in the arrangement of the crystal defects with in the crystal structure which give rise to magnetic defects, we carried out high-energy x-ray diffraction studies on LiV2O4 single crystals. Entire

  9. Magnetic Resonance-Guided Focal Laser-Induced Interstitial Thermal Therapy in a Canine Prostate Model

    PubMed Central

    Stafford, R. Jason; Shetty, Anil; Elliott, Andrew M.; Klumpp, Sherry A.; McNichols, Roger J.; Gowda, Ashok; Hazle, John D.; Ward, John F.

    2014-01-01

    Purpose To evaluate a newly FDA-cleared closed-loop, magnetic resonance (MR)-guided laser-induced interstitial thermal therapy (LITT) system for targeted ablation of prostate tissue in order to assess targeting ability, lesion generation and feasibility. Materials and Methods Mongrel dogs with (n = 2) and without (n = 5) canine transmissible venereal tumors in the prostate were imaged with a 1.5-T MR imaging scanner. Real-time 3D MR imaging was used to accurately position water-cooled 980-nm laser applicators to pre-determined targets within the canine prostates. Destruction of targeted tissue was guided with MR temperature imaging in real time for precise control of thermal ablation. MR predictions of thermal damage were correlated with findings from post-treatment images and compared to histopathology. Results Template-based targeting using MR guidance allowed the laser applicator to be placed within a mean of 1.1 mm (SD = 0.7 mm) of the target location. The mean width and length of the ablation zone by MR were 13.7 mm (SD = 1.3 mm) and 19.0 mm (SD = 4.2 mm) using single and compound exposures. The thermal damage predicted by MR correlated with the thermal damage determined by post-treatment imaging with a slope near unity and excellent correlation (R2 = 0.94). Conclusions This LITT system provided rapid and localized heating of tissue with minimal collateral thermal spread or injury. Combined with real-time monitoring and template-based planning, MR-guided LITT is an attractive modality for prostate cancer focal therapy. PMID:20727549

  10. Clinical utility of magnetic resonance thermal imaging (MRTI) for realtime guidance of deep hyperthermia

    NASA Astrophysics Data System (ADS)

    Stauffer, P. R.; Craciunescu, Oana I.; Maccarini, P. F.; Wyatt, Cory; Arunachalam, K.; Arabe, O.; Stakhursky, V.; Soher, B.; MacFall, J. R.; Li, Z.; Joines, William T.; Rangarao, S.; Cheng, K. S.; Das, S. K.; Martins, Carlos D.; Charles, Cecil; Dewhirst, Mark W.; Wong, T.; Jones, E.; Vujaskovic, Z.

    2009-02-01

    A critical need has emerged for volumetric thermometry to visualize 3D temperature distributions in real time during deep hyperthermia treatments used as an adjuvant to radiation or chemotherapy for cancer. For the current effort, magnetic resonance thermal imaging (MRTI) is used to measure 2D temperature rise distributions in four cross sections of large extremity soft tissue sarcomas during hyperthermia treatments. Novel hardware and software techniques are described which improve the signal to noise ratio of MR images, minimize motion artifact from circulating coupling fluids, and provide accurate high resolution volumetric thermal dosimetry. For the first 10 extremity sarcoma patients, the mean difference between MRTI region of interest and adjacent interstitial point measurements during the period of steady state temperature was 0.85°C. With 1min temporal resolution of measurements in four image planes, this noninvasive MRTI approach has demonstrated its utility for accurate monitoring and realtime steering of heat into tumors at depth in the body.

  11. Magnetic phase transitions in heavy-fermion compounds studied by thermal-expansion measurements

    NASA Astrophysics Data System (ADS)

    de Visser, A.; Lacerda, A.; Franse, J. J. M.; Flouquet, J.

    1990-12-01

    On alloying the heavy-fermion compounds CeRu 2Si 2 and UPt 3 with small amounts of La and Pd, respectively, long-range antiferromagnetic order develops with Néel temperatures in the order of a few kelvin. In order to study the volume effects that are involved with the evolution into the long-range ordered state, we have performed thermal-expansion measurements on the pure and doped systems. The results are compared with data on antiferromagnetic URu 2Si 2. Subsequently, we discuss thermal-expansion measurements in high-magnetic fields, in particular on CeRu 2Si 2, where a metamagnetic-like transition occurs as the intersite-correlations collapse in a field of 7.8 T. Most of the measurements have been performed on single-crystalline samples, revealing a pronounced anisotropy.

  12. Design of an axial flux PM motor using magnetic and thermal equivalent network

    NASA Astrophysics Data System (ADS)

    Mignot, Romain-Bernard; Glises, Raynal; Espanet, Christophe; Saint Ellier, Emeline; Dubas, Frédéric; Chamagne, Didier

    2013-09-01

    This paper deals with the development of a new generation of electric motors (7.5-15 kW) for automotive powertrains. The target is a full electric direct drive vehicle, for the particular application to heavy quadricycles. An original axial flux PM structure is proposed due to the simplicity of its manufacturing. However it leads to a 3D structure, difficult to study. The paper deals with analytical models that can be used to achieve the analysis and the sizing of the motor. The electromagnetic behavior is modeled using a simple magnetic equivalent network and the thermal behavior is analyzed with a thermal network. Finally, the analytical results are compared to those experimentally obtained and it proves the interest of the proposed structure: the construction is simple and the performances are satisfying.

  13. Thermal magnetic noise control in the ultra-high-density read head

    NASA Astrophysics Data System (ADS)

    Zheng, Y. K.; Han, G. C.; Liu, B.

    In order to reduce the resistance of tunnel magnetoresistive (TMR) read heads, a large stripe height sensor structure was proposed. The thermal magnetic noise, called as mag-noise, in this type of TMR heads was simulated by micromagnetic modeling using the Landau-Lifshitz-Gilbert (LLG) gyro-magnetic equation. It is found that for the same hard bias strength, both the sensitivity and the mag-noise of TMR heads increase as the sensor height increases. The signal-to-noise ratio (SNR) is reduced at large stripe height. The large increase in the demagnetization field resulting from the stripe height increase causes the weakening of the effective bias field, thus increasing the mag-noise significantly. Low mag-noise and high SNR can be obtained by increasing the hard bias strength and reducing the spacer between the hard bias and the free layer. An extended hard bias structure has been proposed to further increase SNR of TMR heads.

  14. On the quantum magnetic oscillations of electrical and thermal conductivities of graphene

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Reis, M. S.

    2016-05-01

    Oscillating thermodynamic quantities of diamagnetic materials, specially graphene, have been attracting attention of the scientific community due to the possibility to experimentally map the Fermi surface of the material. These have been the case of the de Haas-van Alphen and Shubnikov-de Haas effects, found on the magnetization and electrical conductivity, respectively. In this direction, managing the thermodynamic oscillations is of practical purpose, since from the reconstructed Fermi surface it is possible to access, for instance, the electronic density. The present work theoretically explores the quantum oscillations of electrical and thermal conductivities of a monolayer graphene under a crossed magnetic and electric fields. We found that the longitudinal electric field can increase the amplitude of the oscillations and this result is of practical and broad interest for both, experimental and device physics.

  15. Two novel FeII-oxalate architectures: Solvent-free synthesis, structures, thermal and magnetic studies

    NASA Astrophysics Data System (ADS)

    Li, Jin-Hua; Liu, Hui; Wei, Li; Wang, Guo-Ming

    2015-10-01

    Two novel FeII-oxalate framework with the formulas of [NH4][FeIILi3(C2O4)3] (1) and [NH4]2[FeII(C2O4)2]·H2O (2) have been prepared by an oxalic acid flux approach and structurally characterized by IR, elemental analysis, thermogravimetric analysis, single-crystal and powder X-ray diffraction. Heterometallic compound 1 displays a three-dimensional (3D) framework with a pto topology, while homometallic compound 2 features a pillar-layer architecture with a hms topology. Thermal analysis indicates that the two compounds can be stable up to 300 °C and 200 °C, respectively. Magnetic investigations suggest that the FeII ions in 1 and 2 exhibit weak magnetic exchange interactions.

  16. Tridimensional Burning Structures Associated with Anisotropic Thermal Conductivities in Magnetically Confined and Pulsar Plasmas

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Coppi, B.; Sonnino, G.

    2015-11-01

    A surprising result of the most recent theory of the thermonuclear instability, which can take place in D-T plasmas close to ignition, is that it can develop with tridimensional structures emerging from an axisymmetric toroidal confinement configurations. These structures are helical filaments (``snakes'') that are localized radially around a given rational magnetic surface. Until now well known analyses of fusion burning processes in magnetically confined plasmas, that include the thermonuclear instability, have been carried out by 1+1/2 D transport codes and, consequently, the onset of tri-dimensional structures has not been investigated. The importance of the electron thermal conductivities anisotropy is pointed out also for the inhomogeneous thermonuclear burning of plasmas on the surface of pulsars and for the formation of the observed bright spots on some of them. Sponsored in part by the U.S. DoE.

  17. Thermal stability characterization of magnetic tunnel junctions using hard-axis magnetoresistance measurements

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Amiri, Pedram Khalili; Kovalev, Alexey A.; Tserkovnyak, Yaroslav; Rowlands, Graham; Zeng, Zhongming; Krivorotov, Ilya; Jiang, Hongwen; Wang, Kang L.

    2011-04-01

    The use of hard-axis magnetoresistance (MR) measurements for characterization of the device-level anisotropy field and thermal stability in CoFeB/MgO/CoFeB magnetic tunnel junctions is proposed and evaluated. We develop functional forms describing the hard-axis MR curves using a Stoner-Wohlfarth particle model, which are then used for fitting to the experimental curves to extract the free layer magnetic anisotropy field. The model accounts for nonidealities observed in the experimental MR curves in the form of asymmetry (with respect to applied fields), and linear drop in resistance at high fields. Micromagnetic simulations are used to identify the cause for these deviations and verify the presented model.

  18. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    NASA Astrophysics Data System (ADS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

    2014-10-01

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125-1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  19. Effect of thermal process on magnetic anisotropy in FeCoB soft underlayer

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Matsuu, T.; Ito, S.; Nakagawa, S.

    Relationship between magnetic anisotropy field Hk and thermal processes during the preparation has been studied for FeCoB thin films. The FeCoB films deposited on the glass substrates by facing targets sputtering successfully showed strong magnetic anisotropy when the substrate was heated at the substrate temperature Ts above 100 °C. Additionally, the lattice spacing of FeCo(1 1 0) in the perpendicular direction was found to decrease depending on the substrate temperature Ts. Among various temperature histories, the heating processes with a phase of increasing Ts revealed the further improvement of Hk. Meanwhile, high Hk in the films disappears after the post-deposition annealing at the temperature above 400 °C.

  20. Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging.

    PubMed

    Alon, Leeor; Sodickson, Daniel K; Deniz, Cem M

    2016-10-01

    Deposition of radiofrequency (RF) energy can be quantified via electric field or temperature change measurements. Magnetic resonance imaging has been used as a tool to measure three dimensional small temperature changes associated with RF radiation exposure. When duration of RF exposure is long, conversion from temperature change to specific absorption rate (SAR) is nontrivial due to prominent heat-diffusion and conduction effects. In this work, we demonstrated a method for calculation of SAR via an inversion of the heat equation including heat-diffusion and conduction effects. This method utilizes high-resolution three dimensional magnetic resonance temperature images and measured thermal properties of the phantom to achieve accurate calculation of SAR. Accuracy of the proposed method was analyzed with respect to operating frequency of a dipole antenna and parameters used in heat equation inversion. Bioelectromagnetics. 37:493-503, 2016. © 2016 Wiley Periodicals, Inc. PMID:27490064

  1. Deterministic drift instability and stochastic thermal perturbations of magnetic dissipative droplet solitons

    NASA Astrophysics Data System (ADS)

    Wills, P.; Iacocca, E.; Hoefer, M. A.

    2016-04-01

    The magnetic dissipative droplet is a strongly nonlinear wave structure that can be stabilized in a thin film ferromagnet exhibiting perpendicular magnetic anisotropy by use of spin transfer torque. These structures have been observed experimentally at room temperature, showcasing their robustness against noise. Here, we quantify the effects of thermal noise by deriving stochastic equations of motion for a droplet based on soliton perturbation theory. First, it is found that deterministic droplets are linearly unstable at large bias currents, subject to a drift instability. When the droplet is linearly stable, our framework allows us to analytically compute the droplet's generation linewidth and center variance. Additionally, we study the influence of nonlocal and Oersted fields with micromagnetic simulations, providing insight into their effect on the generation linewidth. These results motivate detailed experiments on the current and temperature-dependent linewidth as well as drift instability statistics of droplets, which are important figures-of-merit in the prospect of droplet-based applications.

  2. Thermally generated magnetic fields in laser-driven compressions and explosions

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1975-01-01

    The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.

  3. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  4. Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer.

    PubMed

    Ahmed, Mahmoud M M; Imae, Toyoko

    2016-04-21

    A magnetic graphene composite derived from stage-1 FeCl3-graphite intercalation compounds was thermally treated for up to 75 min at 400 °C or for 2 min at high temperatures up to 900 °C. These heat-treatments of the magnetic graphene composite gave rise to the cubical expansion of graphene with the enlargement of inter-graphene distances. The specific capacitance of the magnetic graphene composite increased upon heating and reached 42 F g(-1) at a scan rate of 5 mV s(-1) in 1.0 M NaCl, after being treated for 2 min at 900 °C. This value corresponds to 840% increase in the capacitance activity superior to that (5 F g(-1)) of the pristine magnetic graphene composite before heat-treatment. This capacitance enhancement can play a significant role in the increase of the surface area that reached 17.2 m(2) g(-1) during the non-defective inter-graphene exfoliation. Moreover, the magnetic graphene composite heated at 900 °C was hybridized with polyaniline by in situ polymerization of aniline to reach a specific capacitance of 253 F g(-1) at 5 mV s(-1). The current procedure of heat-treatment and hybridization with a conductive polymer can be an effective method for attaining a well-expanded magnetic graphene composite possessing an enhanced electrochemical activity with a relatively high energy density (141 W h kg(-1) in 1.0 M NaCl) and an excellent stability (99% after 9000 cycles of 20 A g(-1)). PMID:27030519

  5. Hyper-resistivity and electron thermal conductivity due to destroyed magnetic surfaces in axisymmetric plasma equilibria

    SciTech Connect

    Weening, R. H.

    2012-06-15

    In order to model the effects of small-scale current-driven magnetic fluctuations in a mean-field theoretical description of a large-scale plasma magnetic field B(x,t), a space and time dependent hyper-resistivity {Lambda}(x,t) can be incorporated into the Ohm's law for the parallel electric field E Dot-Operator B. Using Boozer coordinates, a theoretical method is presented that allows for a determination of the hyper-resistivity {Lambda}({psi}) functional dependence on the toroidal magnetic flux {psi} for arbitrary experimental steady-state Grad-Shafranov axisymmetric plasma equilibria, if values are given for the parallel plasma resistivity {eta}({psi}) and the local distribution of any auxiliary plasma current. Heat transport in regions of plasma magnetic surfaces destroyed by resistive tearing modes can then be modeled by an electron thermal conductivity k{sub e}({psi})=({epsilon}{sub 0}{sup 2}m{sub e}/e{sup 2}){Lambda}({psi}), where e and m{sub e} are the electron charge and mass, respectively, while {epsilon}{sub 0} is the permittivity of free space. An important result obtained for axisymmetric plasma equilibria is that the {psi}{psi}-component of the metric tensor of Boozer coordinates is given by the relation g{sup {psi}{psi}}({psi}){identical_to}{nabla}{psi} Dot-Operator {nabla}{psi}=[{mu}{sub 0}G({psi})][{mu}{sub 0}I({psi})]/{iota}({psi}), with {mu}{sub 0} the permeability of free space, G({psi}) the poloidal current outside a magnetic surface, I({psi}) the toroidal current inside a magnetic surface, and {iota}({psi}) the rotational transform.

  6. Use of fusion-welding techniques in fabrication of a superconducting-magnet thermal-shield system

    SciTech Connect

    Dalder, E.N.C.; Berkey, J.H.; Chang, Y.; Johnson, G.L.; Lathrop, G.H.; Podesta, D.L.; Van Sant, J.H.

    1983-06-10

    Success of the thermal shield system was demonstrated by the results of acceptance tests performed with the magnet and all its ancillary equipment. During these tests the thermal shield system was: (1) thermally cycled several times from 300/sup 0/K to 77/sup 0/K; (2) pressure cycled several times from 0 to 5 atmospheres; (3) operated for more than 500 hours at 77/sup 0/K and in a vacuum environment of less than 10/sup -5/ torr; (4) operated in a magnetic field up to 6.0 Telsa; (5) exposed to a rapidly collapsing magnetic field of more than 250 gauss per second; (6) drained of all LN/sub 2/ in a few minutes, without any weld failures. The successful (and relatively problem free) operation of the magnet system validates the choice of the welding processes used, as well as their execution in both shop and field environments.

  7. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    SciTech Connect

    Tamaru, S. Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  8. Design and fabrication of liquid nitrogen thermal shields for the MFTF yin-yang magnets

    SciTech Connect

    Johnson, G.L.; Chang, Y.; VanSant, J.H.

    1981-10-12

    This paper documents the design and fabrication of thin liquid nitrogen-cooled panels installed on the 340-ton MFTF yin-yang superconducting magnet system. The 344 panels are made of polished 316-L stainless steel with the pillowed fluid channels formed by inflation with a high pressure gas. Strict leak-rate limits required the manufacturer to thermal shock the panels with LN/sub 2/ and then vacuum leak check them with He. The thin-walled panel supports are made from an epoxy base, fiberglass composite which is reliable at cryogenic vacuum conditions. Quick and reliable welding of the manifold system was assured using a pair of automated tube welders on the more than 4000 feet of tubing and 1000 butt-weld fittings. To assure sufficient flow for single-phase LN/sub 2/ flow conditions, we performed a hydraulic network flow analysis. This allowed for some optimization of shield-inlet-flow conditions and manifold design. To verify operating fluid pressure and temperature, special pressure transducers and platinum resistance thermometers capable of operation at cryogenic conditions in a vacuum, high magnetic field, and long-term neutron bombardment were installed. Final assembly is complete. The final installation on the magnet was difficult due to the orientation of the magnet assembly and the restricted access to some installation surfaces.

  9. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    NASA Astrophysics Data System (ADS)

    Tamaru, S.; Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-01

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  10. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation.

    PubMed

    Nandwana, Vikas; Ryoo, Soo-Ryoon; Kanthala, Shanthi; De, Mrinmoy; Chou, Stanley S; Prasad, Pottumarthi V; Dravid, Vinayak P

    2016-03-23

    Magnetic nanostructures (MNS) have emerged as promising functional probes for simultaneous diagnostics and therapeutics (theranostic) applications due to their ability to enhance localized contrast in magnetic resonance imaging (MRI) and heat under external radio frequency (RF) field, respectively. We show that the "theranostic" potential of the MNS can be significantly enhanced by tuning their core composition and architecture of surface coating. Metal ferrite (e.g., MFe2O4) nanoparticles of ∼8 nm size and nitrodopamine conjugated polyethylene glycol (NDOPA-PEG) were used as the core and surface coating of the MNS, respectively. The composition was controlled by tuning the stoichiometry of MFe2O4 nanoparticles (M = Fe, Mn, Zn, ZnxMn1-x) while the architecture of surface coating was tuned by changing the molecular weight of PEG, such that larger weight is expected to result in longer length extended away from the MNS surface. Our results suggest that both core as well as surface coating are important factors to take into consideration during the design of MNS as theranostic agents which is illustrated by relaxivity and thermal activation plots of MNS with different core composition and surface coating thickness. After optimization of these parameters, the r2 relaxivity and specific absorption rate (SAR) up to 552 mM(-1) s(-1) and 385 W/g were obtained, respectively, which are among the highest values reported for MNS with core magnetic nanoparticles of size below 10 nm. In addition, NDOPA-PEG coated MFe2O4 nanostructures showed enhanced biocompatibility (up to [Fe] = 200 μg/mL) and reduced nonspecific uptake in macrophage cells in comparison to other well established FDA approved Fe based MR contrast agents. PMID:26936392

  11. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study

    PubMed Central

    Attaluri, Anilchandra; Seshadri, Madhav; Mirpour, Sahar; Wabler, Michele; Marinho, Thomas; Furqan, Muhammad; Zhou, Haoming; De Paoli, Silvia; Gruettner, Cordula; Gilson, Wesley; DeWeese, Theodore; Garcia, Monica; Ivkov, Robert; Liapi, Eleni

    2016-01-01

    Purpose/objective The aim of this study was to develop and investigate the properties of a magnetic iron oxide nanoparticle–ethiodised oil formulation for image-guided thermal therapy of liver cancer. Materials and methods The formulation comprises bionised nano-ferrite (BNF) nanoparticles suspended in ethiodised oil, emulsified with polysorbate 20 (BNF-lip). Nanoparticle size was measured via photon correlation spectroscopy and transmission electron microscopy. In vivo thermal therapy capability was tested in two groups of male Foxn1nu mice bearing subcutaneous HepG2 xenograft tumours. Group I (n =12) was used to screen conditions for group II (n =48). In group II, mice received one of BNF-lip (n =18), BNF alone (n =16), or PBS (n =14), followed by alternating magnetic field (AMF) hyperthermia, with either varied duration (15 or 20 min) or amplitude (0, 16, 20, or 24 kA/m). Image-guided fluoroscopic intra-arterial injection of BNF-lip was tested in New Zealand white rabbits (n =10), bearing liver VX2 tumours. The animals were subsequently imaged with CT and 3 T MRI, up to 7 days post-injection. The tumours were histopathologically evaluated for distribution of BNF-lip. Results The BNF showed larger aggregate diameters when suspended in BNF-lip, compared to clear solution. The BNF-lip formulation produced maximum tumour temperatures with AMF >20 kA/m and showed positive X-ray visibility and substantial shortening of T1 and T2 relaxation time, with sustained intratumoural retention up to 7 days post-injection. On pathology, intratumoural BNF-lip distribution correlated well with CT imaging of intratumoural BNF-lip distribution. Conclusion The BNF-lip formulation has favourable thermal and dual imaging capabilities for image-guided thermal therapy of liver cancer, suggesting further exploration for clinical applications. PMID:27151045

  12. Spin-orbit torque-driven magnetization switching and thermal effects studied in TaCoFeBMgO nanowires

    NASA Astrophysics Data System (ADS)

    Lo Conte, R.; Hrabec, A.; Mihai, A. P.; Schulz, T.; Noh, S.-J.; Marrows, C. H.; Moore, T. A.; Kläui, M.

    2014-09-01

    We demonstrate magnetization switching in out-of-plane magnetized TaCoFeBMgO nanowires by current pulse injection along the nanowires, both with and without a constant and uniform magnetic field collinear to the current direction. We deduce that an effective torque arising from spin-orbit effects in the multilayer drives the switching mechanism. While the generation of a component of the magnetization along the current direction is crucial for the switching to occur, we observe that even without a longitudinal field thermally generated magnetization fluctuations can lead to switching. Analysis using a generalized Néel-Brown model enables key parameters of the thermally induced spin-orbit torques-driven switching process to be estimated, such as the attempt frequency and the effective energy barrier.

  13. Electrical, Magnetic and Thermal Transport Behavior of Divalent/Tetravalent Doped LaMnO3 Manganites

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Mansuri, Irfan; Kaurav, N.; Kuo, Y. K.

    2011-07-01

    We report the investigations of electrical magnetic and thermal properties of La0.7-x CexCa0.3MnO3 (0.00.3) manganites. The metal-semiconducting transitions (TMS) are observed for all doped manganites at ˜255 K, ˜235 K ˜220 K and ˜154 K. The magnetic susceptibility measurement confirms that the sample undergoes a transition from paramagnetic to ferromagnetic phase at a particular temperature (TC). It is noticed that the TC is nearly equal to the TMS. Specific heat measurements depict a pronounced anomaly near the TC, indicating the magnetic ordering and magnetic inhomogeneity in the samples.

  14. Magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Razavi, F. S.; Yamani, Z.; Flacau, R.; Reuvekamp, P. G.; Schulz, A.; Kremer, R. K.

    2016-03-01

    We carried out detailed studies of the magnetic structure, magnetoelastic coupling, and thermal properties of EuCrO3 nanopowders from room temperature to liquid helium temperature. Our neutron powder diffraction and x-ray powder diffraction measurements provide precise atomic positions of all atoms in the cell, especially for the light oxygen atoms. The low-temperature neutron powder diffraction data revealed extra Bragg peaks of magnetic origin, which can be attributed to a Gx antiferromagnetic structure with an ordered moment of ˜2.4 μB consistent with the 3 d3 electronic configuration of the Cr3 + cations. Apart from previously reported antiferromagnetic and ferromagnetic transitions in EuCrO3 at low temperatures, we also observed an anomaly at about 100 K. This anomaly was observed in the temperature dependence of the sample's, lattice parameters, thermal expansion, Raman spectroscopy, permittivity, and conductance measurements. This anomaly is attributed to the magnetoelastic distortion in the EuCrO3 crystal.

  15. Brief rapid thermal treatment effect on patterned CoFeB-based magnetic tunneling junctions

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Wang, Yung-Hung; Kao, Ming-Jer; Tsai, Ming-Jinn; Wu, Jong-Ching; Horng, Lance

    2007-05-01

    The brief thermal treatment effects on the magnetoresistance of microstructured Co60Fe20B20-based magnetic tunneling junctions have been studied. The elliptical shape of devices with long/short axis of 4/2μm was patterned out of film stack of seed layer (20)/PtMn(15)/Co60Fe20B20(3)/Al(0.7)oxide/C60Fe20B20(20)/capping layer (48) (thickness unit in nanometers) combining conventional lithography and inductively coupled plasma reactive ion beam etching technologies. The thermal annealing was carried out with device loading into a furnace with preset temperatures ranging from 100to400°C for only 5min in the absence of any external magnetic field. The magnetoresistance was found to increase with increasing annealing temperatures up to 250°C and then decrease at higher annealing temperatures. In addition, the magnetoresistance ratio of around 35%, similar to that of as-fabricated devices, sustains up to annealing temperature of 350°C. This survival of magnetoresistance at higher annealing temperature is due to boron conservation in the amorphous CoFeB ferromagnetic layer at higher annealing temperature for only a short time, which is manifested using x-ray diffractometer technique.

  16. Thermal magnetization fluctuations in CoFe spin-valve devices (invited)

    NASA Astrophysics Data System (ADS)

    Smith, Neil; Synogatch, Valeri; Mauri, Danielle; Katine, J. A.; Cyrille, Marie-Claire

    2002-05-01

    Thermally induced magnetization fluctuations in the Co86Fe14 free (sense) layer of micron-sized, photolithographically defined giant magetoresistive spin-valve devices are measured electrically, by passing a dc current through the devices and measuring the current-dependent part of the voltage noise power spectrum. Using fluctuation-dissipation relations, the effective Gilbert damping parameter α for 1.2, 1.8, and 2.4 nm thick free layers is estimated from either the low-frequency white-noise tail, or independently from the observed thermally excited ferromagnetic resonance peaks in the noise power spectrum, as a function of applied field. The geometry, field, and frequency dependence of the measured noise are found to be reasonably consistent with fluctuation-dissipation predictions based on a quasianalytical eigenmode model to describe the spatial dependence for the magnetization fluctuations. The extracted effective damping constant α≈0.06 found for the 1.2 nm free layer was close to 3× larger than that measured in either the 1.8 or 2.4 films, which has potentially serious implications for the future scaling down of spin-valve read heads.

  17. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  18. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Sonobe, Y.; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M. E.; Zeltzer, G.; Do, H.; Yen, B. K.; Best, M. E.

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr 18Pt 12 medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr 18Pt 12 medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  19. Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    NASA Astrophysics Data System (ADS)

    Breuer, Doris; Labrosse, Stephane; Spohn, Tilman

    2010-05-01

    Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core

  20. FTIR, magnetic, mass spectral, XRD and thermal studies of metal chelates of tenoxicam

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2007-09-01

    Metal chelates of anti-inflammatory drug, tenoxicam (Ten), are synthesized and characterized using elemental analyses, IR, solid reflectance, magnetic, mass spectra, thermal analyses (TGA and DTA) and X-ray powder diffraction techniques. The chelates are found to have the general formulae [M(H 2L) 2(H 2O) x] (A) 2· yH 2O (where H 2L = neutral Ten, A = Cl in case of Ni(II) and Co(II) or AcO in case of Cu(II) and Zn(II) ions, x = 0-2 and y = 0-2.5) and [M(H 2L) 3](A) z· yH 2O (A = SO 4 in case of Fe(II) ion ( z = 1) or Cl in case of Fe(III) ( z = 3) and y = 0-4). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions through the pyridyl- N and carbonyl- O of the amide moiety. The solid reflectance spectra and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Ten and its Zn(II) and Cu(II) chelates are suggested. The thermal behaviour of the chelates (TG/DTG, DTA) are discussed in detailed manner and revealed that water molecules of crystallization together with anions are removed in the first and second steps while the Ten molecules are removed in the subsequent steps. Different thermodynamic parameters are evaluated and the relative thermal stabilities of the complexes are discussed. X-ray powder diffraction patterns are used to indicate the polymorphic form of Ten and if the complexes have molecular similarity with respect to type of coordination.

  1. Magnetic resonance-guided laser interstitial thermal therapy: report of a series of pediatric brain tumors.

    PubMed

    Tovar-Spinoza, Zulma; Choi, Hoon

    2016-06-01

    OBJECTIVE Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a novel, minimally invasive treatment that has multiple advantages in pediatric use and broad applicability for different types of lesions. Here, the authors report the preliminary results of the first series of pediatric brain tumors treated with MRgLITT at Golisano Children's Hospital in Syracuse, New York. METHODS Pediatric brain tumors treated with MRgLITT between February 2012 and August 2014 at Golisano Children's Hospital were evaluated retrospectively. Medical records, radiological findings, surgical data, complications, and results of tumor volumetric analyses were reviewed. The Visualase thermal laser system (Medtronic) was used in all MRgLITT procedures. RESULTS This series included 11 patients with 12 tumors (pilocytic astrocytoma, ependymoma, medulloblastoma, choroid plexus xanthogranuloma, subependymal giant cell astrocytoma, and ganglioglioma). A single laser and multiple overlapping ablations were used for all procedures. The mean laser dose was 10.23 W, and the mean total ablation time was 68.95 seconds. The mean initial target volume was 6.79 cm(3), and the mean immediate post-ablation volume was 7.86 cm(3). The mean hospital stay was 3.25 days, and the mean follow-up time was 24.5 months. Tumor volume decreased in the first 3 months after surgery (n = 11; p = 0.007) and continued to decrease by the 4- to 6-month followup (n = 11; mean volume 2.61 cm(3); p = 0.009). Two patients experienced post-ablation complications: transient right leg weakness in one patient, and transient hemiparesis, akinetic mutism, and eye movement disorder in the other. CONCLUSIONS Magnetic resonance-guided laser interstitial thermal therapy is an effective first- or second-line treatment for select pediatric brain tumors. Larger multiinstitutional clinical trials are necessary to evaluate its use for different types of lesions to further standardize practices. PMID:26849811

  2. Thermal analysis of the APT power coupler and similarities to superconducting magnet current leads

    SciTech Connect

    Waynert, J.A.; Daney, D.E.; Prenger, F.C.

    1998-12-31

    A detailed thermal analysis has been performed of the 210 kW, 700 MHz RF power coupler (PC) which transfers microwave energy from high power klystrons to the superconducting (SC) resonant cavities for the acceleration of protons. The work is part of the design for Accelerator Production of Tritium funded by the US Department of Energy. The PC is a co-axial design with the RF power transmitted in the annular region between two concentric cylinders. The PC provides a thermal connection from room temperature to superconducting niobium operating at 2.15 K. Heat transfer mechanisms considered are conduction, infra-red radiation, RF joule heating in normal and superconducting materials, and, forced and natural convection cooling. The objective of the thermal analysis is to minimize the required refrigeration power subject to manufacturability and reliability concerns. The problem is reminiscent of the optimization of superconducting magnet leads. The similarities and differences in the results between SC leads and PCs are discussed as well as the critical parameters in the PC optimization.

  3. Moose (Alces alces) reacts to high summer temperatures by utilizing thermal shelters in boreal forests - an analysis based on airborne laser scanning of the canopy structure at moose locations.

    PubMed

    Melin, Markus; Matala, Juho; Mehtätalo, Lauri; Tiilikainen, Raisa; Tikkanen, Olli-Pekka; Maltamo, Matti; Pusenius, Jyrki; Packalen, Petteri

    2014-04-01

    The adaptation of different species to warming temperatures has been increasingly studied. Moose (Alces alces) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies, the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose, we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 °C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. PMID:24115403

  4. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  5. Validation of the GOSAT Thermal Infrared (TIR) Band using the University of Wisconsin airborne Scanning High-resolution Interferometer Sounder (S-HIS) and ground-based Atmospheric Emitted Radiance Interferometer (AERI) at Railroad Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Knuteson, R.; kuze, A.; Shiomi, K.; Taylor, J. K.; Garms, E.; Roman, J.; Revercomb, H. E.; Tobin, D. C.; Gero, P.; Best, F. A.

    2011-12-01

    We provide a quantitative assessment of the calibration accuracy of the thermal infrared measurements from the Greenhouse Gases Observing SATellite (GOSAT), which was launched on January 23, 2009. Results will be presented comparing the observed emission spectra from the TANSO-FTS sensor onboard GOSAT to coincident observations from high altitude aircraft and ground-based spectrometers during the June 2011 Railroad Valley Vicarious Calibration and Validation campaign. The 2011 campaign was the third in a series of joint Japan/U.S. field measurements to assess the calibration of the GOSAT sensors and validate derived products of carbon dioxide and methane. As part of the 2011 campaign, the University of Wisconsin Scanning High-resolution Interferometer Sounder (S-HIS) successfully overflew Railroad Valley, Nevada onboard the high-altitude NASA ER-2 along with the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER). The ER-2 overpass of Railroad Valley on June 20, 2011 was timed to coincide with an overpass of the GOSAT satellite at 21:19 UTC. A joint JPL/UWisc team provided coincident upper air observations of pressure, temperature, and water vapor using Vaisala radiosondes released from the center of the Railroad Valley dry lakebed (playa) for six GOSAT daytime overpasses and three nighttime overpasses between 19-26 June 2011. The University of Wisconsin also made ground-based measurements from the center of the playa during each GOSAT overpass with an Atmospheric Emitted Radiance Interferometer. The AERI was operated from a research vehicle with the capability to measure the upwelling surface radiance at three view angles and the downwelling atmospheric emission at two angles. The ground-based AERI provided accurate surface emissivity and surface temperature for use in forward model calculations of the satellite observed infrared emission between 6 and 17 microns.

  6. Study on the Effect of Thermal and Magnetic Stimulation by Measuring of the Peripheral Blood Flow and Skin Temperature

    NASA Astrophysics Data System (ADS)

    Kubota, Kouhei; Nuruki, Atsuo; Tamari, Youzou; Yunokuchi, Kazutomo

    Recently, the stiff shoulder accompanying the muscle fatigue becomes an issue of public concern. Therefore, we paid attention to the effect of the thermal and magnetic stimulation for the muscle fatigue. The maximum voluntary contraction has recovered significantly, and also peripheral blood flow has increased by stimulation. In order to evaluate if the thermal and magnetic stimulation has any effects, three parameters was measured, which are the maximum voluntary contraction, peripheral blood flow and skin temperature. The skin temperature, however, did not changed significantly.

  7. Processing of Mn-Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Vinod, V. T. P.; Černík, Miroslav; Selvapriya, A.; Chakravarty, Dibyendu; Kamat, S. V.

    2015-01-01

    The potential of spark plasma sintering (SPS) in combination with rapid thermal annealing (RTA) for the processing of Mn-Al nanostructured magnets is explored in this study. Ferromagnetic α-Mn alloy powders were processed by high-energy ball milling using Mn (56 at%) and Al (44 at%) as constituent metal elements. The alloying action between Mn and Al due to intensive milling was studied by X-ray diffraction and field-emission scanning electron microscope; while the phase transformation kinetics was investigated using differential scanning calorimetry. The evolution of ferromagnetic properties in the as-milled powders was studied by superconducting quantum interference device (SQUID). Among the Mn-Al alloy powders collected at various milling intervals, the 25 h milled Mn-Al powders showed a good combination of coercivity, Hc (11.3 kA/m) and saturation magnetization, Ms (5.0 A/m2/kg); accordingly, these powders were chosen for SPS. The SPS experiments were conducted at different temperatures: 773, 873 and 973 K and its effect on the density, phase composition and magnetic properties of the Mn-Al bulk samples were investigated. Upon increasing the SPS temperature from 773 to 973 K, the bulk density was found to increase from 3.6 to 4.0 g/cm3. The occurrence of equilibrium β-phase with significant amount of γ2-phase was obvious at all the SPS temperatures; however, crystallization of some amount of τ-phase was evident at 973 K. Irrespective of the SPS temperatures, all the samples demonstrated soft magnetic behavior with Hc and Ms values similar to those obtained for the 25 h milled powders. The magnetic properties of the SPSed samples were significantly improved upon subjecting them to RTA at 1100 K. Through the RTA process, Hc values of 75, 174 and 194 kA/m and Ms values of 19, 21 and 28 A/m2/kg were achieved for the samples SPSed at 773, 873 and 973 K, respectively. The possible reasons for the observed improvement in the magnetic properties of the SPSed

  8. Magnetic, Thermal and Dynamical Evolution of AN M3.2 Two-Ribbon Flare

    NASA Astrophysics Data System (ADS)

    Collados, Manuel; Kuckein, Christoph; Manso Sainz, Rafael; Asensio Ramos, Andres

    On 2013, 17th May, a two-ribbon M3.2 flare took place in the solar atmosphere on the active region AR 11748. The flare evolution was observed at the German VTT of the Observatorio del Teide using the instrument TIP-II, with spectropolarimetric measurements of the photosphere (Si I at 1082.7 nm) and the chromosphere (Helium triplet at 1083 nm). Simultaneous spectroscopic data of the chromospheric spectral line of Ca II at 854.2 nm and filtergrams at Halpha were also obtained. The flare evolution as observed from the ground can be compared with the changes observed by AIA@SDO at different ultraviolet wavelengths. The ground observations covered several hours, including the pre-flare, impulsive, gradual and post-flare phases. We present maps of the magnetic field, thermal and dynamical properties of the region during its evolution from pre- to post-flare phase.

  9. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    SciTech Connect

    Yoon, P. H. E-mail: rsch@tp4.rub.de; Schlickeiser, R. E-mail: rsch@tp4.rub.de; Kolberg, U. E-mail: rsch@tp4.rub.de

    2014-03-15

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n{sub e} are calculated as |δB|=√((δB){sup 2})=2.8(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/2}β{sub e}{sup 7/4} and |δE|=√((δE){sup 2})=3.2(n{sub e}m{sub e}c{sup 2}){sup 1/2}g{sup 1/3}β{sub e}{sup 2}, where g and β{sub e} denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10{sup −18}G and |δE|=2·10{sup −16}G result.

  10. Magnetic and thermal properties of RCu9In2 (R=La, Ce, Pr, Nd, Sm and Eu) compounds

    NASA Astrophysics Data System (ADS)

    Baran, S.; Przewoźnik, J.; Kalychak, Ya. M.; Tyvanchuk, Yu.; Szytuła, A.

    2016-07-01

    The RCu9In2 intermetallics with R=La, Ce, Pr, Nd, Sm, Eu have been synthesized and characterized with regards to their crystal structure as well as magnetic and thermal properties. The compounds have tetragonal structure of the YNi9In2-type (space group P4/mbm). Except for LaCu8.25In2.75, they exhibit localized magnetism due to the presence of magnetic moments on the respective trivalent rare-earth ions. The Nd-, Sm- and Eu- based compounds order antiferromagnetically below 4.6, 11.0 and 23.2 K, respectively.

  11. A HYBRID MAGNETICALLY/THERMALLY DRIVEN WIND IN THE BLACK HOLE GRO J1655-40?

    SciTech Connect

    Neilsen, Joseph; Homan, Jeroen

    2012-05-01

    During its 2005 outburst, GRO J1655-40 was observed twice with the Chandra High Energy Transmission Grating Spectrometer; the second observation revealed a spectrum rich with ionized absorption lines from elements ranging from O to Ni, indicative of an outflow too dense and too ionized to be driven by radiation or thermal pressure. To date, this spectrum is the only definitive evidence of an ionized wind driven off the accretion disk by magnetic processes in a black hole X-ray binary. Here we present our detailed spectral analysis of the first Chandra observation, nearly three weeks earlier, in which the only signature of the wind is the Fe XXVI absorption line. Comparing the broadband X-ray spectra via photoionization models, we argue that the differences in the Chandra spectra cannot possibly be explained by the changes in the ionizing spectrum, which implies that the properties of the wind cannot be constant throughout the outburst. We explore physical scenarios for the changes in the wind, which we suggest may begin as a hybrid MHD/thermal wind, but evolves over the course of weeks into two distinct outflows with different properties. We discuss the implications of our results for the links between the state of the accretion flow and the presence of transient disk winds.

  12. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  13. Asymmetric and Negative Differential Thermal Spin Effect at Magnetic Interfaces: Towards Spin Seebeck Diodes and Transistors

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2014-03-01

    We study the nonequilibrium thermal-spin transport across metal-magnetic insulator interfaces. The transport is assisted by the exchange interaction between conduction electrons in the metal and localized spins in the magnetic insulator. We predict the rectification and negative differential spin Seebeck effect (SSE), that is, reversing the temperature bias is able to give asymmetric spin currents and increasing temperature bias could give an anomalously decreasing spin current. We resolve their microscopic mechanism as a consequence of the energy-dependent electronic DOS in the metal. The rectification of spin Peltier effect is also discussed. We then study the asymmetric and negative differential magnon tunneling driven by temperature bias. We show that the many-body magnon interaction that makes the magnonic spectrum temperature-dependent is the crucial factor for the emergence of rectification and negative differential SSEs in magnon tunneling junctions. We show that these asymmetric and negative differential SSEs are relevant for building magnon and spin Seebeck diodes and transistors, which could play important roles in controlling information and energy in functional devices. Supported by the National Nuclear Security Administration of the US DOE at LANL under Contract No. DE-AC52-06NA25396.

  14. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    SciTech Connect

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-10-28

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  15. Thermal characterization of composites made up of magnetically aligned carbonyl iron particles in a polyester resin matrix

    NASA Astrophysics Data System (ADS)

    Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.; Yanez-Limon, J. M.; Ordonez-Miranda, J.; Alvarado-Gil, J. J.

    2012-03-01

    The thermal characterization of composites made up by magnetically aligned carbonyl iron micro-sized particles embedded in a polyester resin matrix is performed using photothermal radiometry technique. The measured experimental data show that the thermal conductivity and thermal diffusivity of the composite, in the direction of the applied magnetic field, increase with the concentration of the particles and are enhanced with respect to their corresponding values for a random distribution of the particles. This thermal enhancement has a maximum at a concentration of particles of 10% and is very low at small and high iron volume fractions, such that for particles concentrations of about 40%, the composite thermal conductivity reduces to its values for random particles. This behavior indicates that for high volume fractions, the effect of the microparticles concentration plays a dominant role over the effect of their alignment. It is shown that the thermal conductivity of the composite can be modeled in terms of the Nielsen model, under an appropriate parameterization of the form factor of the particles. The results of this work could be highly useful for improving the thermal performance of mechanical and electronic devices involving composite materials.

  16. Magnetic properties of high-T(sub c) superconductors: Rigid levitation, flux pinning, thermal depinning, and fluctuation

    NASA Technical Reports Server (NTRS)

    Brandt, E. H.

    1990-01-01

    The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.

  17. Electronic, magnetic, transport, and thermal properties of single-crystalline UF e2A l10

    NASA Astrophysics Data System (ADS)

    Troć, R.; Samsel-Czekała, M.; Talik, E.; Wawryk, R.; Gajek, Z.; Pasturel, M.

    2015-09-01

    The valence and core-level x-ray photoemission spectra (XPS), performed on an UF e2A l10 single crystal, were measured using the Al Kα radiation. The results of valence XPS show practically two separate regions of spectral intensity, one just at the Fermi level (EF) and the other one being a wide content with its maximum at about 0.8 eV below EF. These give rise to two electronic configurations of the 5 f states in the studied aluminide, itinerant and localized ones, i.e., their dual character. In such a situation the corresponding valence spectra, calculated within the local density approximation (LDA), well explain the former configuration, being responsible for a metallic behavior of the studied compound. Moreover, this behavior is confirmed clearly also by our results of magnetotransport measurements. On the other hand, the obtained magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power data support very well the local character of the 5 f2 -electron configuration of the U4 + ion in UF e2A l10 having the orthorhombic and cage-type crystal structure. Based on that configuration, the magnetic and thermal characteristics of the compound were modeled by the effective crystal field (CF) potential in the intermediate coupling scheme using initial parameters obtained by the angular overlap model (AOM). The obtained final CF parameters yielded the CF level scheme, composed of only singlets, proper for orthorhombic symmetry. Such a set of singlets reproduces in a satisfactory way both the strongly anisotropic temperature variations of the magnetic susceptibility, measured along the three main crystallographic directions, as well as the Schottky anomaly, evaluated using specific heat results of isomorphic ThF e2A l10 as a phonon reference. Also, the strongly anisotropic behavior of the Seebeck coefficient and its low temperature maxima observed for the compound studied here have been explained roughly by the CF effect.

  18. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    SciTech Connect

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-07-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  19. Recyclable Photo-Thermal Nano-Aggregates of Magnetic Nanoparticle Conjugated Gold Nanorods for Effective Pathogenic Bacteria Lysis.

    PubMed

    Ramasamy, Mohankandhasamy; Kim, Sanghyo; Lee, Su Seong; Yi, Dong Kee

    2016-01-01

    We describe the nucleophilic hybridization technique for fabricating magnetic nanoparticle (MNP) around gold nanorod (AuNR) for desired photo-thermal lysis on pathogenic bacteria. From the electromagnetic energy conversion into heat to the surrounding medium, a significant and quicker temperature rise was noted after light absorption on nanohybrids, at a controlled laser light output and optimum nanoparticle concentration. We observed a similar photo-thermal pattern for more than three times for the same material up on repeated magnetic separation. Regardless of the cell wall nature, superior pathogenic cell lysis has been observed for the bacteria suspensions of individual and mixed samples of Salmonella typhi (S.typhi) and Bacillus subtilis (B.subtilis) by the photo-heated nanoparticles. The synthesis of short gold nanorod, conjugation with magnetic nanoparticle and its subsequent laser exposure provides a rapid and reiterated photo-thermal effect with enhanced magnetic separation for efficient bactericidal application in water samples. Resultant novel properties of the nano-aggregates makes them a candidate to be used for a rapid, effective, and re-iterated photo-thermal agent against a wide variety of pathogens to attain microbe free water. PMID:27398487

  20. NON-THERMAL RESPONSE OF THE CORONA TO THE MAGNETIC FLUX DISPERSAL IN THE PHOTOSPHERE OF A DECAYING ACTIVE REGION

    SciTech Connect

    Harra, L. K.; Abramenko, V. I.

    2012-11-10

    We analyzed Solar Dynamics Observatory line-of-sight magnetograms for a decaying NOAA active region (AR) 11451 along with co-temporal Extreme-Ultraviolet Imaging Spectrometer (EIS) data from the Hinode spacecraft. The photosphere was studied via time variations of the turbulent magnetic diffusivity coefficient, {eta}(t), and the magnetic power spectrum index, {alpha}, through analysis of magnetogram data from the Helioseismic and Magnetic Imager (HMI). These measure the intensity of the random motions of magnetic elements and the state of turbulence of the magnetic field, respectively. The time changes of the non-thermal energy release in the corona was explored via histogram analysis of the non-thermal velocity, v {sub nt}, in order to highlight the largest values at each time, which may indicate an increase in energy release in the corona. We used the 10% upper range of the histogram of v {sub nt} (which we called V {sup upp} {sub nt}) of the coronal spectral line of Fe XII 195 A. A 2 day time interval was analyzed from HMI data, along with the EIS data for the same field of view. Our main findings are the following. (1) The magnetic turbulent diffusion coefficient, {eta}(t), precedes the upper range of the v {sub nt} with the time lag of approximately 2 hr and the cross-correlation coefficient of 0.76. (2) The power-law index, {alpha}, of the magnetic power spectrum precedes V {sup upp} {sub nt} with a time lag of approximately 3 hr and the cross-correlation coefficient of 0.5. The data show that the magnetic flux dispersal in the photosphere is relevant to non-thermal energy release dynamics in the above corona. The results are consistent with the nanoflare mechanism of the coronal heating, due to the time lags being consistent with the process of heating and cooling the loops heated by nanoflares.

  1. Influence of Applied Thermal Gradients and a Static Magnetic Field on Bridgman-Grown GeSi Alloys

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Ritter, T. M.

    1999-01-01

    The effect of applied axial and radial thermal gradients and an axial static magnetic field on the macrosegregation profiles of Bridgman-grown GeSi alloy crystals has been assessed. The axial thermal gradients were adjusted by changing the control setpoints of a seven-zone vertical Bridgman furnace. The radial thermal gradients were affected by growing samples in ampoules with different thermal conductivities, namely graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN). Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. All of the samples were grown on Ge seeds. This resulted in a period of free growth until the Si concentration in the solid was in equilibrium with the Si concentration in the liquid. The length of crystal grown during this period was inversely proportional to the applied axial thermal gradient. Several samples were grown in an axial 5 Tesla magnetic field. Measured macroscopic segregation profiles on these samples indicate that the magnetic field did not, in general, reduce the melt flow velocities to below the growth velocities.

  2. Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, You-He

    2015-07-01

    Dendritic flux avalanches and the accompanying thermal stress and strain in type-II superconducting thin films under transverse magnetic fields are numerically simulated in this paper. The influence of the magnetic field ramp rate, edge defects, and the temperature of the surrounding coolant are considered. Maxwell's equations and the highly nonlinear E-J power-law characteristics of superconductors, coupled with the heat diffusion equation, are adopted to formulate these phenomena. The fast Fourier transform-based iteration scheme is used to track the evolution of the magnetic flux and the temperature in the superconducting film. The finite element method is used to analyze the thermal stress and strain induced in the superconducting film. It is found that the ramp rate has a significant effect on the flux avalanche process. The avalanches nucleate more easily for a film under a large magnetic field ramp rate than for a film under a small one. In addition, the avalanches always initiate from edge defects or areas that experience larger magnetic fields. The superconducting films experience large thermal strain induced by the large temperature gradient during the avalanche process, which may even lead to the failure of the sample.

  3. Magnetic study and thermal analysis of a metastable Fe-Zr-based alloy: Influence of process control agents

    NASA Astrophysics Data System (ADS)

    Pilar, M.; Escoda, L.; Suñol, J. J.; Greneche, J. M.

    In this work a Fe 60Co 10(Ni 70Zr 30) 15B 15 nanocrystalline alloy was produced by mechanical alloying. Powders were milled using hexane or cyclohexane as process control agents (PCAs) and their properties compared with those of alloy developed without PCA. Structural and magnetic analysis was performed using X-ray diffraction (XRD), transmission 57Fe Mössbauer spectrometry (TMS) and vibrating sample magnetometry (VSM). High magnetization of saturation and low coercitive field values correspond to an alloy milled with hexane. Thermal analysis was performed by differential scanning calorimetry (DSC). High thermal stability characterizes alloys milled with PCA. Annealing treatments at 400 °C improve magnetic behavior of all samples. Compositional analysis shows low-milling media (<1.1 at.%) and C contamination (<0.2 at.%).

  4. Changes in the magnetic and mechanical properties of thermally aged Fe-Cu alloys due to nano-sized precipitates

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Yuanfei; Deng, Shanquan; Xu, Ben; Li, Qiulin; Shu, Guogang; Liu, Wei

    2016-01-01

    The changes in the magnetic properties, mechanical properties, and microstructural parameters of Fe-Cu alloys due to thermal aging have been investigated to improve the fundamental understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlement in the reactor pressure vessel (RPV). Nano-sized Cu particles precipitated from a Fe matrix after thermal aging at 500 °C for various times, and the microstructure parameters were determined. The coercivity, Barkhausen noise (BN), Vickers hardness, and yield stress were also measured for these samples. These properties show the same hardening-softening trend with increasing aging time, which can be interpreted in terms of the microstructure parameters evolution based on the model of the pinning of precipitates on domain walls and dislocations. These results suggest the practicability of using magnetic technology for the NDE of the irradiation embrittlement of the RPV.

  5. Improvement of Thermal Stability with Alloy Impregnation in Gd-Ba-Cu-O Superconductors for Pulsed Field Magnetization

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Matsumoto, H.; Fukai, H.; Sakai, N.; Hirabayashi, I.; Izumi, M.; Murakami, M.

    2006-06-01

    We present a post-fabrication treatment that improves thermal conductivity of bulk Gd-Ba-Cu-O magnets. A small hole about 1 mm in diameter was artificially drilled into the centre of bulk Gd-Ba-Cu-O 25 mm in diameter and 18 mm in thickness. An aluminium wire was inserted into the hole, and then the sample was subjected to the impregnation by using Bi- Su-Cd alloy. A pulsed-field magnetization was performed for Gd-Ba-Cu-O bulk with and without the alloy impregnation treatment. The temperature of samples was monitored with thermocouples and local magnetic field density was measured with a Hall sensor at several positions. The maximum temperature rise was depressed by 4 K and the trapped field was increased by 25 % at 44 K. The result shows that the alloy impregnation is very effective in enhancing the thermal conductivity and thereby improving the field trapping ability.

  6. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  7. Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient

    NASA Astrophysics Data System (ADS)

    Kenjereš, S.; Pyrda, L.; Wrobel, W.; Fornalik-Wajs, E.; Szmyd, J. S.

    2012-04-01

    We report experimental and numerical studies of combined natural and magnetic convection of a paramagnetic fluid inside a cubical enclosure heated from below and cooled from above and subjected to a magnetic field gradient. Values of the magnetic field gradient are in the range 9≤|grad|b0|2|≤900 T2/m for imposed magnetic field strengths in the center of the superconducting magnet bore of 1≤|b0|max≤10 T. Very good agreement between experiments and simulation is obtained in predicting the integral heat transfer over the entire range of working parameters (i.e., thermal Rayleigh number 1.15×105≤RaT≤8×106, Prandtl number 5≤Pr≤700, and magnetization number 0≤γ≤58.5). We present a stability diagram containing three characteristic states: steady, oscillatory (periodic), and turbulent regimes. The oscillatory states are identified for intermediate values of Pr (40≤Pr≤70) and low magnetic field (|b0|max≤2 T). Turbulent states are generated from initially stable flow and heat transfer regimes in the range of 70≤Pr≤500 for sufficiently strong magnetic field (|b0|max≥4 T).

  8. Analysis of airborne pesticides from different chemical classes adsorbed on Radiello® Tenax® passive tubes by thermal-desorption-GC/MS.

    PubMed

    Raeppel, Caroline; Fabritius, Marie; Nief, Marie; Appenzeller, Brice M R; Briand, Olivier; Tuduri, Ludovic; Millet, Maurice

    2015-02-01

    An analytical methodology using automatic thermal desorption (ATD) and GC/MS was developed for the determination of 28 pesticides of different chemical classes (dichlobenil, carbofuran, trifluralin, clopyralid, carbaryl, flazasulfuron, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, cyprodinil, bromoxynil, fluroxypyr, oxadiazon, myclobutanil, buprofezin, picloram, trinexapac-p-ethyl, ioxynil, diflufenican, tebuconazole, bifenthrin, isoxaben, alphacypermethrin, fenoxaprop and tau-fluvalinate) commonly used in nonagricultural areas in atmospheric samples. This methodology was developed to evaluate the indoor and outdoor atmospheric contamination by nonagricultural pesticides. Pesticides were sampled passive sampling tubes containing Tenax® adsorbent. Since most of these pesticides are polar (clopyralid, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, bromoxynil, fluroxypyr, picloram, trinexapac-p-ethyl and ioxynil), a derivatisation step is required. For this purpose, a silylation step using N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MtBSTFA) was added before thermal desorption. This agent was chosen since it delivers very specific ions on electronic impact (m/z = M-57). This method was established with special consideration for optimal thermal desorption conditions (desorption temperature, desorb flow and duration; trap heating duration and flow; outlet split), linear ranges, limits of quantification and detection which varied from 0.005 to 10 ng and from 0.001 to 2.5 ng, respectively, for an uncertainty varied from 8 to 30 %. The method was applied in situ to the analysis of passive tubes exposed during herbicide application to an industrial site in east of France. PMID:25205153

  9. Crystallographic, electronic, thermal, and magnetic properties of single-crystal SrCo2As2

    DOE PAGESBeta

    Pandey, Abhishek; Quirinale, D. G.; Jayasekara, W.; Sapkota, A.; Kim, M. G.; Dhaka, R. S.; Lee, Y.; Heitmann, T. W.; Stephens, P. W.; Ogloblichev, V.; et al

    2013-07-01

    In tetragonal SrCo2As2 single crystals, inelastic neutron scattering measurements demonstrated that strong stripe-type antiferromagnetic (AFM) correlations occur at a temperature T = 5 K [W. Jayasekara et al., arXiv:1306.5174] that are the same as in the isostructural AFe2As2 (A = Ca, Sr, Ba) parent compounds of high-Tc superconductors. This surprising discovery suggests that SrCo2As2 may also be a good parent compound for high-Tc superconductivity. Here, structural and thermal expansion, electrical resistivity ρ, angle-resolved photoemission spectroscopy (ARPES), heat capacity Cp, magnetic susceptibility χ, 75As NMR and neutron diffraction measurements of SrCo2As2 crystals are reported together with LDA band structure calculations thatmore » shed further light on this fascinating material. The c-axis thermal expansion coefficient αc is negative from 7 to 300 K, whereas αa is positive over this T range. The ρ(T) shows metallic character. The ARPES measurements and band theory confirm the metallic character and in addition show the presence of a flat band near the Fermi energy EF. The band calculations exhibit an extremely sharp peak in the density of states D(EF) arising from a flat dx2-y2 band. A comparison of the Sommerfeld coefficient of the electronic specific heat with χ(T → 0) suggests the presence of strong ferromagnetic itinerant spin correlations which on the basis of the Stoner criterion predicts that SrCo2As2 should be an itinerant ferromagnet, in conflict with the magnetization data. The χ(T) does have a large magnitude, but also exhibits a broad maximum at 115 K suggestive of dynamic short-range AFM spin correlations, in agreement with the neutron scattering data. The measurements show no evidence for any type of phase transition between 1.3 and 300 K and we propose that metallic SrCo2As2 has a gapless quantum spin-liquid ground state.« less

  10. PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khanna, Lavanya; Verma, Narendra K.

    2013-10-01

    The coating of Polyethylene Glycol (PEG) on calcium ferrite (CaFe2O4) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare CaFe2O4 nanoparticles, which was also retained after the PEG coating, along with additional characteristic peaks of PEG at 19° and 23°. The rings of CaFe2O4 nanoparticles were identified by the selected area electron diffraction pattern. The characteristic bands of PEG as observed in its Fourier transform infrared spectrum were also present in PEG coated CaFe2O4 nanoparticles, hence confirming its presence. In the thermal gravimetric studies, the complete thermal decomposition of PEG occurred in a one step process, but in case of PEG coated CaFe2O4 nanoparticles, the decomposition took place at a higher temperature owing to the formation of covalent bonds of PEG with CaFe2O4 nanoparticles. The presence of PEG on CaFe2O4 nanoparticles, spherical formation of PEG coated CaFe2O4 nanoparticles and reduced agglomeration in the CaFe2O4 nanoparticles were revealed by high resolution transmission electron microscope, transmission electron microscope and scanning electron microscope studies, respectively. In vibrating sample magnetometer analysis, both bare as well as coated CaFe2O4 nanoparticles exhibited superparamagnetic behavior. However, a drop in the magnetic saturation value was observed from 36.76 emu/g for CaFe2O4 nanoparticles to 6.74 emu/g for PEG coated CaFe2O4 nanoparticles, due to the formation of magnetically dead layer of PEG. In ZFC and FC analyses, superparamagnetic behavior with blocking temperature for bare and coated nanoparticles has been observed at ∼40 K and ∼60 K, respectively. The increase in the blocking temperature is attributed to the increase in the particle size after PEG coating.

  11. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  12. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  13. A Comparative Study: Dynamic and Thermal Behavior of Nanocrystalline and Powder Magnetic Materials in a Power Converter Application

    NASA Astrophysics Data System (ADS)

    Hilal, A.; Raulet, M. A.; Martin, C.; Sixdenier, F.

    2015-10-01

    In the design of such power electronics applications as power converters, lack of precise characterization and diagnosis of losses from components has unacceptable effects on efficiency, reliability, and power consumption. Because passive components, especially magnetic components, are crucially important in power converters, accurate characterization and modeling of magnetic materials is mandatory, to enable realistic prediction of their behavior under variable operating conditions. Temperature is one such condition that induces major changes in a component's behavior by modifying the material's magnetic properties. In the work discussed in this paper we investigated the magnetic and thermal behavior of nanocrystalline and powder materials in a DC-DC converter application. Core loss measurements under variable conditions were performed on toroid-shaped samples. Measured results were analyzed for different frequencies, flux densities, and temperatures.

  14. Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter.

    PubMed

    Gil-Moltó, J; Varea, M; Galindo, N; Crespo, J

    2009-02-27

    The application of the thermal desorption (TD) method coupled with gas chromatography-mass spectrometry (GC-MS) to the analysis of aerosol organics has been the focus of many studies in recent years. This technique overcomes the main drawbacks of the solvent extraction approach such as the use of large amounts of toxic organic solvents and long and laborious extraction processes. In this work, the application of an automatic TD-GC-MS instrument for the determination of particle-bound polycyclic aromatic hydrocarbons (PAHs) is evaluated. This device offers the advantage of allowing the analysis of either gaseous or particulate organics without any modification. Once the thermal desorption conditions for PAH extraction were optimised, the method was verified on NIST standard reference material (SRM) 1649a urban dust, showing good linearity, reproducibility and accuracy for all target PAHs. The method has been applied to PM10 and PM2.5 samples collected on quartz fibre filters with low volume samplers, demonstrating its capability to quantify PAHs when only a small amount of sample is available. PMID:19150718

  15. Magnetic field dependent thermal conductance in La0.67Ca0.33MnO3

    NASA Astrophysics Data System (ADS)

    Euler, C.; Hołuj, P.; Talkenberger, A.; Jakob, G.

    2015-05-01

    Using the differential 3 ω technique we measured the low-temperature out-of-plane thermal conductance of heteroepitaxial thin film La0.67Ca0.33MnO3 (LCMO). The magnetic field dependence of the thermal conductance reached values of up to 23%. The effect was observed to be largest in the vicinity of the metal-insulator transition, since the enhancement in thermal conductance is triggered by the colossal magnetoresistance effect increasing the electronic contribution to the thermal conductance. The point of the maximal change was adjusted by post-annealing the samples in an oxygen atmosphere. Samples with a higher transition temperature and lower epitaxial strain displayed a lower magnetic field dependence of up to 8% of the zero-field value. While the samples with a low strain state seemingly obeyed the Wiedemann-Franz law, those under high strain did not. Raman spectroscopy was applied to explain this discrepancy by an enhanced phononic density of states caused by rotational distortions of the unit cell. Our results show that in systems with strong electron-lattice interaction manipulation of the phonon spectrum is possible by magnetic fields.

  16. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Shakiba, Ali; Vahedi, Khodadad

    2016-03-01

    This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire located parallel to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field have been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes kelvin force to be produced perpendicular to the ferrofluid flow, changing axial velocity profile and creating a pair of vortices which leads to an increase in Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrates that the optimum value of magnetic number for Reff=50 is between Mn=1.33×106 and Mn=2.37×106. So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger.

  17. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  18. Hot accretion disks with pairs: Effects of magnetic field and thermal cyclocsynchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Zdziarski, Andrzej A.

    1994-01-01

    We show the effects of thermal cyclosynchrotron radiation and magnetic viscosity on the structure of hot, two-temperature accretion disks. Magnetic field, B, is assumed to be randomly oriented and the ratio of magnetic pressure to either gas pressure, alpha = P(sub mag)/P(sub gas), or the sum of the gas and radiation pressures, alpha = (P(sub mag)/P(sub gas) + P(sub rad)), is fixed. We find those effects do not change the qualitative properties of the disks, i.e., there are still two critical accretion rates related to production of e(sup +/-) pairs, (M dot)((sup U)(sub cr)) and (M dot)((sup L)(sub cr)), that affect the number of local and global disk solutions, as recently found by Bjoernsson and Svensson for the case with B = 0. However, a critical value of the alpha-viscosity parameter above which those critical accretion rates disappear becomes smaller than alpha(sub cr) = 1 found in the case of B = 0, for P(sub mag) = alpha(P(sub gas) + P(sub rad)). If P(sub mag) = alpha P(sub gas), on the other hand, alpha(sub cr) is still about unity. Moreover, when Comptonized cyclosynchrotron radiation dominates Comptonized bremsstrahlung, radiation from the disk obeys a power law with the energy spectral index of approximately 0.5, in a qualitative agreement with X-ray observations of active galactic nuclei (AGNS) and Galactic black hole candidates. We also extend the hot disk solutions for P(sub mag) = alpha(P(sub gas) + P(sub rad)) to the effectively optically thick region, where they merge with the standard cold disk solutions. We find that the mapping method by Bjoernsson and Svensson gives a good approximation to the disk structure in the hot region and show where it breaks in the transition region. Finally, we find a region in the disk parameter space with no solutions due to the inability of Coulomb heating to supply enough energy to electrons.

  19. Thermally activated switching at long time scales in exchange-coupled magnetic grains

    NASA Astrophysics Data System (ADS)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.; Fal, T. J.

    2015-10-01

    Rate coefficients of the Arrhenius-Néel form are calculated for thermally activated magnetic moment reversal for dual layer exchange-coupled composite (ECC) media based on the Langer formalism and are applied to study the sweep rate dependence of M H hysteresis loops as a function of the exchange coupling I between the layers. The individual grains are modeled as two exchange-coupled Stoner-Wohlfarth particles from which the minimum energy paths connecting the minimum energy states are calculated using a variant of the string method and the energy barriers and attempt frequencies calculated as a function of the applied field. The resultant rate equations describing the evolution of an ensemble of noninteracting ECC grains are then integrated numerically in an applied field with constant sweep rate R =-d H /d t and the magnetization calculated as a function of the applied field H . M H hysteresis loops are presented for a range of values I for sweep rates 105Oe /s ≤R ≤1010Oe /s and a figure of merit that quantifies the advantages of ECC media is proposed. M H hysteresis loops are also calculated based on the stochastic Landau-Lifshitz-Gilbert equations for 108Oe /s ≤R ≤1010Oe /s and are shown to be in good agreement with those obtained from the direct integration of rate equations. The results are also used to examine the accuracy of certain approximate models that reduce the complexity associated with the Langer-based formalism and which provide some useful insight into the reversal process and its dependence on the coupling strength and sweep rate. Of particular interest is the clustering of minimum energy states that are separated by relatively low-energy barriers into "metastates." It is shown that while approximating the reversal process in terms of "metastates" results in little loss of accuracy, it can reduce the run time of a kinetic Monte Carlo (KMC) simulation of the magnetic decay of an ensemble of dual layer ECC media by 2 -3 orders of magnitude

  20. Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters

    NASA Astrophysics Data System (ADS)

    Moncada-Villa, E.; Fernández-Hurtado, V.; García-Vidal, F. J.; García-Martín, A.; Cuevas, J. C.

    2015-09-01

    We present a comprehensive theoretical study of the magnetic field dependence of the near-field radiative heat transfer (NFRHT) between two parallel plates. We show that when the plates are made of doped semiconductors, the near-field thermal radiation can be severely affected by the application of a static magnetic field. We find that irrespective of its direction, the presence of a magnetic field reduces the radiative heat conductance, and dramatic reductions up to 700% can be found with fields of about 6 T at room temperature. We show that this striking behavior is due to the fact that the magnetic field radically changes the nature of the NFRHT. The field not only affects the electromagnetic surface waves (both plasmons and phonon polaritons) that normally dominate the near-field radiation in doped semiconductors, but it also induces hyperbolic modes that progressively dominate the heat transfer as the field increases. In particular, we show that when the field is perpendicular to the plates, the semiconductors become ideal hyperbolic near-field emitters. More importantly, by changing the magnetic field, the system can be continuously tuned from a situation where the surface waves dominate the heat transfer to a situation where hyperbolic modes completely govern the near-field thermal radiation. We show that this high tunability can be achieved with accessible magnetic fields and very common materials like n -doped InSb or Si. Our study paves the way for an active control of NFRHT and it opens the possibility to study unique hyperbolic thermal emitters without the need to resort to complicated metamaterials.

  1. Thermal coupling of conjugate ionospheres and the tilt of the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1986-01-01

    The effect of thermal coupling and the tilt of the earth's magnetic field on interhemispheric coupling is investigated, and, due to a longitudinal displacement in the conjugate points, it is found that the tilt significantly effects the upward flow of H(+) flux such that the maximum upward flux can occur several hours before local sunrise. Heating from the conjugate atmosphere, which accompanies solar illumination in one hemisphere, produces electron temperatures 1000 K higher in the dark than in the sunlit hemisphere, and the morning upward H(+) fluxes in the dark ionosphere are as large as the daytime fluxes. A strong symmetry is also noted in the overall behavior of the H(+) fluxes due to the differing day lengths at the conjugate points, which are separated by 15 deg in latitude. Electron temperatures in the conjugate hemispheres are found to be strongly coupled above the F region peaks, though in the vicinity of the peaks near 250 km, the coupling is weak during the day and strong during the night.

  2. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate

    SciTech Connect

    Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2013-10-15

    Graphical abstract: - Highlights: • The cubic Gd{sub 2}O{sub 3} nanobars are synthesized by decomposition of C{sub 6}H{sub 20}Gd{sub 2}O{sub 22}. • The nanoparticles are rectangular bar shape with high porous surface. • The combination of magnetic and optical properties within a single particle. • The Gd{sub 2}O{sub 3} nanobars have tailorable nanostructure, wide bandgap and are paramagnetic. - Abstract: Gadolinium oxide nanobars were obtained by thermal decomposition of gadolinium oxalate, which was synthesized by the chemical precipitation method along with glycerol. The functional group analysis and formation of gadolinium oxide from gadolinium oxalate were characterized by the Fourier transform infrared spectroscopy and thermo gravimetric analyzer. The crystal structure, average crystallite size, and lattice parameter were analyzed by X-ray diffraction technique. Moreover, Raman shifts, elemental composition and morphology of the gadolinium oxide was widely investigated by the laser Raman microscope, X-ray photoelectron spectroscopy, FE-SEM-EDAX and HR-TEM, respectively. Furthermore, the optical properties like band gap, absorbance measurement of the gadolinium oxide were extensively examined. In addition, the paramagnetic property of gadolinium oxide nanobars was explored by the vibrating sample magnetometer.

  3. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  4. Planck all-sky thermal dust polarization: Witnessing how the magnetic field shapes the Milky Way ISM

    NASA Astrophysics Data System (ADS)

    Bernard, Jean-Philippe

    2015-08-01

    I will summarize the findings of the analysis of the Planck polarization results, which have been published recently. These include all sky polarization maps at wavelengths above 850 microns, dominated at the shortest wavelengths by polarized emission from thermal dust. These maps reveal the large-scale organization of the magnetic field as projected on the plane of the sky. Unlike previous synchrotron maps of the Milky Way, they trace for the first time the magnetic field geometry in the thin molecular disk of our Galaxy, where most star formation occurs. Even at the modest angular resolution of Planck (5’), the magnetic field preferentially aligns with the filamentary structure of the ISM and it can be followed down to the scale of star forming molecular complexes. The large-scale polarized emission allows a detailed investigation of the magnetic field geometry in the solar neighborhood, which reveals unexpected and intricate filamentary structures, where the magnetic field changes orientation abruptly, tracing discontinuities at edges of magnetic domains with more homogeneous properties. The data also reveals regions with an unexpectedly large dust polarization fraction, providing strong constraints on current dust models. I will discuss future prospects for studying the impact of the magnetic field in nearby galaxies such as the Magellanic Clouds using this data and ground-based follow-up surveys, in particular in the framework of future polarization observations with ALMA in external galaxies.

  5. Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection.

    PubMed

    Bae, Seongtae; Jeoung, Jin Wook; Jeun, Minhong; Jang, Jung-Tak; Park, Joo Hyun; Kim, Yu Jeong; Lee, Kwan; Kim, Minkyu; Lee, Jooyoung; Hwang, Hey Min; Paek, Sun Ha; Park, Ki Ho

    2016-09-01

    Magnetically softened iron oxide (MSIO) nanofluid, PEGylated (Mn0.5Zn0.5)Fe2O4, was successfully developed for local induction of heat shock proteins (HSPs) 72 in retinal ganglion cells (RGCs) for ocular neuroprotection. The MSIO nanofluid showed significantly enhanced alternating current (AC) magnetic heat induction characteristics including exceptionally high SLP (Specific Loss Power, > 2000 W/g). This phenomenon was resulted from the dramatically improved AC magnetic softness of MSIO caused by the magnetically tailored Mn(2+) and Zn(2+) distributions in Fe3O4. In addition, the MSIO nanofluid with ultra-thin surface coating layer thickness and high monodispersity allowed for a higher cellular uptake up to a 52.5% with RGCs and enhancing "relaxation power" for higher AC heating capability. The RGCs cultured with MSIO nanofluid successfully induced HSPs 72 by magnetic nanofluid hyperthermia (MNFH). Moreover, it was interestingly observed that systematic control of "AC magnetically-induced heating up rate" reaching to a constant heating temperature of HSPs 72 induction allowed to achieve maximized induction efficiency at the slowest AC heating up rate during MNFH. In addition to in-vitro experimental verification, the studies of MSIO infusion behavior using animal models and a newly designed magnetic coil system demonstrated that the MSIO has promising biotechnical feasibility for thermally-induced HSPs agents in future glaucoma clinics. PMID:27294536

  6. Evidence of Magnetic Breakdown on the Defects With Thermally Suppressed Critical Field in High Gradient SRF Cavities

    SciTech Connect

    Eremeev, Grigory; Palczewski, Ari

    2013-09-01

    At SRF 2011 we presented the study of quenches in high gradient SRF cavities with dual mode excitation technique. The data differed from measurements done in 80's that indicated thermal breakdown nature of quenches in SRF cavities. In this contribution we present analysis of the data that indicates that our recent data for high gradient quenches is consistent with the magnetic breakdown on the defects with thermally suppressed critical field. From the parametric fits derived within the model we estimate the critical breakdown fields.

  7. Constraints of thermal noise on the effects of weak 60-Hz magnetic fields acting on biological magnetite.

    PubMed Central

    Adair, R K

    1994-01-01

    Previous calculations of limits imposed by thermal noise on the effects of weak 60-Hz magnetic fields on biological magnetite are generalized and extended to consider multiple signals, the possibility of anomalously large magnetosome structures, and the possibility of anomalously small cytoplasm viscosities. The results indicate that the energies transmitted to the magnetite elements by fields less than 5 microT, characteristic of the electric power distribution system, will be much less than thermal noise energies. Hence, the effects of such weak fields will be masked by that noise and cannot be expected to affect biology or, therefore, the health of populations. PMID:8159681

  8. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    SciTech Connect

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.; Kashy, David H.; Wiseman, Mark A.; Kashikhin, V.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-06-01

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  9. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect

    Das, Supriyo

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  10. Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: qualitative results compared to satellite data and validation with in situ measurements

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2014-10-01

    Water temperature is an important parameter of water quality and influences other physical and chemical parameters. It also directly influences the survival and growth of animal and plant species in river ecosystems. In situ measurements do not allow for a total spatial coverage of water bodies and rivers that is necessary for monitoring and research at the Federal Institute of Hydrology (BfG), Germany. Hence, the ability of different remote sensing products to identify and investigate water inflows and water temperatures in Federal waterways is evaluated within the research project 'Remote sensing of water surface temperature'. The research area for a case study is the Upper and Middle Rhine River from the barrage in Iffezheim to Koblenz. Satellite products (e. g. Landsat and ASTER imagery) can only be used for rivers at least twice as wide as the spatial resolution of the satellite images. They can help to identify different water bodies only at tributaries with larger inflow volume (Main and Mosel) or larger temperature differences between the inflow (e. g. from power plants working with high capacity) and the river water. To identify and investigate also smaller water inflows and temperature differences, thermal data with better ground and thermal resolution is required. An aerial survey of the research area was conducted in late October 2013. Data of the surface was acquired with two camera systems, a digital camera with R, G, B, and Near-IR channels, and a thermal imaging camera measuring the brightness temperature in the 8-12 m wavelength region (TIR). The resolution of the TIR camera allowed for a ground resolution of 4 m, covering the whole width of the main stream and larger branches. The RGB and NIR data allowed to eliminate land surface temperatures from the analysis and to identify clouds and shadows present during the data acquisition. By degrading the spatial resolution and adding sensor noise, artificial Landsat ETM+ and TIRS datasets were created

  11. Geophex Airborne Unmanned Survey System

    SciTech Connect

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  12. Thermal plasma synthesis of coated iron cobalt-iron cobalt vanadium nanoparticles as precursors for compacted nanocrystalline bulk magnets

    NASA Astrophysics Data System (ADS)

    Turgut, Zafer

    2000-12-01

    High temperature power applications such as starter and generator components of the aircraft engines require soft magnetic materials with optimum magnetic properties. Thus creep resistance and yield strength become important material properties due to the high temperatures and high rotational forces. FeCo based alloys are the only material that can meet desired magnetic properties but they exhibit poor creep resistance at temperatures up to 775 K. Eddy current losses, which are strong dependent on the materials' volume resistivity, are also one of the main concerns designing the aforementioned devices. Current technology utilizes stacks of ˜150 mum thick FeCo alloy laminates and limitations on dimensions arising from the eddy currents and skin depth issues. It is a well known fact that any improvement in mechanical properties through a secondary phase hardening will result in poor magnetic properties due to the domain wall pinning effect of the secondary phase. Engineering of fiber re-enforced structures to improve the mechanical properties also is not feasible due to the dimensions of the material. This indicates that any improvement on mechanical properties will interfere with the magnetic performance of the system. Coated nanoparticles eventually compacted in a bulk form, may offer a solution to poor mechanical properties thus magnetic properties can be further improved, i.e. lower coercivities and higher permeabilities, by tailoring the grain sizes to be smaller than the magnetic exchange length, Lex . Presence of a highly resistive coating phase can also reduce the eddy current losses and ease the limitations on the materials thickness. Oxide and carbon coated FeCo and FeCoV nanoparticles were synthesized through thermal plasma processing as precursors for the compacted bulk magnets. Their densification characteristics as well as the magnetic, structural and microstructural properties were studied before and after compaction. A hot isostatic pressing (HIP

  13. Modeling the Magnetic and Thermal Structure of Active Regions: 1st Year 1st Semi-Annual Progress Report

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran

    2003-01-01

    This report covers technical progress during the first six months of the first year of NASA SR&T contract "Modeling the Magnetic and Thermal Structure of Active Regions", NASW-03008, between NASA and Science Applications International Corporation, and covers the period January 14, 2003 to July 13, 2003. Under this contract SAIC has conducted research into theoretical modeling of the properties of active regions using the MHD model.

  14. Magnetic response of gelatin ferrogels across the sol-gel transition: the influence of high energy crosslinking on thermal stability.

    PubMed

    Wisotzki, Emilia I; Eberbeck, Dietmar; Kratz, Harald; Mayr, Stefan G

    2016-05-01

    As emerging responsive materials, ferrogels have demonstrated significant potential for applications in areas of engineering to regenerative medicine. Promising techniques to study the behavior of magnetic nanoparticles (MNPs) in such matrices include magnetic particle spectroscopy (MPS) and magnetorelaxometry (MRX). This work investigated the magnetic response of gelatin-based ferrogels with increasing temperatures, before and after high energy crosslinking. The particle response was characterized by the nonlinear magnetization using MPS and quasistatic magnetization measurements as well as MRX to discriminate between Néel and Brownian relaxation mechanisms. The effective magnetic response of MNPs in gelatin was suppressed, indicating that the magnetization of the ferrogels was strongly influenced by competing dipole-dipole interactions. Significant changes in the magnetic behavior were observed across the gelatin sol-gel transition, as influenced by the matrix viscosity. These relaxation processes were modeled by Fourier transformation of the Langevin function, combined with a Debye term for the nonlinear magnetic response, for single core MNPs embedded in matrices of changing viscosities. Using high energy electron irradiation as a crosslinking method, modified ferrogels exhibited thermal stability on a range of timescales. However, MRX relaxation times revealed a slight softening around the gelatin sol-gel transition felt by the smallest particles, demonstrating a high sensitivity to observe local changes in the viscoelasticity. Overall, MPS and MRX functioned as non-contact methods to observe changes in the nanorheology around the native sol-gel transition and in crosslinked ferrogels, as well as provided an understanding of how MNPs were integrated into and influenced by the surrounding matrix. PMID:27029437

  15. Airborne Infrared Spectrograph for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Golub, L.; Cheimets, P.; DeLuca, E. E.; Samra, J.; Judge, P. G.

    2015-12-01

    Direct measurements of the coronal magnetic field have significant potential to enhance our understanding of coronal dynamics, and improve forecasting models. Of particular interest are observations of coronal field lines in the Transition Corona, the transitional region between closed and open flux systems, providing important information on eruptive instabilities and on the origin of the slow solar wind. While current instruments routinely observe the photospheric and chromospheric magnetic fields, the proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are five forbidden magnetic dipole transitions between 1.4 and 4 um. The airborne system will consist of a telescope, grating spectrometer and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the 21 August 2017 total solar eclipse. We will discuss the scientific objectives of the 2017 flight, describe details of the instrument design, and present the observing program for the eclipse.

  16. The influence of the interplanetary magnetic field and thermal pressure on the position and shape of the magnetopause

    NASA Technical Reports Server (NTRS)

    Zhuang, H. C.; Russell, C. T.; Walker, R. J.

    1981-01-01

    An ellipsoidal model, in which the size of an ellipsoid of revolution with a constant eccentricity is inversely proportional to the sixth root of the stream pressure of the solar wind, is used to represent the location of the dayside magnetopause and to study the influences of the interplanetary magnetic field and thermal pressure on its location. The effects of the IMF and thermal pressure on the location of the magnetopause are calculated analytically by using the Chapman-Ferraro theory. The changes in magnetopause size, shape and orientation caused by including the thermal pressure are inversely proportional to the square of the sonic Mach number of the solar wind and are sufficient to explain the observed slight departure of the magnetotail from the expected aberration due to the earth's orbital motion. The results suggest that little angular momentum is being carried away from the sun by the solar wind.

  17. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  18. 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations

    USGS Publications Warehouse

    Dennis, L.W.; Maciel, G.E.; Hatcher, P.G.; Simoneit, B.R.T.

    1982-01-01

    Cretaceous black shales from DSDP Leg 41, Site 368 in the Eastern Atlantic Ocean were thermally altered during the Miocene by an intrusive basalt. The sediments overlying and underlying the intrusive body were subjected to high temperatures (up to ~ 500??C) and, as a result, their kerogen was significantly altered. The extent of this alteration has been determined by examination by means of 13C nuclear magnetic resonance, using cross polarization/magic-angle spinning (CP/MAS). Results indicate that the kerogen becomes progressively more aromatic in the vicinity of the intrusive body. Laboratory heating experiments, simulating the thermal effects of the basaltic intrusion, produced similar results on unaltered shale from the drill core. The 13C CP/MAS results appear to provide a good measure of thermal alteration. ?? 1982.

  19. The evolution of magnetic transitions, negative thermal expansion and unusual electronic transport properties in Mn3AgxMnyN

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Sun, Ying; Yan, Jun; Shi, Zaixing; Shi, Kewen; Wang, Lei; Hu, Pengwei; Malik, Muhammad Imran; Wang, Cong

    2015-11-01

    The antiperovskite compounds Mn3AgxMnyN with Ag vacancies and Mn doping at Ag site were synthesized and investigated. The introduction of Ag vacancies has a very small influence on magnetic transitions. However, the magnetic transitions at TN (Néel temperature) and Tt (transition at lower temperature) gradually overlap with Mn doping accompanied by broadening of negative thermal expansion behavior. We also observed the nearly zero temperature coefficient of resistivity (NZ-TCR) behavior above magnetic order-disorder transition. The tunable TCR values from positive to negative could be achieved in Mn3AgxMnyN by reducing the contribution of (electron-phonon) e-p scattering in resistivity. Our results reveal the significance of e-p scattering for the evolution of TCR values, which could enrich the understanding of NZ-TCR behavior in antiperovskite manganese nitrides.

  20. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Evans, T.E.; Fenstermacher, M. E.; Unterberg, E. A.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Frerichs, H.; Groth, M.; Jakubowski, M. W.; Lasnier, C. J.; Lehnen, M.; Leonard, A. W.; Mordijck, S.; Moyer, R.A.; Osborne, T. H.; Reiter, D.; Samm, U.; Schaffer, M. J.; Unterberg, B.; West, W. P.

    2009-01-01

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p(e) in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q(95) resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p(e) reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q(95) resonant character of type-I edge localized mode suppression by RMPs.

  1. Resonant Pedestal Pressure Reduction Induced by a Thermal Transport Enhancement due to Stochastic Magnetic Boundary Layers in High Temperature Plasmas

    SciTech Connect

    Schmitz, O.; Frerichs, H.; Lehnen, M.; Reiter, D.; Samm, U.; Unterberg, B.; Evans, T. E.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Leonard, A. W.; Osborne, T. H.; Schaffer, M. J.; West, W. P.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Unterberg, E. A.; Jakubowski, M. W.; Mordijck, S.

    2009-10-16

    Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p{sub e} in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q{sub 95} resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p{sub e} reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q{sub 95} resonant character of type-I edge localized mode suppression by RMPs.

  2. Structural and magnetic properties of Fe1-x Co x Se1.09 nanoparticles obtained by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Li, Oksana A.; Lin, Chun-Rong; Chen, Hung-Yi; Hsu, Hua-Shu; Wu, Kai-Wun; Tseng, Yaw-Teng; Bayukov, Oleg A.; Edelman, Irina S.; Ovchinnikov, Sergey G.; Shih, Kun-Yauh

    2015-12-01

    A series of Fe1-x CoxSe1.09 (x = 0 to 1) nanoparticles were synthesized by thermal decomposition method. Particles in composition range Fe0.5Co0.5Se1.09 to CoSe1.09 crystallized in monoclinic structure of Co6.8Se8, while FeSe1.09 crystallized in hexagonal structure of FeSe achavalite. Magnetization dependences on temperature and external magnetic field reveal complicated magnetic behavior and correspond to the sum of paramagnetic and superparamagnetic response. Mössbauer spectra contain several paramagnetic doublets with parameters corresponding to nonequivalent positions of divalent and trivalent iron cations with low spin. The nonequivalent positions appeared due to inhomogeneous distribution of Co ions or metal vacancies in iron surrounding.

  3. Structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 nanoferrites

    NASA Astrophysics Data System (ADS)

    Shobana, M. K.; Sankar, S.

    2009-07-01

    In this paper, the structural, thermal and magnetic properties of Ni 1-xMn xFe 2O 4 are presented. It is observed that high concentration of Mn 2+ ions into NiFe 2O 4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni 1-xMn xFe 2O 4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe 2O 4 nanoparticles are formed. These Ni 1-xMn xFe 2O 4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn 2+ ion in the sub lattice.

  4. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  5. Recording performance and thermal stability in perpendicular media with enhancement of grain isolation as well as magnetic anisotropy field

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Ikeda, Y.; Choe, G.; Shi, Zhupei

    2012-04-01

    Magnetic clustering, thermal stability, and recording performance on perpendicular media with multilayered magnetic anisotropy field (Hk)-gradient CoPtCr-oxide/Cap layers with various Ru-oxide layer thicknesses (tRu-oxide) on top of Ru/NiW layers are investigated. With increasing tRu-oxide from 0 to 1.3 nm, Hc and Hs are enhanced but Hn is reduced. Magnetic correlation length (Dn) extracted from a set of major and minor loops significantly decreases but intrinsic switching field distribution remains unaffected. A short-time switching field (Ho) proportional to Hk increases linearly while KuV/kT remains unchanged. Similar KuV/kT is explained by compensation of the reduced Dn with the enhanced Ku induced by a thin Ru-oxide. However, thermal decay rate degrades from 0.06 to 0.32%/decade, which correlates well with Hn. Similar values of initial minor loop slopes indicate no change in magnetic switching behavior. A 1 nm-thick Ru-oxide layer as a well-defined granular template significantly improves recording performance: narrower MCW at 10 T by 8 nm and higher SNR at 2 T by 1.4 dB are observed even at lower OW by 8 dB compared to the media without Ru-oxide. All the recording parameters as a function of Dn correlate well.

  6. FP-LAPW investigation of electronic, magnetic, elastic and thermal properties of Fe-doped zirconium nitride

    SciTech Connect

    Sirajuddeen, M. Mohamed Sheik Banu, I. B. Shameem

    2014-05-15

    Full Potential- Linear Augmented Plane Wave (FP-LAPW) method has been employed to study the electronic, magnetic, elastic and thermal properties of Fe-doped Zirconium nitride. In this work, Fe-atoms were doped into the super cell of ZrN in doping concentrations of 12.5%, 25% and 37.5% to replace Zr atoms. Electronic properties such as band structure and DOS were plotted and compared for the doped compounds. Charge density contours were plotted for all the doped compounds. The non-magnetic ZrN doped in different Fe concentrations were found to be ferromagnetic. Magnetic moments have been calculated and compared. Elastic properties have been studied and compared with electronic properties. Appearance of magnetic ordering and its influence with the elastic properties have been reported. Impact of 3d states of Fe in DOS plot on the elastic nature of the compounds has been highlighted. Thermal properties such as Debye temperature and molar heat capacities at low temperature have been determined. Debye temperature is found to decrease with higher doping concentrations. Molar heat capacities are found to increase with higher concentrations of Fe atoms.

  7. Simultaneous investigation of thermal, acoustic, and magnetic emission during martensitic transformation in single-crystalline Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Daróczi, Lajos; Szabó, Sándor; Beke, Dezső L.

    2016-04-01

    Simultaneous thermal, acoustic, and magnetic emission (AE and ME) measurements during thermally induced martensitic transformation in Ni2MnGa single crystals demonstrate that all three types of the above noises display many coincident peaks and the same start and finish temperatures. The amplitude and energy distribution functions for AE and ME avalanches satisfy power-law behavior, corresponding to the symmetry of the martensite. At zero external magnetic field asymmetry in the exponents was obtained: their value was larger for heating than for cooling. Application of constant, external magnetic fields (up to B =722 mT) leads to the disappearance of the above asymmetry, due to the decrease of the multiplicity of the martensite variants. Time correlations (i.e., the existence of nonhomogeneous temporal processes) within AE as well as ME emission events are demonstrated by deviations from the uncorrelated behavior on probability distributions of waiting times as well as of a sequence of number of events. It is shown that the above functions collapse on universal master curves for cooling and heating as well as for AE and ME noises. The analysis of the existence of temporal correlations between AE and ME events revealed that at short times the acoustic signals show a time delay relative to the magnetic one, due to the time necessary for the propagation of the ultrasound. At intermediate times, as expected, the magnetic signal is delayed, i.e., the magnetic domain rearrangement followed the steps of structural transformation. At much longer times the deviation from an uncorrelated (Poisson-type) behavior is attributed to the nonhomogeneity of the avalanche statistics.

  8. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  9. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  10. The Precambrian Singo Igneous Complex (SIC), Uganda Revealed As a Mineralized Nested Ring Complex Using High Resolution Airborne Radiometric and Magnetic Data.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; LePera, A.; Abdelsalam, M. G.; Katumwehe, A. B.; Achang, M.

    2014-12-01

    We used high-resolution radiometrics and aeromagnetic data to investigate the Precambrian Singo Igneous Complex (SIC) in Uganda. The SIC covers an area of about 700 km² and is host to hydrothermally formed economic minerals such as Gold and Tungsten. The distribution of the ore deposits is not well known and current mine workings are limited to the western margins of the complex. Our objectives were to (1) provide a detailed geological map of the SIC and surrounding, (2) investigate relationships between preserved intrusive bodies and Precambrian tectonic structures to provide insight into emplacement of the complex, (3) examine links between magma emplacement, discontinuities and hydrothermal alteration (4) generate two-dimensional (2-D) and three-dimensional (3-D) models of the complex to understand its subsurface geometry, (5) investigate the relationship between the structure of the SIC and mineral occurrences as an aid to future exploration programs. Edge enhancement filters such as the analytical signal, vertical and tilt derivatives were applied to the magnetic data. In addition, 2-D and 3-D models were produced using Geosoft's GM-SYS 2-D and Voxi modules. The filtered data provided unprecedented structural details of the complex and revealed the following: (1) the edge of the SIC is characterized by higher magnetic susceptibility and Thorium content than its interior, (2) the SIC is characterized by eight to nine nested ring complexes with diameters ranging from 2.5 to 14 km, (3) the 3-D inversion suggests near vertical walls for the ring complexes extending to a depth of about 7 km, (4) the SIC was emplaced within a Precambrian folded basement and was traversed by numerous NW-trending dykes and (5) present day mining activities are concentrated within the folded basement units although occurrences of Tungsten and Gold are found associated with the highly magnetized edge of the ring complexes. We interpret the highly magnetized edges of the nested ring

  11. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  12. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  13. Thermal Regime Inferred from Magnetic Anomaly Data in the Crust beneath the Japanese Islands, and its Relationship to Focal Depth

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Ishikawa, Y.

    2003-12-01

    One of the indicators of lithospheric strength is the focal depth distribution of earthquakes. Temperature has long been regarded as an important variable in determining the seismogenic portion of the lithosphere. The thickness of seismogenic crust layer correlates with surface heat flow in most interplate seismic areas of the world [e.g., Sibson, 1982]. However, heat flow measurements are often widely spaced, requiring an extrapolation of the data to estimate the thermal structure in the crust in some regions. The uncertainties associated with these extrapolations preclude improving on the general correlation between heat flow and depth of seismicity. We used another approach to estimate the thermal structure in the crust. The bottom of the magnetized crust determined from the spectral analysis of residual magnetic anomalies is generally interpreted as the level of the Curie point isotherm. We estimate the bottom of the magnetized crust, Zb, of squares of 2.125o subregions using the magnetic anomaly map of the Japanese Islands [Makino et al., 1992]. At the same region, the thickness of seismogrnic crust is estimated as the depth above which 90 percent of the earthquakes occur, D90, using good quality hypocenters by JMA (Japan Meteorological Agency) data. Zb and D90 range from about 11 to 32 km and 12 km to 28 km, respectively. This suggests that our analysis cannot catch a locally shallow depth. And it is consistent with the expected inverse relation between Zb and the minimum heat flow values [Yamano et al., 1997] within the subregions. The inverse relation between Zb and D90 suggests that this analysis is useful to estimate the regional thermal structure.

  14. Suppression of Parallel Transport in Turbulent Magnetized Plasmas and Its Impact on the Non-thermal and Thermal Aspects of Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon

    2016-06-01

    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares.

  15. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data

    NASA Astrophysics Data System (ADS)

    Dillon, C. R.; Borasi, G.; Payne, A.

    2016-01-01

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one.

  16. Analytical estimation of ultrasound properties, thermal diffusivity, and perfusion using magnetic resonance-guided focused ultrasound temperature data.

    PubMed

    Dillon, C R; Borasi, G; Payne, A

    2016-01-21

    For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344

  17. Thermally assisted interlayer magnetic coupling through Ba0.05Sr0.95TiO3 barriers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Avilés Félix, Luis; Sirena, Martín; Alejandro, Gabriela; Steren, Laura B.

    2016-08-01

    We report on the interlayer exchange coupling across insulating barriers observed on Ni80Fe20/Ba0.05Sr0.95TiO3/La0.66Sr0.33MnO3 (Py/BST0.05/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO3 (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST0.05. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.

  18. Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow

    SciTech Connect

    Gill, Ramandeep; Thompson, Christopher

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (Γ ∼ 10{sup 2}-10{sup 3}) and low optical depth to scattering (τ {sub T} ∼ 10{sup –3}-10{sup –2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 × 10{sup 3}(Y{sub e} /0.5){sup –1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at τ {sub T} ∼ 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; –3 < β < –3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  19. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex

    NASA Astrophysics Data System (ADS)

    Ong, Hun Tiar; Julkapli, Nurhidayatullaili Muhd; Hamid, Sharifah Bee Abd; Boondamnoen, O.; Tai, Mun Foong

    2015-12-01

    Nitrile butadiene rubber (NBR) gloves are one of the most important personal protective equipments but they are possible to tear off and contaminate food or pharmaceutical and healthcare products during manufacturing and packaging process. High tendency of torn glove remaining in food or products due to white or light flesh-coloured glove is not easy to be detected by naked eyes. In this paper, iron oxide nanoparticles (IONs) selected as additive for NBR to improve its detectability by mean of magnetic properties. IONs synthesized via precipitation method and compounded with NBR latex before casting on petri dish. The properties of IONs were investigated by X-ray Diffractometry (XRD), Transmission Electron Microscope (TEM), Raman Spectroscopy and Vibrating Sample Magnetometer (VSM). Meanwhile NBR/IONs composites were studied by Thermogravimetry Analysis (TGA), Differential Scanning Calorimetry (DSC) and Vibrating Sample Magnetometer (VSM). It observed that, synthesized IONs shows of 25.28 nm crystallite with 25.86 nm semipherical (changed as) shape. Meanwhile, Magnetite and maghemite phase are found in range of 670 cm-1 and 700 cm-1 respectively, which it contributes magnetization saturation of 73.96 emu/g at 10,000 G by VSM. Thermal stability and magnetic properties were increased with incorporating IONs into NBR latex up to 20 phr. NBR/IONs 5 phr has the optimum thermal stability, lowest glass transition temperature (-14.83 °C) and acceptable range of magnetization saturation (3.83 emu/g at 10,000 G) to form NBR gloves with magnetic detectability.

  20. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  1. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  2. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  3. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  4. Field and thermal plasma observations of ULF pulsations during a magnetically disturbed interval

    NASA Technical Reports Server (NTRS)

    Lin, N.; Engebretson, M. J.; Reinleitner, L. A.; Olson, J. V.; Gallagher, D. L.; Cahill, L. J., Jr.; Slavin, J. A.; Persoon, A. M.

    1992-01-01

    A ULF pulsation event is discussed on the basis of experimental observations of electric and magnetic field measurements as well as particle measurements from the DE 1 spacecraft. The observations were made near the magnetic equator in a space covering a large range of L shells and magnetic latitudes, and comparisons are made to ground observations. Azimuthal oscillations are observed following gradually decaying long-period compressional waves. Weak interaction between magnetic shells indicates that the source is probably weak, and ground data on magnetic pulsations showed strong signals that did not necessarily correspond to the quasisinusoidal pulsations observed in space. Azimuthal pulsations observed by the spacecraft indicate that there was a plasma density gradient beyond the plasmapause. The ULF pulsations were probably affected by changes in the magnetic field and solar-wind dynamic pressure, and their periods are found to be linked to geomagnetic latitude.

  5. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    SciTech Connect

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system.

  6. Airborne electromagnetic hydrocarbon mapping in Mozambique

    NASA Astrophysics Data System (ADS)

    Pfaffhuber, Andreas A.; Monstad, Ståle; Rudd, Jonathan

    2009-09-01

    The Inhaminga hydrocarbon exploration licence in central Mozambique sets the location for a multi-method airborne geophysical survey. The size of the Inhaminga block, spanning some 16500km2 from Beira to the Zambezi, limited available data and a tight exploration schedule made an airborne survey attractive for the exploration portfolio. The aim of the survey was to map hydrocarbon seepage zones based on the evidence that seepage may create resistivity, radiometric and sometimes magnetic anomalies. The survey involved a helicopter-borne time domain electromagnetic induction system (AEM) and a fixed wing magnetic gradiometer and radiometer. Our data analysis highlights an anomaly extending some tens of kilometres through the survey area along the eastern margin of the Urema Graben. The area is imaged by AEM as a shallow resistive unit below a strong surface conductor and shows high Uranium and low Potassium concentrations (normalised to mean Thorium ratios). A seismic dimming zone on a 2D seismic line crossing the area coincides with the resistivity and radiometric anomaly. The geological exploration model expects seepage to be linked to the graben fault systems and an active seep has been sampled close to the anomaly. We thus interpret this anomaly to be associated with a gas seepage zone. Further geological ground work and seismic investigations are planned to assess this lead. Airborne data has further improved the general understanding of the regional geology allowing spatial mapping of faults and other features from 2D seismic lines crossing the survey area.

  7. All-thermal switching of amorphous Gd-Fe alloys: Analysis of structural properties and magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Chimata, Raghuveer; Isaeva, Leyla; Kádas, Krisztina; Bergman, Anders; Sanyal, Biplab; Mentink, Johan H.; Katsnelson, Mikhail I.; Rasing, Theo; Kirilyuk, Andrei; Kimel, Alexey; Eriksson, Olle; Pereiro, Manuel

    2015-09-01

    In recent years there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e., first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshinskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbor exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.

  8. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yi, Jinhui; Mukherjee, Sumit; Banerjee, Probal; Zhou, Shuiqin

    2014-10-01

    The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical

  9. Thermal magnetic fluctuations and anomalous electron diffusion in a mirror-confined plasma

    SciTech Connect

    Murtaza, G.; Rahman, H.U.

    1983-09-01

    The electron test particle cross-field diffusion due to thermally excited magnetostatic modes with ergodic field lines is investigated. Estimate shows that in mirror-confined plasmas, the electron transport (and hence the electron thermal conduction) caused by the magnetostatic mode exceeds the convective as well as the classical transport.

  10. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    SciTech Connect

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump to avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.

  11. Modeling an unmitigated thermal quench event in a large field magnet in a DEMO reactor

    DOE PAGESBeta

    Merrill, Brad J.

    2015-03-25

    The superconducting magnet systems of future fusion reactors, such as a Demonstration Power Plant (DEMO), will produce magnetic field energies in the 10 s of GJ range. The release of this energy during a fault condition could produce arcs that can damage the magnets of these systems. The public safety consequences of such events must be explored for a DEMO reactor because the magnets are located near the DEMO's primary radioactive confinement barrier, the reactor's vacuum vessel (VV). Great care will be taken in the design of DEMO's magnet systems to detect and provide a rapid field energy dump tomore » avoid any accidents conditions. During an event when a fault condition proceeds undetected, the potential of producing melting of the magnet exists. If molten material from the magnet impinges on the walls of the VV, these walls could fail, resulting in a pathway for release of radioactive material from the VV. A model is under development at Idaho National Laboratory (INL) called MAGARC to investigate the consequences of this accident in a large toroidal field (TF) coil. Recent improvements to this model are described in this paper, along with predictions for a DEMO relevant event in a toroidal field magnet.« less

  12. Microstructure investigation and magnetic study of permalloy thin films grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lamrani, Sabrina; Guittoum, Abderrahim; Schäfer, Rudolf; Pofahl, Stefan; Neu, Volker; Hemmous, Messaoud; Benbrahim, Nassima

    2016-06-01

    We study the effect of thickness on the structural and magnetic properties of permalloy thin films, evaporated on glass substrate. The films thicknesses range from 16 to 90 nm. From X-ray diffraction spectra analysis, we show that the thinner films present a "1,1,1" preferred orientation. However, the thicker films exhibit a random orientation. The grains size increases and the lattice parameter decreases with increasing thickness. The magnetic force microscopy observations display cross-tie walls features only for the two thicker films (60 and 90 nm thick films). The magnetic microstructure, carried out by Kerr microscopy technique, shows the presence of magnetic domains changing with the direction of applied magnetic field. The coercive field, Hc, was found to decrease from 6.5 for 16 to 1.75 Oe for 90 nm. All these results will be discussed and correlated.

  13. Analysis of coupled electromagnetic-thermal effects in superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Kurnyshov, R.; Shcherbakov, P.

    2008-02-01

    FAIR will built 5 magnet rings including two superconducting synchotrons. The SIS100 is the core component of the facility and will be equipped with 2 Tesla dipole magnets pulsed with 4 Tesla/s. The cable of the magnet coils is made of a hollow NbTi composite cable of about 7 mm outer diameter, cooled with two phase helium flow at 4.5 K. We calculate the heat load, the eddy and the hysteresis losses, investigate the impact of the ramping on the magnetic field, on the safety margin of the conductor and the required cooling for all different elements of the magnet including: the coil, the yoke, the bus bars and the beam pipe. This analysis is based on properties measured at cryogenic temperatures and fine detailed FEM models.

  14. Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction

    SciTech Connect

    Kouzoudis, D.

    1999-02-12

    The prime interest of the present research is to measure the thermal energy needed for depinning a trapped vortex when an external magnetic field is perpendicular to the plane of the junction, and thus there are Meissner currents flowing along the edge of the film. These currents introduce an additional force and the author wishes to study thermal depinning under the influence of this force. These studies are of interest because Nb junctions are used in a wide range of electronic applications. Such junctions are useful, for instance, in superconducting quantum interference devices (SQUIDs) or in vortex-flow transistors because their performance can be enhanced by tuning the parameters of the individual junctions to optimum operation values. Furthermore gated Josephson junctions can be used as Josephson field-effect transistors (JOFETs).

  15. An increase of structural order parameter in Fe-Co-V soft magnetic alloy after thermal aging

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Li, L.; Masteller, M. S.; Del Corso, G. J.

    1996-12-01

    Alloys of Fe49Co49V2 (Hiperco Alloy 50) (Hiperco is a registered trademark of CRS Holdings, Inc.), both annealed and thermally aged, were studied using anomalous synchrotron x-ray and neutron powder diffraction. Rietveld and diffraction profile analysis indicated both an increase in the structural order parameter and a small lattice expansion (˜0.0004 Å) after aging at 450 °C for 200 h. In addition, a cubic minority phase (<0.3%) was identified in the ``annealed'' sample, which increased noticeably (0.3%→0.8%) as a result of aging. The presence of antiphase domain boundaries in the alloys was also revealed. These results directly correlate with the observed changes in the magnetization behavior and challenge the notion that a ``fully'' ordered Fe-Co alloy demonstrates optimum soft magnetic properties.

  16. Effect of Co on the thermal stability and magnetic properties of AlNiCo 8 alloys

    SciTech Connect

    Liu, Tao Li, Wei; Zhu, Minggang; Guo, Zhaohui; Li, Yanfeng

    2014-05-07

    The magnetic properties, microstructure, and reversible temperature coefficient of magnetic flux of Alnico 8 alloys with the different Co and Ti have been investigated in this paper. The Alnico alloys containing 34, 36, 38, and 40 mass percent cobalt were fabricated by the conventional casting method including thermomagnetic treatment. The transmission electron microscopy (TEM) testing shows that there are more α1 phases particles with the diameter of less than 10 nm appearing in the matrix with the increasing of the content of Co and Ti. The thermal stability of Alnico 8 alloys deteriorates with the increasing of the content of Co and Ti, which are caused mainly by the decrease of the degree of particle alignment and particle perfection.

  17. A compact model for magnetic tunnel junction (MTJ) switched by thermally assisted Spin transfer torque (TAS + STT)

    NASA Astrophysics Data System (ADS)

    Zhao, Weisheng; Duval, Julien; Klein, Jacques-Olivier; Chappert, Claude

    2011-12-01

    Thermally assisted spin transfer torque [TAS + STT] is a new switching approach for magnetic tunnel junction [MTJ] nanopillars that represents the best trade-off between data reliability, power efficiency and density. In this paper, we present a compact model for MTJ switched by this approach, which integrates a number of physical models such as temperature evaluation and STT dynamic switching models. Many experimental parameters are included directly to improve the simulation accuracy. It is programmed in the Verilog-A language and compatible with the standard IC CAD tools, providing an easy parameter configuration interface and allowing high-speed co-simulation of hybrid MTJ/CMOS circuits.

  18. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  19. In-plane current-driven spin-orbit torque switching in perpendicularly magnetized films with enhanced thermal tolerance

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yu, Guoqiang; Shao, Qiming; Li, Xiang; Wu, Hao; Wong, Kin L.; Zhang, Zongzhi; Han, Xiufeng; Khalili Amiri, Pedram; Wang, Kang L.

    2016-05-01

    We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co40Fe40B20 (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer, i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.

  20. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.