PC-based artificial neural network inversion for airborne time-domain electromagnetic data
NASA Astrophysics Data System (ADS)
Zhu, Kai-Guang; Ma, Ming-Yao; Che, Hong-Wei; Yang, Er-Wei; Ji, Yan-Ju; Yu, Sheng-Bao; Lin, Jun
2012-03-01
Traditionally, airborne time-domain electromagnetic (ATEM) data are inverted to derive the earth model by iteration. However, the data are often highly correlated among channels and consequently cause ill-posed and over-determined problems in the inversion. The correlation complicates the mapping relation between the ATEM data and the earth parameters and thus increases the inversion complexity. To obviate this, we adopt principal component analysis to transform ATEM data into orthogonal principal components (PCs) to reduce the correlations and the data dimensionality and simultaneously suppress the unrelated noise. In this paper, we use an artificial neural network (ANN) to approach the PCs mapping relation with the earth model parameters, avoiding the calculation of Jacobian derivatives. The PC-based ANN algorithm is applied to synthetic data for layered models compared with data-based ANN for airborne time-domain electromagnetic inversion. The results demonstrate the PC-based ANN advantages of simpler network structure, less training steps, and better inversion results over data-based ANN, especially for contaminated data. Furthermore, the PC-based ANN algorithm effectiveness is examined by the inversion of the pseudo 2D model and comparison with data-based ANN and Zhody's methods. The results indicate that PC-based ANN inversion can achieve a better agreement with the true model and also proved that PC-based ANN is feasible to invert large ATEM datasets.
NASA Astrophysics Data System (ADS)
Sapia, Vincenzo; Oldenborger, Greg A.; Viezzoli, Andrea; Marchetti, Marco
2014-05-01
Helicopter time-domain electromagnetic (HTEM) surveys often suffer from significant inaccuracies in the early-time or near-surface data—a problem that can lead to errors in the inverse model or limited near-surface resolution in the event that early time gates are removed. We present an example illustrating the use of seismic data to constrain the model recovered from an HTEM survey over the Spiritwood buried valley aquifer in Manitoba, Canada. The incorporation of seismic reflection surfaces results in improved near-surface resistivity in addition to a more continuous bedrock interface with a sharper contact. The seismic constraints reduce uncertainty in the resistivity values of the overlying layers, although no a priori information is added directly to those layers. Subsequently, we use electrical resistivity tomography (ERT) and borehole data to verify the constrained HTEM models. Treating the ERT and borehole logs as reference information, we perform an iterative time-shift calibration of the HTEM soundings to achieve regional-scale consistency between the recovered HTEM models and the reference information. Given the relatively small time-shifts employed, this calibration procedure most significantly affects the early-time data and brings the first useable time gate to a time earlier than the nominal first gate after ramp off. Although time shifts are small, changes in the model are observed from the near-surface to depths of 100 m. Calibration is combined with seismic constraints to achieve a model with the greatest level of consistency between data sets and, thus, the greatest degree of confidence. For the Spiritwood buried valley, calibrated and constrained models reveal more structure in the valley-fill sediments and increased continuity of the bedrock contact.
NASA Astrophysics Data System (ADS)
Reninger, P.-A.; Martelet, G.; Lasseur, E.; Beccaletto, L.; Deparis, J.; Perrin, J.; Chen, Y.
2014-07-01
The ability of airborne Time Domain ElectroMagnetic (TDEM) to image plurikilometric chalk heterogeneities and its implications for the development of a karstic system is addressed in this study. A heliborne TDEM survey was conducted around Courtenay (France) over the Paris Basin Upper Cretaceous chalk. This aquifer is known as a highly weathered and karstified horizon both strongly modify chalk petrophysical properties. Numerous boreholes and one recently reprocessed seismic line were used in order to strengthen TDEM interpretations. We performed cross statistics between boreholes and the resistivity model. This allowed defining empirical resistivity ranges corresponding to the main geological formations within the area. We were therefore able to map large scale heterogeneities in the chalk over the study area. First, the TDEM method highlighted probable weathering corridors in the chalk, related to the tectonic activity, consistent with faults previously interpreted in the seismics at deeper levels. Second, it was possible to image a large scale undulating geometry in the chalk with a SW-NE orientation, this direction is consistent throughout the Paris Basin, and well defined on the cliffs of Normandy (Channel coast, north of France). This geometry has revealed two separate chalk deposits C1 and C2 in Courtenay area: C1 is more resistive than C2. The resistivity model has then been compared to piezometric measurements acquired as part of previous hydrological studies. The karstic drainage appears to be developed within C1 chalk deposit and most of the piezometric domes seem to be associated to intermediate resistivity zones in C1, interpreted as weathered. According to the results obtained from this study, we were able to suggest a geological framework for the development of Courtenay karstic system.
Time domain electromagnetic metal detectors
Hoekstra, P.
1996-04-01
This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.
Picosecond time-domain electromagnetic scattering from conducting cylinders
NASA Astrophysics Data System (ADS)
Robertson, W. M.; Kopcsay, G. V.; Arjavalingam, G.
1991-12-01
The microwave scattering properties of conducting cylinders are characterized by measuring their response to picosecond-duration electromagnetic pulses. The ultrafast electromagnetic transients are generated and detected with optoelectronically pulsed antennas. The time-domain response gives physical insight into the scattering process. In addition, Fourier analysis is used to obtain the frequency dependence of the scattered amplitude and phase from 15 to 140 GHz.
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
NASA Astrophysics Data System (ADS)
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two
Diffusion Rate Tomography for Time Domain Electromagnetic Induction Methods
NASA Astrophysics Data System (ADS)
Kazlauskas, E. M.; Weiss, C. J.
2010-12-01
Although it is now routine to invert near-surface electromagnetic induction data in terms of ground conductivity, geoelectromagnetic inversion remains an open research problem because of its intrinsic non-uniqueness and the need to balance computational efficiency with recovering models bearing some resemblance to real geologic structure. The most popular approach for fitting electromagnetic data is analogous to seismic full-waveform inversion. Whether the data are in the time- or frequency-domain, a model is sought which recovers either the amplitude and phase, or the transient response of some measured waveform. However, imperfect knowledge of the source waveform has the potential to erroneously introduce unwarranted geologic structure in the final recovered earth model. Hence, we explore here an alternative approach that mitigates these effects in highly attenuated electromagnetic data. Rather than inverting for the full waveform response, Diffusion Rate Tomography (DiRT) is based on inverting for the arrival time of some key, diagnostic feature in the measured data. This procedure eliminates any error introduced by incomplete knowledge of the source amplitude due to miscalibration, instrument drift, or battery drainage. Time-domain electromagnetic sounding experiments conducted with a horizontal loop transmitter and offset receiver coil provide a useful test of the concept. As induced eddy currents from the transmitter diffuse beneath the receiver, a polarity change occurs in the vertical component of the observed magnetic field. This polarity change (or zero crossing) is our invertible diagnostic, and given a range of offsets between the transmitter and receiver antennae, the zero-crossing moveout curve constitutes the data we invert. Examples of DiRT for a range of geologic settings will be presented and compared against results from smooth, full-waveform inversion. Interestingly, although DiRT works on fewer data than the full-waveform inversion, there is
Interpretation of time domain electromagnetic soundings near geological contacts
Wilt, M.J.
1991-12-01
Lateral changes in geology pose a serious problem in data interpretation for any surface geophysical method. Although many geophysical techniques are designed to probe vertically, the source signal invariably spreads laterally, so any lateral variations in geology will affect the measurements and interpretation. This problem is particularly acute for controlled source electromagnetic soundings because only a few techniques are available to interpret the data if lateral effects are present. In this thesis we examine the effects of geological contacts for the time domain electromagnetic sounding method (TDEM). Using two simple two-dimensional models, the truncated thin-sheet and the quarter-space, we examine the system response for several commonly used TDEM sounding configurations. For each system we determine the sensitivity to the contact, establish how to the contact anomaly may be distinguished from other anomalies and, when feasible, develop methods for interpreting the contact geometry and for stripping the contact anomaly from the observed data. Since no numerical models were available when this work was started, data were collected using scale models with a system designed at the University of California at Berkeley. The models were assembled within a table-top modeling tank from sheets or blocks of metal using air or mercury as a host medium. Data were collected with a computer-controlled acquisition system.
Time domain electromagnetic sensing techniques for underground pipe diagnostics
NASA Astrophysics Data System (ADS)
Chen, Chow-Son
2013-04-01
Based upon frequency domain integral equation thin sheet theory, comparative numerical modeling using three-component time domain electromagnetic (TEM) receiver was under taken. A forward modeling approach was used to compute the voltage response of half-space containing one or more conductive bodies excited by a bi-polar square wave form. Although this method utilizes conductor scattering, it is particularly useful as a practical use for the non-destructive electromagnetic monitoring of the transport infrastructure consequences from natural disasters. Unlike single component data, results from the three-component data are unambiguous as to the location and orientation of conductors. Measurements with the addition of horizontal- component data for secondary magnetic fields lead a better indication of target location, and target size determination, orientation, and characteristics, especially for the targets in the horizontal plan. I analyze three-axis TEM data from a known well site and detect transient volt anomalies, which are consistent with our theoretical modeling and which can be correlated with well locations in the conductor host. From this and other surveys, it is apparent that there is a lot of useful information in the horizontal components of near-surface TEM surveys. Whilst the vertical component contains stronger anomaly data and provide the best indication on a given target's location, the horizontal component data, can be used to determine size, orientation, and characteristics of targets, especially for targets extending horizon tally (i.e., power lines, sewer pipes, etc.). As a result, the three-component TEM survey is an essential element for high-resolution EM engineering survey.
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
NASA Astrophysics Data System (ADS)
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
Solution of electromagnetic scattering problems using time domain techniques
NASA Technical Reports Server (NTRS)
Britt, Charles L.
1989-01-01
New methods are developed to calculate the electromagnetic diffraction or scattering characteristics of objects of arbitrary material and shape. The methods extend the efforts of previous researchers in the use of finite-difference and pulse response techniques. Examples are given of the scattering from infinite conducting and nonconducting cylinders, open channel, sphere, cone, cone sphere, coated disk, open boxes, and open and closed finite cylinders with axially incident waves.
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul
2015-01-01
We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.
Even Shallower Exploration with Airborne Electromagnetics
NASA Astrophysics Data System (ADS)
Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.
2015-12-01
Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.
Xyz Airborne Time Domain Em: P-Them Test in Reid Mahaffy
NASA Astrophysics Data System (ADS)
Vetrov, A.
2012-12-01
The vertical axis transmitter loop and receiver coil combination is widely used in Airborne Time-Domain EM systems. In such configurations the largest portion of the transmitter magnetic moment, which is distributed in a vertical direction, is transmitted to the subsurface, and the strongest vertical response from underground conductors is acquired with a vertical axis (Z) receiver coil. However, the horizontal axis (X and Y) components carry valuable information about target body geometry and their borders/edges. Most Airborne Time Domain systems currently in use are configured such that the X component is aligned with the flight direction. At typical survey speeds (60 to 80 kph) towed bird systems may expect to be subject to vibration that results in movement of horizontal and vertical receiver's axis from its desired nominal position. The mechanical design of the P-THEM transmitter and receiver is based on Bernard Kremer's (THEM Geophysics) developments finished and improved by Pico Envirotec Inc. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator and a 3-axis (XYZ) coil receiver attached at the midpoint of a tow cable between transmitter and a helicopter. The suspension system of the receiver coils assembly allows the Z-coil to remain horizontal at all the time during the flight. Pico Envirotec has developed methodology to recalculate the data from three axis of the receiver that allows mechanical vibration influence to be eliminated from the acquired data. The recalculated X-component gives very useful information for interpretation of the observation results. The P-THEM system has been test flown over the Reid Mahaffy geological test site located in Northern Ontario in Canada. The test site, created by the Ontario Geological Survey, contains the main conductor formed with three sub-vertical sliced conductive bodies. Three lines (L30, L40 and L50) over the test site have been flown in North and South direction with the P
Geologic Noise in Near--Surface Time--Domain Electromagnetic Induction Data
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Everett, M. E.
2001-12-01
Controlled--source electromagnetic induction is a geophysical technique commonly used to aid in the identification of both anthropogenic and naturally occuring features, such as unexploded ordnance or high--permeability fluid pathways, in Earth's shallow subsurface. However, electromagnetic responses are oftentimes difficult to interpret owing to the complex, multiscale heterogeneous nature of the underlying electrical conductivity structure. We show evidence here which indicates that electromagnetic responses are indeed fractal signals, reflecting a very rough distribution of electrical conductivity in the underlying Earth. Time--domain electromagnetic data collected across a section of colluvial fill in the Rio Grande Rift valley near Albuquerque, New Mexico, show that the fractal properties of the surface electromagnetic responses depend on the complexity of the causative geological structure. Similar experiments in the frequency domain suggest that the small--scale fluctuations in the electromagnetic response due to geological noise are inherently reproducible, and are not caused by random instrumental or atmospheric effects as often assumed. New approaches to modeling electromagnetic responses are required in order to take full advantage of the rich information content of near--surface electromagnetic data. This work was supported in part by the United States Department of Energy under Contract DE--AC04--94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
NASA Astrophysics Data System (ADS)
Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.
1994-03-01
Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.
Airborne electromagnetic hydrocarbon mapping in Mozambique
NASA Astrophysics Data System (ADS)
Pfaffhuber, Andreas A.; Monstad, Ståle; Rudd, Jonathan
2009-09-01
The Inhaminga hydrocarbon exploration licence in central Mozambique sets the location for a multi-method airborne geophysical survey. The size of the Inhaminga block, spanning some 16500km2 from Beira to the Zambezi, limited available data and a tight exploration schedule made an airborne survey attractive for the exploration portfolio. The aim of the survey was to map hydrocarbon seepage zones based on the evidence that seepage may create resistivity, radiometric and sometimes magnetic anomalies. The survey involved a helicopter-borne time domain electromagnetic induction system (AEM) and a fixed wing magnetic gradiometer and radiometer. Our data analysis highlights an anomaly extending some tens of kilometres through the survey area along the eastern margin of the Urema Graben. The area is imaged by AEM as a shallow resistive unit below a strong surface conductor and shows high Uranium and low Potassium concentrations (normalised to mean Thorium ratios). A seismic dimming zone on a 2D seismic line crossing the area coincides with the resistivity and radiometric anomaly. The geological exploration model expects seepage to be linked to the graben fault systems and an active seep has been sampled close to the anomaly. We thus interpret this anomaly to be associated with a gas seepage zone. Further geological ground work and seismic investigations are planned to assess this lead. Airborne data has further improved the general understanding of the regional geology allowing spatial mapping of faults and other features from 2D seismic lines crossing the survey area.
Inclusion of lumped elements in finite difference time domain electromagnetic calculations
Thomas, V.A.; Jones, M.E.; Mason, R.J.
1994-12-31
A general approach for including lumped circuit elements in a finite difference, time domain (FD-TD) solution of Maxwell`s equations is presented. The methodology allows the direct access to SPICE to model the lumped circuits, while the full 3-Dimensional solution to Maxwell`s equations provides the electromagnetic field evolution. This type of approach could be used to mode a pulsed power machine by using a SPICE model for the driver and using an electromagnetic PIC code for the plasma/electromagnetics calculation. The evolution of the driver can be made self consistent with the behavior of the plasma load. Other applications are also possible, including modeling of nonlinear microwave circuits (as long as the non-linearities may be expressed in terms of a lumped element) and self-consistent calculation of very high speed computer interconnections and digital circuits.
NASA Astrophysics Data System (ADS)
Hu, Xiao-feng; Chen, Xiang; Wei, Ming
2013-03-01
Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.
Zhao, Yan; Argyropoulos, Christos; Hao, Yang
2008-04-28
This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance. PMID:18545374
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
Sha, Wei . E-mail: ws108@ahu.edu.cn; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-07-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.
IP effects on electromagnetic data of deep-sea hydrothermal deposits in time domain
NASA Astrophysics Data System (ADS)
KIM, H. J.; Jang, H.; Ha, W.
2015-12-01
A transient electromagnetic (TEM) system using a small loop source is advantageous to the development of compact, autonomous instruments which are well suited to submersible-based surveys. Since electrical conductivity of subseafloor materials can be frequency dependent, these induced polarization (IP) effects may affect the reliability of TEM data interpretation. In this study, we investigate IP effects on TEM responses of deep-sea hydrothermal mineral deposits with a thin sediment cover. Time-domain target signals are larger and appear earlier in horizontal magnetic fields than in vertical ones. IP effects cause transient magnetic fields to enhance initially, to decay rapidly and then to reverse the polarity. The DC conductivity and IP chargeability in Cole-Cole parameters influence the time of sign reversal and the enhancement of the target response, simultaneously. The reversal time is almost invariant with the time constant while the target signal is almost invariant with the frequency exponent.
A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation
Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,
2010-06-07
A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2015-12-01
Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.
Rieben, R N
2004-07-20
The goal of this dissertation is twofold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.
On recovering distributed IP information from inductive source time domain electromagnetic data
NASA Astrophysics Data System (ADS)
Kang, Seogi; Oldenburg, Douglas W.
2016-07-01
We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: 1) Obtain a 3D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. 2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. 3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (a) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (b
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2014-12-01
Systematic split-step finite difference time domain (SS-FDTD) formulations, based on the general Lie-Trotter-Suzuki product formula, are presented for solving the time-dependent Maxwell equations in double-dispersive electromagnetic materials. The proposed formulations provide a unified tool for constructing a family of unconditionally stable algorithms such as the first order split-step FDTD (SS1-FDTD), the second order split-step FDTD (SS2-FDTD), and the second order alternating direction implicit FDTD (ADI-FDTD) schemes. The theoretical stability of the formulations is included and it has been demonstrated that the formulations are unconditionally stable by construction. Furthermore, the dispersion relation of the formulations is derived and it has been found that the proposed formulations are best suited for those applications where a high space resolution is needed. Two-dimensional (2-D) and 3-D numerical examples are included and it has been observed that the SS1-FDTD scheme is computationally more efficient than the ADI-FDTD counterpart, while maintaining approximately the same numerical accuracy. Moreover, the SS2-FDTD scheme allows using larger time step than the SS1-FDTD or ADI-FDTD and therefore necessitates less CPU time, while giving approximately the same numerical accuracy.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan
2016-06-01
A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.
Time-domain electromagnetic tests in the Wadi Bidah District, Kingdom of Saudi Arabia
Flanigan, Vincent J.; Sadek, Hamdy; Smith, Bruce; Tippens, C.L.
1983-01-01
A time-domain electromagnetic (TDEM) method was tested in two areas of mineralization in Precambrian rocks in the Wadi Bidah district, Kingdom of Saudi Arabia. Transient-decay voltages in profile mode were measured across the Sha'ab at Tare and Rabathan prospects by use of three transmitterreceiver loop configurations. At the Sha'ab at Tare prospect all of the loop configurations indicated the mineralized zone. Analysis of the coincident loop data at Sha'ab at Tare reveals that gossanous and altered rock of i0 ohm-m resistivity extends to a depth of 35 m, where there is an unweathered, dry mineralized zone of about 1 ohm-m resistivity. The model further suggests that the rocks at a depth of 55 m and below the water table are even less resistive (0. 1 ohm-m). The TDEM method successfully discriminated conductors within from those below the weathered zone at the Rabathan prospect. Conductors below the weathered zone are identified by a lack of transient response in the early part of the transient decay curve, followed by an increasing response in the middle to late parts of the transient decay curve. Results of these limited tests suggest the potential value of integrating TDEM with other geophysical tools in the Kingdom. Recommendations are made to expand these tests into a more comprehensive program that will evaluate the TDEM potential in various geologic environments that are host to mineral deposits of diverse origin.
Feasibility of a time-domain electromagnetic survey for mapping deep-sea hydrothermal deposits
NASA Astrophysics Data System (ADS)
Jang, H.; KIM, H. J.
2014-12-01
Marine controlled-source electromagnetic (CSEM) surveying has already become a popular tool for hydrocarbon exploration. Possible targets of the marine CSEM survey, other than hydrocarbon, may be marine hydrothermal mineral deposits. In transient EM (TEM) measurements, secondary fields which contain information on hydrothermal deposits in the seafloor can be measured in the absence of strong primary fields. The TEM system is useful to the development of compact, autonomous instruments which are well suited to submersible-based surveys. In this paper, we investigate the possibility of applying an in-loop TEM system to the detection of marine hydrothermal deposits through a one-dimensional modeling and inversion study. The feasibility study showed that TEM responses are very sensitive to a highly conductive layer. Time-domain target responses are larger and appear earlier in horizontal magnetic fields than in vertical ones. An inverse problem is formulated with the Gauss-Newton method and solved with the damped and smoothness-constrained least-squares approach. The test example for a marine hydrothermal TEM survey demonstrated that the depth extent, conductivity and thickness of the highly conductive layer are well resolved.
Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes
Turner, C.D.; Bacon, L.D.
1987-03-01
A thin-slot formalism for use with finite-difference time-domain (FDTD) electromagnetics codes has been evaluated in both two and three dimensions. This formalism allows narrow slots to be modeled in the wall of a scatterer without reducing the space grid size to the gap width. In two dimensions, the evaluation involves the calculation of the total fields near two infinitesimally thin coplanar strips separated by a gap. A method-of-moments (MoM) solution of the same problem is used as a benchmark for comparison. Results in two dimensions show that up to 10% error can be expected in total electric and magnetic fields both near (lambda/40) and far (1 lambda) from the slot. In three dimensions, the evaluation is similar. The finite-length slot is placed in a finite plate and an MoM surface patch solution is used for the benchmark. These results, although less extensive than those in two dimensions, show that slightly larger errors can be expected. Considering the approximations made near the slot in incorporating the formalism, the results are very promising. Possibilities also exist for applying this formalism to walls of arbitrary thickness and to other types of slots, such as overlapping joints. 11 refs., 25 figs., 6 tabs.
Model based approach to UXO imaging using the time domain electromagnetic method
Lavely, E.M.
1999-04-01
Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detector modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.
A time-domain electromagnetic sounder for detection and characterization of groundwater on Mars
NASA Astrophysics Data System (ADS)
Grimm, Robert E.; Berdanier, Barry; Warden, Robert; Harrer, James; Demara, Raymond; Pfeiffer, James; Blohm, Richard
2009-09-01
A prototype time-domain electromagnetic (TDEM) sounder was developed to technical readiness level (TRL) 5 to detect and characterize deep groundwater on Mars. The TDEM method induces eddy currents in the subsurface by abrupt extinction of a steady current in a large, flat-lying loop antenna, and the subsurface response is measured using the same loop or a separate receiver. TDEM has been widely used in terrestrial groundwater exploration and is ideally suited to sense the high electrical conductivity associated with saline groundwater expected on Mars. The inductive regime of TDEM is distinct from ground-penetrating radar: the latter has higher resolution but smaller depth of investigation. Our Mars-prototype TDEM was tested in the laboratory and at a local field site before the principal test was performed on Maui, Hawaii. This location was chosen because of its analogy to Mars in electrical properties: dry, resistive basalt over saline pore water. Results compared favorably to soundings made with a commercial TDEM, clearly detecting the seawater interface at depths of 250 m. We subsequently developed a ballistic deployment system for the loop antenna suitable for robotic missions. Compressed gas launches two projectiles; each consists of two spools on a guide stick. Payout on one spool is back towards the launcher and on the other toward its twin on the other projectile. In this way a triangular loop antenna is formed. The full system was tested twice, successfully achieving a distance of ˜70 m in both. A system capable of deploying a 200 m loop antenna on Mars would have mass <6 kg (including 0.3 kg electronics) and within one sol could detect groundwater at depths up to 5 km. TDEM can probe to depths not possible for radar and answer the question: does groundwater - and a likely subsurface habitable zone - exist on Mars?
Use of the finite-difference time-domain method in electromagnetic dosimetry
Sullivan, D.M.
1987-01-01
Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N)/sup 2/, and computation time on the order of (3N)/sup 3/ where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane.
Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy
2013-01-01
Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.
NASA Astrophysics Data System (ADS)
Vetrov, A.; Mejzr, I.
2010-12-01
While developing a new Helicopter Time Domain Electromagnetic system (P-THEM), Pico Envirotec Inc (PEI) has studied the effect of the transmitter assembly on the acquired data. The P-THEM system consists of a loop-transmitter assembly, powered by a motor generator, 3-axis coil receiver attached at the midpoint of a tow cable and an additional Z-axis (dB/dt) receiver installed on the rear section of the transmitter loop. The system is towed by a helicopter on a 230 foot long tow cable. The transmitter loop is designed to produce a peak magnetic moment of approximately 250,000 NIA with a base frequency of 30 Hz (adjustable to 25Hz) and a quarter length duty cycle (4 ms on-time). The secondary field acquired with a dB/dt receiver coil consists of a ground response and a system response: SF=Rg+Rsys, where SF - the secondary field, Rg - ground response, Rsys - system response. The system itself, especially the transmitter assembly, being a conductor in an induced magnetic field, creates a magnetic anomaly. The influence of the transmitter assembly anomaly on the received signal depends on the position of the receiver coil against the transmitter, the intensity of on-time pulse and transmitter electro-magnetic properties. At the same time, the ground response acquired with a receiver coil depends on the length and the moment of transmitter pulse, as well as the position and distance of the receiver coil from the ground. This can be for vertical field (Z) receiver coil described as RXz(t)=e(t)pz(t)Rgz(t)+d(t)k(t)j(t)TXz(t), where RXz(t) - receiver response, e(t) - elevation of the receiver over the ground, pz(t) - horizontal projection of the receiver coil, Rgz(t) - vertical component of ground response, d(t) - distance (elevation) between the receiver coil and the transmitter loop, k(t) - the position of the receiver in the transmitter field, j(t) - the transmitter assembly electromagnetic properties, TXz(t) -transmitter field (Primary field on-time, and transmitter
Mapping permafrost with airborne electromagnetics
NASA Astrophysics Data System (ADS)
Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.
2014-12-01
Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.
Experiment design for time domain surface-to-borehole electromagnetic applications
NASA Astrophysics Data System (ADS)
Kriegshauser, Berthold Franz
Surface-to-borehole electromagnetic (EM) measurements have been used extensively for many applications. Successful application of these techniques requires an extensive presurvey design--the design of the field experiment. Such experiment design should use the most powerful interpretation concepts and software available. The purpose of this dissertation is to illustrate the application of the latest concepts and software on surface-to-borehole experiment design, with particular attention to hydrocarbon applications. The dissertation begins by discussing petrophysical models relating conductivity to primary formation parameters and synthetic noise models for time-domain data. With a reliable noise model and petrophysical information the resolution of the surface-to-borehole technique is illustrated on three typical hydrocarbon applications. The three examples include a three-dimensional (3-D) oil lens at depth, an anisotropic reservoir, and a lateral oil-water contact (OWC) for shallow heavy sands. The 3-D oil lens model study suggests using receivers close to the boundary to resolve the lateral extent of the target, whereas receivers in the center of the body better resolve the resistivity of the reservoir. The second example demonstrates how a joint interpretation of both horizontal magnetic field components can yield superior resolution of the anisotropic conductivity structure compared to an interpretation of individual components. The third case illustrates that the resolution of an OWC is best when the contact is maximally illuminated by the transmitter, and the best receiver locations are at the same depth or deeper than the contact. The vertical magnetic field component offers superior resolution of the OWC location compared to that offered by the horizontal magnetic field component parallel to strike. The physical basis of the resolution for the oil-water contact is illustrated using visualization of the propagating fields. One method of enhancing
Time-domain electromagnetic soundings collected in Dawson County, Nebraska, 2007-09
Payne, Jason D.; Teeple, Andrew P.
2011-01-01
Between April 2007 and November 2009, the U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, collected time-domain electro-magnetic (TDEM) soundings at 14 locations in Dawson County, Nebraska. The TDEM soundings provide information pertaining to the hydrogeology at each of 23 sites at the 14 locations; 30 TDEM surface geophysical soundings were collected at the 14 locations to develop smooth and layered-earth resistivity models of the subsurface at each site. The soundings yield estimates of subsurface electrical resistivity; variations in subsurface electrical resistivity can be correlated with hydrogeologic and stratigraphic units. Results from each sounding were used to calculate resistivity to depths of approximately 90-130 meters (depending on loop size) below the land surface. Geonics Protem 47 and 57 systems, as well as the Alpha Geoscience TerraTEM, were used to collect the TDEM soundings (voltage data from which resistivity is calculated). For each sounding, voltage data were averaged and evaluated statistically before inversion (inverse modeling). Inverse modeling is the process of creating an estimate of the true distribution of subsurface resistivity from the mea-sured apparent resistivity obtained from TDEM soundings. Smooth and layered-earth models were generated for each sounding. A smooth model is a vertical delineation of calculated apparent resistivity that represents a non-unique estimate of the true resistivity. Ridge regression (Interpex Limited, 1996) was used by the inversion software in a series of iterations to create a smooth model consisting of 24-30 layers for each sounding site. Layered-earth models were then generated based on results of smooth modeling. The layered-earth models are simplified (generally 1 to 6 layers) to represent geologic units with depth. Throughout the area, the layered-earth models range from 2 to 4 layers, depending on observed inflections in the raw data and smooth model
Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang
2014-12-15
In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.
NASA Astrophysics Data System (ADS)
Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil
NASA Astrophysics Data System (ADS)
Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil
Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media.
Bakr, Mohamed H; Ahmed, Osman S; El Sherif, Mohamed H; Nomura, Tsuyoshi
2014-05-01
In this paper, we propose a theory for wideband adjoint sensitivity analysis of problems with nonlinear media. We show that the sensitivities of the desired response with respect to all shape and material parameters are obtained through one extra adjoint simulation. Unlike linear problems, the system matrices of this adjoint simulation are time varying. Their values are determined during the original simulation. The proposed theory exploits the time-domain transmission line modeling (TLM) and provides an efficient AVM approach for sensitivity analysis of general time domain objective functions. The theory has been illustrated through a number of examples. PMID:24921783
Finite Difference Time Domain Electromagnetic Scattering from Frequency-Dependent Lossy Materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
During this effort the tasks specified in the Statement of Work have been successfully completed. The extension of Finite Difference Time Domain (FDTD) to more complicated materials has been made. A three-dimensional FDTD code capable of modeling interactions with both dispersive dielectric and magnetic materials has been written, validated, and documented. This code is efficient and is capable of modeling interesting targets using a modest computer work station platform. However, in addition to the tasks in the Statement of Work, a significant number of other FDTD extensions and calculations have been made. RCS results for two different plate geometries have been reported. The FDTD method has been extended to computing far zone time domain results in two dimensions. Finally, the capability to model nonlinear materials has been incorporated into FDTD and validated. The FDTD computer codes developed have been supplied, along with documentation, and preprints describing the other FDTD advances have been included with this report as attachments.
The use of time-domain integral equations in electromagnetism problems
NASA Astrophysics Data System (ADS)
Berthon, A.; Vallet, E.
1984-10-01
The application of time-domain integral equations to the analysis of the scattering and propagation of EM fields is surveyed. Explicit iterative time-stepping procedures are developed for such problems as simple-conductor obstacles, one-dimensional obstacles, orifices, small obstacles, and media of finite conductivity (interface fields, reflection factors, and shielding problems). Numerical results for problems involving the interaction of a dipole field with various cylindrical obstacles are presented in graphs and diagrams.
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
2005-12-01
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Exploration of an alluvial aquifer in Oman by time-domain electromagnetic sounding
NASA Astrophysics Data System (ADS)
Young, M. E.; de Bruijn, R. G. M.; Al-Ismaily, A. Salim
One-third of the population of Oman depends upon groundwater extracted from the alluvium of the Batinah Plain, on the coast of the Gulf of Oman. Deep geophysical exploration techniques were used to determine the depth and nature of the alluvium and the boundaries of the aquifer. The base and structural controls of the alluvial basin at its contact with Tertiary marine sediments and Cretaceous ophiolite were mapped with seismic reflection data, recorded originally for oil exploration. The base of the alluvium dips northward from the foothills of the Northern Oman Mountains, reaching a maximum depth of 2000m at the coast. The varying facies of the alluvium are grossly characterised by different, overlapping ranges of electrical resistivity, depending largely on the clay content and degree of cementation. Resistivities near the coast are reduced by saline intrusion. These variations of resistivity were mapped with time-domain electromagnetic sounding along 400km of profile, to distinguish among the three zones of the alluvial aquifer. The wedge of saline intrusion was also delineated, up to 10km from the coast. The thickness of the saturated gravel aquifer ranges from 20-160m in an area greater than 600km2. Résumé Un tiers de la population d'Oman est alimenté par de l'eau souterraine pompée dans les alluvions de la plaine de Batinah, sur la côte du golfe d'Oman. Des techniques d'exploration géophysique profonde ont été mises en oeuvre pour déterminer la profondeur et la nature des alluvions et les limites de l'aquifère. La base et les contrôles structuraux du bassin alluvial au contact des sédiments marins tertiaires et des ophiolites crétacées ont été cartographiés à partir des données de sismique réflexion obtenues à l'origine pour la recherche pétrolière. La base des alluvions plonge vers le nord à partir du piémont du massif septentrional d'Oman, pour atteindre une profondeur maximale de 2000m sur la côte. Les divers faciès alluviaux
Chen, Hao; Tang, Juming; Liu, Fang
2007-01-01
Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes. PMID:18351003
Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.
Time-domain electromagnetic energy in a frequency-dispersive left-handed medium
Cui Tiejun; Kong Jinau
2004-11-15
From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.
Bringuier, Jonathan N.; Mittra, Raj
2012-01-01
A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data. PMID:23012575
Use of airborne electromagnetic methods for resource mapping
NASA Astrophysics Data System (ADS)
Palacky, G. J.
1993-11-01
Airborne electromagnetic (AEM) methods complement spaceborne remote sensing techniques. AEM surveys carried out from low flying aircraft are capable of detecting geological structures not visible on the surface. The flight height of AEM systems above the ground ranges from 30 to 120 m. Most systems generate primary EM fields by using a loop transmitter; conducting coils are used as antenna to measure the secondary magnetic field caused by conductive inhomogeneities in the ground. The frequency used in AEM surveys (100 Hz to 50 kHz) allows ground penetration in excess of 100 m. At present, two types of AEM systems are widely used: helicopter, frequency-domain, and fixed-wing, towed-bird, time-domain. The most common survey products are apparent conductivity maps. AEM methods are extensively used in prospecting for base and precious metal deposits, kimberlites, uranium, and also in geological mapping, groundwater exploration and environmental investigations.
NASA Technical Reports Server (NTRS)
Taflove, A.; Umashankar, K. R.
1987-01-01
The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.
Hussein, Y.A.; Spencer, J.E.; El-Ghazaly, S.M.; Goodnick, S.M.; /Arizona State U.
2005-09-20
This paper presents an efficient full-wave time-domain simulator for accurate modeling of PIN diode switches. An equivalent circuit of the PIN diode is extracted under different bias conditions using a drift-diffusion physical model. Net recombination is modeled using a Shockley-Read-Hall process, while generation is assumed to be dominated by impact ionization. The device physics is coupled to Maxwell's equations using extended-FDTD formulism. A complete set of results is presented for the on and off states of the PIN switch. The results are validated through comparison with independent measurements, where good agreement is observed. Using this modeling approach, it is demonstrated that one can efficiently optimize PIN switches for better performance.
Smith, J. Torquil
2006-10-01
This software, rbstmultiprince.f, computes polarizations and positions from electromagnetic data and is used in conjunction with technology to detect UXO. This software was funded by the ESTCP program of the DoD. This code makes use of third party code from the 1970s and 1980s that appears to have entered the public domain and is available for free download via the website netlib.org. The code was first developed by the author while he was employed at UCB and funded by the SERDP of the U.S. Army.
Energy Science and Technology Software Center (ESTSC)
2006-10-01
This software, rbstmultiprince.f, computes polarizations and positions from electromagnetic data and is used in conjunction with technology to detect UXO. This software was funded by the ESTCP program of the DoD. This code makes use of third party code from the 1970s and 1980s that appears to have entered the public domain and is available for free download via the website netlib.org. The code was first developed by the author while he was employed atmore » UCB and funded by the SERDP of the U.S. Army.« less
NASA Astrophysics Data System (ADS)
Panayappan, Kadappan
With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these
Silva, F. da; Hacquin, S.
2005-03-01
We present a novel numerical signal injection technique allowing unidirectional injection of a wave in a wave-guiding structure, applicable to 2D finite-difference time-domain electromagnetic codes, both Maxwell and wave-equation. It is particularly suited to continuous wave radar-like simulations. The scheme gives an unidirectional injection of a signal while being transparent to waves propagating in the opposite direction (directional coupling). The reflected or backscattered waves (returned) are separated from the probing waves allowing direct access to the information on amplitude and phase of the returned wave. It also facilitates the signal processing used to extract the phase derivative (or group delay) when simulating radar systems. Although general, the technique is particularly suited to swept frequency sources (frequency modulated) in the context of reflectometry, a fusion plasma diagnostic. The UTS applications presented here are restricted to fusion plasma reflectometry simulations for different physical situations. This method can, nevertheless, also be used in other dispersive media such as dielectrics, being useful, for example, in the simulation of plasma filled waveguides or directional couplers.
NASA Astrophysics Data System (ADS)
El-Kaliouby, Hesham; Abdalla, Osman
2015-04-01
One-third of the population of Oman depends on the groundwater extracted from the alluvium deposits located along the coast of the Gulf of Oman. However, groundwater depletion and seawater intrusion constitute major challenges along the coastal water accumulations in Oman. The objective of this study is to locate the extent of seawater intrusion and to map the shallow alluvial aquifer in the region, where water accumulates from the rain or the flooding at AlKhod dam. In order to assess the effect of groundwater infiltration, which recharges the aquifer and fights the seawater invasion, a quantitative approach for the groundwater quality and distribution is required to provide reasonable knowledge on the spatial distribution of the aquifers, their thickness and the type of sediments. When groundwater wells and their subsurface geologic and electrical logs are not available or not deep enough, surface geophysical surveys can be considered due to their low cost and short acquisition time. The application of time-domain electromagnetic (TDEM) method in Al-Khod area, Oman has proven to be a successful tool in mapping the fresh/saline water interface and for locating the depth of fresh water aquifer. The depths and inland extents of the saline zone were mapped along three N-S TDEM profiles. The depths to the freshwater table and saline interface calculated from TDEM closely match the available well data.
The inclusion of wall loss in electromagnetic finite-difference time-domain thin-slot algorithms
Riley, D.J.; Turner, C.D.
1990-09-01
Sub-gridding techniques enable finite-difference time-domain (FDTD) electromagnetic codes to model apertures that are much narrower than the spatial resolution of the FDTD mesh. Previous thin-slot methods have assumed that the slot walls are perfectly conducting. As the slot depth-to-width ratio becomes large, interior wall losses for realistic materials can significantly affect the coupling through the slot, and therefore these loss effects should not be neglected. This paper presents two methods for incorporating loss for walls with good, but not perfect conductivity, into the FDTD calculations. The first method modifies an FDTD equation internal to the slot to include a surface-impedance contribution. This method is appropriate for the usual FDTD thin-slot formalisms. The second method includes the losses into a half-space'' integral equation that can be used by the recently introduced Hybrid Thin-Slot Algorithm. Results based on the two methods are compared for a variety of slot parameters and wall conductivities.
Goldman, M.; Gvirtzman, H.; Hurwitz, S.
2004-01-01
An extensive time domain electromagnetic (TDEM) survey covering the Sea of Galilee with a dense grid of points has been recently carried out. A total of 269 offshore and 33 supplementary onshore TDEM soundings were performed along six N-S and ten W-E profiles and at selected points both offshore and onshore along the whole coastal line. The interpreted resistivities were calibrated with the direct salinity measurements in the Haon-2 borehole and relatively deep (5 m) cores taken from the lake bottom. It was found that resistivities below 1 ohm-m are solely indicative of groundwater salinity exceeding 10,000 mg Cl/l. Such low resistivities (high salinities) were detected at depths greater than 15 m below almost the entire bottom of the lake. At some parts of the lake, particularly in the south, the saline water was detected at shallower depths, sometimes at a few meters below the bottom. Relatively high resistivity (fresh groundwater) was found along the margins of the lake down to roughly 100 m, the maximum exploration depth of the system. The detected sharp lateral contrasts at the lake margin between high and low resistivities coincide with the faults separating the carbonate and clastic units, respectively. The geometry of the fresh/saline groundwater interface below the central part of the lake is very similar to the shape of the lake bottom, probably due to the diffusive salt transport from the bottom sediments to the lake water. The above geophysical observations suggest differentsalt transport mechanisms from the sediments to the central part of the lake (diffusion) and from regional aquifers to the margins of the lake (advection). ?? 2004 Science From Israel/LPPLtd.
NASA Astrophysics Data System (ADS)
Grimm, Robert E.
2003-04-01
The time domain electromagnetic (TDEM) method has enjoyed wide success in terrestrial groundwater exploration, and the contrast in electrical conductivity between dry overburden and groundwater containing even a small amount of dissolved solids on Mars will yield a robust response. However, moist clays or even ores (e.g., massive hematite) will also be electrically conductive and could be mistaken for aquifers on Mars if proper geologic context is lacking. Surface nuclear magnetic resonance (SNMR) is the only noninvasive geophysical method that responds nearly uniquely to water. As the measured EMF is proportional to the proton-precession frequency, which in turn is proportional to the planet's static magnetic field, SNMR signals are comparatively weak. Using small systems of several kilograms and several watts, the exploration depth of SNMR is one to two orders of magnitude smaller than TDEM: the latter can detect water to depths up to a few kilometers, whereas the former is limited to depths of a few tens of meters. There is no improvement in SNMR signal-to-noise with increasing static field where penetration is controlled by aquifer salinity (skin depth). As reasonable integration times cannot substantially increase the exploration depth, much larger transmitter current or loop mass (either requiring system masses of tens to hundreds of kilograms) are the only way to implement SNMR for exploration to depths of at least hundreds of meters. In spite of some ambiguity in target identification, TDEM is recommended for the first generation of in situ active-source EM measurements for groundwater on Mars.
Airborne Electromagnetic Mapping of Subsurface Permafrost
NASA Astrophysics Data System (ADS)
Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.
2011-12-01
Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical
Airborne electromagnetic imaging of discontinuous permafrost
Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.
2012-01-01
The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ???1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ???4 million years and the configuration of permafrost to depths of ???100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface-groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ???1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments. ?? 2012 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Jernsletten, J. A.
2005-05-01
Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and
Shah, Sachin D.; Kress, Wade H.; Land, Lewis A.
2007-01-01
During July 2005, the U.S. Geological Survey, in cooperation with the New Mexico Bureau of Geology and Mineral Resources, conducted a reconnaissance study in the Estancia Valley in central New Mexico to characterize water quality using time-domain electromagnetic (TDEM) surface-geophysical soundings. TDEM sounding is one of a number of surface geophysical methods that provide a relatively quick and inexpensive means to characterize subsurface geologic and hydrogeologic properties. TDEM surface geophysical methods can be used to detect variations in the electrical resistivity of the subsurface, which in turn can be related to variations in the physical and chemical properties of soil, rock, and pore fluids.
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1989-01-01
The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.
NASA Astrophysics Data System (ADS)
Mur, G.
An efficient and accurate finite-element package is described for computing transient as well as time-harmonic three-dimensional electromagnetic fields in inhomogeneous media. For the expansion of the field in an inhomogeneous configuration, edge elements are used along the interfaces between media with different medium properties to allow for the continuity conditions of the field across these interfaces, nodal elements are used in the remaining homogeneous subdomains. In the domain of computation the package decides locally what type of element has to be used for obtaining the user-specified accuracy of modeling the field. In this way optimum results are obtained both in regard to computational efficiency and in regard to desired accuracy. The electromagnetic compatibility relations are implemented for avoiding spurious solutions.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of
NASA Astrophysics Data System (ADS)
Hamimid, M.; Mimoune, S. M.; Feliachi, M.
2013-01-01
In this paper, a time stepping finite volume method (FVM) associated with the modified inverse Jiles-Atherton model for the nonlinear electromagnetic field computation is presented. To describe the dynamic behavior in the conducting media, the effective field is modified by adding two counter-fields associated respectively to the eddy current and excess losses. The hysteresis loss can be estimated by the integration over the obtained hysteresis loop at each frequency. To examine the validity of the proposed dynamic model coupled with FVM, the computed total losses and hysteresis loops are compared to experiments.
NASA Astrophysics Data System (ADS)
Carlson, B. E.; Bitzer, P. M.; Burchfield, J.
2015-12-01
Major unknowns in lightning research include the mechanism and dynamics of lightning channel extension. Such processes are most simple during the initial growth of the channel, when the channel is relatively short and has not yet branched extensively throughout the cloud. During this initial growth phase, impulsive electromagnetic emissions (preliminary breakdown pulses) can be well-described as produced by current pulses generated as the channel extends, but the overall growth rate, channel geometry, and degree of branching are not known. We approach such issues by examining electric field change measurements made with the Huntsville Alabama Marx Meter Array (HAMMA) during the first few milliseconds of growth of a lightning discharge. We compare HAMMA observations of electromagnetic emissions and overall field change to models of lightning channel growth and development and attempt to constrain channel growth rate, degree of branching, channel physical properties, and uniformity of thunderstorm electric field. Preliminary comparisons suggest that the lightning channel branches relatively early in the discharge, though more complete and detailed analysis will be presented.
Extracting very early time airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Macnae, J. C.
2013-12-01
Many helicopter EM systems stream data during both the on- and off-time, and in theory should be able to extract responses at either zero delay (simultaneous with the transmitter changes) and/or at discrete delays determined by the sample rate. In practice, this has not been the case. Historically, VTEM data, have only been ';usable' at delays longer than say 70 to 100 us. Systems such as mini-Skytem (Schamper & Auken, EAGE 2012) have been able to make quantitative measurements at very early delays through reducing transmitter power (and necessarily signal/noise levels). Recent developments now permit extraction of quantitative data from high power streamed VTEM data at delays as short as 5 us. Such quantitative very early time data is the key to extracting near-surface conductivities. Macnae & Baron-Hay (ASEG, 2008) improved early time data through subtraction of a constant 'parasitic' response caused by capacitive current leakage in the transmitter loop wiring. This permitted useful data to be extracted from about 20 or 25 us. More recently, further improvements have been made using high altitude data as a reference, and time-domain deconvolution as discussed by Stolz & Macnae (Geophysics 1998). The procedure successfully 1) subtracts the coupling-dependent primary and 2) then corrects the observed secondary for bandwidth limitations and the parasitic effects. The parasitic correction uses both static and bucking dependent components derived from the residual on-time response of the transmitter. Complications in the process derive from problems in exactly measuring primary fields: with very low noise levels in the VTEM system, extensive conductors may be detected to distances (depths) of up to 3 km. It is uncommon for helicopters to collect data at this height, and as a result it is necessary to predict the primary from measurements at lower altitude. Such a prediction can be obtained from repeat measurements at different heights over a 'relatively uniform' area
Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.
2014-01-01
From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.
NASA Astrophysics Data System (ADS)
Rebolledo-Vieyra, M.; Ravelo-Cervantes, J. I.; Lecossec, A.
2007-12-01
This study reports initial results of combined Time Domain Electromagnetic (TDEM) and vertical electrical sounding (VES), geophysical characterization of the Quintana Roo coastal aquifer, with the aim of establishing effective protocols for subsequent surveys in the area, through the association of TDEM and VES. The high resistivity of the carbonate terrain, combined with the very low resistivity range of fresh-water and sea-water, are ideal to use both tools in combination. The results show that both methods used in a combination may provide a useful tool for hydrogeologial studies. In this survey we were able to identifiy a fracture 100 m x 40 m, that was correlated to fresh-water discharges in to the Puerto Morelos Reef lagoon.
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2015-09-01
In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.
NASA Astrophysics Data System (ADS)
Fujita, Yoshihisa; Ikuno, Soichiro; Kubo, Shin; Nakamura, Hiroaki
2016-01-01
The effect of the polarizer miter bend (PMB) reflector on polarization is numerically investigated by using the finite-difference time-domain (FDTD) method. The Drude model is implemented to take into account the fact that the waveguide wall is prepared from a dispersive medium. In electron cyclotron resonance heating (ECRH), the corrugated waveguide and miter bend are adopted for transmitting millimeter electromagnetic waves. In addition, PMB is employed to improve the plasma heating efficiency. The results of computations show that modes other than the input mode are also generated owing to the reflection at the miter bend mirror/PMB reflector. Moreover, it is found that elliptical polarization is observed after the linear polarization passes through PMB.
NASA Astrophysics Data System (ADS)
Laven, Philip; Lock, James A.; Adam, John A.
2015-09-01
We calculated scattering of an electromagnetic plane wave by a radially inhomogeneous particle and a radially inhomogeneous bubble when the square of the refractive index profile is parabolic as a function of radius. Such a particle or bubble is called a generalized Luneburg lens. A wide variety of scattering phenomena can occur, depending on the value of the two adjustable parameters of the parabola. These phenomena, including transmission rainbows, the weak caustic for near-critical-angle scattering by a bubble, surface orbiting, the interior orbiting paths of morphology-dependent resonances, and the separation of diffraction are studied here using wave theory and time domain scattering. These phenomena are also compared with their appearance or absence for scattering by a homogeneous sphere.
Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.
2016-05-01
In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more
INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA
CUMMINS GD
2010-11-11
As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending
NASA Astrophysics Data System (ADS)
Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila
2014-09-01
The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.
NASA Astrophysics Data System (ADS)
Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila
2014-12-01
The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.
Inversion of Airborne Electromagnetic Survey Data, Styx River Area, Alaska
NASA Astrophysics Data System (ADS)
Kass, A.; Minsley, B. J.; Smith, B. D.; Burns, L.; Emond, A.
2014-12-01
A joint effort by the US Geological Survey (USGS) and the Alaska Division of Geological & Geophysical Surveys (DGGS) aims to add value to public domain airborne electromagnetic (AEM) data, collected in Alaska, through the application of newly developed advanced inversion methods to produce resistivity depth sections along flight lines. Derivative products are new geophysical data maps, interpretative profiles and displays. An important task of the new processing is to facilitate calibration or leveling between adjacent surveys flown with different systems in different years. The new approach will facilitate integration of the geophysical data in the interpretation and construction of geologic framework, resource evaluations and to geotechnical studies. Four helicopter airborne electromagnetic (AEM) surveys have been flown in the Styx River area by the DGGS; Styx River, Middle Styx, East Styx, and Farewell. The Styx River flown in 2008 and Middle Styx in flown 2013, cover an area of 2300 square kilometers. These data consist of frequency-domain DIGHEM V surveys which have been numerically processed and interpreted to yield a three-dimensional model of electrical resistivity. We describe the numerical interpretation methodology (inversion) in detail, from quality assessment to interpretation. We show two methods of inversion used in these datasets, deterministic and stochastic, and describe how we use these results to define calibration parameters and assess the quality of the datasets. We also describe the difficulties and procedures for combining datasets acquired at different times.
NASA Astrophysics Data System (ADS)
Wu, Xianghong
Two electromagnetic methods were used to analyse the geoelectric structure of the subsurface of regions of the Precambrian Shield in Canada: the magnetotelluric (MT) and time-domain electromagnetic (TEM) methods. Magnetotelluric soundings were made at 60 sites in the southwestern Northwest Territories, Canada, along the LITHOPROBE SNORCLE Transect Corridor 1 and 1A, in the summer of 1996. The sites are located in southwestern Northwest Territories, Canada, between latitudes 60°--65°N and longitudes 110°--125°W, and cross the Archean Slave Province, the Proterozoic Buffalo Head, Great Bear Magmatic Arc, Hottah, Fort Simpson and Nahanni terranes, and the Great Slave Lake Shear Zone. Phanerozoic sedimentary rocks overlie the Proterozoic terranes. The main object of this project is to map the fracture zones and fresh/saline water interface in Precambrian granitic rocks using the surface TEM method. The TEM surveys were completed at Sites B, D, URL and A. A GEONICS PROTEM47 system with a 100 m transmitter loop was used. The data were collected for receiver offsets ranging from 0--280 m on four sides of transmitter loop. Analysis of the TEM and borehole log data indicates a basic three-layer structure: a thin conductive surface layer, a thick resistive second layer with an embedded conductive layer at some stations, and a conductive bottom layer. The results of this study show the TEM method can be used to investigate the fracture zones and groundwater salinity distribution in the Precambrian granitic rocks and contribute to site investigations for nuclear waste deposit. The TEM study in the Lac du Bonnet Batholith was successful in demonstrating the potential of the TEM methods in mapping groundwater salinity in granitic batholith. The PROTEM47 instrument, in combination with a 100 m transmitter loop, provides a suitable TEM system for mapping the resistivity structure of the Lac du Bonnet batholith down to a depth of 300--400 m. For deeper penetration and more
Development of 3D electromagnetic modeling tools for airborne vehicles
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
The main goal of this report is to advance the development of methodologies for scattering by airborne composite vehicles. Although the primary focus continues to be the development of a general purpose computer code for analyzing the entire structure as a single unit, a number of other tasks are also being pursued in parallel with this effort. One of these tasks discussed within is on new finite element formulations and mesh termination schemes. The goal here is to decrease computation time while retaining accuracy and geometric adaptability.The second task focuses on the application of wavelets to electromagnetics. Wavelet transformations are shown to be able to reduce a full matrix to a band matrix, thereby reducing the solutions memory requirements. Included within this document are two separate papers on finite element formulations and wavelets.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Fierro, Elisa; Sapia, Vincenzo; Civico, Riccardo
2015-04-01
The Piano di Pezza fault is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time by means of high-resolution seismic and electrical resistivity tomography coupled with time domain electromagnetic (TDEM) measurements the shallow subsurface of a key section of the Piano di Pezza fault. Our surveys cross a ~5 m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing some Late Holocene alluvial fans. We provide 2-D Vp and resistivity images which clearly show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. We can estimate the dip (~50°) and the Holocene vertical displacement of the master fault (~10 m). We also recognize in the hangingwall some low-velocity/low-resistivity regions that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of several paleo-earthquakes older than the Late Holocene events previously recognized by paleoseismic trenching. Conversely, due to the limited investigation depth of seismic and electrical tomography, the estimation of the cumulative amount of Pleistocene throw is hampered. Therefore, to increase the depth of investigation, we performed 7 TDEM measurements along the electrical profile using a 50 m loop size both in central and offset configuration. The recovered 1-D resistivity models show a good match with 2-D resistivity images in the near surface. Moreover, TDEM inversion results indicate that in the hangingwall, ~200 m away from the surface fault trace, the carbonate pre-Quaternary basement may be found at ~90-100 m depth. The combined approach of electrical and
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Li, Y.; Nabighian, M.
2004-12-01
One of the outstanding problems in managing water resources in geologically complex aquifers is to develop improved techniques for mapping compartmentalization due to faulting. And although the role of faults in aquifer dynamics can vary considerably, knowledge of their location is key to understanding aquifer recharge and developing a sensible model for predicting aquifer response due to anthropogenic loads. We have explored the application of time--domain electromagnetic methods for mapping shallow aquifer faults on the western flanks of the Estancia Basin, central New Mexico. The field site is underlain by massive Pennsylvanian limestones (Madera Group) subsequently faulted by Laramide tectonics of the Ancestral Rockies and Neogene extension of the Rio Grande Rift. Two experimental configurations were deployed: a large 50 × 40 m transmitter loop with receiver stations located on a 5 m grid over the loop's interior; and an azimuthal survey consisting of a smaller fixed transmitter with receiver stations at ˜2 m intervals along a 30 m radius circle centered on the transmitter. Three--component transients of magnetic field due to a fast linear ramp--off in the transmitter were recorded at each station. As a rapid reconnaisance tool, the azimuthal experiment is well--suited for identification of subsurface fault planes since symmetry constraints require a vanishing azimuthal ̂ φ component of magnetic field when the electrical strike, or fault plane, lies in the ̂ φ direction. However, each of the experimental configurations revealed that the site's electrical structure is far more three--dimensional than previously believed and is not dominated by the response of a previously identified fault plane. Instead, we have observed spatially coherent transient signals which may indicate compartmentalization over length scales as small as a few tens of meters. Sections of this work were performed at Sandia National Laboratories. Sandia is a multi--program laboratory
NASA Astrophysics Data System (ADS)
Chen, Jinyuan
The three-dimensional finite-difference time-domain (FDTD) method has been used to calculate local, layer-averaged and whole-body averaged specific absorption rates (SARs) and internal radio-frequency (RF) currents in an anatomically -based model of a human for plane-wave (far-field) exposures from 20 to 100 MHz and for spatially variable electromagnetic fields of a parallel-plate applicator representative of RF dielectric heaters used in industry (near-field). The calculated results are in agreement with the experimental data of Hill and others. While the existence of large foot currents has been known previously, substantial RF currents (600-800 mA) induced over much of the body are obtained for E-polarized fields suggested in the 1982 ANSI RF safety guideline. The FDTD method has also been used for simulating Annular Phased Array (APA) of dipole antennas for hyperthermia of deep-seated tumors. Anatomically-based models based on two different regions of the human body (14,417 and 13,133 cells) were used to calculated the SAR distributions with a resolution of 1.31 cm. Annular-phased arrays of eight dipole antennas couple to the human body through either a homogeneous or a tapered water bolus with air assumed outside the ring of dipoles. The objective of the calculations was to focus the energy to a couple of assumed tumor sites in the liver or the prostate. The geometrical optics approximation and principle of focused arrays were used to estimate the phases for individual dipoles to focus the electromagnetic energy into the tumor and its surrounding. Considerably focused power distributions with SARs on the order of 100 W/Kg for input powers of 400-700 W have been obtained for assumed tumor sites in the liver and the prostate using tapered boluses and optimized magnitudes and phases of power to the various dipoles. Lastly the FDTD technique is used to calculate the internal fields and the induced current densities in anatomically based models of a human using 5
Three-dimensional inversion of frequency domain airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Cox, Leif Harrington
Airborne electromagnetic (AEM) surveys provide vast amounts of data over remote areas that may not be ground accessible. Typical surveys may contain hundreds of thousands of data points sampled every few meters. Quantitative interpretation of this large amount of data is computationally very time consuming and challenging. This dissertation presents two methods, based on the integral equation (IE), to invert AEM data in three dimensions. One inversion method is based on the localized quasi-linear (LQL) approximate inversion, which I have modified so the inverse and forward operators only include a small area of the inversion domain. This is possible for airborne data interpretation because the footprint, or region that affects the response of each measurement, is relatively small relative to the typical survey area. This modification to the approximate LQL inversion enables interpretation of full airborne surveys using tens of thousands of data points and hundreds of thousands of cells. The method is tested on both synthetic and field data, each showing accurate results. The second interpretation method is a rigorous inversion, which uses the full accuracy of the IE method. It is based on the iterative solution of the domain and field equations, while keeping the inverse operator linear to speed the inversion process. The domain equation is solved using a preconditioned form of the complex generalized minimum residual solver to guarantee convergence. This inversion includes the footprint method developed for the LQL inversion. It has also been tested on both synthetic and field data, demonstrating excellent results with respect to both the speed and accuracy of the method. With present computing power, the rigorous method is intended to interpret subsets of AEM surveys. The LQL inversion can be applied to entire survey areas, but the accuracy is limited by the approximate nature of the inversion. These two methods pair nicely, with the LQL method used to identify
NASA Astrophysics Data System (ADS)
Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie
2010-04-01
Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.
Characterization of shallow ocean sediments using the airborne electromagnetic method
NASA Technical Reports Server (NTRS)
Won, I. J.; Smits, K.
1986-01-01
Experimental airborne electromagnetic (AEM) survey data collected in Cape Cod Bay are used to derive continuous profiles of water depth, electrical depth, water conductivity, and bottom sediment conductivity. Through a few well-known empirical relationships, the conductivities are used, in turn, to derive density, porosity, sound speed, and acoustic reflectivity of the ocean bottom. A commercially available Dighem III AEM system was used for the survey without any significant modification. The helicopter-borne system operated at 385 and 7200 Hz; both were in a horizontal coplanar configuration. The interpreted profiles show good agreement with available ground truth data. Where no such data are available, the results appear to be very reasonable. Compared with the shipborne electrode array method, the AEM method can determine the necessary parameters at a much higher speed with a better lateral resolution over a wide range of water depths from 0 to perhaps 100 m. The bottom sediment conductivity that can be measured by the AEM method is closely related to physical properties of sediments, such as porosity, density, sound speed, and, indirectly, sediment types that might carry broad implications for various offshore activities.
Hydrogeophysics at the watershed-scale using airborne electromagnetics
NASA Astrophysics Data System (ADS)
Minsley, B. J.; Abraham, J. D.; Bedrosian, P. A.; Cannia, J. C.; Smith, B. D.
2011-12-01
Airborne electromagnetic (AEM) surveys provide densely sampled data over large areas (typically several hundred sq. km) that cannot be covered effectively using ground-based methods. AEM data are inverted to infer the distribution of electrical resistivity structures from shallow depths to several hundred meters. These models convey unparalleled details that are used to make inferences about hydrogeologic properties and processes at the watershed-scale. This information is being used in groundwater models that inform water management decisions, to better understand geologic frameworks, and to improve climate change models. We present the results of frequency-domain AEM surveys acquired by the US Geological Survey that have been used for building hydrogeologic frameworks in Nebraska, and understanding permafrost distributions in Alaska. An important aspect of interpreting the AEM data in a hydrogeologic context involves quantifying uncertainty and understanding the constraints on subsurface properties provided by the measured geophysical data. To achieve this, we present a trans-dimensional Bayesian Markov chain Monte Carlo (MCMC) algorithm that samples the distribution of models consistent with the measured data. Assessing the distribution of plausible models, rather than a single 'best-fit' model, provides valuable details about parameter uncertainty and non-uniqueness that leads to a more robust interpretation. In addition, we show how the MCMC algorithm can be used to evaluate the noise level in the measured data as well as errors in the elevation of the AEM system, both of which influence the space of acceptable models.
Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies
Josten, N.E.
1992-03-01
The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.
Bultman, Mark W.; Gettings, Mark E.; Wynn, Jeff
1999-01-01
In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a "bird" about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97–457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest desert setting as a means of mapping depth to water.
Efficient Probabilistic Inversion of Airborne Electromagnetic Data Under Spatial Constraints
NASA Astrophysics Data System (ADS)
Hauser, J. R.; Gunning, J.; Annetts, D.
2014-12-01
Airborne electromagnetic (AEM) surveys are frequently used to delineate geological interfaces in the subsurface, such as the base of regolith or boundaries of an aquifer. However, inversion of AEM data is inherently non-unique, and estimating the robustness of models is often as important as finding a valid model. An example of this is groundwater modelling, where geological model uncertainty is one of the main sources of risk. In a Bayesian framework, Markov chain Monte Carlo (McMC) algorithms have been successful in mapping uncertainty in 1D model space corresponding to each AEM fiducial. But full McMC sampling for laterally-correlated models is computationally expensive, and independent 1D samplers are often the only feasible alternative. In these laterally independent 1D models, abrupt transverse changes in model parameters can occur, making it difficult to derive spatially coherent interfaces. By comparison, classically regularized deterministic inversions can take spatial correlation between 1D models into account, but provide little useful information about model uncertainty. Here we introduce a Bayesian parametric bootstrap approach to invert for layer properties, interfaces and related uncertainties, using a 1D kernel but incorporating lateral correlation. These methods treat Bayesian prior information on model uncertainty and its spatial correlation as implied observations, then apply the classical parametric bootstrap. Numerical examples demonstrate that our Bayesianized bootstrap will explore model space adequately for non-pathological situations, while requiring many fewer forward problem solves than a comparable McMC algorithm. Recovered uncertainties for synthetic data and field data exhibit the expected patterns; for example, we observe the well-known increase in uncertainty in interface depths with increasing depth to the interface. We believe the Bayesian parametric bootstrap offers an attractive and satisfactory compromise between efficiency and
Resolution analyses for selecting an appropriate airborne electromagnetic (AEM) system
NASA Astrophysics Data System (ADS)
Christensen, Niels B.
2012-07-01
The choice of an appropriate airborne electromagnetic system for a given task should be based on a comparative analysis of candidate systems, consisting of both theoretical considerations and field studies including test lines. It has become common practice to quantify the system resolution for a series of models relevant to the survey area by comparing the sum over the data of squares of noise-normalised derivatives. We compare this analysis method with a resolution analysis based on the posterior covariance matrix of an inversion formulation. Both of the above analyses depend critically on the noise models of the systems being compared. A reasonable estimate of data noise and other sources of error is therefore of primary importance. However, data processing and noise reduction procedures, as well as other system parameters important for the modelling, are commonly proprietary, and generally it is not possible to verify whether noise figures have been arrived at by reasonable means. Consequently, it is difficult - sometimes impossible - to know if a comparative analysis has a sound basis. Nevertheless, in the real world choices have to be made, a comparative system analysis is necessary and has to be approached in a pragmatic way involving a range of different aspects. In this paper, we concentrate on the resolution analysis perspective and demonstrate that the inversion analysis must be preferred over the derivative analysis because it takes parameter coupling into account, and, furthermore, that the derivative analysis generally overestimates the resolution capability. Finally we show that impulse response data are to be preferred over step response data for near-surface resolution.
Airborne electromagnetic surveys in support of groundwater models in western Nebraska
NASA Astrophysics Data System (ADS)
Abraham, J. D.; Viezzoli, A.; Cannia, J. C.; Smith, B. D.; Brown, W.; Peterson, S. M.
2010-12-01
The USGS, SkyTEM, Aarhus Geophysics, North Platte, South Platte and Twin Platte Natural Resource Districts have collaborated to collect airborne time domain geophysical surveys over selected of areas of western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater-surface water relations to be used in water management decisions. The base of aquifer in many of these areas is in excess of 100 meters deep and little detailed information of the configuration of the bedrock exits. Many of the aquifers exist as alluvial fills in paleochannels upon complex bedrock topography. Controlling factors for groundwater flow are the variations of the hydraulic properties of the fill and the boundary geometry of the paleochannels. Results from groundwater modeling efforts prior to the addition of the airborne data revealed the hydrogeologic framework was sufficient for the regional scale models, but when these models were reduced to 40 acres cell size, the lack of detail adversely affected model results. The SkyTEM system is a helicopter-borne time-domain electromagnetic system capable of detecting small changes in resistivity from the near-surface down to depths of up to 300 m and is well-suited for aquifer mapping. An innovative design of the receiver coils and transmitter pattern eliminates the self response that is characteristic of airborne systems and spatial measurement sensors mounted on a rigid frame enable rigorous quantitative interpretation of the EM data. The ability to quickly collect and deliver high quality, high resolution geophysical data contributes significantly to modeling efforts and further understanding of subsurface hydrological systems. The raw AEM data have to be edited to exclude data that have been affected by coupling with man made infrastructures. For resistivity data to be related to lithologic information to refine groundwater model inputs, and to make the
NASA Astrophysics Data System (ADS)
Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis
2012-04-01
Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.
Detection of Perfectly-Conducting Targets with Airborne Electromagnetic Systems
NASA Astrophysics Data System (ADS)
Smiarowski, Adam
A significant problem with exploring for electrically conductive mineral deposits with airborne electromagnetic (AEM) methods is that many of the most valuable sulphide deposits are too conductive to be detected with conventional systems. High-grade sulphide deposits with bulk electrical conductivities on the order of 100,000 S/m can appear as "perfect conductors" to most EM systems because the decay of secondary fields (the "time constant" of the deposit) generated in the target by the system transmitter takes much longer than the short measuring time of EM systems. Their EM response is essentially undetectable with off-time measurements. One solution is to make measurements during the transmitter on-time when the secondary field of the target produced by magnetic flux exclusion is large. The difficulty is that the secondary field must be measured in the presence of a primary field which is orders of magnitude larger. The goal of this thesis is to advance the methodology of making AEM measurements during transmitter on-time by analysing experimental data from three different AEM systems. The first system analysed is a very large separation, two helicopter system where geometry is measured using GPS sensors. In order to calculate the primary field at the receiver with sufficient accuracy, the very large (nominally 400 m) separation requires geometry to be known to better than 1 m. Using the measured geometry to estimate and remove the primary field, I show that a very conductive target can be detected at depths of 200m using the total secondary field. I then used fluxgate magnetometers to correct for receiver rotation which allowed the component of the secondary field to be determined. The second system I examined was a large separation fixed-wing AEM system. Using a towed receiver bird with a smaller (≈ 135m) separation, the geometry must be known much more accurately. In the absence of direct measurement of this geometry, I used a least-squares prediction
NASA Astrophysics Data System (ADS)
Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt
2012-09-01
Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that
NASA Astrophysics Data System (ADS)
Ito, Hisatoshi; Kaieda, Hideshi; Mogi, Toru; Jomori, Akira; Yuuki, Youichi
2014-05-01
Grounded electrical-source airborne transient electromagnetics (GREATEM), a type of semi-airborne electromagnetics, was used to examine Aso Volcano in south-west Japan, to verify its applicability to surveying deep subsurface resistivity structures. Comparison of the GREATEM resistivity values with those of ground-based transient electromagnetics (TEM) data, repeated GREATEM survey results at the same and different flight heights, and lithologic descriptions indicated that GREATEM can successfully identify underground structures as deep as ~800 m in rugged mountainous areas. An active volcanic region (Naka-Dake crater) was mapped as a low-resistivity zone from the surface to a depth of 100 m. This low-resistivity zone extended to the west-north-west, implying future volcanic activity in this area. Therefore, the GREATEM method is useful for surveying deep structures in large, inaccessible areas, such as volcanic provinces, in a quick, cost-effective way.
Numerical investigation of coal seam gas detection using airborne electromagnetics
NASA Astrophysics Data System (ADS)
Abdulla, Mohamed
The use of airborne electromagnetic (AEM) techniques has been mostly utilized in the mining industry. The various AEM systems enable fast data acquisition to detect zones of interest in exploration and in some cases are used to delineate targets on a production scale. For coal seam gas (CSG) reservoirs, reservoir thickness and the resistivity contrast present a new challenge to the present AEM systems in terms of detectability. Our research question began with the idea of using AEM methods in the detection of thin reservoirs. CSG reservoirs resemble thin reservoirs that have been and are currently being produced. In this thesis we present the results of a feasibility analysis of AEM study on coal seam reservoirs using synthetic models. The aim of the study is to contribute and bridge the gap of the scientific literature on AEM systems in settings such as CSG exploration. In the models we have chosen to simulate both in 1-D and 3-D, the CSG target resistivity was varied from a resistive to a conductive target (4 ohm.m, 150 ohm.m, and 667 ohm.m) to compare the different responses while the target thickness was fixed to resemble a stack of coal seams at that interval. Due to the differences in 1-D and 3-D modelling, we also examine the differences resulting from each modelling set up. The results of the 1-D forward modeling served as a first order understanding of the detection depths by AEM for CSG reservoirs. Three CSG reservoir horizontally layered earth model scenarios were examined, half-space, conductive/resistive and resistive/conductive. The response behavior for each of the three scenarios differs with the differing target resistivities. The 1-D modeling in both the halfspace and conductive/resistive models shows detection at depths beyond 300 m for three cases of target resistivity outlined above. After the 300-m depth, the response falls below the assumed noise floor level of 5% response difference. However, when a resistive layer overlies a conductive host
Time-Domain Filtering of Metasurfaces
NASA Astrophysics Data System (ADS)
Wakatsuchi, Hiroki
2015-11-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion.
Time-Domain Filtering of Metasurfaces.
Wakatsuchi, Hiroki
2015-01-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027
Time-Domain Filtering of Metasurfaces
Wakatsuchi, Hiroki
2015-01-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027
Airborne electromagnetic modelling options and their consequences in target definition
NASA Astrophysics Data System (ADS)
Ley-Cooper, Alan Yusen; Viezzoli, Andrea; Guillemoteau, Julien; Vignoli, Giulio; Macnae, James; Cox, Leif; Munday, Tim
2015-10-01
Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over 1D inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a 1D algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could
Bultman, M.W.; Gettings, M.E.; Wynn, Jeff
1999-01-01
Executive Summary -- In March of 1997, an airborne electromagnetic (AEM) survey of the Fort Huachuca Military Reservation and immediate surrounds (location map, http://geopubs.wr.usgs.gov/open-file/of99-007-b/index.jpg) was conducted. This survey was sponsored by the U.S. Army and contracted through the Geologic Division of the U.S. Geological Survey (USGS). Data were gathered by Geoterrex-Dighem Ltd. of Ottawa, Canada. The survey aircraft is surrounded by a coil through which a large current pulse is passed. This pulse induces currents in the Earth which are recorded by a set of three mutually perpendicular coils towed in a 'bird' about 100 m behind and below the aircraft. The bird also records the Earth's magnetic field. The system samples the Earth response to the electromagnetic pulse about every 16 m along the aircraft flight path. For this survey, the bulk of the flightpaths were spaced about 400 m apart and oriented in a northeast-southwest direction extending from bedrock over the Huachuca Mountains to bedrock over the Tombstone Hills. A preliminary report on the unprocessed data collected in the field was delivered to the U.S. Army by USGS in July 1997 (USGS Open-File Report 97?457). The final data were delivered in March, 1998 by the contractor to USGS and thence to the U.S. Army. The present report represents the final interpretive report from USGS. The objectives of the survey were to: 1) define the structure of the San Pedro basin in the Sierra Vista-Fort Huachuca-Huachuca City area, including the depth and shape of the basin, and to delineate large faults that may be active within the basin fill and therefore important in the hydrologic regime; 2) define near surface and subsurface areas that contain a large volume fraction of silt and clay in the basin fill and which both reduce the volume of available storage for water and reduce the permeability of the aquifer; and 3) to evaluate the use of the time domain electromagnetic method in the southwest
Simulation of airborne electromagnetic measurements in three dimensional environments
Alumbaugh, D.L.; Newman, G.A.
1994-12-31
A 3-D frequency domain EM modeling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz formulation for the electric fields is employed to avoid problems associated with the first order Maxwell`s equations numerically decoupling in the air. Additional stability is introduced by formulating the problem in terms of the scattered electric fields which replaces an impressed dipole source with an equivalent source that possesses a much smoother spatial dependence and is easier to model. In older to compute this equivalent source, a primary field arising from dipole sources in a whole space must be calculated where ever the conductivity is different than that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. In order to both speed up the solution and allow for larger, more realistic models to be simulated, the scheme has been modified to run on massively parallel architectures. The solution has been compared against other I-D and 3-D numerical models and is found to produce results in good agreement. The versatility of the scheme is demonstrated by simulating a survey over a salt water intrusion zone in the Florida Everglades.
Development of 3D electromagnetic modeling tools for airborne vehicles
NASA Technical Reports Server (NTRS)
Volakis, John L.
1992-01-01
The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region
Gravitational Waves and Time Domain Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Dickinson, Jesse E.; Pool, D.R.; Groom, R.W.; Davis, L.J.
2010-01-01
An airborne transient electromagnetic (TEM) survey was completed in the Upper San Pedro Basin in southeastern Arizona to map resistivity distributions within the alluvial aquifer. This investigation evaluated the utility of 1D vertical resistivity models of the TEM data to infer lithologic distributions in an alluvial aquifer. Comparisons of the resistivity values and layers in the 1D resistivity models of airborne TEM data to 1D resistivity models of ground TEM data, borehole resistivity logs, and lithologic descriptions in drill logs indicated that the airborne TEM identified thick conductive fine-grained sediments that result in semiconfined groundwater conditions. One-dimensional models of ground-based TEM surveys and subsurface lithology at three sites were used to determine starting models and constraints to invert airborne TEM data using a constrained Marquardt-styleunderparameterized method. A maximum structural resolution of six layers underlain by a half-space was determined from the resistivity structure of the 1D models of the ground TEM data. The 1D resistivity models of the airborne TEM data compared well with the control data to depths of approximately 100 m in areas of thick conductive silt and clay and to depths of 200 m in areas of resistive sand and gravel. Comparison of a 3D interpolation of the 1D resistivity models to drill logs indicated resistive (mean of 65 ohm-m ) coarse-grained sediments along basin margins and conductive (mean of 8 ohm-m ) fine-grained sediments at the basin center. Extents of hydrologically significant thick silt and clay were well mapped by the 1D resistivity models of airborne TEM data. Areas of uncertain lithology remain below conductive fine-grained sediments where the 1D resistivity structure is not resolved: in areas where multiple lithologies have similar resistivity values and in areas of high salinity.
NASA Astrophysics Data System (ADS)
Vrbancich, Julian; Boyd, Graham
2014-05-01
The HoistEM helicopter time-domain electromagnetic (TEM) system was flown over waters in Backstairs Passage, South Australia, in 2003 to test the bathymetric accuracy and hence the ability to resolve seafloor structure in shallow and deeper waters (extending to ~40 m depth) that contain interesting seafloor topography. The topography that forms a rock peak (South Page) in the form of a mini-seamount that barely rises above the water surface was accurately delineated along its ridge from the start of its base (where the seafloor is relatively flat) in ~30 m water depth to its peak at the water surface, after an empirical correction was applied to the data to account for imperfect system calibration, consistent with earlier studies using the same HoistEM system. A much smaller submerged feature (Threshold Bank) of ~9 m peak height located in waters of 35 to 40 m depth was also accurately delineated. These observations when checked against known water depths in these two regions showed that the airborne TEM system, following empirical data correction, was effectively operating correctly. The third and most important component of the survey was flown over the Yatala Shoals region that includes a series of sub-parallel seafloor ridges (resembling large sandwaves rising up to ~20 m from the seafloor) that branch out and gradually decrease in height as the ridges spread out across the seafloor. These sub-parallel ridges provide an interesting topography because the interpreted water depths obtained from 1D inversion of TEM data highlight the limitations of the EM footprint size in resolving both the separation between the ridges (which vary up to ~300 m) and the height of individual ridges (which vary up to ~20 m), and possibly also the limitations of assuming a 1D model in areas where the topography is quasi-2D/3D.
Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado
Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.
2015-01-01
In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.
NASA Astrophysics Data System (ADS)
Emanoel Starteri Sampaio, Edson
2014-08-01
The velocity of controlled airborne sources of electromagnetic geophysical surveys plays an additional role in the scattering of the fields by the earth. Therefore, it is necessary to investigate its contribution in the space and time variation of secondary electromagnetic fields. The model of a vertical magnetic dipole moving at a constant speed along a horizontal line in the air and above a homogeneous conductive half-space constitutes a first approach to stress the kinematic aspect and determine the difference between the fields due to an airborne and a static source. The magnetic moment of the source is equal to 104 A m2, its height is 120 m, and the horizontal and vertical separations between it and the receiver are, respectively, equal to 100 and 50 m: these values of the model are typical of towed-bird airborne TDEM surveys. We employed four values for the common velocities of source and receiver (0, 60, 80, and 100 m s-1), four values of the conductivity of the half-space (0.5, 0.1, 0.05, and 0.01 S m-1), and two causal source currents (box with periods of 80 and 10 ms and periodic with frequency values of 12.5 and 100 Hz). The results demonstrate that the relative velocity between source and medium yields a measurable variation compared to the static condition. Therefore, it must be taken into consideration by compensating the discrepancy in measured data employing the respective theoretical result. The results also show that it is necessary to adjust the concepts of time and frequency domain for electromagnetic measurements with traveling sources.
Stochastic finite-difference time-domain
NASA Astrophysics Data System (ADS)
Smith, Steven Michael
2011-12-01
This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.
Time-domain robotic vision application
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1987-01-01
The quest for the highest resolution microwaves imaging and the principle of time-domain imaging is the primary motivation for recent developments in time-domain techniques. With the present technology fast time varying signals can now be measured and recorded both in magnitude and in phase. It has also enhanced the ability to extract relevant details concerning the scattering object. In the past, the inference of object geometry or shape from scattered signals has received substantial attention in radar technology. Various inverse scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequenty swept holography, and the synthetic radar imaging, all of which have two things in common: the physical optic far-field approximation and the utilization of the channels as an extra physical dimension, were also advanced significantly. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The use of time-domain imaging for space robotic vision applications was proposed. A multisensor approach to vision was shown to have several advantages over the video-only approach.
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Li, Wen-Ben; Zeng, Zhao-Fa; Li, Jing; Chen, Xiong; Wang, Kun; Xia, Zhao
2016-03-01
Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Villani, Fabio; Tulliani, Valerio; Sapia, Vincenzo; Fierro, Elisa; Civico, Riccardo; Pantosti, Daniela
2015-12-01
The Piano di Pezza fault is the central section of the 35 km long L'Aquila-Celano active normal fault-system in the central Apennines of Italy. Although palaeoseismic data document high Holocene vertical slip rates (˜1 mm yr-1) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still poorly known. We investigated for the first time the shallow subsurface of a key section of the main Piano di Pezza fault splay by means of high-resolution seismic and electrical resistivity tomography coupled with time-domain electromagnetic soundings (TDEM). Our surveys cross a ˜5-m-high fault scarp that was generated by repeated surface-rupturing earthquakes displacing Holocene alluvial fans. We provide 2-D Vp and resistivity images, which show significant details of the fault structure and the geometry of the shallow basin infill material down to 50 m depth. Our data indicate that the upper fault termination has a sub-vertical attitude, in agreement with palaeoseismological trench evidence, whereas it dips ˜50° to the southwest in the deeper part. We recognize some low-velocity/low-resistivity regions in the fault hangingwall that we relate to packages of colluvial wedges derived from scarp degradation, which may represent the record of some Holocene palaeo-earthquakes. We estimate a ˜13-15 m throw of this fault splay since the end of the Last Glacial Maximum (˜18 ka), leading to a 0.7-0.8 mm yr-1 throw rate that is quite in accordance with previous palaeoseismic estimation of Holocene vertical slip rates. The 1-D resistivity models from TDEM soundings collected along the trace of the electrical profile significantly match with 2-D resistivity images. Moreover, they indicate that in the fault hangingwall, ˜200 m away from the surface fault trace, the pre-Quaternary carbonate basement is at ˜90-100 m depth. We therefore provide a minimal ˜150-160 m estimate of the cumulative throw of the Piano di Pezza
NASA Astrophysics Data System (ADS)
Auken, Esben; Christiansen, Anders Vest; Kirkegaard, Casper; Fiandaca, Gianluca; Schamper, Cyril; Behroozmand, Ahmad Ali; Binley, Andrew; Nielsen, Emil; Effersø, Flemming; Christensen, Niels Bøie; Sørensen, Kurt; Foged, Nikolaj; Vignoli, Giulio
2015-07-01
We present an overview of a mature, robust and general algorithm providing a single framework for the inversion of most electromagnetic and electrical data types and instrument geometries. The implementation mainly uses a 1D earth formulation for electromagnetics and magnetic resonance sounding (MRS) responses, while the geoelectric responses are both 1D and 2D and the sheet's response models a 3D conductive sheet in a conductive host with an overburden of varying thickness and resistivity. In all cases, the focus is placed on delivering full system forward modelling across all supported types of data. Our implementation is modular, meaning that the bulk of the algorithm is independent of data type, making it easy to add support for new types. Having implemented forward response routines and file I/O for a given data type provides access to a robust and general inversion engine. This engine includes support for mixed data types, arbitrary model parameter constraints, integration of prior information and calculation of both model parameter sensitivity analysis and depth of investigation. We present a review of our implementation and methodology and show four different examples illustrating the versatility of the algorithm. The first example is a laterally constrained joint inversion (LCI) of surface time domain induced polarisation (TDIP) data and borehole TDIP data. The second example shows a spatially constrained inversion (SCI) of airborne transient electromagnetic (AEM) data. The third example is an inversion and sensitivity analysis of MRS data, where the electrical structure is constrained with AEM data. The fourth example is an inversion of AEM data, where the model is described by a 3D sheet in a layered conductive host.
NASA Technical Reports Server (NTRS)
Dawson, C. T.; Eggleston, T. W.; Goris, A. C.; Fashano, M.; Paynter, D.; Tranter, W. H.
1980-01-01
Complex systems are simulated by engineers without extensive computer experience. Analyst uses free-form engineering-oriented language to input "black box" description. System Time Domain (SYSTID) Simulation Program generates appropriate algorithms and proceeds with simulation. Program is easily linked to postprocessing routines. SYSTID program is written in FORTRAN IV for batch execution and has been implemented on UNIVAC 1110 under control of EXEC 8, Level 31.
NASA Astrophysics Data System (ADS)
Ito, Hisatoshi; Mogi, Toru; Jomori, Akira; Yuuki, Youichi; Kiho, Kenzo; Kaieda, Hideshi; Suzuki, Koichi; Tsukuda, Kazuhiro; Allah, Sabry Abd
2011-08-01
Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance considering its socio-economic relevance, whereas, to date, limited information has been acquired due to the lack of suitable survey methods. We have conducted an airborne electromagnetic survey in an alluvial coastal plain, Kujukuri, in southeast Japan, to examine the effectiveness of elucidating the subsurface electric-resistivity structure both on land and offshore. Our approach was to use a grounded electrical dipole source and a helicopter-towed magnetic field receiver. Repeated surveys both at high and low tides revealed that a reliable resistivity structure is available to a depth of 300-350 m in coastal areas where shallow (˜5 m deep) water prevails.
NASA Astrophysics Data System (ADS)
Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.
2010-01-01
A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.
A 0.4 to 10 GHz airborne electromagnetic environment survey of USA urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35 mm continuous film camera, and a magnetic tape recorder. Most of the flights were made at a nominal altitude of 10,000 feet, and Washington, D. C., Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450 to 470 MHz land-mobile UHF band is especially crowded, and the 400 to 406 MHz space bands are less active. This paper discusses test measurements obtained up to 10 GHz. Sample spectrum analyzer photograhs were selected from a total of 5,750 frames representing 38 hours of data.
0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas
NASA Technical Reports Server (NTRS)
Taylor, R. E.; Hill, J. S.
1976-01-01
An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.
Flexible time domain averaging technique
NASA Astrophysics Data System (ADS)
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Application of Time Domain Reflectometers in Urban Settings
Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...
Directly coupled vs conventional time domain reflectometry in soils
Technology Transfer Automated Retrieval System (TEKTRAN)
Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...
NASA Astrophysics Data System (ADS)
Nenna, V.; Pidlisecky, A.
2012-12-01
As mapping of groundwater resources with airborne electromagnetics expands into more urban areas, it is increasingly important to identify sources of cultural noise in acquired data sets. A number of methods have been proposed to reduce the impact of cultural coupling on acquired data. While intense local calibration to increase the signal to noise ratio has been used, most often in practice, the transients associated with these noise sources are manually identified and filtered out during data processing. This can be a challenging task, particularly as datasets grow large (e.g. up to terabytes of data). In response to this, we propose a method for identifying noise in airborne electromagnetic data based on a spatial application of the continuous wavelet transform (CWT). We apply a continuous wavelet transform to three airborne electromagnetic surveys collected in the Edmonton-Calgary Corridor as part of a groundwater inventory sponsored by the Alberta Geological Survey and Environment Alberta. The three surveys consist of 210 flightlines covering approximately 18 000 linear kilometers with roughly 13 m sounding spacing. B-field and dB/dt data from a three-component 20-channel GeoTEM multicoil system, were recorded at 5 on-time and 15 off-time channels with a total measurement time of 16.664 ms per sounding. The nominal height of vertical axis transmitter was 120 m; the current pulse was 670 A, and the pulse-width was 4.045 ms. Wavelet transforms are localized in time and frequency, similar to a windowed Fourier transform, and are used to identify dominant frequencies within a signal as a function of time or space. While there are a number of options for wavelet functions, we convolve a Morlet wavelet with the data signal at 120 distance scales on a logarithmic scale from 0.1 to 30 km. We calculate the CWT along each flightline for all off-time channels. We then calculate the wavelet power normalized by the data variance, and bin results into 4 bins of spatial
Spread spectrum time domain reflectometry
NASA Astrophysics Data System (ADS)
Smith, Paul Samuel
For many years, wiring has been treated as a system that could be installed and expected to work for the life of the aircraft. As aircraft age far beyond their original expected life span, this attitude is rapidly changing. Wiring problems have recently been identified as the cause of several tragic mishaps and hundreds of thousands of lost mission hours. Intermittent wiring faults have been and continue to be difficult to resolve. Test methods that pinpoint faults on the ground can miss intermittent failures. New test methods involving spread spectrum signals are investigated that could be used in flight to locate intermittent failures, including open circuits, short circuits, and arcs. Spread spectrum time domain reflectometry (SSTDR) and sequence time domain reflectometry (STDR) are analyzed in light of the signals commonly present on aircraft wiring. Pseudo noise codes used for the generation of STDR and SSTDR signals are analyzed for application in a STDR/SSTDR test system in the presence of noise. The effects of Mil-Std 1553 and white noise on the STDR and SSTDR signals are discussed analytically, through simulations, and with the use of test hardware. A test system using STDR and SSTDR is designed, built, and used to collect STDR and SSTDR test data. The data collected with the STDR/SSTDR test hardware is analyzed and compared to the theoretical results. Experimental data for open and short circuits collected using SSTDR and a curve fitting algorithm shows a maximum range estimation error of +/-0.2 ft for 75O coaxial cable up to 100ft, and +/-0.6ft for a sample 32.5ft non-controlled impedance aircraft cable. Mil-Std 1553 is specified to operate reliably with a signal-to-noise ratio of 17.5dB, and the SSTDR test system was able to locate an open circuit on a cable also carrying simulated Mil-Std 1553 data where the SSTDR signal was 50dB below the Mil-Std 1553 signal. STDR and SSTDR are shown to be effective in detecting and locating dry and wet arcs on wires.
NASA Astrophysics Data System (ADS)
Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen
2016-03-01
Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey.
NASA Astrophysics Data System (ADS)
Marker, P. A.; Foged, N.; He, X.; Christiansen, A. V.; Refsgaard, J. C.; Auken, E.; Bauer-Gottwein, P.
2015-09-01
Large-scale hydrological models are important decision support tools in water resources management. The largest source of uncertainty in such models is the hydrostratigraphic model. Geometry and configuration of hydrogeological units are often poorly determined from hydrogeological data alone. Due to sparse sampling in space, lithological borehole logs may overlook structures that are important for groundwater flow at larger scales. Good spatial coverage along with high spatial resolution makes airborne electromagnetic (AEM) data valuable for the structural input to large-scale groundwater models. We present a novel method to automatically integrate large AEM data sets and lithological information into large-scale hydrological models. Clay-fraction maps are produced by translating geophysical resistivity into clay-fraction values using lithological borehole information. Voxel models of electrical resistivity and clay fraction are classified into hydrostratigraphic zones using k-means clustering. Hydraulic conductivity values of the zones are estimated by hydrological calibration using hydraulic head and stream discharge observations. The method is applied to a Danish case study. Benchmarking hydrological performance by comparison of performance statistics from comparable hydrological models, the cluster model performed competitively. Calibrations of 11 hydrostratigraphic cluster models with 1-11 hydraulic conductivity zones showed improved hydrological performance with an increasing number of clusters. Beyond the 5-cluster model hydrological performance did not improve. Due to reproducibility and possibility of method standardization and automation, we believe that hydrostratigraphic model generation with the proposed method has important prospects for groundwater models used in water resources management.
Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska
Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.
2012-01-01
Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.
Zhou, Haigen; Lin, Jun; Liu, Changsheng; Kang, Lili; Li, Gang; Zeng, Xinsen
2016-03-01
Multi-source and multi-frequency emission method can make full use of the valuable and short flight time in frequency domain semi-airborne electromagnetic (FSAEM) exploration, which has potential to investigate the deep earth structure in complex terrain region. Because several sources are adjacent in multi-source emission method, the interaction of different sources should be considered carefully. An equivalent circuit model of dual-source is established in this paper to assess the interaction between two individual sources, where the parameters are given with the typical values based on the practical instrument system and its application. By simulating the output current of two sources in different cases, the influence from the adjacent source is observed clearly. The current waveforms show that the mutual resistance causes the fluctuation and drift in another source and that the mutual inductance causes transient peaks. A field test with dual-source was conducted to certify the existence of interaction between adjacent sources. The simulation of output current also shows that current errors at low frequency are mainly caused by the mutual resistance while those at high frequency are mainly due to the mutual inductance. Increasing the distance between neighboring sources is a proposed measure to reduce the emission signal errors with designed ones. The feasible distance is discussed in the end. This study gives a useful guidance to lay multi sources to meet the requirement of measurement accuracy in FSAEM survey. PMID:27036795
3D inversion of airborne electromagnetic data using a moving footprint
NASA Astrophysics Data System (ADS)
Cox, Leif H.; Wilson, Glenn A.; Zhdanov, Michael S.
2010-12-01
It is often argued that 3D inversion of entire airborne electromagnetic (AEM) surveys is impractical, and that 1D methods provide the only viable option for quantitative interpretation. However, real geological formations are 3D by nature and 3D inversion is required to produce accurate images of the subsurface. To that end, we show that it is practical to invert entire AEM surveys to 3D conductivity models with hundreds of thousands if not millions of elements. The key to solving a 3D AEM inversion problem is the application of a moving footprint approach. We have exploited the fact that the area of the footprint of an AEM system is significantly smaller than the area of an AEM survey, and developed a robust 3D inversion method that uses a moving footprint. Our implementation is based on the 3D integral equation method for computing data and sensitivities, and uses the re-weighted regularised conjugate gradient method for minimising the objective functional. We demonstrate our methodology with the 3D inversion of AEM data acquired for salinity mapping over the Bookpurnong Irrigation District in South Australia. We have inverted 146 line km of RESOLVE data for a 3D conductivity model with ~310000 elements in 45min using just five processors of a multi-processor workstation.
Combining airborne electromagnetic and geotechnical data for automated depth to bedrock tracking
NASA Astrophysics Data System (ADS)
Christensen, Craig William; Pfaffhuber, Andreas Aspmo; Anschütz, Helgard; Smaavik, Tone Fallan
2015-08-01
Airborne electromagnetic (AEM) survey data was used to supplement geotechnical investigations for a highway construction project in Norway. Heterogeneous geology throughout the survey and consequent variable bedrock threshold resistivity hindered efforts to directly track depth to bedrock, motivating us to develop an automated algorithm to extract depth to bedrock by combining both boreholes and AEM data. We developed two variations of this algorithm: one using simple Gaussian or inverse distance weighting interpolators, and another using ordinary kriging and combined probability distribution functions of input parameters. Evaluation shows that for preliminary surveys, significant savings in boreholes required can be made without sacrificing bedrock model accuracy. In the case study presented, we estimate data collection savings of 1000 to 10,000 NOK/km (c. 160 to 1600 USD/km) would have been possible for early phases of the investigation. However, issues with anthropogenic noise, low signal, and uncertainties in the inversion model likely reduced the comparative advantage that including AEM provided. AEM cannot supersede direct sampling where the model accuracy required exceed the resolution possible with the geophysical measurements. Nevertheless, with the algorithm we can identify high probability zones for shallow bedrock, identify steep or anomalous bedrock topography, and estimate the spatial variability of depth at earlier phases of investigation. Thus, we assert that our method is still useful where detailed mapping is the goal because it allows for more efficient planning of secondary phases of drilling.
NASA Astrophysics Data System (ADS)
Hein, A.; Armstrong, R. S.; Holbrook, W. S.; Parsekian, A.
2015-12-01
The rivers that supply water to most of the West rise in the Rocky Mountains. As drought increases across the country, understanding the hydrology of these alpine regions becomes important to assuring water supplies in the future. Near surface geophysics can help in this effort. In this study, resistivity data from an airborne electromagnetic survey in the Snowy Range was analyzed to map groundwater distribution. The EM survey covered an area of approximately 60 km2 to a depth of around 150 m. Nuclear magnetic resonance (NMR) point soundings provided ground truthing by testing whether water was present, at what depth, and how much. The survey area contained vertically dipping metasedimentary rocks, covered in places by unconsolidated glacial and fluvial deposits. The resistivity data showed horizontal variation in water content much more clearly than vertical changes, which were best detected by NMR. To allow for comparisons across different lithologies and depths, resistivity measurements were first log transformed to produce a more normal distribution, then classed by depth and formation and assigned standardized scores using the mean and standard deviation for those classes. To determine the typical appearance of wet areas, points in the near surface were classed as wet or dry based on proximity to surface water. Logistic regression was used to determine the probability that points with a given standardized score were wet. Where a relationship existed between proximity to surface water and conductivity, this information was translated into a map of groundwater distribution at greater depths. NMR soundings provided quantitative measurements of water content, which were used as known points within these horizontal maps to determine the actual water levels being detected.
Estimation of Resolution of Shallow Layers by Frequency Domain Airborne Electromagnetic Measurements
NASA Astrophysics Data System (ADS)
Smith, B. D.; Minsley, B. J.; Kass, M. A.; Abraham, J. D.; Sams, J. I.; Veloski, G. A.; Esfahani, A.; Hodges, G.
2012-12-01
Helicopter frequency domain electromagnetic (HFDEM) that were conducted in two very different geoelectrical settings, permafrost and conductive alluvium, have been used to examine and quantify some aspects of the resolution of shallow layers (less than 5 meters). The surveys have used the Resolve system with six frequencies ranging from 400 Hz to 140 kHz. Though most discussion of the resolution of earth resistivity for airborne EM systems has concentrated on estimating the maximum depth of mapping or the resolution of deep layers, there are important applications for mapping shallow layers and it is useful to understand the capabilities and limitations of the HFDEM system in different environments. In permafrost terrains, mapping of the shallow active layer is important in understanding its distribution relative to surface processes such as thermal history, fires and carbon storage as well as in monitoring applications. Here the shallow active layer is a conductor relative to the very resistive permafrost. Mapping shallow layers in alluvial environments has been the focus of a study of subsurface drip irrigation in the Powder River of Wyoming. Here the focus of the HFDEM study has been in mapping the distribution of conductive clays and naturally occurring saline waters. Mapping of shallow layers in alluvial environments is important in agricultural applications to map recharge, soil salinity, and thickness of alluvium. Parameters for layered models (layer resistivity and thickness) have been estimated by inversion methods and the resolution of parameters has been evaluated using stochastic methods and an evaluation of linear estimates of resolution and uncertainty. Statistical estimates of resolution of parameters are compared with estimates from ground surveys.
NASA Astrophysics Data System (ADS)
Wang, Yuan
2013-09-01
A grounded electrical source airborne transient electromagnetic (GREATEM) system on an airship enjoys high depth of prospecting and spatial resolution, as well as outstanding detection efficiency and easy flight control. However, the movement and swing of the front-fixed receiving coil can cause severe baseline drift, leading to inferior resistivity image formation. Consequently, the reduction of baseline drift of GREATEM is of vital importance to inversion explanation. To correct the baseline drift, a traditional interpolation method estimates the baseline `envelope' using the linear interpolation between the calculated start and end points of all cycles, and obtains the corrected signal by subtracting the envelope from the original signal. However, the effectiveness and efficiency of the removal is found to be low. Considering the characteristics of the baseline drift in GREATEM data, this study proposes a wavelet-based method based on multi-resolution analysis. The optimal wavelet basis and decomposition levels are determined through the iterative comparison of trial and error. This application uses the sym8 wavelet with 10 decomposition levels, and obtains the approximation at level-10 as the baseline drift, then gets the corrected signal by removing the estimated baseline drift from the original signal. To examine the performance of our proposed method, we establish a dipping sheet model and calculate the theoretical response. Through simulations, we compare the signal-to-noise ratio, signal distortion, and processing speed of the wavelet-based method and those of the interpolation method. Simulation results show that the wavelet-based method outperforms the interpolation method. We also use field data to evaluate the methods, compare the depth section images of apparent resistivity using the original signal, the interpolation-corrected signal and the wavelet-corrected signal, respectively. The results confirm that our proposed wavelet-based method is an
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.
2011-01-01
In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.
NASA Astrophysics Data System (ADS)
Pastick, N.; Wylie, B. K.; Minsley, B. J.; Jorgenson, T. T.; Ji, L.; Walvoord, M. A.; Smith, B. D.; Abraham, J. D.; Rose, J.
2011-12-01
Permafrost has a significant impact on high latitude ecosystems and is spatially heterogeneous. However, only generalized maps of permafrost extent are available. Due to its impacts on subsurface hydrology, lake water levels, vegetation communities, and surface soil deformations, understanding the spatial extents and depth of permafrost are critical. Electrical resistivity increases dramatically as a soil freezes and can be used as a proxy for permafrost presence particularly if the underlying soils and geologic characteristics are understood. An airborne electromagnetic survey (AEM) was conducted over a portion of the Yukon Flats ecoregion in central Alaska with measurements taken in both reconnaissance lines and contiguous block area coverage. The AEM was flown in June 2010 and subsurface resistivity models were derived by inverting the AEM data. Landsat TM at-sensor reflectance, thermal, and spectral index data from late August to early September 2008, Digital Elevation Models (DEM) and derivatives, and other ancillary data were used in a regression tree model to predict near surface electrical resistivity at the 0-1m and the 0-2.6m depth intervals. AEM locations from homogenous landsat 90 m by 90 m windows were randomly separated into a training set for model development (n = 8,848) and an impendent test data set (n = 988) for model accuracy assessment. Model development and independent test accuracies for 0-1 m electric resistivity had training and test R2 values of 0.90 and 0.87, respectively, and for the 0-2.6m electric resistivity training and test R2 values were also 0.90 and 0.87, respectively, which indicated accurate prediction models. Important variables for stratifying the various piecewise regressions were elevation and averaged 2000-2008 ecosystem performance anomalies. Important independent variables used in the multiple regression equations were the Normalized Difference Infrared Index (NDII), NDII7 (NDII using band 7), soil moisture mapped from
NASA Astrophysics Data System (ADS)
Hauser, Juerg; Gunning, James; Annetts, David
2016-04-01
Airborne electromagnetic (AEM) data are often inverted with the aim of delineating near-surface geological interfaces, such as the boundaries of an aquifer or the base of regolith. Not all approaches to the inversion of AEM data are equally amenable to the recovery of such spatially coherent interfaces. If the AEM data are inverted for a 1D model on a station-by-station basis, or if a smooth resistivity distribution has been derived, qualitative interpretation of these inversion results is often required to obtain a spatially coherent interface. Regularised deterministic inversions can take spatial correlation between 1D models into account, and be used to directly invert for a spatially coherent interface if a blocky model is sought from the data. However, inversion of AEM data is non-unique, and therefore estimating the uncertainty of an inversion result is as important as finding a single best-fitting model. Markov chain Monte Carlo (McMC) algorithms have been successful in exploring the 1D uncertainty space that arises in station-independent models. In a set of laterally independent 1D models, abrupt transverse changes in model parameters can occur, making it difficult to derive a spatially coherent interface. Full McMC sampling for laterally correlated models is computationally expensive, and independent 1D samplers are often the only feasible alternative if one wishes to explore the joint model space. Here we introduce a Bayesian parametric bootstrap approach to invert for spatially coherent layer properties, interfaces and related uncertainties. The Bayesian parametric bootstrap treats prior information on the model and its spatial correlation as implied observations, and then applies the classical parametric bootstrap. Numerical examples demonstrate that our Bayesian parametric bootstrap will explore model space adequately for non-pathological situations, while requiring many fewer forward problem solves than a comparable McMC algorithm. Recovered
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
Time domain reflectometry for SLC BPM system
NASA Astrophysics Data System (ADS)
Thompson, D. R.
1985-03-01
A maintenance manual for troubleshooting installed SLC Position Monitor stripline assemblies and the associated cabling, using time Domain Reflectometry is presented. Once a technician becomes familiar with this manual's procedures, the Table of Contents can serve as a checklist.
A time domain technique for mechanism extraction
NASA Technical Reports Server (NTRS)
Dominek, Allen K.; Peters, Leon, Jr.; Burnside, Walter D.
1987-01-01
The properties of scattered fields from a structure can be better evaluated from the characteristics of the individual scatterers. Decomposition techniques can be classified either as a matrix or an integral formulation. With either formulation, aspect pattern of frequency information of a scattering center can be obtained. Emphasis is placed on an integral (time domain) isolation extraction technique to obtain the frequency characteristics of scattering mechanisms. This technique has its origins in the time domain interpretation of scattered fields.
Optical characteristics of pesticides measured by terahertz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Dong-Kyu; Kim, Giyoung; Son, Joo-Hiuk
2015-07-01
In this study, we measured the optical characteristics of pesticides by terahertz time-domain spectroscopy. Pesticide samples were prepared as pellets that were mixed with polyethylene powder and placed in the center of the path of a terahertz electromagnetic (EM) wave in the spectroscopy system. The absorbance of each sample showed obvious differences in absorption peaks. From this result, we showed that these pesticide products had resonance modes in the terahertz range, and this method can be used to make a sensor that is able to measure low concentrations of pesticides in farm produce.
A time domain, weighted residual formulation of Maxwell's equations
NASA Technical Reports Server (NTRS)
Young, Jeffrey L.; Brueckner, Frank P.
1993-01-01
A finite element model is developed and used to simulate two-dimensional electromagnetic wave propagation and scattering. The spatial discretization of the time-domain electrodynamic equations is accomplished by a Galerkin approach. The semi-discrete equations are solved explicitly using a second-order Runge-Kutta scheme. Both the electric and magnetic fields are discretized using a single grid, with the divergence-free conditions satisfied through a correction approach. Examples depicting the scattering of plane waves in 2D geometries are given to demonstrate the validity of the methodology.
NASA Technical Reports Server (NTRS)
Pelletier, R. E.; Wu, S. T.
1989-01-01
Airborne electromagnetic (AEM) data acquired over a coastal region of North Carolina as part of a prototype testing program is analyzed with emphasis on multiple transects crossing a variety of geomorphic/landscape types as a means of conducting a preliminary evaluation of the sensor's ability to determine water depth and characterize a number of water and sediment physical properties such as water conductivity, sediment conductivity, sediment porosity, and sediment density. The study site is described, along with the flight line mission plan and data acquisition and processing. Good agreement between AEM-measured bathymetry and ground truth is reported, and it is concluded that in the marine environment, this system can traverse areas more rapidly than ships with acoustic systems and can collect data from shallow or inaccessible regions.
Terahertz-bandwidth pulses for coherent time-domain spectroscopy
Whitaker, J.F.; Gao, F.; Liu, Y.
1994-12-31
Ultrashort pulses of electromagnetic radiation propagating through free space are used to perform coherent time-domain spectroscopy by probing the complex index of refraction of various materials, in particular thin films of high-critical-temperature superconductors and the microwave substrates the support them. The terahertz beam system utilizes Hertz ion-dipole-like antennas consisting of a dc-biased photoconductive gap in a coplanar stripline as a transmitter, and an identical receiver with a photoconductive gap biased by the THz radiation. The transmitter is driven to produce the short radiation bursts by a 100-fs optical pulse from a Ti:sapphire self-mode-locked laser, while the receiver is synchronously gated by laser pulses split from the original beam. By performing measurements in the time domain and transforming data to the frequency domain, both the real and imaginary parts of the index of refraction of dielectrics and the conductivity of superconductors are determined over the entire range from {approximately}200 GHz to several terahertz. This technique allows the direct broadband determination of these quantities in the millimeter-wave and submillimeter-wave regimes from the measurement of only a few time-domain waveforms and without the need for Kramers-Kroenig analysis or complicated processing.
A multilevel Cartesian non-uniform grid time domain algorithm
Meng Jun; Boag, Amir; Lomakin, Vitaliy; Michielssen, Eric
2010-11-01
A multilevel Cartesian non-uniform grid time domain algorithm (CNGTDA) is introduced to rapidly compute transient wave fields radiated by time dependent three-dimensional source constellations. CNGTDA leverages the observation that transient wave fields generated by temporally bandlimited and spatially confined source constellations can be recovered via interpolation from appropriately delay- and amplitude-compensated field samples. This property is used in conjunction with a multilevel scheme, in which the computational domain is hierarchically decomposed into subdomains with sparse non-uniform grids used to obtain the fields. For both surface and volumetric source distributions, the computational cost of CNGTDA to compute the transient field at N{sub s} observation locations from N{sub s} collocated sources for N{sub t} discrete time instances scales as O(N{sub t}N{sub s}logN{sub s}) and O(N{sub t}N{sub s}log{sup 2}N{sub s}) in the low- and high-frequency regimes, respectively. Coupled with marching-on-in-time (MOT) time domain integral equations, CNGTDA can facilitate efficient analysis of large scale time domain electromagnetic and acoustic problems.
Time domain reflectometry in time variant plasmas
NASA Technical Reports Server (NTRS)
Scherner, Michael J.
1992-01-01
The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. A study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath is included. Varying electron density levels corrupt time domain and distance measurements. Reducing or modulating the electron density levels of a given electron density profile affects the time domain response of a plasma and results in motion of the turning point, and the effective motion has a significant effect on measuring electron density locations.
Time-domain Raman analytical forward solvers.
Martelli, Fabrizio; Binzoni, Tiziano; Sekar, Sanathana Konugolu Venkata; Farina, Andrea; Cavalieri, Stefano; Pifferi, Antonio
2016-09-01
A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements. PMID:27607645
Casimir forces in the time domain: Theory
Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.
2009-07-15
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.
Calculation of nonzero-temperature Casimir forces in the time domain
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-04-15
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
Time-Domain Simulation of RF Couplers
Smithe, David; Carlsson, Johan; Austin, Travis
2009-11-26
We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.
Airborne electromagnetics (EM) as a three-dimensional aquifer-mapping tool
Wynn, Jeff; Pool, Don; Bultman, Mark; Gettings, Mark; Lemieux, Jean
2000-01-01
The San Pedro River in southeastern Arizona hosts a major migratory bird flyway, and was declared a Riparian Conservation Area by Congress in 1988. Recharge of the adjacent Upper San Pedro Valley aquifer was thought to come primarily from the Huachuca Mountains, but the U. S. Army Garrison of Fort Huachuca and neighboring city of Sierra Vista have been tapping this aquifer for many decades, giving rise to claims that they jointly threatened the integrity of the Riparian Conservation Area. For this reason, the U. S. Army funded two airborne geophysical surveys over the Upper San Pedro Valley (see figure 1), and these have provided us valuable information on the aquifer and the complex basement structure underlying the modern San Pedro Valley. Euler deconvolution performed on the airborne magnetic data has provided a depth-to-basement map that is substantially more complex than a map obtained earlier from gravity data, as would be expected from the higher-resolution magnetic data. However, we found the output of the Euler deconvolution to have "geologic noise" in certain areas, interpreted to be post-Basin-and-Range Tertiary volcanic flows in the sedimentary column above the basement but below the ground surface.
Russell, G.A.
1991-06-01
Electromagnetic Interference (EMI) problems have resulted in the redesign of the SANDAC V computer case and shielding of its connecting cables. In this report are detailed discussions on the use of computer models and of the tests performed to solve the EMI problems. Included is documentation on the specific changes made to the SANDAC V computer case and the shielding done on the connecting cables. Also documented are the current EMI capabilities relative to MIL Std. 461.
LHC RF System Time-Domain Simulation
Mastorides, T.; Rivetta, C.; /SLAC
2010-09-14
Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.
Time Domain Modelling of a Reciprocating Engine
NASA Astrophysics Data System (ADS)
Li, H.; Stone, B. J.
1999-01-01
This paper describes the application of a time domain systems approach to the modelling of a reciprocating engine. The engine model includes the varying inertia effects resulting from the motion of the piston and con-rod. The cylinder pressure measured under operating conditions is used to force the model and the resulting motion compared with the measured response. The results obtained indicate that the model is very good.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
Holographic imaging based on time-domain data of natural-fiber-containing materials
Bunch, Kyle J.; McMakin, Douglas L.
2012-09-04
Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.
Time-domain incident-field extrapolation technique based on the singularity-expansion method
Klaasen, J.J.
1991-05-01
In this report, a method presented to extrapolate measurements from Nuclear Electromagnetic Pulse (NEMP) assessments directly in the time domain. This method is based on a time-domain extrapolation function which is obtained from the Singularity Expansion Method representation of the measured incident field of the NEMP simulator. Once the time-domain extrapolation function is determined, the responses recorded during an assessment can be extrapolated simply by convolving them with the time domain extrapolation function. It is found that to obtain useful extrapolated responses, the incident field measurements needs to be made minimum phase; otherwise unbounded results can be obtained. Results obtained with this technique are presented, using data from actual assessments.
Time-domain spectroscopy in the mid-infrared
Lanin, A. A.; Voronin, A. A.; Fedotov, A. B.; Zheltikov, A. M.
2014-01-01
When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294
Time-domain spectroscopy in the mid-infrared.
Lanin, A A; Voronin, A A; Fedotov, A B; Zheltikov, A M
2014-01-01
When coupled to characteristic, fingerprint vibrational and rotational motions of molecules, an electromagnetic field with an appropriate frequency and waveform offers a highly sensitive, highly informative probe, enabling chemically specific studies on a broad class of systems in physics, chemistry, biology, geosciences, and medicine. The frequencies of these signature molecular modes, however, lie in a region where accurate spectroscopic measurements are extremely difficult because of the lack of efficient detectors and spectrometers. Here, we show that, with a combination of advanced ultrafast technologies and nonlinear-optical waveform characterization, time-domain techniques can be advantageously extended to the metrology of fundamental molecular motions in the mid-infrared. In our scheme, the spectral modulation of ultrashort mid-infrared pulses, induced by rovibrational motions of molecules, gives rise to interfering coherent dark waveforms in the time domain. These high-visibility interference patterns can be read out by cross-correlation frequency-resolved gating of the field in the visible generated through ultrabroadband four-wave mixing in a gas phase. PMID:25327294
Finite difference time domain analysis of chirped dielectric gratings
NASA Technical Reports Server (NTRS)
Hochmuth, Diane H.; Johnson, Eric G.
1993-01-01
The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.
Metrology for terahertz time-domain spectrometers
NASA Astrophysics Data System (ADS)
Molloy, John F.; Naftaly, Mira
2015-12-01
In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.
Time-domain multiple-quantum NMR
Weitekamp, D.P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.
Solitons for optical time-domain reflectometry
NASA Astrophysics Data System (ADS)
Levanon, Amikam; Friberg, Stephen R.; Fujii, Yoichi
1996-06-01
We describe the propagation of solitons in an optical time-domain reflectometry geometry. Intense nonsolitons usually broaden nonlinearly as they propagate out to a scatterer and broaden linearly as they return to their origin. In contrast, solitons propagate with a fixed pulse width or narrow on their way out to the scatterer. Returning, they broaden or narrow depending on their chirp at the scattering point. For a fixed return-pulse timing resolution we find 2.6 times or more energy can be launched when solitons are used than for normal dispersion pulses.
Architectures for Time-domain Astronomy
NASA Astrophysics Data System (ADS)
Seaman, R.; Allan, A.; Pierfederici, F.; Williams, R.
2009-09-01
Wonder at the changing sky predates recorded history. Empirical studies of time-varying celestial phenomena date back to Galileo and Tycho. Telegrams conveying news of transient and recurrent events have been key astronomical infrastructure since the nineteenth century. Recent micro-lensing, supernova and gamma-ray burst studies have lead to a succession of exciting discoveries, but massive new time-domain surveys will soon overwhelm our nineteenth century transient response technologies. Meeting this challenge demands new autonomous architectures for astronomy. These Architectures should reach from proposing new research, through experimental design and the scheduling of telescope operations, to the archiving and pipeline-processing of data to discover new transients, to the publishing of these events, through automated follow-up via robotic and ToO assets, and to the display and analysis of observational results. All will lead to adaptive adjustment of time-domain investigations. The IVOA VOEvent protocol provides an engine for purpose-built astronomical architectures.
Inversion of SPECTREM airborne electromagnetic data for groundwater assessment in outback Australia
NASA Astrophysics Data System (ADS)
Ley-Cooper, A. Y.; Munday, T. J.
2012-12-01
Inversion methods based on 1D forward model responses accurately honour flat laying layered environments and they have a valuable role in extracting hydrogeological information from a range of AEM systems. The conversion of a non-linear EM response to accurate estimates of ground conductivity is essential for groundwater assessment and aquifer characterisation. It is critical to ensure the forward response accurately models the system transfer function used in the inversion. The weathered conductive nature of the Australian overburden, presents a challenge for all EM induction techniques. Target geometry can be modelled for each system, but field conditions add complexity. We examine effects arising from applying a 1D inversion on SPECTREM2000 AEM data in areas with 3D anisotropy, and consider its suitability for regional surveys in outback Australia. The accurate recovery of conductivity models from AEM systems normally considered as targeting tools, has become particularly important where their conjunctive use for mineral exploration and groundwater assessment is now being canvassed. SPECTREM is a fixed wing, time domain EM system that employs a bipolar full cycle square current waveform operating with a variable base frequency from 25Hz upwards. Its rms transmitter dipole moment is 400 000 A.m2 , and flies at a nominal height of 90m above the ground with the 'bird' towed approximately 131m behind and 40m below the aircraft. Both X and Z component data are recorded and then processed to produce a step response at each fiducial. Through a consideration of approaches to primary field removal, data normalisation, and an understanding of transmitter(TX) - receiver(RX) geometry we have a procedure to model and invert data from this system. Relative separations of TX and RX are not monitored in flight, requiring they be estimated afterwards. The challenge, with this system having a transmitter always active, is to separate the measured total field into the transmitted
NASA Astrophysics Data System (ADS)
Aspmo Pfaffhuber, Andreas; Grimstad, Eystein; Domaas, Ulrik; Auken, Esben; Halkjær, Max
2010-05-01
The inner Aurland fjord and the adjacent Flåm valley (Western Norway) are subject to a potential rock slide comprised of creeping rock- and debris masses. From repeated GPS measurements we understand that rock and debris movements are constrained by precipitation and snow melt. Based on this assumption the local municipality and regional hydroelectricity company are evaluating the option to drain the unstable area with a more than 10 km long drainage tunnel to a nearby hydropower reservoir. We conducted an airborne electromagnetic (AEM) mapping survey to find indications for the sliding planes and to assess the tunnel corridor for potential tunneling hazard areas. Unstable rock areas some 1.000 meters above seawater have been mapped as massive phyllite intercepted by numerous tension cracks opening up to several meters. Field observations also point out that significant amounts of surface water in streams on the mountain plateau disappear in some of these cracks and surface again several hundred meters down the slope. Potentially sliding planes provide the water pathways and the changes in water pressure can cause instability. As the phyllite will weather to fine grained clay the water saturated sliding planes should be an ideal target for AEM as they are very conductive (1-10 Ohm*m) in comparison to the resistive undisturbed phyllite or nearby gneiss (> 1.000 Ohm*m). From our first AEM data interpretation we find widespread areas with high conductivity, which are most likely caused by either water saturated, fine grained sliding planes or fault zones at the phyllite / gneiss interface. At this point, financing for drilling is pending to transform the geophysical maps to a firm geological model. Based on the AEM results, we are formulating a joint research program involving detailed hydrological investigations, monitoring of formation water pressure, movements, meteorology, more detailed structural mapping and geophysical ground follow up of the airborne data. We
Papyrus imaging with terahertz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Labaune, J.; Jackson, J. B.; Pagès-Camagna, S.; Duling, I. N.; Menu, M.; Mourou, G. A.
2010-09-01
Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.
Time domain cyclostationarity signal-processing tools
NASA Astrophysics Data System (ADS)
Léonard, François
2015-10-01
This paper proposes four different time-domain tools to estimate first-order time cyclostationary signals without the need of a keyphasor signal. Applied to gearbox signals, these tacho-less methods appear intuitively simple, offer user-friendly graphic interfaces to visualize a pattern and allow the retrieval and removal of the selected cyclostationarity components in order to process higher-order spectra. Two of these tools can deal with time-varying operating conditions since they use an adaptive resampled signal driven by the vibration signal itself for order tracking. Three coherency indicators are proposed, one for every sample of the time pattern, one for each impact (tooth shock) observed in the gear mesh pattern, and one for the whole pattern. These indicators are used to detect a cyclostationarity and analyze the pattern repeatability. A gear mesh graph is also proposed to illustrate the cyclostationarity in 3D.
Numerical methods for time-domain and frequency-domain analysis: applications in engineering
NASA Astrophysics Data System (ADS)
Tamas, R. D.
2015-11-01
Numerical methods are widely used for modeling different physical phenomena in engineering, especially when an analytic approach is not possible. Time-domain or frequency- domain type variations are generally investigated, depending on the nature of the process under consideration. Some methods originate from mechanics, although most of their applications belong to other fields, such as electromagnetism. Conversely, other methods were firstly developed for electromagnetism, but their field of application was extended to other fields. This paper presents some results that we have obtained by using a general purpose method for solving linear equations, i.e., the method of moments (MoM), and a time-domain method derived for electromagnetism, i.e., the Transmission Line Matrix method (TLM).
Finite-Difference Time-Domain solution of Maxwell's equations for the dispersive ionosphere
NASA Astrophysics Data System (ADS)
Nickisch, L. J.; Franke, P. M.
1992-10-01
The Finite-Difference Time-Domain (FDTD) technique is a conceptually simple, yet powerful, method for obtaining numerical solutions to electromagnetic propagation problems. However, the application of FDTD methods to problems in ionospheric radiowave propagation is complicated by the dispersive nature of the ionospheric plasma. In the time domain, the electric displacement is the convolution of the dielectric tensor with the electric field, and thus requires information from the entire signal history. This difficulty can be avoided by returning to the dynamical equations from which the dielectric tensor is derived. By integrating these differential equations simultaneously with the Maxwell equations, temporal dispersion is fully incorporated.
A Fourier collocation time domain method for numerically solving Maxwell's equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. We present the application of the Finite Difference Time Domain (FDTD) Technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and disclosed.
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. The application is presented of the Finite Difference Time Domain (FDTD) technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and discussed.
Applications of pattern classification to time-domain signals
NASA Astrophysics Data System (ADS)
Bertoncini, Crystal Ann
Many different kinds of physics are used in sensors that produce time-domain signals, such as ultrasonics, acoustics, seismology, and electromagnetics. The waveforms generated by these sensors are used to measure events or detect flaws in applications ranging from industrial to medical and defense-related domains. Interpreting the signals is challenging because of the complicated physics of the interaction of the fields with the materials and structures under study. Often the method of interpreting the signal varies by the application, but automatic detection of events in signals is always useful in order to attain results quickly with less human error. One method of automatic interpretation of data is pattern classification, which is a statistical method that assigns predicted labels to raw data associated with known categories. In this work, we use pattern classification techniques to aid automatic detection of events in signals using features extracted by a particular application of the wavelet transform, the Dynamic Wavelet Fingerprint (DWFP), as well as features selected through physical interpretation of the individual applications. The wavelet feature extraction method is general for any time-domain signal, and the classification results can be improved by features drawn for the particular domain. The success of this technique is demonstrated through four applications: the development of an ultrasonographic periodontal probe, the identification of flaw type in Lamb wave tomographic scans of an aluminum pipe, prediction of roof falls in a limestone mine, and automatic identification of individual Radio Frequency Identification (RFID) tags regardless of its programmed code. The method has been shown to achieve high accuracy, sometimes as high as 98%.
Casimir forces in the time domain: Applications
McCauley, Alexander P.; Rodriguez, Alejandro W.; Joannopoulos, John D.; Johnson, Steven G.
2010-01-15
Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.
How Swift is redefining time domain astronomy
NASA Astrophysics Data System (ADS)
Gehrels, N.; Cannizzo, J. K.
2015-09-01
NASA's Swift satellite has completed ten years of amazing discoveries in time domain astronomy. Its primary mission is to chase gamma-ray bursts (GRBs), but due to its scheduling flexibility it has subsequently become a prime discovery machine for new types of behavior. The list of major discoveries in GRBs and other transients includes the long-lived X-ray afterglows and flares from GRBs, the first accurate localization of short GRBs, the discovery of GRBs at high redshift (z > 8), supernova shock break-out from SN Ib, a jetted tidal disruption event, an ultra-long class of GRBs, high energy emission from flare stars, novae and supernovae with unusual characteristics, magnetars with glitches in their spin periods, and a short GRB with evidence of an accompanying kilonova. Swift has developed a dynamic synergism with ground based observatories. In a few years gravitational wave observatories will come on-line and provide exciting new transient sources for Swift to study.
Reengineering observatory operations for the time domain
NASA Astrophysics Data System (ADS)
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
Butler, K.L.
1985-09-01
Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.
A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial
NASA Technical Reports Server (NTRS)
Lock, James A.; Mishchenko, Michael I.
2015-01-01
The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.
Miniature terahertz time-domain spectrometry
NASA Astrophysics Data System (ADS)
Schulkin, Brian
This thesis focuses on the design, development and evaluation of novel concepts which enable the miniaturization of terahertz (THz) time-domain spectrometry. Portable THz spectrometry is applied to research and industrial domains for immediate, short and long term applications in nondestructive evaluation, homeland security, and biomedicine respectively. Due to the previous limitation of THz devices for public uses, in particular, the lack of access to a THz spectrometer, applications of THz science and technology have only recently expanded beyond the laboratory. There is an urgent need for compact, even handheld THz time-domain spectrometry (THz-TDS) platforms which can carry out proven-to-be-useful applications developed and tested in laboratory conditions. There are three major challenges restricting THz-TDS to laboratories. Atmospheric absorption severely limits the propagation distance of the THz beam and confines systems to low-moisture environments. The sample's surface roughness, grain size and geometry severely limit the bandwidth of the measurement. Physical size and weight of THz systems are generally limited by large laser sources and optomechanics. The sensitivity and selectivity of THz-TDS systems are the two most significant parameters used to describe the quality of the system. Sensitivity is directly related to the Signal-to-Noise Ratio (SNR) and dynamic range, which may be improved by either lowering the noise floor or increasing the THz signal. On the other hand, selectivity is far more complex as it is related to the sensitivity, sample preparation, baseline correction, and selection method. Sensitivity is gauged using industrial statistical methods, such as Gauge Repeatability and Reproducibility (GR&R), and can transform a not-so-useful SNR value to an extremely useful measure of the minimum detectable amount of a certain material. It is shown that the GR&R value is inversely proportional to the square root of the number of averaged waveforms
Time-domain measurement of broadband coherent Cherenkov radiation
Miocinovic, P.; Gorham, P. W.; Guillian, E.; Milincic, R.; Field, R. C.; Walz, D.; Saltzberg, D.; Williams, D.
2006-08-15
We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub RvertcalbarEverticalbar}=0.039 {mu}V/MHz/TeV and {sigma}{sub {phi}}=17 deg. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub {nu}}(greater-or-similar sign)10{sup 15} eV.
THz time-domain spectroscopy for tokamak plasma diagnostics
NASA Astrophysics Data System (ADS)
Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.
2014-08-01
The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.
THz time-domain spectroscopy for tokamak plasma diagnostics
Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.
2014-08-21
The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.
Time-Domain Measurement of Broadband Coherent Cherenkov Radiation
Miocinovic, P.; Field, R.C.; Gorham, P.W.; Guillian, E.; Milincic, R.; Saltzberg, D.; Walz, D.; Williams, D.; /UCLA
2006-03-13
We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole antenna (LPDA) is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; {sigma}{sub R|E|} = 0.039 {micro}V/MHz/TeV and {sigma}{sub {phi}} = 17{sup o}. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E{sub v} {ge} 10{sup 15} eV.
Understanding Return Stroke Data with Time Domain Fractal Lightning Modeling
NASA Astrophysics Data System (ADS)
Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Inan, U. S.
2012-12-01
Time domain fractal lightning (TDFL) modeling is an evolving technique for the study of lightning in the context of comprehensive existing experimental data. It incorporates the complex geometry of the lightning channel, keeps track of the time evolution of charge and current distribution along the lightning channel, and with both combined, simulates realistic electromagnetic radiation signals from lightning flashes. Recent development enhances the technique by bringing in various elements from the plasma physics aspect of lightning physics. For example, simple models are included to take account of effects due to corona sheath, channel heating and cooling, channel conductivity dependence on temperature etc. With future development, an even more sophisticated treatment of these elements is expected. With these features at hand, we present studies of return stroke related experimental data using TDFL. A wide variety of experimental data exists for the return stroke, including ground-base-current measurements, electric and magnetic field record, channel luminosity and estimations of various channel properties. We study these various aspects of lightning data under the single framework provided by TDFL. Emphasis is on exploring and explaining connections between the different types of data, e.g. dependence of the return stroke speed and electric field on channel properties, relation between ground-base-current peak current and charge transfer. Various other aspects such as effect of tortuous channel geometry, branches, and corona sheath are also explored.
NASA Technical Reports Server (NTRS)
Kowalski, Marc Edward
2009-01-01
A method for the prediction of time-domain signatures of chafed coaxial cables is presented. The method is quasi-static in nature, and is thus efficient enough to be included in inference and inversion routines. Unlike previous models proposed, no restriction on the geometry or size of the chafe is required in the present approach. The model is validated and its speed is illustrated via comparison to simulations from a commercial, three-dimensional electromagnetic simulator.
NASA Astrophysics Data System (ADS)
Abd Allah, Sabry; Mogi, Toru; Ito, Hisatoshi; Jomori, Akira; Yuuki, Youichi; Fomenko, Elena; Kiho, Kenzo; Kaieda, Hideshi; Suzuki, Koichi; Tsukuda, Kazuhiro
2013-12-01
An airborne electromagnetic (AEM) survey using the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) system was conducted over the Kujukuri coastal plain in southeast Japan to assess the system's ability to accurately describe the geological structure beneath shallow seawater. To obtain high-quality data with an optimized signal-to-noise ratio, a series of data processing techniques were used to obtain the final transient response curves from the field survey data. These steps included movement correction, coordinate transformation, the removal of local noise, data stacking, and signal portion extraction. We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model from the GREATEM data. This model was developed from an initial one-dimensional (1D) resistivity structure that was also inverted from the GREATEM field survey data. We modified a 3D electromagnetic forward-modeling scheme based on a finite-difference staggered-grid method and used it to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of the magnetic-transient responses between field data and the 3D forward-model computed data, the latter of which were convolved with the measured system responses of the corresponding data set. The inverted 3D resistivity structures showed that the GREATEM system has the capability to map resistivity structures as far as 800 m offshore and as deep as 300-350 m underground in coastal areas of relatively shallow seawater depth (5-10 m).
Time-of-flight measurement techniques for airborne ultrasonic ranging.
Jackson, Joseph C; Summan, Rahul; Dobie, Gordon I; Whiteley, Simon M; Pierce, S G; Hayward, Gordon
2013-02-01
Airborne ultrasonic ranging is used in a variety of different engineering applications for which other positional metrology techniques cannot be used, for example in closed-cell locations, when optical line of sight is limited, and when multipath effects preclude electromagnetic-based wireless systems. Although subject to fundamental physical limitations, e.g., because of the temperature dependence of acoustic velocity in air, these acoustic techniques often provide a cost-effective solution for applications in mobile robotics, structural inspection, and biomedical imaging. In this article, the different techniques and limitations of a range of airborne ultrasonic ranging approaches are reviewed, with an emphasis on the accuracy and repeatability of the measurements. Simple time-domain approaches are compared with their frequency-domain equivalents, and the use of hybrid models and biologically inspired approaches are discussed. PMID:23357908
Recovering Complex Conductivity from Frequency and Time Domain Geophysical Surveys
NASA Astrophysics Data System (ADS)
KANG, S.; Marchant, D.; Oldenburg, D.
2013-12-01
The electrical conductivity of earth materials can be frequency dependent. The bulk conductivity decreases with decreasing frequency because of the build-up of electric charges that occur under the application of an electric field. Effectively, the rock is electrically polarized. Finding the polarization response (often referred to as IP, Induced Polarization) can lead to economic benefits, as in the case of discovering sulphide minerals, but there is applicability in environmental problems, groundwater flow, and site characterization. We have the ability to model Maxwell's equations in 3D for complex conductivity in either the time or frequency domain. The challenge therefore is to invert the EM (electromagnetic) data to recover a four-dimensional conductivity (σ (ω, x, y, z)) using limited EM data generally acquired on, or above, the surface of the earth. At late times (or low frequencies) the static Maxwell's equation are valid and, if a background conductivity is known, then chargeability can be extracted. Unfortunately the static assumption is often violated and EM induction processes contaminate the sought signal. For example, signals in the time domain have three parts: a static on-time, an early-time inductive portion, and a late-time IP signal. Information about conductivity using the appropriate Maxwell's equations is available from each of these segments. The potential contamination of the IP from EM induction (often referred to as EM coupling) and the potential contamination of the EM signal from the IP data (IP coupling) can cause deleterious effects and must be addressed. The goal of this talk is to address such issues and outline a practical procedure for extracting IP information from existing time and frequency domain surveys.
NASA Astrophysics Data System (ADS)
Wang, Minshen
The primary interest of the electromagnetic behavior of a periodic structure is in its near field and far field. However, it is still numerically difficult to analyze either one in the time domain. The primary goal of this dissertation is to develop corresponding time domain technique to analyze two topics. The first one is to evaluate the far field of a realistic, large antenna array using an efficient method. The second one is to evaluate the propagation characteristic of a commercially available printed circuit board (PCB) with intentional roughness. Both of which are hot topics in the antenna and signal integrity (SI) society respectively; however, none of them have ever been solved in the time domain. To efficiently evaluate the far field pattern of a realistically large antenna array, the spectral domain method and the reciprocity theorem are implemented in the finite difference time domain (FDTD) technique to avoid the simulation of the near field. By taking advantage of the periodic boundary condition (PBC), the proposed method demonstrates its capability to speed up far field evaluation from hours to minutes. Good agreement of the results is provided for various cases: circular antenna array, arbitrary feeding array, and highly directional leaky wave antenna, etc. Periodic structure modeling with finite sized feedings is developed by the array scanning method (ASM) implemented in the FDTD technique. The minimally coupled electric and magnetic co-mingled antenna array is evaluated by the method. Moreover, a commercially available PCB with very small roughness is modeled by the ASM-FDTD and the propagation characteristic is evaluated. Both are evaluated by time domain method for the first time. Efficiency in terms of memory and computing time is shown for this method and parallelization in the future is proposed.
An inverse acoustic waveguide problem in the time domain
NASA Astrophysics Data System (ADS)
Monk, Peter; Selgas, Virginia
2016-05-01
We consider the problem of locating an obstacle in a waveguide from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface located inside the waveguide away from the obstacle, where the scattered field is measured on the same surface. From this multi-static scattering data we wish to determine the position and shape of an obstacle in the waveguide. To deal with this inverse problem, we adapt and analyze the time domain linear sampling method. This involves proving new time domain estimates for the forward problem, as well as analyzing several time domain operators arising in the inversion scheme. We also implement the inversion algorithm and provide numerical results in two-dimensions using synthetic data.
Time domain referencing in intensity modulation fiber optic sensing systems
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory
1986-01-01
Intensity modulation sensors are classified by the way in which the reference and signal channels are separated: in space, wavelength, or time domains. To implement the time-domain referencing, different types of fiber-optic loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.
TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials
NASA Astrophysics Data System (ADS)
Blake, Geoffrey
The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications
ASIC-enabled High Resolution Optical Time Domain Reflectometer
NASA Astrophysics Data System (ADS)
Skendzic, Sandra
Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and
Time Domain Version of the Uniform Geometrical Theory of Diffraction
NASA Astrophysics Data System (ADS)
Rousseau, Paul R.
1995-01-01
A time domain (TD) version of the uniform geometrical theory of diffraction which is referred to as the TD-UTD is developed to analyze the transient electromagnetic scattering from perfectly conducting objects that are large in terms of pulse width. In particular, the scattering from a perfectly conducting arbitrary curved wedge and an arbitrary smooth convex surface are treated in detail. Note that the canonical geometries of a circular cylinder and a sphere are special cases of the arbitrary smooth convex surface. These TD -UTD solutions are obtained in the form of relatively simple analytical expressions valid for early to intermediate times. The geometries treated here can be used to build up a transient solution to more complex radiating objects via space-time localization, in exactly the same way as is done by invoking spatial localization properties in the frequency domain UTD. The TD-UTD provides the response due to an excitation of a general astigmatic impulsive wavefront with any polarization. This generalized impulse response may then be convolved with other excitation time pulses, to find even more general solutions due to other excitation pulses. Since the TD-UTD uses the same rays as the frequency domain UTD, it provides a simple picture for transient radiation or scattering and is therefore just as physically appealing as the frequency domain UTD. The formulation of an analytic time transform (ATT), which produces an analytic time signal given a frequency response function, is given here. This ATT is used because it provides a very efficient method of inverting the asymptotic high frequency UTD representations to obtain the corresponding TD-UTD expressions even when there are special UTD transition functions which may not be well behaved at the low frequencies; also, using the ATT avoids the difficulties associated with the inversion of UTD ray fields that traverse line or smooth caustics. Another useful aspect of the ATT is the ability to perform an
3D Vectorial Time Domain Computational Integrated Photonics
Kallman, J S; Bond, T C; Koning, J M; Stowell, M L
2007-02-16
The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip
NASA Astrophysics Data System (ADS)
Maloney, James G.; Smith, Glenn S.; Scott, Waymond R., Jr.
1990-07-01
Two antennas are considered, a cylindrical monopole and a conical monopole. Both are driven through an image plane from a coaxial transmission line. Each of these antennas corresponds to a well-posed theoretical electromagnetic boundary value problem and a realizable experimental model. These antennas are analyzed by a straightforward application of the time-domain finite-difference method. The computed results for these antennas are shown to be in excellent agreement with accurate experimental measurements for both the time domain and the frequency domain. The graphical displays presented for the transient near-zone and far-zone radiation from these antennas provide physical insight into the radiation process.
Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry
Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd
2013-01-01
In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953
NASA Astrophysics Data System (ADS)
Hamiaz, Adnane; Klein, Rudy; Ferrieres, Xavier; Pascal, Olivier; Boeuf, Jean-Pierre; Poirier, Jean-Rene
2012-08-01
The modelling of plasma formation during microwave breakdown is a difficult task because of the strong non-linear coupling between Maxwell's equations and plasma equations, and of the large plasma density gradients that form during breakdown. An original Finite Volume Time Domain (FVTD) method has been developed to solve Maxwell's equations coupled with a simplified fluid plasma model and is described in this paper. This method is illustrated with the study of the shielding of a metallic aperture by the plasma generated by an incident high power electromagnetic wave. Typical results obtained with the FVTD method for this shielding problem are shown.
SanFilipo, Bill
2000-04-01
The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.
Time-Domain Filtering for Spatial Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Auriault, Laurent
1996-01-01
It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.
Eulerian Time-Domain Filtering for Spatial LES
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.
New frontiers in time-domain diffuse optics, a review.
Pifferi, Antonio; Contini, Davide; Mora, Alberto Dalla; Farina, Andrea; Spinelli, Lorenzo; Torricelli, Alessandro
2016-09-01
The recent developments in time-domain diffuse optics that rely on physical concepts (e.g., time-gating and null distance) and advanced photonic components (e.g., vertical cavity source-emitting laser as light sources, single photon avalanche diode, and silicon photomultipliers as detectors, fast-gating circuits, and time-to-digital converters for acquisition) are focused. This study shows how these tools could lead on one hand to compact and wearable time-domain devices for point-of-care diagnostics down to the consumer level and on the other hand to powerful systems with exceptional depth penetration and sensitivity. PMID:27311627
Time Domain Measurement of Moving Object Speed Using Acceleration Sensor
NASA Astrophysics Data System (ADS)
Koyama, Kazunori; Noro, Mitsuo; Hirata, Akimasa; Fujiwara, Osamu
In this study, we proposed a time-domain measurement method of moving object speed with a commercially available acceleration sensor. The sensor of this kind is normally used to measure the acceleration of a stationary vibration object, while it is not applicable to the measurement of a transient moving object due to the frequency response of the sensor itself. An impulsive sensor response was derived from the free-drop movement of a metallic sphere. The deconvolution allows the sensor to measure the acceleration in the time domain, which was validated through the measurement of the speed of a hand-held metal piece approaching a target.
Frequency and time domain modeling of high speed amplifier
NASA Astrophysics Data System (ADS)
Opalska, Katarzyna
2015-09-01
The paper presents the lumped model of high speed amplifier useful for frequency and time domain (also large signal) simulation. Model is constructed on the basis of two-domain device measurements, namely small signal frequency parameters and time response to the input step of varying amplitude. Rational approximation of frequency domain data leads to small signal model composed of RLC subcircuits and controlled sources. Next, the model is complimented with the nonlinearities identified from time-domain measurements, including those taken for large input signals. Final amplifier model implemented in SPICE simulator is shown to correctly render the behavior of the device over the wide variety of operating conditions.
Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.
2013-01-01
Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.
Time domain reflectometry for SLC BPM system. Revision
Thompson, D.R.
1985-03-01
This document is intended for use as a maintenance manual for troubleshooting installed SLC Beam Position Monitor stripline assemblies and the associated cabling, using Time Domain Reflectometry. Once a technician becomes familiar with this manual's procedures, the Table of Contents can serve as a checklist.
Application of Time Domain Reflectometers in Urban Settings
This is a poster for the Million Trees NYC research symposium in New York City, NY, March 5-6, 2010. The poster gives a summary of how time domain reflectometers can be installed in urban fill soil, engineered bioretention media, and recycled concrete aggregate to document the ...
Application of Time Domain Reflectometers to Urban Settings
Time domain reflectometers (TDRs) are in-situ monitoring probes that produce a temperature-compensated signal proportional to soil moisture content of the surrounding material when calibrated to a particular media. Typically used in agricultural settings, TDRs may also be applied...
Data Management, Infrastructure and Archiving for Time-Domain Astronomy
NASA Astrophysics Data System (ADS)
Schade, David
2012-04-01
The workshop on Data Management issues for Time-Domain Astronomy was conceived as a forward-looking discussion of the primary issues that need to be addressed for science in the time domain. The very broad diversity of the science areas presented in the main Symposium made it clear that most of the general issues for astronomy data management-for example, large data volumes, the need for timely processing and network performance-would be pertinent in the time domain. In addition, there might be other tight time constraints on data processing when the output was required to trigger rapid follow-up observations, while science based on very long time-baselines might require careful consideration of long-term data preservation and availability issues. But broadly speaking, data management challenges in the time domain are not at variance to any significant degree with those for astronomy or data-intensive research in general. The workshop framed and debated a number of questions: What is the biggest challenge faced by future projects? How do grid and cloud computing figure in data management plans? Is the Virtual Observatory important to future projects? How are the issues of data life cycle being addressed?
Quality control of leather by terahertz time-domain spectroscopy.
Hernandez-Serrano, A I; Corzo-Garcia, S C; Garcia-Sanchez, E; Alfaro, M; Castro-Camus, E
2014-11-20
We use terahertz time-domain spectroscopy, combined with effective-medium theory, to measure the moisture content and thickness of leather simultaneously. These results demonstrate that this method could become a standard quality control test for the industrial tanning process. PMID:25607861
Advanced propeller noise prediction in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.; Dunn, M. H.; Spence, P. L.
1992-01-01
The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.
A Partial Cylindrical Thermo-Time Domain Reflectometry Sensor
Technology Transfer Automated Retrieval System (TEKTRAN)
Thermo-time domain reflectometry (T-TDR) sensors are multi-functional devices that can be used to measure soil thermal properties and water content. These sensors can also be used to obtain indirect estimates of bulk density, air-filled porosity and percent saturation. However, the small size of the...
Time domain measurement of frequency stability: A tutorial introduction
NASA Technical Reports Server (NTRS)
Vanier, J.; Tetu, M.
1978-01-01
The theoretical basis behind the definition of frequency stability in the time domain is outlined. Various types of variances were examined. Their differences and interrelation are pointed out. Systems that are generally used in the measurement of these variances are described.
International Symposium on Airborne Geophysics
NASA Astrophysics Data System (ADS)
Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi
2006-05-01
Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.
NASA Astrophysics Data System (ADS)
Armstrong, R. S.; Holbrook, W. S.; Flinchum, B. A.; Provart, M.; Carr, B. J.; Auken, E.; Pedersen, J. B.
2014-12-01
Surface/groundwater interactions are an important, but poorly understood, facet of mountain hydrology. We utilize ground electrical resistivity data as a key tool for mapping groundwater pathways and aquifers. However, surface resistivity profiling is limited in both spatial extent and depth, especially in mountainous headwater environments because of inaccessibility and terrain. Because this important groundwater recharge environment is poorly understood, WyCEHG has focused efforts to increase knowledge about the dynamics and location of groundwater recharge. Currently, traditional hydrologic measurements estimate that only 10% of annual snowmelt enters the groundwater system while the rest is immediately available to surface flow. The Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) collected a 40 sq. km survey of helicopter transient electromagnetic (HTEM) and aeromagnetic data during the fall of 2013 as the first step in a "top down" geophysical characterization of a mountainous headwater catchment in the Snowy Range, Wyoming. Furthermore, mountain springs in the Snowy Range suggests that the "groundwatershed" acts as both a sink and source to surface watersheds. HTEM data show horizontal electrical conductors at depth, which are currently interpreted as fluid-filled subsurface fractures. Because these fractures eventually connect to the surface, they could be geophysical evidence of connectivity between the watershed and "groundwatershed." However, current HTEM inversion techniques assume a layered homogenous subsurface model, which directly contradicts two characteristics of the Snowy Range: the subvertical bedding of the Cheyenne Belt and heterogeneous distribution of surface water. Ground electrical resistivity surveys and surface nuclear magnetic resonance (NMR) measurements collected during the summer of 2014 target these anomalies to determine their validity and further understand the complicated dynamic of surface and groundwater flow.
Hammack, R. W.
2006-12-28
subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.
Improved time-domain accuracy standards for model gravitational waveforms
Lindblom, Lee; Baker, John G.
2010-10-15
Model gravitational waveforms must be accurate enough to be useful for detection of signals and measurement of their parameters, so appropriate accuracy standards are needed. Yet these standards should not be unnecessarily restrictive, making them impractical for the numerical and analytical modelers to meet. The work of Lindblom, Owen, and Brown [Phys. Rev. D 78, 124020 (2008)] is extended by deriving new waveform accuracy standards which are significantly less restrictive while still ensuring the quality needed for gravitational-wave data analysis. These new standards are formulated as bounds on certain norms of the time-domain waveform errors, which makes it possible to enforce them in situations where frequency-domain errors may be difficult or impossible to estimate reliably. These standards are less restrictive by about a factor of 20 than the previously published time-domain standards for detection, and up to a factor of 60 for measurement. These new standards should therefore be much easier to use effectively.
Time Domain Partitioning of Electricity Production Cost Simulations
Barrows, C.; Hummon, M.; Jones, W.; Hale, E.
2014-01-01
Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.
THz time domain spectroscopy of biomolecular conformational modes.
Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert
2002-11-01
We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm(-1) range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules. PMID:12452570
Technical and Observational Challenges for Future Time-Domain Surveys
NASA Astrophysics Data System (ADS)
Bloom, Joshua S.
2012-04-01
By the end of the last decade, robotic telescopes were established as effective alternatives to the traditional role of astronomer in planning, conducting and reducing time-domain observations. By the end of this decade, machines will play a much more central role in the discovery and classification of time-domain events observed by such robots. While this abstraction of humans away from the real-time loop (and the nightly slog of the nominal scientific process) is inevitable, just how we will get there as a community is uncertain. I discuss the importance of machine learning in astronomy today, and project where we might consider heading in the future. I will also touch on the role of people and organisations in shaping and maximising the scientific returns of the coming data deluge.
Broadband Trailing Edge Noise Predictions in the Time Domain. Revised
NASA Technical Reports Server (NTRS)
Casper, Jay; Farassat, Fereidoun
2003-01-01
A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
Using the VO to Study the Time Domain
NASA Astrophysics Data System (ADS)
Seaman, Rob; Williams, Roy; Graham, Matthew; Murphy, Tara
2012-04-01
Just as the astronomical ``Time Domain'' is a catch-phrase for a diverse group of different science objectives involving time-varying phenomena in all astrophysical régimes from the solar system to cosmological scales, so the ``Virtual Observatory'' is a complex set of community-wide activities from archives to astroinformatics. This workshop touched on some aspects of adapting and developing those semantic and network technologies in order to address transient and time-domain research challenges. It discussed the VOEvent format for representing alerts and reports on celestial transient events, the SkyAlert and ATELstream facilities for distributing these alerts, and the IVOA time-series protocol and time-series tools provided by the VAO. Those tools and infrastructure are available today to address the real-world needs of astronomers.
THz time-domain spectroscopy imaging for mail inspection
NASA Astrophysics Data System (ADS)
Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan
2011-08-01
Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.
Broadband trailing edge noise predictions in the time domain
NASA Astrophysics Data System (ADS)
Casper, J.; Farassat, F.
2004-03-01
A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. In the present work, Formulation 1B is used to calculate the farfield noise radiated from the trailing edge of a NACA 0012 airfoil in a low Mach number flow, using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.
Finite difference time domain grid generation from AMC helicopter models
NASA Technical Reports Server (NTRS)
Cravey, Robin L.
1992-01-01
A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.
Photonic-crystal time-domain simulations using Wannier functions.
Blum, Christian; Wolff, Christian; Busch, Kurt
2011-01-15
We present a Wannier-function-based time-domain method for photonic-crystal integrated optical circuits. In contrast to other approaches, this method allows one to trade CPU time against memory consumption and therefore is particularly well suited for the treatment of large-scale systems. As an illustration, we apply the method to the design of a photonic-crystal-based sensor, which utilizes a dual Mach-Zehnder-Fano interferometer. PMID:21263535
Terahertz time-domain spectroscopy of gases, liquids, and solids.
Theuer, Michael; Harsha, Srikantaiah Sree; Molter, Daniel; Torosyan, Garik; Beigang, René
2011-10-24
The techniques and methods employed in the spectroscopic characterization of gases, liquids, and solids in the terahertz frequency range are reviewed. Terahertz time-domain spectroscopy is applied to address a broadband frequency range between 100 GHz and 5 THz with a sub-10 GHz frequency resolution. The unique spectral absorption features measured can be efficiently used in material identification and sensing. Possibilities and limitations of fundamental and industrial applications are discussed. PMID:21735510
Historical Time-Domain: Data Archives, Processing, and Distribution
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Griffin, R. Elizabeth
2012-04-01
The workshop on Historical Time-Domain Astronomy (TDA) was attended by a near-capacity gathering of ~30 people. From information provided in turn by those present, an up-to-date overview was created of available plate archives, progress in their digitization, the extent of actual processing of those data, and plans for data distribution. Several recommendations were made for prioritising the processing and distribution of historical TDA data.
NASA Astrophysics Data System (ADS)
Guillemoteau, Julien; Sailhac, Pascal; Béhaegel, Mickaël
2011-11-01
Airborne transient electromagnetic (TEM) is a cost-effective method to image the distribution of electrical conductivity in the ground. We consider layered earth inversion to interpret large data sets of hundreds of kilometre. Different strategies can be used to solve this inverse problem. This consists in managing the a priori information to avoid the mathematical instability and provide the most plausible model of conductivity in depth. In order to obtain fast and realistic inversion program, we tested three kinds of regularization: two are based on standard Tikhonov procedure which consist in minimizing not only the data misfit function but a balanced optimization function with additional terms constraining the lateral and the vertical smoothness of the conductivity; another kind of regularization is based on reducing the condition number of the kernel by changing the layout of layers before minimizing the data misfit function. Finally, in order to get a more realistic distribution of conductivity, notably by removing negative conductivity values, we suggest an additional recursive filter based upon the inversion of the logarithm of the conductivity. All these methods are tested on synthetic and real data sets. Synthetic data have been calculated by 2.5D modelling; they are used to demonstrate that these methods provide equivalent quality in terms of data misfit and accuracy of the resulting image; the limit essentially comes on special targets with sharp 2D geometries. The real data case is from Helicopter-borne TEM data acquired in the basin of Franceville (Gabon) where borehole conductivity loggings are used to show the good accuracy of the inverted models in most areas, and some biased depths in areas where strong lateral changes may occur.
Anderson localization and Mott insulator phase in the time domain
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
High frequency resolution terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Sangala, Bagvanth Reddy
2013-12-01
A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.
A post-processing algorithm for time domain pitch trackers
NASA Astrophysics Data System (ADS)
Specker, P.
1983-01-01
This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.
Anderson localization and Mott insulator phase in the time domain.
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
Investigation of coastal areas in Northern Germany using airborne geophysical surveys
NASA Astrophysics Data System (ADS)
Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe
2014-05-01
Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
Finite difference time domain calculation of transients in antennas with nonlinear loads
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent
1991-01-01
Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.
Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source
Newman, Gregory A.; Commer, Michael
2006-11-16
Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.
Transient analysis of printed lines using finite-difference time-domain method
Ahmed, Shahid
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
Time-domain ultrasonic measurement of the thickness of a sub-half-wavelength elastic layer
NASA Astrophysics Data System (ADS)
Zhu, Changyi; Kinra, Vikram K.
1992-07-01
A technique is reported for the ultrasonic nondestructive measurement of the thickness of extremely thin (sub-wavelength) adhesive layers in adhesively bonded joints without the use of Fourier transforms. The entire ultrasonic NDE is carried out in the time domain and can be used by a trained technician without a college education. Aluminum plates ranging in thickness from 0.089 to 12.675 mm were tested using a 1-MHz transducer. The error was found to be one percent for h/lambda (specimen thickness/wavelength) down to 0.010. In dimensional terms, plates with a thickness of 100 microns can be measured with an accuracy of + or - 1 micron. This technique can also be used in conjunction with the electromagnetic-acoustic transducer technology in which only low-frequency transducers are presently available.
THz time-domain spectroscopy on plant oils and animal fats
NASA Astrophysics Data System (ADS)
Hu, Ying; Guo, Lantao; Wang, Xiaohong; Zhang, Xi Cheng
2005-01-01
Terahertz (THz) radiation, generated by ultra short laser pulses, occupies a broad band on electromagnetic spectrum chart. This radiation band belongs to far-infrared. It is a new research field of studying THz radiation interacting with materials especially with biomaterials. The paper shows experimental results of five plant oil samples from different kind of plants and two kinds of animal fat samples by using THz-TDS (THz time-domain spectroscopy) technology. The refraction indices and the absorption coefficients of these samples are measured in the range from 0.2 to 2.0 THz. The results show that different oils have different refraction indices. For oil samples, refraction indices decrease slowly while their coefficients of absorption increase with the increases of THz frequency. For the animal fat samples, the refraction indices show almost no change while the absorption coefficients increase with the increasing THz frequency. The absorption coefficients increase with the increasing temperature.