Science.gov

Sample records for airborne wideband camera

  1. A Cryogenic, Insulating Suspension System for the High Resolution Airborne Wideband Camera (HAWC)and Submillemeter And Far Infrared Experiment (SAFIRE) Adiabatic Demagnetization Refrigerators (ADRs)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Jackson, Michael L.; Shirron, Peter J.; Tuttle, James G.

    2002-01-01

    The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their detectors to 200mK and 100mK, respectively. In order to minimize thermal loads on the salt pill, a Kevlar suspension system is used to hold it in place. An innovative, kinematic suspension system is presented. The suspension system is unique in that it consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill.

  2. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  3. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; Simpson, A. D. (Technical Monitor)

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  4. Wideband radar for airborne minefield detection

    NASA Astrophysics Data System (ADS)

    Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad

    2006-05-01

    Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.

  5. Airborne ballistic camera tracking systems

    NASA Technical Reports Server (NTRS)

    Redish, W. L.

    1976-01-01

    An operational airborne ballistic camera tracking system was tested for operational and data reduction feasibility. The acquisition and data processing requirements of the system are discussed. Suggestions for future improvements are also noted. A description of the data reduction mathematics is outlined. Results from a successful reentry test mission are tabulated. The test mission indicated that airborne ballistic camera tracking systems are feasible.

  6. Television camera on RMS surveys insulation on Airborne Support Equipment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The television camera on the end effector of the Canadian-built Remote Manipulator System (RMS) is seen surveying some of the insulation on the Airborne Support Equipment (ASE). Flight controllers called for the survey following the departure of the Advanced Communications Technology Satellite (ACTS) and its Transfer Orbit Stage (TOS).

  7. An airborne four-camera imaging system for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  8. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  9. A videoSAR mode for the x-band wideband experimental airborne radar

    NASA Astrophysics Data System (ADS)

    Damini, A.; Balaji, B.; Parry, C.; Mantle, V.

    2010-04-01

    DRDC has been involved in the development of airborne SAR systems since the 1980s. The current system, designated XWEAR (X-band Wideband Experimental Airborne Radar), is an instrument for the collection of SAR, GMTI and maritime surveillance data at long ranges. VideoSAR is a land imaging mode in which the radar is operated in the spotlight mode for an extended period of time. Radar data is collected persistently on a target of interest while the aircraft is either flying by or circling it. The time span for a single circular data collection can be on the order of 30 minutes. The spotlight data is processed using synthetic apertures of up to 60 seconds in duration, where consecutive apertures can be contiguous or overlapped. The imagery is formed using a back-projection algorithm to a common Cartesian grid. The DRDC VideoSAR mode noncoherently sums the images, either cumulatively, or via a sliding window of, for example, 5 images, to generate an imagery stream presenting the target reflectivity as a function of viewing angle. The image summation results in significant speckle reduction which provides for increased image contrast. The contrast increases rapidly over the first few summed images and continues to increase, but at a lesser rate, as more images are summed. In the case of cumulative summation of the imagery, the shadows quickly become filled in. In the case of a sliding window, the summation introduces a form of persistence into the VideoSAR output analogous to the persistence of analog displays from early radars.

  10. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  11. Application of multimode airborne digital camera system in Wenchuan earthquake disaster monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Li, Qingting; Fang, Junyong; Tong, Qingxi; Zheng, Lanfen

    2009-06-01

    Remote sensing, especially airborne remote sensing, can be an invaluable technique for quick response to natural disasters. Timely acquired images by airborne remote sensing can provide very important information for the headquarters and decision makers to be aware of the disaster situation, and make effective relief arrangements. The image acquisition and processing of Multi-mode Airborne Digital Camera System (MADC) and its application in Wenchuan earthquake disaster monitoring are presented in this paper. MADC system is a novel airborne digital camera developed by Institute of Remote Sensing Applications, Chinese Academy of Sciences. This camera system can acquire high quality images in three modes, namely wide field, multi-spectral (hyper-spectral) and stereo conformation. The basic components and technical parameters of MADC are also presented in this paper. MADC system played a very important role in the disaster monitoring of Wenchuan earthquake. In particular, the map of dammed lakes in Jianjiang river area was produced and provided to the front line headquarters. Analytical methods and information extraction techniques of MADC are introduced. Some typical analytical and imaging results are given too. Suggestions for the design and configuration of the airborne sensors are discussed at the end of this paper.

  12. A high-resolution airborne four-camera imaging system for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and testing of an airborne multispectral digital imaging system for remote sensing applications. The system consists of four high resolution charge coupled device (CCD) digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition software. T...

  13. A simple method for vignette correction of airborne digital camera data

    SciTech Connect

    Nguyen, A.T.; Stow, D.A.; Hope, A.S.

    1996-11-01

    Airborne digital camera systems have gained popularity in recent years due to their flexibility, high geometric fidelity and spatial resolution, and fast data turn-around time. However, a common problem that plagues these types of framing systems is vignetting which causes falloff in image brightness away from principle nadir point. This paper presents a simple method for vignetting correction by utilizing laboratory images of a uniform illumination source. Multiple lab images are averaged and inverted to create digital correction templates which then are applied to actual airborne data. The vignette correction was effective in removing the systematic falloff in spectral values. We have shown that the vignette correction is a necessary part of the preprocessing of raw digital airborne remote sensing data. The consequences of not correcting for these effects are demonstrated in the context of monitoring of salt marsh habitat. 4 refs.

  14. Airborne particle monitoring with urban closed-circuit television camera networks and a chromatic technique

    NASA Astrophysics Data System (ADS)

    Kolupula, Y. R.; Aceves-Fernandez, M. A.; Jones, G. R.; Deakin, A. G.; Spencer, J. W.

    2010-11-01

    An economic approach for the preliminary assessment of 2-10 µm sized (PM10) airborne particle levels in urban areas is described. It uses existing urban closed-circuit television (CCTV) surveillance camera networks in combination with particle accumulating units and chromatic quantification of polychromatic light scattered by the captured particles. Methods for accommodating extraneous light effects are discussed and test results obtained from real urban sites are presented to illustrate the potential of the approach.

  15. Imaging and radiometric performance simulation for a new high-performance dual-band airborne reconnaissance camera

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Yu, Jinhee; Ryu, Dongok; Hong, Jinsuk; Yoon, Jee-Yeon; Kim, Sug-Whan; Lee, Jun-Ho; Shin, Myung-Jin

    2009-05-01

    In recent years, high performance visible and IR cameras have been used widely for tactical airborne reconnaissance. The process improvement for efficient discrimination and analysis of complex target information from active battlefields requires for simultaneous multi-band measurement from airborne platforms at various altitudes. We report a new dual band airborne camera designed for simultaneous registration of both visible and IR imagery from mid-altitude ranges. The camera design uses a common front end optical telescope of around 0.3m in entrance aperture and several relay optical sub-systems capable of delivering both high spatial resolution visible and IR images to the detectors. The camera design is benefited from the use of several optical channels packaged in a compact space and the associated freedom to choose between wide (~3 degrees) and narrow (~1 degree) field of view. In order to investigate both imaging and radiometric performances of the camera, we generated an array of target scenes with optical properties such as reflection, refraction, scattering, transmission and emission. We then combined the target scenes and the camera optical system into the integrated ray tracing simulation environment utilizing Monte Carlo computation technique. Taking realistic atmospheric radiative transfer characteristics into account, both imaging and radiometric performances were then investigated. The simulation results demonstrate successfully that the camera design satisfies NIIRS 7 detection criterion. The camera concept, details of performance simulation computation, the resulting performances are discussed together with future development plan.

  16. Georeferencing airborne images from a multiple digital camera system by GPS/INS

    NASA Astrophysics Data System (ADS)

    Mostafa, Mohamed Mohamed Rashad

    2000-10-01

    In this thesis, the development and testing of an airborne fully digital multi-sensor system for kinematic mapping is presented. The system acquires two streams of data, namely navigation data and imaging data. The navigation data are obtained by integrating an accurate strapdown Inertial Navigation System with two GPS receivers. The imaging data are acquired by two digital cameras, configured in such a way so as to reduce their geometric limitations. The two digital cameras capture strips of overlapping nadir and oblique images. The INS/GPS-derived trajectory contains the full translational and rotational motion of the carrier aircraft. Thus, image exterior orientation information is extracted from the trajectory, during postprocessing. This approach eliminates the need for ground control when computing 3D positions of objects that appear in the field of view of the system imaging component. Test flights were conducted over the campus of The University of Calgary. Two approaches for calibrating the system are presented, namely pre-mission calibration and in-flight calibration. Testing the system in flight showed that best ground point positioning accuracy at 1:12000 average image scale is 0.2 m (RMS) in easting and northing and 0.3 m (RMS) in height. Preliminary results indicate that major applications of such a system in the future are in the field of digital mapping, at scales of 1:10000 and smaller, and the generation of digital elevation models for engineering applications.

  17. Control design for image tracking with an inertially stabilized airborne camera platform

    NASA Astrophysics Data System (ADS)

    Hurák, Zdenek; Rezáč, Martin

    2010-04-01

    The paper reports on a few control engineering issues related to design and implementation of an image-based pointing and tracking system for an inertially stabilized airborne camera platform. A medium-sized platform has been developed by the authors and a few more team members within a joint governmental project coordinated by Czech Air Force Research Institute. The resulting experimental platform is based on a common double gimbal configuration with two direct drive motors and off-the-shelf MEMS gyros. Automatic vision-based tracking system is built on top of the inertial stabilization. Choice of a suitable control configuration is discussed first, because the decoupled structure for the inner inertial rate controllers does not extend easily to the outer imagebased pointing and tracking loop. It appears that the pointing and tracking controller can benefit much from availability of measurements of an inertial rate of the camera around its optical axis. The proposed pointing and tracking controller relies on feedback linearization well known in image-based visual servoing. Simple compensation of a one sample delay introduced into the (slow) visual pointing and tracking loop by the computer vision system is proposed. It relies on a simple modification of the well-known Smith predictor scheme where the prediction takes advantage of availability of the (fast and undelayed) inertial rate measurements.

  18. Airborne Camera System for Real-Time Applications - Support of a National Civil Protection Exercise

    NASA Astrophysics Data System (ADS)

    Gstaiger, V.; Romer, H.; Rosenbaum, D.; Henkel, F.

    2015-04-01

    In the VABENE++ project of the German Aerospace Center (DLR), powerful tools are being developed to aid public authorities and organizations with security responsibilities as well as traffic authorities when dealing with disasters and large public events. One focus lies on the acquisition of high resolution aerial imagery, its fully automatic processing, analysis and near real-time provision to decision makers in emergency situations. For this purpose a camera system was developed to be operated from a helicopter with light-weight processing units and microwave link for fast data transfer. In order to meet end-users' requirements DLR works close together with the German Federal Office of Civil Protection and Disaster Assistance (BBK) within this project. One task of BBK is to establish, maintain and train the German Medical Task Force (MTF), which gets deployed nationwide in case of large-scale disasters. In October 2014, several units of the MTF were deployed for the first time in the framework of a national civil protection exercise in Brandenburg. The VABENE++ team joined the exercise and provided near real-time aerial imagery, videos and derived traffic information to support the direction of the MTF and to identify needs for further improvements and developments. In this contribution the authors introduce the new airborne camera system together with its near real-time processing components and share experiences gained during the national civil protection exercise.

  19. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  20. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images captured from airborne imaging systems have the advantages of relatively low cost, high spatial resolution, and real/near-real-time availability. Multiple images taken from one or more flight lines could be used to generate a high-resolution mosaic image, which could be useful for diverse rem...

  1. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    NASA Astrophysics Data System (ADS)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  2. Long-Term Tracking of a Specific Vehicle Using Airborne Optical Camera Systems

    NASA Astrophysics Data System (ADS)

    Kurz, F.; Rosenbaum, D.; Runge, H.; Cerra, D.; Mattyus, G.; Reinartz, P.

    2016-06-01

    In this paper we present two low cost, airborne sensor systems capable of long-term vehicle tracking. Based on the properties of the sensors, a method for automatic real-time, long-term tracking of individual vehicles is presented. This combines the detection and tracking of the vehicle in low frame rate image sequences and applies the lagged Cell Transmission Model (CTM) to handle longer tracking outages occurring in complex traffic situations, e.g. tunnels. The CTM model uses the traffic conditions in the proximities of the target vehicle and estimates its motion to predict the position where it reappears. The method is validated on an airborne image sequence acquired from a helicopter. Several reference vehicles are tracked within a range of 500m in a complex urban traffic situation. An artificial tracking outage of 240m is simulated, which is handled by the CTM. For this, all the vehicles in the close proximity are automatically detected and tracked to estimate the basic density-flow relations of the CTM model. Finally, the real and simulated trajectories of the reference vehicles in the outage are compared showing good correspondence also in congested traffic situations.

  3. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    NASA Astrophysics Data System (ADS)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  4. <5cm Ground Resolution DEMs for the Atacama Fault System (Chile), Acquried With the Modular Airborne Camera System (MACS)

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Victor, P.; Oncken, O.; Bucher, T. U.; Lehmann, F.

    2011-12-01

    A primary step towards assessing time and size of future earthquakes is the identification of earthquake recurrence patterns in the existing seismic record. Geologic and geomorphic data are commonly analyzed for this purpose, reasoned by the lack of sufficiently long historical or instrumental seismic data sets. Until recently, those geomorphic data sets encompassed field observation, local total station surveys, and aerial photography. Over the last decade, LiDAR-based high-resolution topographic data sets became an additional powerful mean, contributing distinctly to a better understanding of earthquake rupture characteristics (e.g., single-event along-fault slip distribution, along-fault slip accumulation pattern) and their relation to fault geometric complexities. Typical shot densities of such data sets (e.g., airborne-LiDAR data along the San Andreas Fault) permit generation of digital elevation models (DEM) with <50 cm ground resolution, sufficient for depiction of meter-scale tectonic landforms. Identification of submeter-scale features is however prohibited by DEM resolution limitation. Here, we present a high-resolution topographic and visual data set from the Atacama fault system near Antofagasta, Chile. Data were acquired with Modular Airborne Camera System (MACS) - developed by the DLR (German Aerospace Center) in Berlin, Germany. The photogrammetrically derived DEM and True Ortho Images with <5cm ground resolution permit identification of very small-scale geomorphic features, thus enabling fault zone and earthquake rupture characterization at unprecedented detail. Compared to typical LiDAR-DEM, ground resolution is increased by an order of magnitude while the spatial extend of these data set is essentially the same. Here, we present examples of the <5cm resolution data set (DEM and visual results) and further explore resolution capabilities and potential with regards to the aforementioned tectono-geomorphic questions.

  5. Retrieval of cloud optical properties using airborne hyperspectral cameras during the VOCALS campaign.

    NASA Astrophysics Data System (ADS)

    Labrador, L.; Vaughan, G.

    2009-09-01

    A set of two hyperspectral imaging sensors have been used to analyze the optical properties of stratocumulus cloud off the coast of Northern Chile within the framework of the VAMOS Ocean Clouds Atmosphere Land Study (VOCALS) during September-October 2008. The SPECIM Aisa Eagle & Hawk are tandem pushbroom-type hyperspectral imagers scanning in the 400-970 and 970-2500 nm range, respectively. The instruments were mounted onboard the National Environmental Research Council's (NERC) Dornier DO-228 aircraft, based in Arica, northern Chile during the campaign. An area approximately 600 x 200 km was surveyed off the northern coast of Chile and a total of 14 science flights were carried out where hyperspectral data were successfully collected over the stratocumulus deck at altitudes varying between 10000 and 15000 ft. Cloud optical properties, such as cloud optical thickness, cloud effective radius and liquid water path can be retrieved which can then be compared with space-borne hyperspectral imagers' retrievals. Atmospheric corrections have been applied to enable the comparison between the different type of sensors and the analysis requires, amongst other, solving the back-scattering problems associated with off-nadir views. The high resolution, both spatial and temporal, of these airborne sensors makes them ideal to validate satellite retrievals of cloud optical properties.

  6. Retrieval of water quality algorithms from airborne HySpex camera for oxbow lakes in north-eastern Poland

    NASA Astrophysics Data System (ADS)

    Slapinska, Malgorzata; Berezowski, Tomasz; Frąk, Magdalena; Chormański, Jarosław

    2016-04-01

    The aim of this study was to retrieve empirical formulas for water quality of oxbow lakes in Lower Biebrza Basin (river located in NE Poland) using HySpex airborne imaging spectrometer. Biebrza River is one of the biggest wetland in Europe. It is characterised by low contamination level and small human influence. Because of those characteristics Biebrza River can be treated as a reference area for other floodplains and fen ecosystem in Europe. Oxbow lakes are important part of Lower Biebrza Basin due to their retention and habitat function. Hyperspectral remote sensing data were acquired by the HySpex sensor (which covers the range of 400-2500 nm) on 01-02.08.2015 with the ground measurements campaign conducted 03-04.08.2015. The ground measurements consisted of two parts. First part included spectral reflectance sampling with spectroradiometer ASD FieldSpec 3, which covered the wavelength range of 350-2500 nm at 1 nm intervals. In situ data were collected both for water and for specific objects within the area. Second part of the campaign included water parameters such as Secchi disc depth (SDD), electric conductivity (EC), pH, temperature and phytoplankton. Measured reflectance enabled empirical line atmospheric correction which was conducted for the HySpex data. Our results indicated that proper atmospheric correction was very important for further data analysis. The empirical formulas for our water parameters were retrieved based on reflecatance data. This study confirmed applicability of HySpex camera to retrieve water quality.

  7. Development of a computer-aided alignment simulator for an EO/IR dual-band airborne camera

    NASA Astrophysics Data System (ADS)

    Lee, Jun Ho; Ryoo, Seungyeol; Park, Kwang-Woo; Lee, Haeng Bok

    2012-10-01

    An airborne sensor is developed for remote sensing on an unmanned aerial vehicle (UAV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight manner. It adopts a Ritchey-Chrétien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. For the easy assemble of such a complicated optics, a computer-aided alignment program (herein called simulator) is developed. The simulator first estimates the details of the misalignments such as locations, types, and amounts from the test results such as modulation transfer function (MTF), Zernike polynomial coefficients, and RMS wavefront errors at different field positions. Then it recommends the compensator movement(s) with the estimated optical performance. The simulator is coded on Matlab with the hidden connection to optical analysis/design software Zemax. By interfacing ZEMAX and MATLAB, the GUI-based alignment simulator, will help even those not familiar with the two programs to obtain accurate results more easily and quickly.

  8. Assessing the application of an airborne intensified multispectral video camera to measure chlorophyll a in three Florida estuaries

    SciTech Connect

    Dierberg, F.E.; Zaitzeff, J.

    1997-08-01

    After absolute and spectral calibration, an airborne intensified, multispectral video camera was field tested for water quality assessments over three Florida estuaries (Tampa Bay, Indian River Lagoon, and the St. Lucie River Estuary). Univariate regression analysis of upwelling spectral energy vs. ground-truthed uncorrected chlorophyll a (Chl a) for each estuary yielded lower coefficients of determination (R{sup 2}) with increasing concentrations of Gelbstoff within an estuary. More predictive relationships were established by adding true color as a second independent variable in a bivariate linear regression model. These regressions successfully explained most of the variation in upwelling light energy (R{sup 2}=0.94, 0.82 and 0.74 for the Tampa Bay, Indian River Lagoon, and St. Lucie estuaries, respectively). Ratioed wavelength bands within the 625-710 nm range produced the highest correlations with ground-truthed uncorrected Chl a, and were similar to those reported as being the most predictive for Chl a in Tennessee reservoirs. However, the ratioed wavebands producing the best predictive algorithms for Chl a differed among the three estuaries due to the effects of varying concentrations of Gelbstoff on upwelling spectral signatures, which precluded combining the data into a common data set for analysis.

  9. Geo-Referenced Mapping Using AN Airborne 3d Time-Of Camera

    NASA Astrophysics Data System (ADS)

    Kohoutek, T. K.; Nitsche, M.; Eisenbeiss, H.

    2011-09-01

    This paper presents the first experience of a close range bird's eye view photogrammetry with range imaging (RIM) sensors for the real time generation of high resolution geo-referenced 3D surface models. The aim of this study was to develop a mobile, versatile and less costly outdoor survey methodology to measure natural surfaces compared to the terrestrial laser scanning (TLS). Two commercial RIM cameras (SR4000 by MESA Imaging AG and a CamCube 2.0 by PMDTechnologies GmbH) were mounted on a lightweight crane and on an unmanned aerial vehicle (UAV). The field experiments revealed various challenges in real time deployment of the two state-of-the-art RIM systems, e.g. processing of the large data volume. Acquisition strategy and data processing and first measurements are presented. The precision of the measured distances is less than 1 cm for good conditions. However, the measurement precision degraded under the test conditions due to direct sunlight, strong illumination contrasts and helicopter vibrations.

  10. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  11. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; Racette, Paul; Bonds, Quenton; Brucker, Ludovic; Koenig, Lora; Marshall, Hans-Peter; Vanhille, Ken; Borissenko, Anatoly; Tsang, Leung; Tan, Shurun

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  12. Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications have not been well documented in related ...

  13. Testing and First Light for the Pop-up Bolometric Detectors (PUDs) for the High Resoultion Airborne Wideband Camera (HAWC) on SOFIA

    NASA Astrophysics Data System (ADS)

    Freund, M. M.; Moseley, S. H.; Allen, C. A.; Shafer, R. A.; Voellmer, G. M.; Staguhn, J.; Harper, D. A.; Dowell, D.; Phillips, T.

    2000-12-01

    The HAWC instrument on SOFIA is diffraction limited in four bands between 50-220μm , with background limited sensitivity. Its purpose is to provide sensitive and reliable facility-imaging capabilities for SOFIA during its first operational years. It is the first flight instrument to use a state of the art bolometric 12x32 pixel array of ion implanted silicon PUDs, a closed-packed 2D array with >95% filling factor. It will be cooled to ~0.2K, using an Adiabatic Demagnetization Refrigerator (ADR). Here we report on detector characteristics: Measured I/V curves for different temperatures are completely consistent with a four parameter bolometer model. The measured detector noise contribution to the measured noise is only ~1-2% of the sky background noise. In September, 2000 a prototype instrument operating at λ =350μm using a single linear array of detectors was successfully deployed, and saw first light on the Caltech Submillimeter Observatory (CSO) on Mauna Kea.

  14. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides a brief summary of the utility of a wideband active and passive (radar and radiometer, respectively) instrument (8-40 GHz) to support the snow science community. The effort seeks to improve snow measurements through advanced calibration and expanded frequency of active and passive sensors and to demonstrate their science utility through airborne retrievals of snow water equivalent (SWE). In addition the effort seeks to advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  15. Optical design of high resolution and large format CCD airborne remote sensing camera on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Qian, Yixian; Cheng, Xiaowei; Shao, Jie

    2010-11-01

    Unmanned aerial vehicle remote sensing (UAVRS) is lower in cost, flexible on task arrangement and automatic and intelligent in application, it has been used widely for mapping, surveillance, reconnaissance and city planning. Airborne remote sensing missions require sensors with both high resolution and large fields of view, large format CCD digital airborne imaging systems are now a reality. A refractive system was designed to meet the requirements with the help of code V software, It has a focal length of 150mm, F number of 5.6, waveband of 0.45~0.7um, and field of view reaches 20°. It is shown that the value of modulation transfer function is higher than 0.5 at 55lp/mm, distortion is less than 0.1%, image quality reaches the diffraction limit. The system with large format CCD and wide field can satisfy the demand of the wide ground overlay area and high resolution. The optical system with simpler structure, smaller size and lighter weight, can be used in airborne remote sensing.

  16. Airborne Demonstration of Microwave and Wide-Band Millimeter-Wave Radiometers to Provide High-Resolution Wet-Tropospheric Path Delay Corrections for Coastal and Inland Water Altimetry

    NASA Astrophysics Data System (ADS)

    Reising, Steven; Kangaslahti, Pekka; Tanner, Alan; Padmanabhan, Sharmila; Montes, Oliver; Parashare, Chaitali; Bosch-Lluis, Xavier; Hadel, Victoria; Johnson, Thaddeus; Brown, Shannon; Khayatian, Behrouz; Dawson, Douglas; Gaier, Todd; Razavi, Behzad

    2014-05-01

    Current satellite ocean altimeters include nadir-viewing, co-located 18-34 GHz microwave radiometers to measure wet-tropospheric path delay. Due to the size of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals is substantially degraded near coastlines, and retrievals are not provided over land. Retrievals are flagged as not useful within approximately 40 km of the world's coastlines. A viable approach to improve their capability is to add wide-band high-frequency millimeter-wave window channels in the 90-180 GHz band, thereby achieving finer spatial resolution for a limited antenna size. In this context, the upcoming NASA/CNES/CSA Surface Water and Ocean Topography (SWOT) mission is in formulation and planned for launch in late 2020. The primary objectives of SWOT are to characterize ocean mesoscale and sub-mesoscale processes on 10-km and larger scales in the global oceans and provide measurements of the global water storage in inland surface water bodies and the flow rate of rivers. Therefore, an important new science objective of SWOT is to transition satellite altimetry from the open ocean into the coastal zone and over inland water. The addition of 90-180 GHz millimeter-wave window-channel radiometers to current Jason-class 18-34 GHz radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to enhance the potential for over-land retrievals. In 2012 the Ocean Surface Topography Science Team Meeting recommended to add high-frequency millimeter-wave radiometers to the Jason Continuity of Service (CS) mission. To reduce the risks of wet-tropospheric path delay measurement over coastal areas and inland water bodies, we have designed, developed and fabricated a new airborne radiometer, combining three high-frequency millimeter-wave window channels at 90, 130 and 168 GHz, along with Jason-series microwave channels at 18.7, 23.8 and 34.0 GHz, and validation channels sounding

  17. Development of Wideband Feed

    NASA Astrophysics Data System (ADS)

    Ujihara, Hideki; Takefuji, Kazuhiro; Sekido, Mamoru; Kondo, Tetsuro

    2015-08-01

    Wideband feeds have developed for Kashima 34m antenna and new 2.4m portable VLBI antennas. Prototypes of the wideband feeds are multimode horns, first one was set on 34m in the end of 2013, and then replaced next one with 6.5-15.0GHz receiving frequency. Now, a new feed for 3.2GHz-14.4GHz will be installed in 2.4m and 34m antennas in this spring, which are named NINJA feed, because of its design flexibility in beam shpae. Next, IGUANA feed is now under design and fabrication, which is aimed for 2.2-22GHz and covers VGOS(VLBI2010) specification. This has coaxial structure, the smaller "daughter feed" for 6.4-22GHz is placed in the center of the larger "Mother feed" for 2.2-6.4GHz.They are used for our project of time and frequency transfer between remote atomic clocks by wideband VLBI, named Gala-V(Garapagos VLBI), and will also be used wideband VLBI observation for astronmy and geodesy.Prototype feeds were tested in measurement of aperture efficiency, SEFD and Tsys of 34m "Super Kashima Antenna" and both 6.7/12.2GHz methanol maser detection in one reciever system, and then better one is used for wideband VLBI observations.

  18. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  19. Radiometric calibration procedures for a wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Flynn, David S.; Marlow, Steven A.; Bergin, Thomas P.; Kircher, James R.

    1999-07-01

    The Wideband Infrared Scene Projector (WISP) has been undergoing development for the Kinetic-Kill Vehicle Hardware-in-the-Loop Simulator facility at Eglin AFB, Florida. In order to perform realistic tests of an infrared seeker, the radiometric output of the WISP system must produce the same response in the seeker as the real scene. In order to ensure this radiometric realism, calibration procedures must be established and followed. This paper describes calibration procedures that have been used in recent tests. The procedures require knowledge of the camera spectral response in the seeker under test. The camera is set up to operate over the desired range of observable radiances. The camera is then nonuniformity corrected (NUCed) and calibrated with an extended blackbody. The camera drift rates are characterized, and as necessary, the camera is reNUCed and recalibrated. The camera is then set up to observe the WISP system, and calibration measurements are made of the camera/WISP system.

  20. Wideband microstrip dipole

    NASA Astrophysics Data System (ADS)

    Dey, Supriyo; Aanandan, C. K.; Jose, K. A.; Mohanan, P.; Nair, K. G.

    1992-12-01

    A new wideband half-wave microstrip dipole antenna is described which operates in low-frequency range with more than 5 percent 2:1 VSWR bandwidth. The design is based on a stripline feeding mechanism to prevent radiation from the feeding structure and on proper end-loading of dipole arms to enhance the impedance bandwidth. It is concluded that this dipole can replace the conventional dipoles or existing microstrip antennas in phased array application.

  1. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  2. Ultra-wideband receiver

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, .+-.UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals.

  3. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1996-06-04

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, {+-}UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 21 figs.

  4. Ultra-wideband receiver

    DOEpatents

    McEwan, T.E.

    1994-09-06

    An ultra-wideband (UWB) receiver utilizes a strobed input line with a sampler connected to an amplifier. In a differential configuration, [+-] UWB inputs are connected to separate antennas or to two halves of a dipole antenna. The two input lines include samplers which are commonly strobed by a gating pulse with a very low duty cycle. In a single ended configuration, only a single strobed input line and sampler is utilized. The samplers integrate, or average, up to 10,000 pulses to achieve high sensitivity and good rejection of uncorrelated signals. 16 figs.

  5. Airborne Satcom Terminal Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Hoder, Doug; Zakrajsek, Robert

    2002-01-01

    NASA Glenn has constructed an airborne Ku-band satellite terminal, which provides wideband full-duplex ground-aircraft communications. The terminal makes use of novel electronically-steered phased array antennas and provides IP connectivity to and from the ground. The satcom terminal communications equipment may be easily changed whenever a new configuration is required, enhancing the terminal's versatility.

  6. Ultra-wideband Communications

    SciTech Connect

    Waltjen, K; Romero, C; Azevedo, S; Dowla, F; Spiridon, A; Benzel, D; Haugen, P

    2004-02-06

    Many applications in wireless communications often require short-range systems capable of rapidly collecting data and transmitting it reliably. Commercial communication systems operate in fixed frequency bands and are easily detectable and are prone to jamming by the enemy, among other shortcomings. The new ultra-wideband (UWB) communications system in the 3.1 to 10 GHz band is of significant interest to a number of Lawrence Livermore National Laboratory (LLNL) programs including the Nonproliferation, Arms Control, and International Security (NAI) Directorate. Ultra-Wideband (UWB) technology has received a significant degree of attention from communications industry since the Federal Communications Commission (FCC) rulings in February 2002. According to FCC, UWB signals have fractional bandwidth (B{sub f}) of 20% or larger at -10 dB cut-off frequencies, with minimum bandwidth of 500 MHz. Unlike traditional communication systems, UWB systems modulate carrier-less, short-duration (picosec to nanosec) pulses to transmit and receive information. A number of programmatic problems at LLNL, particularly in the NAI and other national security Directorates, require collecting information from multiple sensors distributed over a local area. The information must be collected covertly and by wireless means. The sensors produce data using low power devices and the communication link must operate in severe multipath environments over tens of meters; often the links must be channelized to handle multiple sensors. The communications links between these sensors is a critical issue in the development of LLNL programs to demonstrate distributed sensor network performance in real-time. In summary, such systems must be robust; have a low probability of detection and intercept; employ low-power, small-size hardware; and interface easily with other systems for analysis or to establish long-distance links. The purpose of this work was to develop a new UWB radio-frequency (RF

  7. Land cover/use classification of Cairns, Queensland, Australia: A remote sensing study involving the conjunctive use of the airborne imaging spectrometer, the large format camera and the thematic mapper simulator

    NASA Technical Reports Server (NTRS)

    Heric, Matthew; Cox, William; Gordon, Daniel K.

    1987-01-01

    In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.

  8. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  9. Wideband waveguide polarizer development for SETI

    NASA Technical Reports Server (NTRS)

    Lee, P.; Stanton, P.

    1991-01-01

    A wideband polarizer for the Deep Space Network (DSN) 34 meter beam waveguide antenna is needed for the Search for Extraterrestrial Intelligence (SETI) project. The results of a computer analysis of a wideband polarizer are presented.

  10. Replacing 16-mm film cameras with high-definition digital cameras

    NASA Astrophysics Data System (ADS)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  11. Broadband/Wideband Magnetoelectric Response

    DOE PAGESBeta

    Park, Chee-Sung; Priya, Shashank

    2012-01-01

    A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models andmore » validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.« less

  12. Wideband Interferometric Sensing and Imaging Polarimetry

    NASA Technical Reports Server (NTRS)

    Verdi, James Salvatore; Kessler, Otto; Boerner, Wolfgang-Martin

    1996-01-01

    Wideband Interferometric Sensing and Imaging Polarimetry (WISIP) has become an important, indispensible tool in wide area military surveillance and global environmental monitoring of the terrestrial and planetary covers. It enables dynamic, real time optimal feature extraction of significant characteristics of desirable targets and/or target sections with simultaneous suppression of undesirable background clutter and propagation path speckle at hitherto unknown clarity and never before achieved quality. WISIP may be adopted to the detection, recognition, and identification (DRI) of any stationary, moving or vibrating targets or distributed scatterer segments versus arbitrary stationary, dynamical changing and/or moving geo-physical/ecological environments, provided the instantaneous 2x2 phasor and 4x4 power density matrices for forward propagation/backward scattering, respectively, can be measured with sufficient accuracy. For example, the DRI of stealthy, dynamically moving inhomogeneous volumetric scatter environments such as precipitation scatter, the ocean/sea/lake surface boundary layers, the littoral coastal surf zones, pack ice and snow or vegetative canopies, dry sands and soils, etc. can now be successfully realized. A comprehensive overview is presented on how these modern high resolution/precision, complete polarimetric co-registered signature sensing and imaging techniques, complemented by full integration of novel navigational electronic tools, such as DGPS, will advance electromagnetic vector wave sensing and imaging towards the limits of physical realization. Various examples utilizing the most recent image data take sets of airborne, space shuttle, and satellite imaging systems demonstrate the utility of WISIP.

  13. An Ultra Wide-Band Radar Altimeter for Ice Sheet Surface Elevation and Snow Cover Over Sea Ice Measurement

    NASA Astrophysics Data System (ADS)

    Patel, A. E.; Gogineni, P. S.; Leuschen, C.; Rodriguez-Morales, F.; Panzer, B.

    2010-12-01

    The Ice sheets of Greenland and Antarctica are losing mass at a rapid rate and there has been significant decrease in sea ice volume over the last few years. CryoSat-II with optimized radar altimeter for ice-sheet and sea ice surface elevation measurements is launched. We developed ultra wide-band FM-CW radar that operates over the frequency range from 13-17 GHz for airborne measurements. The radar is designed to provide high-resolution surface-elevation data and also map near surface layers in polar firn with high precision. It is designed to generate an ultra linear transmit chirp using a fast settling PLL with a reference signal from Direct Digital Synthesizer (DDS). The pulse length of the transmit chirp is 240-us and pulse repetition frequency is 2-KHz. The peak transmit power of the system is 100-mW, radiated using horn antennas. The radar was deployed in Greenland and Antarctica in 2009-10 as a part of Operation Ice Bridge campaign to collect data in conjunction with other instruments including Airborne Topographic Mapper (ATM) and Digital Mapping System Camera (DMS). The radar also collected data under the Cryosat-II path. This paper will provide an overview of the Ku-Band radar design along with results from the 2009-2010 field campaigns. The data collected over polar firn shows near surface internal layers down to a depth of about 15-m with a resolution of 15-cm. When flying over sea ice the radar provides snow cover thickness data to a depth of about 0.5-m. Even over highly crevassed areas, such as outlet glaciers, the radar is able to detect large surface elevation changes of a few tens of meters with high resolution.

  14. Study of a wideband probe

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.; Salwen, H.

    1972-01-01

    The design of an experiment to measure communication characteristics of wideband satellite-to-ground links is reported. Of special concern are the effects of rainstorms and atmospheric turbulence on path attenuation and phase fluctuation. Multi-tone and pulse probing are considered. A multi-tone technique which is a modification of ATS-5 and ATS-F hardware is recommended. Data extraction and data processing techniques and key hardware requirements for the experiment are reviewed.

  15. Fractal-based wideband invisibility cloak

    NASA Astrophysics Data System (ADS)

    Cohen, Nathan; Okoro, Obinna; Earle, Dan; Salkind, Phil; Unger, Barry; Yen, Sean; McHugh, Daniel; Polterzycki, Stefan; Shelman-Cohen, A. J.

    2015-03-01

    A wideband invisibility cloak (IC) at microwave frequencies is described. Using fractal resonators in closely spaced (sub wavelength) arrays as a minimal number of cylindrical layers (rings), the IC demonstrates that it is physically possible to attain a `see through' cloaking device with: (a) wideband coverage; (b) simple and attainable fabrication; (c) high fidelity emulation of the free path; (d) minimal side scattering; (d) a near absence of shadowing in the scattering. Although not a practical device, this fractal-enabled technology demonstrator opens up new opportunities for diverted-image (DI) technology and use of fractals in wideband optical, infrared, and microwave applications.

  16. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.

  17. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  18. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  19. Hemispheric ultra-wideband antenna.

    SciTech Connect

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  20. Wideband filters employing multilayer gratings

    NASA Astrophysics Data System (ADS)

    Au, P. W. B.; Parker, E. A.; Langley, R. J.

    1993-08-01

    Multilayer surfaces, consisting of stacked inductive and capacitive strips or grids, have been used to design wideband filters in the 5-40 GHz range, with rapid transitions between reflection and transmission. For singly polarized applications, transmission bandwidths of 70-100 percent and edge transition ratios of 1.1-1.3 are realizable at 45 TM incidence using 4-8 layers of capacitive and inductive strips. Factors which constrain the passbands are highlighted. In dual polarized designs using doubly periodic grids, the widths are restricted to 35-40 percent by TE incidence grating responses at the upper passband edge. In TM they are even more restricted by a TE(11) mode resonance. Wider passbands require high inductances to reduce the LF edge, implying very fine conductors.

  1. Wideband Observations of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.

    2015-08-01

    Pulsars are exotic objects which have yielded a bounty of important astrophysical results. As rapidly rotating, highly magnetized neutron stars, pulsars' stable rotation and beamed radio emission enables their use as interstellar laboratory clocks. The extraordinary timing regularity of the millisecond pulsar (MSP) population permits some of the most precise measurements in astronomy. The discovery of MSPs raised the probability of directly detecting gravitational waves for the first time. Ongoing efforts by several pulsar timing array (PTA) collaborations compliment the ground- and space-based efforts of laser interferometers. One such PTA is the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav has recently employed a new set of wideband instruments to increase the sensitivity of their PTA, and the future of pulsar astronomy is moving towards progressively larger bandwidths. In this dissertation, we address the benefits and issues from adopting the new instrumentation, particularly for the scientific motivations of NANOGrav. We first develop a measurement technique for simultaneously obtaining pulse times-of-arrival (TOAs) and dispersion measures (DMs) using 2D models of evolving Gaussian components. We then apply the methodology broadly to a variety of pulsars, including a bright, test MSP in a globular cluster, the Galactic Center magnetar, and the entire suite of 37 MSPs from the NANOGrav 9-year data set. For a subset of these MSPs, we make targeted observations at specific orbital phases aimed at improving the timing models and constraining the Shapiro delay. With a few exceptions, we find positive or consistent timing results from the implementation of our first generation wideband timing protocol. Some highlights include: improved measurement uncertainties, mitigation of chromatic ISM effects, a reduction in the number of timing parameters and TOAs, signs of chromatic DMs, and at least one new pulsar mass.

  2. Wideband Timing of Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy; Demorest, Paul; Ransom, Scott M.; North American Nanohertz ObservatoryGravitational Waves (Nanograv)

    2015-01-01

    The use of backend instrumentation capable of real-time coherent dedispersion of relatively large fractional bandwidths has become commonplace in pulsar astronomy. However, along with the desired increase in sensitivity to pulsars' broadband signals, a larger instantaneous bandwidth brings a number of potentially aggravating effects that can lead to degraded timing precision. In the case of high-precision timing experiments, such as the one being carried out by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), subtle effects such as unmodeled intrinsic profile evolution with frequency, interstellar scattering, and dispersion measure variation are potentially capable of reducing the experiment's sensitivity to a gravitational wave signal. In order to account for some of these complications associated with wideband observations, we augmented the traditional algorithm by which the fundamental timing quantities are measured. Our new measurement algorithm accommodates an arbitrary two-dimensional model ``portrait'' of a pulsar's total intensity as a function of observing frequency and rotational phase, and simultaneously determines the time-of-arrival (TOA), the dispersion measure (DM), and per-frequency-channel amplitudes that account for interstellar scintillation. Our publicly available python code incorporates a Gaussian-component modeling routine that allows for independent component evolution with frequency, a ``fiducial component'', and the inclusion of scattering. Here, we will present results from the application of our wideband measurement scheme to the suite of NANOGrav millisecond pulsars, which aimed to determine the level at which the experiment is being harmed by unmodeled profile evolution. We have found thus far, and expect to continue to find, that our new measurements are at least as good as those from traditional techniques. At a minimum, by largely reducing the volume of TOAs we will decrease the computational demand

  3. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  4. Space Camera

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Nikon's F3 35mm camera was specially modified for use by Space Shuttle astronauts. The modification work produced a spinoff lubricant. Because lubricants in space have a tendency to migrate within the camera, Nikon conducted extensive development to produce nonmigratory lubricants; variations of these lubricants are used in the commercial F3, giving it better performance than conventional lubricants. Another spinoff is the coreless motor which allows the F3 to shoot 140 rolls of film on one set of batteries.

  5. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  6. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  7. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  8. Wideband Agile Digital Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Brown, Shannon T.; Ruf, Christopher; Gross, Steven

    2012-01-01

    The objectives of this work were to take the initial steps needed to develop a field programmable gate array (FPGA)- based wideband digital radiometer backend (>500 MHz bandwidth) that will enable passive microwave observations with minimal performance degradation in a radiofrequency-interference (RFI)-rich environment. As manmade RF emissions increase over time and fill more of the microwave spectrum, microwave radiometer science applications will be increasingly impacted in a negative way, and the current generation of spaceborne microwave radiometers that use broadband analog back ends will become severely compromised or unusable over an increasing fraction of time on orbit. There is a need to develop a digital radiometer back end that, for each observation period, uses digital signal processing (DSP) algorithms to identify the maximum amount of RFI-free spectrum across the radiometer band to preserve bandwidth to minimize radiometer noise (which is inversely related to the bandwidth). Ultimately, the objective is to incorporate all processing necessary in the back end to take contaminated input spectra and produce a single output value free of manmade signals to minimize data rates for spaceborne radiometer missions. But, to meet these objectives, several intermediate processing algorithms had to be developed, and their performance characterized relative to typical brightness temperature accuracy re quirements for current and future microwave radiometer missions, including those for measuring salinity, soil moisture, and snow pack.

  9. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  10. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  11. Nikon Camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Nikon FM compact has simplification feature derived from cameras designed for easy, yet accurate use in a weightless environment. Innovation is a plastic-cushioned advance lever which advances the film and simultaneously switches on a built in light meter. With a turn of the lens aperture ring, a glowing signal in viewfinder confirms correct exposure.

  12. CCD Camera

    DOEpatents

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  13. CCD Camera

    DOEpatents

    Roth, R.R.

    1983-08-02

    A CCD camera capable of observing a moving object which has varying intensities of radiation emanating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other. 7 figs.

  14. Ultra-wideband radar sensors and networks

    DOEpatents

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  15. Development of an airborne remote sensing system for aerial applicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An airborne remote sensing system was developed and tested for recording aerial images of field crops, which were analyzed for variations of crop health or pest infestation. The multicomponent system consists of a multi-spectral camera system, a camera control system, and a radiometer for normalizi...

  16. A two-camera imaging system for pest detection and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation reports on the design and testing of an airborne two-camera imaging system for pest detection and aerial application assessment. The system consists of two digital cameras with 5616 x 3744 effective pixels. One camera captures normal color images with blue, green and red bands, whi...

  17. AMiBA Wideband Analog Correlator

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Kubo, Derek Y.; Wilson, Warwick; Lin, Kai-Yang; Chen, Ming-Tang; Ho, P. T. P.; Chen, Chung-Cheng; Han, Chih-Chiang; Oshiro, Peter; Martin-Cocher, Pierre; Chang, Chia-Hao; Chang, Shu-Hao; Altamirano, Pablo; Jiang, Homin; Chiueh, Tzi-Dar; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Peterson, Jeffrey B.; Chang, Su-Wei; Huang, Yau-De; Hwang, Yuh-Jing; Kesteven, Michael; Koch, Patrick; Liu, Guo-Chin; Nishioka, Hiroaki; Umetsu, Keiichi; Wei, Tashun; Proty Wu, Jiun-Huei

    2010-06-01

    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband intermediate frequency distribution, back-end signal processing, and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.

  18. A wideband RF amplifier for satellite tuners

    NASA Astrophysics Data System (ADS)

    Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa

    2011-11-01

    This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.

  19. From Fibrevision To The Multi-Star Wideband Network

    NASA Astrophysics Data System (ADS)

    Wood, R.; Moore, D.

    1984-03-01

    Following experience gained with the Fibrevision cable TV trial at Milton Keynes the implementation of a large scale multi-star wideband local network is being investigated by British Telecom. An update on the Fibrevision trial is given followed by an outline description of a future multi-star wideband network.

  20. Caught on Camera.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2002-01-01

    Describes the benefits of and rules to be followed when using surveillance cameras for school security. Discusses various camera models, including indoor and outdoor fixed position cameras, pan-tilt zoom cameras, and pinhole-lens cameras for covert surveillance. (EV)

  1. A wideband deflected reflection based on multiple resonances

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Li, Yongfeng; Wang, Jun; Yan, Mingbao; Pang, Yongqiang

    2015-07-01

    We propose to realize wideband deflected reflection in microwave regime through multiple resonances. A wideband deflected reflection of a phase gradient metasurface is designed using a double-head arrow structure, which has demonstrated an ultra-wideband cross-polarized reflection caused by multiple electric and magnetic resonances. The wideband effect benefits from the wideband cross-polarized reflection and flexible phase modulation of the double-head arrow structure. Simulated and experimental results agree well with theoretical predictions. Furthermore, relative bandwidths of deflected reflection reach to 71 % for both x- and y-polarized waves under normal incidence. Our method of expansion bandwidth may pave the way in many practical applications, such as RCS reduction, stealth surfaces.

  2. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  3. Mark 3 wideband digital recorder in perspective

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. F.

    1980-01-01

    The tape recorder used for the Mark 3 data acquisition and processing system is compared with earlier very long baseline interferometry recorders. Wideband 33-1/3 kbpi digital channel characteristics of instrumentation recorders and of a modern video cassette recorder are illustrated. Factors which influenced selection of the three major commercial components (transport, heads, and tape) are discussed. A brief functional description and the reasons for development of efficient signal electronics and necessary auxiliary control electronics are given. The design and operation of a digital bit synchronizer is illustrated as an example of the high degree of simplicity achieved.

  4. Miniature biotelemeter gives multichannel wideband biomedical data

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.

    1972-01-01

    A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.

  5. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1994-01-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion.

  6. Ultra-wideband radar motion sensor

    DOEpatents

    McEwan, T.E.

    1994-11-01

    A motion sensor is based on ultra-wideband (UWB) radar. UWB radar range is determined by a pulse-echo interval. For motion detection, the sensors operate by staring at a fixed range and then sensing any change in the averaged radar reflectivity at that range. A sampling gate is opened at a fixed delay after the emission of a transmit pulse. The resultant sampling gate output is averaged over repeated pulses. Changes in the averaged sampling gate output represent changes in the radar reflectivity at a particular range, and thus motion. 15 figs.

  7. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  8. Real-time wideband holographic surveillance system

    DOEpatents

    Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.

    1996-01-01

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.

  9. Proactive PTZ Camera Control

    NASA Astrophysics Data System (ADS)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  10. An extremely wideband and lightweight metamaterial absorber

    PubMed Central

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-01-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies. PMID:26130845

  11. Tunable filters using wideband elastic resonators.

    PubMed

    Kadota, Michio; Ogami, Takashi; Kimura, Tetsuya; Daimon, Katsuya

    2013-10-01

    Currently, an ultra-wideband resonator is greatly needed to realize a tunable filter with a wide tunable range, because mobile phones with multiple bands and cognitive radio systems require such tunable filters to simplify their circuits. Although tunable filters have been studied using SAW resonators, their tunable range was insufficient for the filters even when wideband SAW resonators with a bandwidth of 17% were used. Therefore, the fabrication of wider-bandwidth resonators has been attempted with the goal of realizing tunable filters with wide tunable ranges. In this study, an SH0- mode plate wave resonator in a 27.5°YX-LiNbO3 plate with an ultra-wide bandwidth of 29.1%, a high impedance ratio of 98 dB, and a high Q (Q(r) = 700 and Q(a) = 720) was realized. Two types of tunable filters were constructed using such SH0-mode resonators and capacitors. As a result, tunable ranges (bands) of 13% to 19% were obtained. The possibility of applying the SH0-mode resonator in the high-frequency gigahertz range is discussed. PMID:24081261

  12. An extremely wideband and lightweight metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Pei, Zhibin; Pang, Yongqiang; Wang, Jiafu; Zhang, Anxue; Qu, Shaobo

    2015-06-01

    This paper presents a three-dimensional microwave metamaterial absorber based on the stand-up resistive film patch array. The absorber has wideband absorption, lightweight, and polarization-independent properties. Our design comes from the array of unidirectional stand-up resistive film patches backed by a metallic plane, which can excite multiple standing wave modes. By rolling the resistive film patches as a square enclosure, we obtain the polarization-independent property. Due to the multiple standing wave modes, the most incident energy is dissipated by the resistive film patches, and thus, the ultra-wideband absorption can be achieved by overlapping all the absorption modes at different frequencies. Both the simulated and experimental results show that the absorber possesses a fractional bandwidth of 148.2% with the absorption above 90% in the frequency range from 3.9 to 26.2 GHz. Moreover, the proposed absorber is extremely lightweight. The areal density of the fabricated sample is about 0.062 g/cm2, which is approximately equivalent to that of eight stacked standard A4 office papers. It is expected that our proposed absorber may find potential applications such as electromagnetic interference and stealth technologies.

  13. Photonic downconversion with tunable wideband phase shift.

    PubMed

    Jiang, Tianwei; Yu, Song; Wu, Ruihuan; Wang, Dongsheng; Gu, Wanyi

    2016-06-01

    A microwave photonic frequency downconversion system with wideband and continuous phase-shift function is proposed and experimentally demonstrated. In the proposed system, a radio frequency (RF) and a local oscillator (LO) signal drive two arms of a dual-drive Mach-Zehnder modulator (DMZM). A fiber Bragg grating (FBG) is used for reflecting the first-order sidebands of both RF and LO signals. Due to phase independence between RF and LO optical sidebands, the phase-shifting operation for an output intermediate frequency (IF) signal can be implemented either by adjusting the bias voltage of DMZM or by controlling the optical wavelength of laser. Experimental results demonstrate a full 0° to 360° phase shift, while an RF signal between 12 GHz to 20 GHz is downconverted to IFs below 4 GHz. The phase deviation is measured less than 2°, and the fluctuation of magnitude response is measured less than ±1  dB over a wideband frequency range. PMID:27244434

  14. Cheating Heisenberg: Achieving certainty in wideband spectrography

    NASA Astrophysics Data System (ADS)

    Fulop, Sean

    2003-10-01

    The spectrographic analysis of sound has been with us some 58 years, and one of the key properties of the process is the trade-off in resolution between the time and frequency dimensions in the computed graph. While spectrography has greatly advanced the development of phonetics, the uncertainty principle has always been a source of frustration to phoneticians because so many of the interesting features of speech must be observed by computing Fourier spectra over very short time frames-i.e., using a ``wideband'' spectrogram. Since the uncertainty relation between time and frequency is unbreakable, the only option for improvement is to make a new kind of spectrogram that does not graph time and frequency. An algorithm is described and demonstrated which computes a new kind of spectrogram in which Fourier transform frequency is replaced by the channelized instantaneous frequency, and time is adjusted by the local group delay. The theory behind this procedure was clarified in Nelson [J. Acoust. Soc. Am. 110, 2575-2592 (2001)]. The resulting wideband spectrograms show dramatically improved resolution of speech features, which will be demonstrated with sample figures. It is thus suggested that phoneticians should be more interested in the instantaneous frequency spectrum than in the Fourier transform.

  15. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

    PubMed Central

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-01-01

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars. PMID:27271629

  16. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars.

    PubMed

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-01-01

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars. PMID:27271629

  17. Computer simulator for training operators of thermal cameras

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Krupski, Marcin

    2004-08-01

    A PC-based image generator SIMTERM developed for training operators of non-airborne military thermal imaging systems is presented in this paper. SIMTERM allows its users to generate images closely resembling thermal images of many military type targets at different scenarios obtained with the simulated thermal camera. High fidelity of simulation was achieved due to use of measurable parameters of thermal camera as input data. Two modified versions of this computer simulator developed for designers and test teams are presented, too.

  18. Identification of human motion signature using airborne radar data

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Damini, Anthony

    2013-09-01

    Data containing the radar signature of amoving person on the groundwere collected at ranges of up to 30 kmfroma moving airborne platform using the DRDC Ottawa X-bandWideband Experimental Airborne Radar (XWEAR). The human target radar echo returns were found to possess a characteristic amplitude modulated (AM) and frequency modulated (FM) signature which could be usefully characterized in terms of conventional AM and FM modulation parameters. Human detection performance after space time adaptive processing is frequently limited by false alarms arising from incomplete cancellation of large radar cross-section discretes during the whitening step. However, the clutter discretes possess different modulation characteristics from the human targets discussed above. The ability of pattern classification techniques to use this parameter measurement space to distinguish between human targets and clutter discretes is explored and preliminary results presented.

  19. Three Specialized Innovations for FAST Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Xinying; Duan, Ran; Hao, Jie; Li, Di

    2015-08-01

    The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) will soon finish the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical Radio Telescope will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz.To take advantage of its giant aperture, all relevant cutting-edge technology should be applied to FAST to ensure that it achieves the best possible overall performance. The wideband receiver that is currently under development can not only be directly applied to FAST, but also used for other Chinese radio telescopes, such as the Shanghai 65-meter telescope and the Xinjiang 110-meter telescope, to ensure that these telescopes are among the best in the world. Recently, rapid development related to this wideband receiver has been underway. In this paper, we will introduce three key aspects of the FAST wideband receiver project. First is the use of a high-performance analog-to-digital converter (ADC). With the cooperation of Hao Jie’s team from the Institute of Automation of the Chinese Academy of Sciences(CASIA), we have developed 3-Gsps,12-bit ADCs, which have not been used previously in astronomy, and we expect to realize the 3-GHz bandwidth in a single step by covering the entire bandwidth via interleaving or a complex fast Fourier transform (FFT).Second is the front-end analog signal integrated circuit board. We wish to achieve a series of amplification, attenuation, and mixing filtering operations on a single small board, thereby achieving digital control of the bandpass behavior both flexibly and highly-efficiently. This design will not only greatly reduce the required cost and power but will also make the best use of the digital-system’s flexibility. Third is optimization of the FFT: the existing FFT is not very efficient; therefore, we will optimize the FFT for large-scale operation. For this purpose, we intend to cascade two FFTs. Another

  20. Wideband micromachined microphones with radio frequency detection

    NASA Astrophysics Data System (ADS)

    Hansen, Sean Thomas

    There are many commercial, scientific, and military applications for miniature wideband acoustic sensors, including monitoring the condition or wear of equipment, collecting scientific data, and identifying and localizing military targets. The application of semiconductor micromachining techniques to sensor fabrication has the potential to transform acoustic sensing with small, reproducible, and inexpensive silicon-based microphones. However, such sensors usually suffer from limited bandwidth and from non-uniformities in their frequency response due to squeeze-film damping effects and narrow air gaps. Furthermore, they may be too fragile to be left unattended in a humid or dusty outdoor environment. Silicon microphones that incorporate capacitive micromachined ultrasonic transducer membranes overcome some of the drawbacks of conventional microphones. These micromachined membranes are small and robust enough to be vacuum-sealed, and can withstand atmospheric pressure and submersion in water. In addition, the membrane mechanical response is flat from dc up to ultrasonic frequencies, resulting in a wideband sensor for accurate spectral analysis of acoustic signals. However, a sensitive detection scheme is necessary to detect the small changes in membrane displacement that result from using smaller, stiffer membranes than do conventional microphones. We propose a radio frequency detection technique, in which the capacitive membranes are incorporated into a transmission line. Variations in membrane capacitance due to impinging sound pressure are sensed through the phase variations of a carrier signal that propagates along the line. This dissertation examines the design, fabrication, modeling, and experimental measurements of wideband micromachined microphones using sealed ultrasonic membranes and RF detection. Measurements of fabricated microphones demonstrate less than 0.5 dB variation in their output responses between 0.1 Hz to 100 kHz under electrostatic actuation of

  1. A Coordinated Ice-based and Airborne Snow and Ice Thickness Measurement Campaign on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S.; Elder, B. C.; Gardner, J. M.; Brozena, J. M.

    2011-12-01

    A rare opportunity presented itself in March 2011 when the Naval Research Laboratory (NRL) and NASA IceBridge teamed with scientists from the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to coordinate a multi-scale approach to mapping snow depth and sea ice thickness distribution in the Arctic. Ground-truth information for calibration/validation of airborne and CryoSat-2 satellite data were collected near a manned camp deployed in support of the US Navy's Ice Expedition 2011 (ICEX 2011). The ice camp was established at a location approximately 230 km north of Prudhoe Bay, Alaska, at the edge of the perennial ice zone. The suite of measurements was strategically organized around a 9-km-long survey line that covered a wide range of ice types, including refrozen leads, deformed and undeformed first year ice, and multiyear ice. A highly concentrated set of in situ measurements of snow depth and ice thickness were taken along the survey line. Once the survey line was in place, NASA IceBridge flew a dedicated mission along the survey line, collecting data with an instrument suite that included the Airborne Topographic Mapper (ATM), a high precision, airborne scanning laser altimeter; the Digital Mapping System (DMS), nadir-viewing digital camera; and the University of Kansas ultra-wideband Frequency Modulated Continuous Wave (FMCW) snow radar. NRL also flew a dedicated mission over the survey line with complementary airborne radar, laser and photogrammetric sensors (see Brozena et al., this session). These measurements were further leveraged by a series of CryoSat-2 under flights made in the region by the instrumented NRL and NASA planes, as well as US Navy submarine underpasses of the 9-km-long survey line to collect ice draft measurements. This comprehensive suite of data provides the full spectrum of sampling resolutions from satellite, to airborne, to ground-based, to submarine and will allow for a careful determination of

  2. Wideband RF Structure for Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    Earley, Lawrence; Carlsten, Bruce; Krawczyk, Frank; Potter, James; Sigler, Floyd; Smirnova, Evgenia; Wheat, Robert; Heath, Cynthia; Bailey, Aimee

    2006-01-01

    LANL has developed a new vane loaded waveguide RF structure for a sheet electron beam traveling wave tube (TWT). The goal was to create a new class of wideband RF structures that allow simple mechanical fabrication and have geometry suitable for interaction with sheet electron beams. We have concentrated on structures at 94 GHz. We have achieved 6% bandwidth and believe that 10% is possible. We have performed 3D electromagnetic simulations using the codes Microwave Studio and HFSS, and fabricated several aluminium cold models of RF structures at 10GHz to confirm the design. Agreement between the 10 GHz cold test data and computer simulations was excellent. An RF structure at 94GHz was fabricated using electrical discharge machining (EDM) with a 0.004 inch wire and cold tested.

  3. Wideband phase-locked angular modulator

    NASA Technical Reports Server (NTRS)

    Nguyen, L.

    1989-01-01

    A phase-locked loop (PLL) angular modulator scheme has been proposed which has the characteristics of wideband modulation frequency response. The modulator design is independent of the PLL closed-loop transfer function H(s), thereby allowing independent optimization of the loop's parameters as well as the modulator's parameters. A phase modulator implementing the proposed scheme was built to phase modulate a low-noise phase-locked signal source at the output frequency of 2290 MHz. The measurement results validated the analysis by demonstrating that the resulting baseband modulation bandwidth exceeded that of the phase-locked loop by over an order of magnitude. However, it is expected to be able to achieve much wider response still.

  4. Millimeter wave band ultra wideband transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Ling, Jin; Rolland, Nathalie

    2015-09-01

    This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

  5. Design of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Weinreb, Sander; Mani, Handi

    2007-01-01

    A wideband Radio Telescope is being designed for use in the Goldstone Apple Valley Radio Telescope program. It uses an existing 34-meter antenna retrofitted with a tertiary offset mirror placed at the apex of the main reflector. It can be rotated to use two feeds that cover the 1.2 to 14 GHz band. The feed for 4.0 to 14.0 GHz is a cryogenically cooled commercially available open boundary quadridge horn from ETS-Lindgren. Coverage from 1.2 to 4.0 GHz is provided by an un-cooled scaled version of the same feed. The performance is greater than 40% over most of the band and greater than 55%from 6 to 13.5 GHz.

  6. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  7. Elementary Wideband Timing of Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M.

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template "portrait," the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a "fiducial component," and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824-2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  8. Elementary wideband timing of radio pulsars

    SciTech Connect

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M. E-mail: pdemores@nrao.edu

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  9. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  10. MAPPING GRAIN SORGHUM YEILD VARIABILITY USING AIRBORNE DIGITAL VIDEOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping crop yield variability is one important aspect of precision agriculture. This study was designed to assess airborne digital videography as a tool for mapping grain sorghum yields for precision farming. Color-infrared (CIR) imagery was acquired with a three- camera digital video imaging sys...

  11. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-06-30

    This paper describes image evaluation techniques used to standardize camera system characterizations. The authors group is involved with building and fielding several types of camera systems. Camera types include gated intensified cameras, multi-frame cameras, and streak cameras. Applications range from X-ray radiography to visible and infrared imaging. Key areas of performance include sensitivity, noise, and resolution. This team has developed an analysis tool, in the form of image processing software, to aid an experimenter in measuring a set of performance metrics for their camera system. These performance parameters are used to identify a camera system's capabilities and limitations while establishing a means for camera system comparisons. The analysis tool is used to evaluate digital images normally recorded with CCD cameras. Electro-optical components provide fast shuttering and/or optical gain to camera systems. Camera systems incorporate a variety of electro-optical components such as microchannel plate (MCP) or proximity focused diode (PFD) image intensifiers; electro-static image tubes; or electron-bombarded (EB) CCDs. It is often valuable to evaluate the performance of an intensified camera in order to determine if a particular system meets experimental requirements.

  12. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The characteristics of an Airborne Oceanographic Lidar (AOL) are given. The AOL system is described and its potential for various measurement applications including bathymetry and fluorosensing is discussed.

  13. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  14. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  15. Novel fundus camera design

    NASA Astrophysics Data System (ADS)

    Dehoog, Edward A.

    A fundus camera a complex optical system that makes use of the principle of reflex free indirect ophthalmoscopy to image the retina. Despite being in existence as early as 1900's, little has changed in the design of a fundus camera and there is minimal information about the design principles utilized. Parameters and specifications involved in the design of fundus camera are determined and their affect on system performance are discussed. Fundus cameras incorporating different design methods are modeled and a performance evaluation based on design parameters is used to determine the effectiveness of each design strategy. By determining the design principles involved in the fundus camera, new cameras can be designed to include specific imaging modalities such as optical coherence tomography, imaging spectroscopy and imaging polarimetry to gather additional information about properties and structure of the retina. Design principles utilized to incorporate such modalities into fundus camera systems are discussed. Design, implementation and testing of a snapshot polarimeter fundus camera are demonstrated.

  16. Advanced camera for surveys

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Ford, Holland C.; Bartko, Frank; Bely, Pierre Y.; Broadhurst, Tom; Burrows, Christopher J.; Cheng, Edward S.; Crocker, James H.; Franx, Marijn; Feldman, Paul D.; Golimowski, David A.; Hartig, George F.; Illingworth, Garth; Kimble, Randy A.; Lesser, Michael P.; Miley, George H.; Postman, Marc; Rafal, Marc D.; Rosati, Piero; Sparks, William B.; Tsvetanov, Zlatan; White, Richard L.; Sullivan, Pamela; Volmer, Paul; LaJeunesse, Tom

    2000-07-01

    The Advanced Camera for Surveys (ACS) is a third generation instrument for the Hubble Space Telescope (HST). It is currently planned for installation in HST during the fourth servicing mission in Summer 2001. The ACS will have three cameras.

  17. Constrained space camera assembly

    DOEpatents

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  18. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  19. Adaptation of the Camera Link Interface for Flight-Instrument Applications

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Mahoney, John C.

    2010-01-01

    COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.

  20. Nanosecond frame cameras

    SciTech Connect

    Frank, A M; Wilkins, P R

    2001-01-05

    The advent of CCD cameras and computerized data recording has spurred the development of several new cameras and techniques for recording nanosecond images. We have made a side by side comparison of three nanosecond frame cameras, examining them for both performance and operational characteristics. The cameras include; Micro-Channel Plate/CCD, Image Diode/CCD and Image Diode/Film; combinations of gating/data recording. The advantages and disadvantages of each device will be discussed.

  1. Plenoptic processing methods for distributed camera arrays

    NASA Astrophysics Data System (ADS)

    Boyle, Frank A.; Yancey, Jerry W.; Maleh, Ray; Deignan, Paul

    2011-05-01

    Recent advances in digital photography have enabled the development and demonstration of plenoptic cameras with impressive capabilities. They function by recording sub-aperture images that can be combined to re-focus images or to generate stereoscopic pairs. Plenoptic methods are being explored for fusing images from distributed arrays of cameras, with a view toward applications in which hardware resources are limited (e.g. size, weight, power constraints). Through computer simulation and experimental studies, the influences of non-idealities such as camera position uncertainty are being considered. Component image rescaling and balancing methods are being explored to compensate. Of interest is the impact on precision passive ranging and super-resolution. In a preliminary experiment, a set of images from a camera array was recorded and merged to form a 3D representation of a scene. Conventional plenoptic refocusing was demonstrated and techniques were explored for balancing the images. Nonlinear methods were explored for combining the images limited the ghosting caused by sub-sampling. Plenoptic processing was explored as a means for determining 3D information from airborne video. Successive frames were processed as camera array elements to extract the heights of structures. Practical means were considered for rendering the 3D information in color.

  2. Digital Pinhole Camera

    ERIC Educational Resources Information Center

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  3. Evaluating intensified camera systems

    SciTech Connect

    S. A. Baker

    2000-07-01

    This paper describes image evaluation techniques used to standardize camera system characterizations. Key areas of performance include resolution, noise, and sensitivity. This team has developed a set of analysis tools, in the form of image processing software used to evaluate camera calibration data, to aid an experimenter in measuring a set of camera performance metrics. These performance metrics identify capabilities and limitations of the camera system, while establishing a means for comparing camera systems. Analysis software is used to evaluate digital camera images recorded with charge-coupled device (CCD) cameras. Several types of intensified camera systems are used in the high-speed imaging field. Electro-optical components are used to provide precise shuttering or optical gain for a camera system. These components including microchannel plate or proximity focused diode image intensifiers, electro-static image tubes, or electron-bombarded CCDs affect system performance. It is important to quantify camera system performance in order to qualify a system as meeting experimental requirements. The camera evaluation tool is designed to provide side-by-side camera comparison and system modeling information.

  4. Harpicon camera for HDTV

    NASA Astrophysics Data System (ADS)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  5. Research on airborne infrared leakage detection of natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  6. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. 7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  8. 6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  9. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  10. Spectral correlation of wideband target resonances

    NASA Astrophysics Data System (ADS)

    Sabio, Vincent

    1995-07-01

    The potential for automatic target recognition (ATR) processing of foliage-penetrating (FOPEN) synthetic-aperture radar (SAR) imagery requires very high bandwidth occupancies to achieve sufficient range resolution for the ATR task. The U.S. Army Research Laboratory (ARL) ultra-wideband (UWB) FOPEN SAR -- with greater than 95 percent bandwidth occupancy -- provides a suitable testbed for evaluation of resonance-based ATR approaches. Current resonance-extraction techniques (e.g., SEM) typically have poor performance in the presence of noise, and are often computationally intensive. Recently developed at ARL, the `spectral correlation method' uses linear transforms -- such as Fourier and wavelets -- to resolve resonant components; these transforms are generally quite fast, and have straightforward implementations. Creating a synthetic version of the ringdown and projecting onto the desired transform basis provides a set of expected spectral coefficients (the `spectral template'). The spectral template is correlated with the spectral coefficients acquired from the projection of the focused image data onto the same basis function set; the correlation coefficient is then passed through a simple threshold detector. This yields a fast, efficient scheme for recognition of target resonance effects in UWB imagery. Recent advances in this area include a reduction in false-alarm rate by two orders of magnitude, a reduction in processing time by three orders of magnitude, and recognition of a tactical target.

  11. The Parkes Ultra-Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Manchester, Richard N.

    2015-08-01

    An ultra-wideband receiver system for the Parkes 64-m radio telescope covering the frequency range 0.7 - 4.0 GHz is currently under construction. Its main applications will be to pulsar studies, but it will also be used for spectral-line and continuum background polarisation studies and VLBI. A new feed design with remarkably constant beam properties across the band and excellent polarisation performance will be used. We plan to directly digitise the RF signals in the focus cabin and transmit the digital data via optical fibre to a versatile signal processing system using FPGA processors and a GPU cluster located in the telescope tower. With the relatively low radio frequency and very wide band, dealing with radio frequency interference is a critical issue. We have undertaken surveys of the RFI environment at Parkes and are developing several complementary techniques for mitigating the effects on data quality of both broad-band transients and quasi-stationary narrow-band signals.

  12. Holographic processing of wideband antenna data

    NASA Astrophysics Data System (ADS)

    Lebreton, G.; de Bazelaire, E.

    1980-10-01

    To utilize the real-time two-dimensional coherent imaging devices for antenna data processing, the properties of a raster-scanned wideband signal are studied. To extend the processed bandwidth-duration product widely over the recording capability of a single line on the imaging device, the time signal is displayed on several lines of the raster. The time-Doppler ambiguity function of the resulting 2-D signal is defined, leading to the possibility of two-dimensional processing. For a 2-D or 3-D phased-array antenna with any geometry, the received signals from each channel can be raster scanned and spatially multiplexed, enabling the performance of the array-pattern synthesis in every direction simultaneously, with the theoretical directivity of the antenna. Holographic filters are designed to perform either the matched filtering of a rastered signal with many Doppler replicas, or the array-pattern synthesis, or these two operations simultaneously with a single hologram. The complete processing is demonstrated for the case of a sonar-Doppler circular-array antenna.

  13. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  14. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  15. A Channelization-Based DOA Estimation Method for Wideband Signals.

    PubMed

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  16. Automated Camera Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  17. A new figure of merit for wideband vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Badel, A.; Formosa, F.; Wu, Y. P.

    2015-12-01

    The performance evaluation method is a very important part in the field of vibration energy harvesting. It provides the ability to compare and rate different vibration energy harvesters (VEHs). Considering the lack of a well-recognized tool, this article proposed a new systematic figure of merit for the appraisement of wideband VEHs. Extensive investigations are first performed for some classic figures for linear VEHs. With the common fundamental information obtained, the proposed figure integrates four essential factors: the revised energy harvester effectiveness, the mechanical quality factor, the normalized bandwidth and the effective mass density. Special considerations are devoted to the properties of wideband VEHs about the operation range and the average power in this domain which are related to the performance target of stable power output. Afterward, this new figure is applied to some literature VEHs and demonstrated to present good evaluations of wideband VEHs. Moreover, it exhibits the ability to point out the improvement information of the concerned VEHs further developments.

  18. Narrow- and wide-band channel characterization for land mobile satellite systems: Experimental results at L-band

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    The results of an airborne measurement campaign aimed at the characterization of the mobile satellite link are presented in this paper. The experimental tests were carried out at 1.8 GHz. The objective of the campaign was to obtain results applicable to all proposed satellite constellations: LEO, HEO, and GEO. Therefore, the measurements were performed for elevation angles from 10 deg...80 deg using a light aircraft. A set of different environments and operational scenarios have been investigated, typically for hand-held and car-mounted applications. We present a survey of wide- and narrowband results for a wide range of elevation angles and environments. For the wideband characterization, the power delay profiles of the channel impulse response are presented and discussed. Figures for the delay spread versus elevation and for the carrier-to-multipath ratio versus time are also given. The narrowband behaviour of the channel is described by power series.

  19. Spectral correlation of wideband target resonances

    NASA Astrophysics Data System (ADS)

    Sabio, Vincent

    1996-06-01

    The US Army Research Laboratory (ARL), working with the University of Maryland Department of Electrical Engineering, recently developed a novel method for efficient recognition of resonances in imagery from ARL's ultra-wideband (UWB) SAR instrumentation system, currently being used in foliage- and ground-penetration studies. The recognition technique uses linear transforms (Fourier, wavelets, etc.) to provide a basis for the design of spectrally matched filters. Implementation of the technique is very straightforward: an expectation of the target ringdown is projected onto a transform basis set, yielding a set of spectral coefficients (the 'spectral template'). UWB SAR image data are projected onto the same basis set, yielding a second vector of coefficients (the 'spectral image'). A simple correlation coefficient is generated from the two vectors, providing a measure of co-linearity of the spectral template and the spectral image: higher correlation values indicate greater co-linearity. Exceeding a correlation threshold results in a target implemented--a single 32-megabyte bipolar SAR image can be processed in less than five minutes. Initial spectral-correlation efforts focused on canonical targets and the results have been widely reported. Current studies are focusing on tactical targets, such as CUCVs. Early results on CUCVs have shown that sa single resonance-based template can be sued effectively in the recognition of tactical targets. Ongoing studies have demonstrated a substantial reduction in the false-alarm rate over results reported previously. These results, as well as improvements in the recognitions-processing stage, are reported in this paper.

  20. Optical networks for wideband sensor array

    NASA Astrophysics Data System (ADS)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  1. Narrowband and wideband characterisation of satellite mobile/PCN channel

    NASA Technical Reports Server (NTRS)

    Butt, G.; Parks, M. A. N.; Evans, B. G.

    1995-01-01

    This paper presents models characterizing satellite mobile channel. Statistical narrowband models based on the CSER high elevation angle channel measurement campaign are reported. Such models are understood to be useful for communication system simulations. It has been shown from the modelling results that for the mobile satellite links at high elevation angles line-of-sight (LOS) signal is available most of the time, even under the heavy shadowing conditions. Wideband measurement campaign which CSER is about to undertake, and subsequently the modelling approach to be adopted is also discussed. It is noted that a wideband channel model is expected to provide a useful tool in investigating CDMA applications.

  2. Ultra-wideband transparent 90° polarization conversion metasurfaces

    NASA Astrophysics Data System (ADS)

    Chen, Hongya; Ma, Hua; Wang, Jiafu; Qu, Shaobo; Pang, Yongqiang; Yan, Mingbao; Li, Yongfeng

    2016-04-01

    We propose to realize ultra-wideband transparent 90° polarization conversion metasurfaces by combining multiple plasmon resonances and Fabry-Perot-like resonances. An ultra-wideband polarization conversion metasurface is designed using a double-head arrow structure and metal gratings. It has been demonstrated that the bandwidth can be broadened greatly based on multiple plasmon resonances, while the efficiency can be enhanced strongly based on Fabry-Perot-like resonances. The both simulated and measured results show that the bandwidth of cross-polarized transmission is very wide, with a 1:6 3 dB bandwidth. The experimental results agree well with simulation ones.

  3. A compact wideband monopole antenna fed by coplanar waveguide

    NASA Astrophysics Data System (ADS)

    Pan, Guoping; Zhao, Wenhua; Zhou, Jiang; Su, Yan; Li, Qifu

    2016-02-01

    A compact wideband printed antenna fed by coplanar waveguide (CPW) is presented in this paper. The wideband characteristic is achieved by coupling three monopole resonant modes of the proposed antenna. The proposed antenna is built and simulated to verify the design strategy. A wide impedance bandwidth of 100.5% (1.7866-5.3953 GHz) with S11< - 10 dB is achieved. The proposed antenna has stable performance, including bi-directional radiation pattern and gain. It also shows the merits of low cost and simple structure.

  4. Airborne gravity is here

    SciTech Connect

    Hammer, S.

    1982-01-11

    After 20 years of development efforts, the airborne gravity survey has finally become a practical exploration method. Besides gravity data, the airborne survey can also collect simultaneous, continuous records of high-precision magneticfield data as well as terrain clearance; these provide a topographic contour map useful in calculating terrain conditions and in subsequent planning and engineering. Compared with a seismic survey, the airborne gravity method can cover the same area much more quickly and cheaply; a seismograph could then detail the interesting spots.

  5. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  6. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  7. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  8. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  9. Analytical multicollimator camera calibration

    USGS Publications Warehouse

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  10. 47 CFR 90.1432 - Conditions for waiver to allow limited and temporary wideband operations in the 700 MHz public...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temporary wideband operations in the 700 MHz public safety spectrum. 90.1432 Section 90.1432... and temporary wideband operations in the 700 MHz public safety spectrum. (a) Wideband operations in the 700 MHz Public Safety spectrum. Wideband operations are prohibited in the public safety...

  11. 47 CFR 90.1432 - Conditions for waiver to allow limited and temporary wideband operations in the 700 MHz public...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temporary wideband operations in the 700 MHz public safety spectrum. 90.1432 Section 90.1432... and temporary wideband operations in the 700 MHz public safety spectrum. (a) Wideband operations in the 700 MHz Public Safety spectrum. Wideband operations are prohibited in the public safety...

  12. 47 CFR 90.1432 - Conditions for waiver to allow limited and temporary wideband operations in the 700 MHz public...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temporary wideband operations in the 700 MHz public safety spectrum. 90.1432 Section 90.1432... and temporary wideband operations in the 700 MHz public safety spectrum. (a) Wideband operations in the 700 MHz Public Safety spectrum. Wideband operations are prohibited in the public safety...

  13. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  14. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  15. Ringfield lithographic camera

    DOEpatents

    Sweatt, William C.

    1998-01-01

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.

  16. Toolsets for Airborne Data

    Atmospheric Science Data Center

    2015-04-02

    article title:  Toolsets for Airborne Data     View larger image The ... limit of detection values. Prior to accessing the TAD Web Application ( https://tad.larc.nasa.gov ) for the first time, users must ...

  17. The airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  18. Archiving of Wideband Plasma Wave Data

    NASA Technical Reports Server (NTRS)

    Kurth, William S.

    1997-01-01

    Beginning with the third year of funding, we began a more ambitious archiving production effort, minimizing work on new software and concentrating on building representative archives of the missions mentioned above, recognizing that only a small percentage of the data from any one mission can be archived with reasonable effort. We concentrated on data from Dynamics Explorer and ISEE 1, archiving orbits or significant fractions of orbits which attempt to capture the essence of the mission and provide data which will hopefully be sufficient for ongoing and new research as well as to provide a reference to upcoming and current ISTP missions which will not fly in the same regions of space as the older missions and which will not have continuous wideband data. We archived approximately 181 Gigabytes of data, accounting for some 1582 hours of data. Included in these data are all of the AMPTE chemical releases, all of the Spacelab 2/PDP data obtained during the free-flight portion of its mission, as well as significant portions of the S3, DE-1, Imp-6, Hawkeye, Injun 5, and ISEE 1 and 2 data sets. Table 1 summarizes these data. All of the data archived are summarized in gif-formatted images of frequency-time spectrograms which are directly accessible via the internet. Each of the gif files are identified by year, day, and time as described in the Web page. This provides a user with a specific date/time in mind a way of determining very quickly if there is data for the interval in question and, by clicking on the file name, browsing the data. Alternately, a user can browse the data for interesting features and events simply by viewing each of the gif files. When a user finds data of interest, he/she can notify us by email of the time period involved. Based on the user's needs, we can provide data on a convenient medium or by ftp, or we can mount the appropriate data and provide access to our analysis tools via the network. We can even produce products such as plots or

  19. Wide-band array signal processing via spectral smoothing

    NASA Technical Reports Server (NTRS)

    Xu, Guanghan; Kailath, Thomas

    1989-01-01

    A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.

  20. Fibre Optics In A Multi-Star Wideband Local Network

    NASA Astrophysics Data System (ADS)

    Fox, J. R.

    1983-08-01

    Early experience has been gained with the switched-star type of network in the Fibrevision cable TV trial at Milton Keynes, and British Telecom are progressing towards a full-scale multi-star wideband local network. This paper discusses both the present and future use of fibre optics in this type of network.

  1. The Camera Cook Book.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    Intended for use with the photographic materials available from the Workshop for Learning Things, Inc., this "camera cookbook" describes procedures that have been tried in classrooms and workshops and proven to be the most functional and inexpensive. Explicit starting off instructions--directions for exploring and loading the camera and for taking…

  2. The DSLR Camera

    NASA Astrophysics Data System (ADS)

    Berkó, Ernő; Argyle, R. W.

    Cameras have developed significantly in the past decade; in particular, digital Single-Lens Reflex Cameras (DSLR) have appeared. As a consequence we can buy cameras of higher and higher pixel number, and mass production has resulted in the great reduction of prices. CMOS sensors used for imaging are increasingly sensitive, and the electronics in the cameras allows images to be taken with much less noise. The software background is developing in a similar way—intelligent programs are created for after-processing and other supplementary works. Nowadays we can find a digital camera in almost every household, most of these cameras are DSLR ones. These can be used very well for astronomical imaging, which is nicely demonstrated by the amount and quality of the spectacular astrophotos appearing in different publications. These examples also show how much post-processing software contributes to the rise in the standard of the pictures. To sum up, the DSLR camera serves as a cheap alternative for the CCD camera, with somewhat weaker technical characteristics. In the following, I will introduce how we can measure the main parameters (position angle and separation) of double stars, based on the methods, software and equipment I use. Others can easily apply these for their own circumstances.

  3. Constrained space camera assembly

    DOEpatents

    Heckendorn, F.M.; Anderson, E.K.; Robinson, C.W.; Haynes, H.B.

    1999-05-11

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity is disclosed. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras. 17 figs.

  4. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  5. Camera Operator and Videographer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  6. Wide-band gas leak imaging detection system using UFPA

    NASA Astrophysics Data System (ADS)

    Jin, Wei-qi; Li, Jia-kun; Dun, Xiong; Jin, Minglei; Wang, Xia

    2014-11-01

    The leakage of toxic or hazardous gases not only pollutes the environment, but also threatens people's lives and property safety. Many countries attach great importance to the rapid and effective gas leak detection technology and instrument development. However, the gas leak imaging detection systems currently existing are generally limited to a narrow-band in Medium Wavelength Infrared (MWIR) or Long Wavelength Infrared (LWIR) cooled focal plane imaging, which is difficult to detect the common kinds of the leaking gases. Besides the costly cooled focal plane array is utilized, the application promotion is severely limited. To address this issue, a wide-band gas leak IR imaging detection system using Uncooled Focal Plane Array (UFPA) detector is proposed, which is composed of wide-band IR optical lens, sub-band filters and switching device, wide-band UFPA detector, video processing and system control circuit. A wide-band (3µm~12µm) UFPA detector is obtained by replacing the protection window and optimizing the structural parameters of the detector. A large relative aperture (F#=0.75) wide-band (3μm~12μm) multispectral IR lens is developed by using the focus compensation method, which combining the thickness of the narrow-band filters. The gas leak IR image quality and the detection sensitivity are improved by using the IR image Non-Uniformity Correction (NUC) technology and Digital Detail Enhancement (DDE) technology. The wide-band gas leak IR imaging detection system using UFPA detector takes full advantage of the wide-band (MWIR&LWIR) response characteristic of the UFPA detector and the digital image processing technology to provide the resulting gas leak video easy to be observed for the human eyes. Many kinds of gases, which are not visible to the naked eyes, can be sensitively detected and visualized. The designed system has many commendable advantages, such as scanning a wide range simultaneously, locating the leaking source quickly, visualizing the gas

  7. Dry imaging cameras

    PubMed Central

    Indrajit, IK; Alam, Aftab; Sahni, Hirdesh; Bhatia, Mukul; Sahu, Samaresh

    2011-01-01

    Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow. PMID:21799589

  8. Optical Communications Link to Airborne Transceiver

    NASA Technical Reports Server (NTRS)

    Regehr, Martin W.; Kovalik, Joseph M.; Biswas, Abhijit

    2011-01-01

    An optical link from Earth to an aircraft demonstrates the ability to establish a link from a ground platform to a transceiver moving overhead. An airplane has a challenging disturbance environment including airframe vibrations and occasional abrupt changes in attitude during flight. These disturbances make it difficult to maintain pointing lock in an optical transceiver in an airplane. Acquisition can also be challenging. In the case of the aircraft link, the ground station initially has no precise knowledge of the aircraft s location. An airborne pointing system has been designed, built, and demonstrated using direct-drive brushless DC motors for passive isolation of pointing disturbances and for high-bandwidth control feedback. The airborne transceiver uses a GPS-INS system to determine the aircraft s position and attitude, and to then illuminate the ground station initially for acquisition. The ground transceiver participates in link-pointing acquisition by first using a wide-field camera to detect initial illumination from the airborne beacon, and to perform coarse pointing. It then transfers control to a high-precision pointing detector. Using this scheme, live video was successfully streamed from the ground to the aircraft at 270 Mb/s while simultaneously downlinking a 50 kb/s data stream from the aircraft to the ground.

  9. 3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. 7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. Imaging of Ultra-Wideband Georadar Data

    NASA Astrophysics Data System (ADS)

    ferguson, Robert; Yedlin, Matthew; Pichot, Christian; Dauvignac, Jean-Yves; Fortino, Nicolas; Gaffet, Stéphane

    2013-04-01

    We present a methodology for georadar acquisition and processing that returns superior images of the subsurface for low cost. Georadar data were acquired in March 2011 in the anti-blast tunnel within the Inter-Disciplinary Underground Science & Technology Laboratory at the Laboratoire Souterrain a Bas Bruit (LSBB, http://lsbb.oca.eu), Rustrel, France. The georadar data from LSBB were acquired with an exponentially tapered slot antenna (ETSA) of the Vivaldi type. The ETSA is connected to an Agilent vector network analyzer and it operates between 150 MHz to 2 GHz with a noise floor of -120 dB. One of the most interesting technical aspects of the recordings is the use of both a conventional bistatic recording geometry (the source / receiver offset is about 65 cm) and what we will call a monostatic recording geometry where the emitting antenna is also the receiving antenna. The monostatic (reflection) data and bistatic (transmission) data are recorded complex numbers and each recorded number is a stack of monochromatic wave measurements. This system is reported to have a number of outstanding attributes including long depth of resolution due to it's wide bandwidth. Compared to other systems it has a greater dynamic range plus low distortion, and this is achieved with low-noise, low-loss cables and shielding with ultra-wideband absorbers. The resulting monostatic georadargrams are a true, zero-offset recording geometry, and so zero-offset migration (imaging that is based on the exploding reflector concept) returns a high accuracy image for low cost. To restore reflection attenuation due to the low Q factor associated with georadar, we apply nonstationary, Gabor-domain deconvolution. We find that amplitude attenuation is restored and phase distortion is corrected. The improved accuracy of our methodology is established first through direct comparison of our Gabor-deconvolved data with conventional, stationary deconvolution where we find that the nonstationary result is

  12. Night Vision Camera

    NASA Technical Reports Server (NTRS)

    1996-01-01

    PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.

  13. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  14. Structured light camera calibration

    NASA Astrophysics Data System (ADS)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  15. Ringfield lithographic camera

    DOEpatents

    Sweatt, W.C.

    1998-09-08

    A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.

  16. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  17. Targetless Camera Calibration

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Mussio, L.; Remondino, F.; Scaioni, M.

    2011-09-01

    In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  18. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  19. The MKID Camera

    NASA Astrophysics Data System (ADS)

    Maloney, P. R.; Czakon, N. G.; Day, P. K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H. G.; Mazin, B.; Noroozian, O.; Nguyen, H. T.; Sayers, J.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Wilson, P.; Zmuidzinas, J.

    2009-12-01

    The MKID Camera project is a collaborative effort of Caltech, JPL, the University of Colorado, and UC Santa Barbara to develop a large-format, multi-color millimeter and submillimeter-wavelength camera for astronomy using microwave kinetic inductance detectors (MKIDs). These are superconducting, micro-resonators fabricated from thin aluminum and niobium films. We couple the MKIDs to multi-slot antennas and measure the change in surface impedance produced by photon-induced breaking of Cooper pairs. The readout is almost entirely at room temperature and can be highly multiplexed; in principle hundreds or even thousands of resonators could be read out on a single feedline. The camera will have 576 spatial pixels that image simultaneously in four bands at 750, 850, 1100 and 1300 microns. It is scheduled for deployment at the Caltech Submillimeter Observatory in the summer of 2010. We present an overview of the camera design and readout and describe the current status of testing and fabrication.

  20. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  1. Gamma ray camera

    SciTech Connect

    Robbins, C.D.; Wang, S.

    1980-09-09

    An anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the anger camera, the image intensifier tube having a negatively charged flat scintillator screen and a flat photocathode layer and a grounded, flat output phosphor display screen all of the same dimension (Unity image magnification) and all within a grounded metallic tube envelope and having a metallic, inwardly concaved input window between the scintillator screen and the collimator.

  2. The Airborne Laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-09-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  3. Airborne oceanographic lidar system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Specifications and preliminary design of an Airborne Oceanographic Lidar (AOL) system, which is to be constructed for installation and used on a NASA Wallops Flight Center (WFC) C-54 research aircraft, are reported. The AOL system is to provide an airborne facility for use by various government agencies to demonstrate the utility and practicality of hardware of this type in the wide area collection of oceanographic data on an operational basis. System measurement and performance requirements are presented, followed by a description of the conceptual system approach and the considerations attendant to its development. System performance calculations are addressed, and the system specifications and preliminary design are presented and discussed.

  4. Monitoring human and vehicle activities using airborne video

    NASA Astrophysics Data System (ADS)

    Cutler, Ross; Shekhar, Chandra S.; Burns, B.; Chellappa, Rama; Bolles, Robert C.; Davis, Larry S.

    2000-05-01

    Ongoing work in Activity Monitoring (AM) for the Airborne Video Surveillance (AVS) project is described. The goal for AM is to recognize activities of interest involving humans and vehicles using airborne video. AM consists of three major components: (1) moving object detection, tracking, and classification; (2) image to site-model registration; (3) activity recognition. Detecting and tracking humans and vehicles form airborne video is a challenging problem due to image noise, low GSD, poor contrast, motion parallax, motion blur, and camera blur, and camera jitter. We use frame-to- frame affine-warping stabilization and temporally integrated intensity differences to detect independent motion. Moving objects are initially tracked using nearest-neighbor correspondence, followed by a greedy method that favors long track lengths and assumes locally constant velocity. Object classification is based on object size, velocity, and periodicity of motion. Site-model registration uses GPS information and camera/airplane orientations to provide an initial geolocation with +/- 100m accuracy at an elevation of 1000m. A semi-automatic procedure is utilized to improve the accuracy to +/- 5m. The activity recognition component uses the geolocated tracked objects and the site-model to detect pre-specified activities, such as people entering a forbidden area and a group of vehicles leaving a staging area.

  5. Camera Edge Response

    NASA Astrophysics Data System (ADS)

    Zisk, Stanley H.; Wittels, Norman

    1988-02-01

    Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.

  6. Spacecraft camera image registration

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  7. NASA Airborne Lidar July 1991

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar July 1991 Data from the 1991 NASA Langley Airborne Lidar flights following the eruption of Pinatubo in July ... and Osborn [1992a, 1992b]. Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  8. NASA Airborne Lidar May 1992

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar May 1992 An airborne Nd:YAG (532 nm) lidar was operated by the NASA Langley Research Center about a year following the June 1991 eruption of ... Osborn [1992a, 1992b].  Project Title:  NASA Airborne Lidar Discipline:  Field Campaigns ...

  9. 9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ON RAILROAD TRACK AND FIXED CAMERA STATION 1400 (BUILDING NO. 42021) ABOVE, ADJACENT TO STATE HIGHWAY 39, LOOKING WEST, March 23, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. 1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  12. Wideband direction finding via shielded gradient beamspace techniques

    NASA Astrophysics Data System (ADS)

    Brudner, Terry J.; Henderson, Terry L.

    2003-10-01

    Monopulse techniques have been used for over 50 years in the radar community to estimate the direction of arrival (DOA) of incoming echoes. In recent years, a variant of the monopulse technique has been developed, termed the shielded gradient technique, which allows DOA estimation for signals of arbitrary bandwidth. The technique maps the array-output M-vector into a frequency-invariant B-dimensional beamspace. The work presented here describes the shielded gradient beamspace model in its higher-order form, and develops wideband DOA estimation algorithms analogous to the narrow-band MUSIC, root-MUSIC, and ESPRIT algorithms. The performance of these new algorithms is studied through simulation and application to measured, in-water sonar data. They are also compared via simulation to existing wideband DOA estimation algorithms. [Work supported by the Internal Research and Development Program under Contract No. FEE-800.

  13. Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging

    NASA Astrophysics Data System (ADS)

    Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ

    2015-01-01

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)

  14. Waveform generation for ultra-wideband radar system

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Feng

    1993-12-01

    In the current literature, ultra-wideband (UWB) waveforms are said to possess several potential advantages such as penetration of foliage, walls and ground, as well as target identification and detection of stealth targets. Due to the potential advantages of UWB waveforms, UWB power sources are currently being developed. This thesis investigates the Fourier synthesis method of waveform generation which is to be used with ultra-wideband radar. The major advantages of this method over traditional methods are that accurate control of pulse shapes and pulse repetition intervals (PRI) can be generated. In this thesis, the Fourier method is extended to generation of binary coded waveforms for UWB systems. The generation of such codes is important as it allows for the use of longer coded pulses. These coded pulses contain more energy and improve signal to noise ratio (SNR) while still retaining the range resolution and other benefits of smaller pulse widths.

  15. Low data rate ultra wideband ECG monitoring system.

    PubMed

    Keong, Ho Chee; Yuce, Mehmet R

    2008-01-01

    This paper presents a successfully implemented wireless electrocardiograph monitoring using low data rate ultra wideband (UWB) transmission. Low data rate ultra wideband is currently under consideration for the newly formed wireless body area network (WBAN) group (IEEE802.15.6) to develop a standard for wireless vital sign monitoring. Maximizing the transmission power of the transmitter and reducing the stringent requirements and complexity of the receiver have always been the key considerations for an UWB transceiver. Multiple pulses per bit has been sent in our low data rate UWB prototype system to increase the transmitter power, to reduce the complexity of the receiver and to ease the requirement on the receiver's analog to digital converter. Non-coherent technique has been used for the demodulation of UWB signals at the receiver that reduces the receiver complexity further. PMID:19163442

  16. Wideband image demodulation via bi-dimensional multirate frequency transformations.

    PubMed

    Liu, Wenjing; Santhanam, Balu

    2016-09-01

    Existing image demodulation approaches based on the two-dimensional (2D) multicomponent AM-FM model assume narrowband components that can be demodulated using energy operators, Hilbert transforms, or the monogenic image approaches. However, if the FM components are wideband, then these demodulation approaches incur significant errors. Recent work by the authors extended wideband FM demodulation in one dimension to accommodate large conversion factors using multirate frequency transformations. In this paper, we extend the multirate frequency transformations technique developed for one-dimensional signals to 2D and images in conjunction with a recently proposed 2D higher-order energy demodulation approach. This extension is applied to both synthetic and real images to demonstrate the efficacy of the approach. PMID:27607487

  17. A wideband analog correlator system for AMiBA

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Kubo, Derek; Han, Chih-Chiang; Chen, Chung-Cheng; Chen, Ming-Tang; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Chiueh, Tzi-Dar; Peterson, Jeffrey; Kesteven, Michael; Wilson, Warwick

    2004-10-01

    A wideband correlator system with a bandwidth of 16 GHz or more is required for Array for Microwave Background Anisotropy (AMiBA) to achieve the sensitivity of 10μK in one hour of observation. Double-balanced diode mixers were used as multipliers in 4-lag correlator modules. Several wideband modules were developed for IF signal distribution between receivers and correlators. Correlator outputs were amplified, and digitized by voltage-to-frequency converters. Data acquisition circuits were designed using field programmable gate arrays (FPGA). Subsequent data transfer and control software were based on the configuration for Australia Telescope Compact Array. Transform matrix method will be adopted during calibration to take into account the phase and amplitude variations of analog devices across the passband.

  18. Wideband enhancement of television images for people with visual impairments.

    PubMed

    Peli, Eli; Kim, Jeonghoon; Yitzhaky, Yitzhak; Goldstein, Robert B; Woods, Russell L

    2004-06-01

    Wideband enhancement was implemented by detecting visually relevant edge and bar features in an image to produce a bipolar contour map. The addition of these contours to the original image resulted in increased local contrast of these features and an increase in the spatial bandwidth of the image. Testing with static television images revealed that visually impaired patients (n = 35) could distinguish the enhanced images and preferred them over the original images (and degraded images). Most patients preferred a moderate level of wideband enhancement, since they preferred natural-looking images and rejected visible artifacts of the enhancement. Comparison of the enhanced images with the originals revealed that the improvement in the perceived image quality was significant for only 22% of the patients. Possible reasons for the limited increase in perceived image quality are discussed, and improvements are suggested. PMID:15191173

  19. A wideband scalar network analyzer for biomedical dehydration measurements.

    PubMed

    Hofmann, M; Nehring, J; Weigel, R; Fischer, G; Kissinger, D

    2013-01-01

    This paper presents a wideband microwave approach towards biomedical dehydration monitoring. The introduced concept is verified via invasive measurements on several blood samples. A microwave measurement circuit, based of a two-port scalar vector network analyzer is presented. The circuit operates between 5GHz and 20GHz using a planar permittivity sensor. Measurements of all subcomponents are shown together with measurements of a Water-NaCl-Glycerol solution. PMID:24110621

  20. An Overview of the Recent Wideband Transcutaneous Wireless Communication Techniques

    PubMed Central

    Ghovanloo, Maysam

    2013-01-01

    Neuroprosthetic devices such as cochlear and retinal implants need to deliver a large volume of data from external sensors into the body, while invasive brain-computer interfaces need to deliver sizeable amounts of data from the central nervous system to target devices outside of the body. Nonetheless, the skin should remain intact. This paper reviews some of the latest techniques to establish wideband wireless communication links across the skin. PMID:22255673

  1. A Wideband Profiled Corrugated Horn for Multichroic Applications

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Tong, Cheuk-yu Edward; Wollack, Edward J.; Chuss, David T.

    2015-01-01

    A wideband profiled corrugated feedhorn was developed for multichroic applications. This feedhorn features a return loss of better than -25 dB and cross polarization peaks below -30 dB, over a fractional bandwidth of greater than 50%. Its performance is close to that of the ring-loaded corrugated feedhorn; however, the design presented is much easier to fabricate at millimeter wavelengths.

  2. A coplanar wideband antenna based on metamaterial refractive surface

    NASA Astrophysics Data System (ADS)

    Salhi, Ridha; Labidi, Mondher; Choubani, Fethi

    2016-01-01

    In this paper, we proceed by presenting a wideband coplanar antenna which can be used in various applications because of its performances such as broad band, small size and low-cost design. Then, we carried out many metamaterial refractive surface (MRS) simulations in order to optimize the antenna performances. Finally, a comparative study between different configurations of the proposed antenna integrated with MRS is presented. The proposed prototype covers the frequency band from 1.6 to 1.8 GHz.

  3. Iterative direction-of-arrival estimation with wideband chirp signals

    NASA Astrophysics Data System (ADS)

    Wang, Genyuan; Xia, Xiang-Gen; Chen, Victor C.

    1999-11-01

    Amin et. al. recently developed a time-frequency MUSIC algorithm with narrow band models for the estimation of direction of arrival (DOA) when the source signals are chirps. In this research, we consider wideband models. The joint time-frequency analysis is first used to estimate the chirp rates of the source signals and then the DOA is estimated by the MUSIC algorithm with an iterative approach.

  4. Wideband radar signal modeling of ground moving targets in clutter

    NASA Astrophysics Data System (ADS)

    Malas, John A.; Pasala, Krishna M.; Westerkamp, John J.

    2002-08-01

    Research in the area of air-to-ground target detection, track and identification (ID) requires the development of target signal models for known geometric shapes moving in ground clutter. Space-time adaptive filtering techniques in particular make good use of temporal-spatial synthetic radar signal return data. A radar signal model is developed to generate synthetic wideband radar signal data for use in multi-channel adaptive signal processing.

  5. Generalized architecture for DOA estimation for wideband/narrowband sources

    NASA Astrophysics Data System (ADS)

    Tabar, R.; Jamali, Mohsin M.; Kwatra, S. C.; Djouadi, A. H.

    1993-10-01

    The high-resolution direction-of-arrival (DOA) estimation algorithms are studied to develop architecture for real time applications. Methods for DOA estimation for wideband sources proposed by Buckley and Griffiths and MUSIC algorithm for narrowband sources proposed by Schmidt have been selected for hardware implementation. These algorithms have been simplified and generalized into one common programmable algorithm. It is then parallelized and is executed in a pipelined fashion. A parallel architecture has been designed for this generalized algorithm.

  6. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Knerr, T. J.; Schaffner, P. R.; Mielke, R. R.; Gilreath, M. C.

    1980-01-01

    A procedure for numerically calculating radiation patterns of fuselage-mounted airborne antennas using the Volumetric Pattern Analysis Program is presented. Special attention is given to aircraft modeling. An actual case study involving a large commercial aircraft is included to illustrate the analysis procedure.

  7. Recognizing Airborne Hazards.

    ERIC Educational Resources Information Center

    Schneider, Christian M.

    1990-01-01

    The heating, ventilating, and air conditioning (HVAC) systems in older buildings often do not adequately handle air-borne contaminants. Outlines a three-stage Indoor Air Quality (IAQ) assessment and describes a case in point at a Pittsburgh, Pennsylvania, school. (MLF)

  8. Airborne Fraunhofer Line Discriminator

    NASA Technical Reports Server (NTRS)

    Gabriel, F. C.; Markle, D. A.

    1969-01-01

    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials.

  9. Airborne Remote Sensing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA imaging technology has provided the basis for a commercial agricultural reconnaissance service. AG-RECON furnishes information from airborne sensors, aerial photographs and satellite and ground databases to farmers, foresters, geologists, etc. This service produces color "maps" of Earth conditions, which enable clients to detect crop color changes or temperature changes that may indicate fire damage or pest stress problems.

  10. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  11. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  12. Improved 3-Tesla cardiac cine imaging using wideband.

    PubMed

    Lee, Hsu-Lei; Shankaranarayanan, Ajit; Pohost, Gerald M; Nayak, Krishna S

    2010-06-01

    Cine balanced steady-state free precession (SSFP) is the most widely used sequence for assessing cardiac ventricular function at 1.5 T because it provides high signal-to-noise ratio efficiency and strong contrast between myocardium and blood. At 3 T, the use of SSFP is limited by susceptibility-induced off-resonance, resulting in either banding artifacts or the need to use a short-sequence pulse repetition time that limits the readout duration and hence the achievable spatial resolution. In this work, we apply wideband SSFP, a variant of SSFP that uses two alternating pulse repetition times to establish a steady state with wider band spacing in its frequency response and overcome the key limitations of SSFP. Prospectively gated cine two-dimensional imaging with wideband SSFP is evaluated in healthy volunteers and compared to conventional balanced SSFP, using quantitative metrics and qualitative interpretation by experienced clinicians. We demonstrate that by trading off temporal resolution and signal-to-noise ratio efficiency, wideband SSFP mitigates banding artifacts and enables imaging with approximately 30% higher spatial resolution compared to conventional SSFP with the same effective band spacing. PMID:20512877

  13. Characterization of auscultatory gaps with wideband external pulse recording.

    PubMed

    Blank, S G; West, J E; Müller, F B; Pecker, M S; Laragh, J H; Pickering, T G

    1991-02-01

    Three types of auscultatory gaps, called G1, G2, and G3, that occur during blood pressure measurement have been identified by using wideband external pulse recording. We have previously shown that the wideband external pulse recorded during cuff deflation can be separated into three components (K1, K2, and K3), one of which (K2) is closely related to the Korotkoff sound. G1 occurs with cuff pressure just below systolic and is characterized by the presence of K1 and K2 with intermittent disappearance of K2. G1 gaps are related to a phasic decrease of arterial (systolic) pressure and were exhibited by 13 of 60 hypertensive patients. G2 gaps are related to a phasic increase of arterial (diastolic) pressure, occur when cuff pressure is just above diastolic, and are characterized by the presence of K1, K2, and K3 with intermittent disappearance of K2. Seven of 60 hypertensive patients exhibited a G2 gap. G3 gaps occur with cuff pressure between systolic and diastolic and are characterized by an underdeveloped or blunted K2 signal. Three of 60 hypertensive patients exhibited a G3 gap. The identification of auscultatory gaps in relation to the wideband external pulse provides a qualitative measure of their existence, can be of significant value in better understanding aspects of the auscultatory blood pressure measurement technique, and provides an objective basis with which to better understand the mechanisms that cause them. PMID:1991655

  14. Design of a wideband excitation source for fast bioimpedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Kang, Minhang; Lu, Yong; Wang, Jian; Yue, Jing; Gao, Zonghai

    2011-01-01

    Multi-frequency-one-time (MFOT) measurement of bioimpedance spectroscopy (BIS) can greatly reduce measurement time and grasp the transient physiological status of a living body compared with the traditional one-frequency-one-time (OFOT) measurement technology, and a wideband excitation source mixed with multiple frequencies is a crucial part of MFOT measurement of BIS. This communication describes a design of a wideband excitation source. Firstly, a multi-frequency mixed (MFM) signal containing seven primary harmonics is synthesized based on Walsh functions, which is a periodical and rectangular signal and whose 68.9% of the energy is homogeneously distributed on its seven 2nth primary harmonics. Then the MFM signal is generated by a field programmable gate array (FPGA), and a unipolar-to-bipolar convertor (UBC) is designed to convert the unipolar signal into bipolar signal. Finally, the bipolar MFM signal is driven by a voltage-controlled current source (VCCS). A 2R-1C series model is adopted as the load of the VCCS, and the simulated voltage response on the load is obtained based on the theoretical analysis. Experiments show that the practical waveform on the load matches well with the theoretical analysis, which indicates that the VCCS has a good performance on the MFM signal. The design of the wideband excitation source establishes a good foundation for fast measurement of BIS.

  15. Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence.

    PubMed

    Beijbom, Oscar; Treibitz, Tali; Kline, David I; Eyal, Gal; Khen, Adi; Neal, Benjamin; Loya, Yossi; Mitchell, B Greg; Kriegman, David

    2016-01-01

    Large-scale imaging techniques are used increasingly for ecological surveys. However, manual analysis can be prohibitively expensive, creating a bottleneck between collected images and desired data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are obtained each year. Recent automated annotation methods may provide a solution, but reflectance images do not always contain sufficient information for adequate classification accuracy. In this work, the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered with standard reflectance images, and an automated annotation method based on convolutional neural networks was developed. Our results demonstrate a 22% reduction of classification error-rate when using both images types compared to only using reflectance images. The improvements were large, in particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to combine reflectance and fluorescence imagery in order to significantly improve automated annotation accuracy and reduce the manual annotation bottleneck. PMID:27021133

  16. Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence

    PubMed Central

    Beijbom, Oscar; Treibitz, Tali; Kline, David I.; Eyal, Gal; Khen, Adi; Neal, Benjamin; Loya, Yossi; Mitchell, B. Greg; Kriegman, David

    2016-01-01

    Large-scale imaging techniques are used increasingly for ecological surveys. However, manual analysis can be prohibitively expensive, creating a bottleneck between collected images and desired data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are obtained each year. Recent automated annotation methods may provide a solution, but reflectance images do not always contain sufficient information for adequate classification accuracy. In this work, the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered with standard reflectance images, and an automated annotation method based on convolutional neural networks was developed. Our results demonstrate a 22% reduction of classification error-rate when using both images types compared to only using reflectance images. The improvements were large, in particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to combine reflectance and fluorescence imagery in order to significantly improve automated annotation accuracy and reduce the manual annotation bottleneck. PMID:27021133

  17. Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence

    NASA Astrophysics Data System (ADS)

    Beijbom, Oscar; Treibitz, Tali; Kline, David I.; Eyal, Gal; Khen, Adi; Neal, Benjamin; Loya, Yossi; Mitchell, B. Greg; Kriegman, David

    2016-03-01

    Large-scale imaging techniques are used increasingly for ecological surveys. However, manual analysis can be prohibitively expensive, creating a bottleneck between collected images and desired data-products. This bottleneck is particularly severe for benthic surveys, where millions of images are obtained each year. Recent automated annotation methods may provide a solution, but reflectance images do not always contain sufficient information for adequate classification accuracy. In this work, the FluorIS, a low-cost modified consumer camera, was used to capture wide-band wide-field-of-view fluorescence images during a field deployment in Eilat, Israel. The fluorescence images were registered with standard reflectance images, and an automated annotation method based on convolutional neural networks was developed. Our results demonstrate a 22% reduction of classification error-rate when using both images types compared to only using reflectance images. The improvements were large, in particular, for coral reef genera Platygyra, Acropora and Millepora, where classification recall improved by 38%, 33%, and 41%, respectively. We conclude that convolutional neural networks can be used to combine reflectance and fluorescence imagery in order to significantly improve automated annotation accuracy and reduce the manual annotation bottleneck.

  18. The CAMCAO infrared camera

    NASA Astrophysics Data System (ADS)

    Amorim, Antonio; Melo, Antonio; Alves, Joao; Rebordao, Jose; Pinhao, Jose; Bonfait, Gregoire; Lima, Jorge; Barros, Rui; Fernandes, Rui; Catarino, Isabel; Carvalho, Marta; Marques, Rui; Poncet, Jean-Marc; Duarte Santos, Filipe; Finger, Gert; Hubin, Norbert; Huster, Gotthard; Koch, Franz; Lizon, Jean-Louis; Marchetti, Enrico

    2004-09-01

    The CAMCAO instrument is a high resolution near infrared (NIR) camera conceived to operate together with the new ESO Multi-conjugate Adaptive optics Demonstrator (MAD) with the goal of evaluating the feasibility of Multi-Conjugate Adaptive Optics techniques (MCAO) on the sky. It is a high-resolution wide field of view (FoV) camera that is optimized to use the extended correction of the atmospheric turbulence provided by MCAO. While the first purpose of this camera is the sky observation, in the MAD setup, to validate the MCAO technology, in a second phase, the CAMCAO camera is planned to attach directly to the VLT for scientific astrophysical studies. The camera is based on the 2kx2k HAWAII2 infrared detector controlled by an ESO external IRACE system and includes standard IR band filters mounted on a positional filter wheel. The CAMCAO design requires that the optical components and the IR detector should be kept at low temperatures in order to avoid emitting radiation and lower detector noise in the region analysis. The cryogenic system inclues a LN2 tank and a sptially developed pulse tube cryocooler. Field and pupil cold stops are implemented to reduce the infrared background and the stray-light. The CAMCAO optics provide diffraction limited performance down to J Band, but the detector sampling fulfills the Nyquist criterion for the K band (2.2mm).

  19. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  20. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  1. The Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration

    2015-11-01

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  2. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  3. Selective-imaging camera

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  4. Solid state television camera

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.

  5. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  6. Electronic Still Camera

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor)

    1992-01-01

    A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.

  7. An airborne real-time hyperspectral target detection system

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn; Haavardsholm, Trym V.; Kåsen, Ingebjørg; Arisholm, Gunnar; Kavara, Amela; Opsahl, Thomas Olsvik; Skaugen, Atle

    2010-04-01

    An airborne system for hyperspectral target detection is described. The main sensor is a HySpex pushbroom hyperspectral imager for the visible and near-infrared spectral range with 1600 pixels across track, supplemented by a panchromatic line imager. An optional third sensor can be added, either a SWIR hyperspectral camera or a thermal camera. In real time, the system performs radiometric calibration and georeferencing of the images, followed by image processing for target detection and visualization. The current version of the system implements only spectral anomaly detection, based on normal mixture models. Image processing runs on a PC with a multicore Intel processor and an Nvidia graphics processing unit (GPU). The processing runs in a software framework optimized for large sustained data rates. The platform is a Cessna 172 aircraft based close to FFI, modified with a camera port in the floor.

  8. Artificial human vision camera

    NASA Astrophysics Data System (ADS)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  9. [Air-borne disease].

    PubMed

    Lameiro Vilariño, Carmen; del Campo Pérez, Victor M; Alonso Bürger, Susana; Felpeto Nodar, Irene; Guimarey Pérez, Rosa; Pérez Alvarellos, Alberto

    2003-11-01

    Respiratory protection is a factor which worries nursing professionals who take care of patients susceptible of transmitting microorganisms through the air more as every day passes. This type of protection covers the use of surgical or hygienic masks against the transmission of infection by airborne drops to the use of highly effective masks or respirators against the transmission of airborne diseases such as tuberculosis or SARS, a recently discovered disease. The adequate choice of this protective device and its correct use are fundamental in order to have an effective protection for exposed personnel. The authors summarize the main protective respiratory devices used by health workers, their characteristics and degree of effectiveness, as well as the circumstances under which each device is indicated for use. PMID:14705591

  10. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  11. MLS airborne antenna research

    NASA Technical Reports Server (NTRS)

    Yu, C. L.; Burnside, W. D.

    1975-01-01

    The geometrical theory of diffraction was used to analyze the elevation plane pattern of on-aircraft antennas. The radiation patterns for basic elements (infinitesimal dipole, circumferential and axial slot) mounted on fuselage of various aircrafts with or without radome included were calculated and compared well with experimental results. Error phase plots were also presented. The effects of radiation patterns and error phase plots on the polarization selection for the MLS airborne antenna are discussed.

  12. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  13. Photogrammetric camera calibration

    USGS Publications Warehouse

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  14. Spas color camera

    NASA Technical Reports Server (NTRS)

    Toffales, C.

    1983-01-01

    The procedures to be followed in assessing the performance of the MOS color camera are defined. Aspects considered include: horizontal and vertical resolution; value of the video signal; gray scale rendition; environmental (vibration and temperature) tests; signal to noise ratios; and white balance correction.

  15. Imaging phoswich anger camera

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sood, R. K.

    1991-08-01

    High angular resolution and low background are the primary requisites for detectors for future astronomy experiments in the low energy gamma-ray region. Scintillation counters are still the only available large area detector for studies in this energy range. Preliminary details of a large area phoswich anger camera designed for coded aperture imaging is described and its background and position characteristics are discussed.

  16. Communities, Cameras, and Conservation

    ERIC Educational Resources Information Center

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  17. Advanced Virgo phase cameras

    NASA Astrophysics Data System (ADS)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  18. The LSST Camera Overview

    SciTech Connect

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O'Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  19. Jack & the Video Camera

    ERIC Educational Resources Information Center

    Charlan, Nathan

    2010-01-01

    This article narrates how the use of video camera has transformed the life of Jack Williams, a 10-year-old boy from Colorado Springs, Colorado, who has autism. The way autism affected Jack was unique. For the first nine years of his life, Jack remained in his world, alone. Functionally non-verbal and with motor skill problems that affected his…

  20. Anger Camera Firmware

    Energy Science and Technology Software Center (ESTSC)

    2010-11-19

    The firmware is responsible for the operation of Anger Camera Electronics, calculation of position, time of flight and digital communications. It provides a first stage analysis of 48 signals from 48 analog signals that have been converted to digital values using A/D convertors.

  1. Make a Pinhole Camera

    ERIC Educational Resources Information Center

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  2. Airborne field strength monitoring

    NASA Astrophysics Data System (ADS)

    Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.

    2007-06-01

    In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.

  3. Mutagenicity of airborne particles.

    PubMed

    Chrisp, C E; Fisher, G L

    1980-09-01

    The physical and chemical properties of airborne particles are important for the interpretation of their potential biologic significance as genotoxic hazards. For polydisperse particle size distributions, the smallest, most respirable particles are generally the most mutagenic. Particulate collection for testing purposes should be designed to reduce artifact formation and allow condensation of mutagenic compounds. Other critical factors such as UV irradiation, wind direction, chemical reactivity, humidity, sample storage, and temperature of combustion are important. Application of chemical extraction methods and subsequent class fractionation techniques influence the observed mutagenic activity. Particles from urban air, coal fly ash, automobile and diesel exhaust, agricultural burning and welding fumes contain primarily direct-acting mutagens. Cigarette smoke condensate, smoke from charred meat and protein pyrolysates, kerosene soot and cigarette smoke condensates contain primarily mutagens which require metabolic activation. Fractionation coupled with mutagenicity testing indicates that the most potent mutagens are found in the acidic fractions of urban air, coal fly ash, and automobile diesel exhaust, whereas mutagens in rice straw smoke and cigarette smoke condensate are found primarily in the basic fractions. The interaction of the many chemical compounds in complex mixtures from airborne particles is likely to be important in determining mutagenic or comutagenic potentials. Because the mode of exposure is generally frequent and prolonged, the presence of tumor-promoting agents in complex mixtures may be a major factor in evaluation of the carcinogenic potential of airborne particles. PMID:7005667

  4. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  5. Detection of soil properties with airborne hyperspectral measurements of bare fields.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airborne remote sensing data, using a hyperspectral (HSI) camera, were collected for a flight over two fields with a total of 128 ha. of recently seeded and nearly bare soil. The within-field spatial distribution of several soil properties was found by using multiple linear regression to select the ...

  6. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented.

  7. Effects of Consecutive Wideband Tympanometry Trials on Energy Absorbance Measures of the Middle Ear

    ERIC Educational Resources Information Center

    Burdiek, Laina M.; Sun, Xiao-Ming

    2014-01-01

    Purpose: Wideband acoustic immittance (WAI) is a new technique for assessing middle ear transfer function. It includes energy absorbance (EA) measures and can be acquired with the ear canal pressure varied, known as "wideband tympanometry" (WBTymp). The authors of this study aimed to investigate effects of consecutive WBTymp testing on…

  8. Fast Computation of Wideband Beam Pattern for Designing Large-Scale 2-D Arrays.

    PubMed

    Chi, Cheng; Li, Zhaohui

    2016-06-01

    For real-time and high-resolution 3-D ultrasound imaging, the design of sparse distribution and weights of elements of a large-scale wideband 2-D array is needed to reduce hardware cost and achieve better directivity. However, due to the high time consumption of computing the wideband beam pattern, the design methods that need massive iterations have rarely been applied to design large-scale wideband 2-D arrays by directly computing the wideband beam pattern. In this paper, a fast method is proposed to realize the computation of a wideband beam pattern of arbitrary 2-D arrays in the far field in order to design large-scale wideband 2-D arrays. The proposed fast method exploits two important techniques: 1) nonuniform fast Fourier transform (FFT) and 2) short inverse FFT. Compared with the commonly used ultrasound simulator Field II, two orders of magnitude improvement in computation speed is achieved with comparable accuracy. The proposed fast method enables massive iterations of direct wideband beam pattern computation of arbitrary large-scale 2-D arrays. A design example in this paper demonstrates that the proposed fast method can help achieve better performance in designing large-scale wideband 2-D arrays. PMID:27046870

  9. Innovativ Airborne Sensors for Disaster Management

    NASA Astrophysics Data System (ADS)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Disaster management by analyzing changes in the DSM before and after the "event". Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000) can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  10. Image Sensors Enhance Camera Technologies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  11. Precise Point Positioning in the Airborne Mode

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed

    2011-01-01

    The Global Positioning System (GPS) is widely used for positioning in the airborne mode such as in navigation as a supplementary system and for geo-referencing of cameras in mapping and surveillance by aircrafts and Unmanned Aerial Vehicles (UAV). The Precise Point Positioning (PPP) approach is an attractive positioning approach based on processing of un-differenced observations from a single GPS receiver. It employs precise satellite orbits and satellite clock corrections. These data can be obtained via the internet from several sources, e.g. the International GNSS Service (IGS). The data can also broadcast from satellites, such as via the LEX signal of the new Japanese satellite system QZSS. The PPP can achieve positioning precision and accuracy at the sub-decimetre level. In this paper, the functional and stochastic mathematical modelling used in PPP is discussed. Results of applying the PPP method in an airborne test using a small fixed-wing aircraft are presented. To evaluate the performance of the PPP approach, a reference trajectory was established by differential positioning of the same GPS observations with data from a ground reference station. The coordinate results from the two approaches, PPP and differential positioning, were compared and statistically evaluated. For the test at hand, positioning accuracy at the cm-to-decimetre was achieved for latitude and longitude coordinates and doubles that value for height estimation.

  12. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  13. Airborne Submillimeter Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  14. Spatial Modeling and Variability Analysis for Modeling and Prediction of Soil and Crop Canopy Coverage Using Multispectral Imagery from an Airborne Remote Sensing System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on a previous study on an airborne remote sensing system with automatic camera stabilization for crop management, multispectral imagery was acquired using the MS-4100 multispectral camera at different flight altitudes over a 115 ha cotton field. After the acquired images were geo-registered an...

  15. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a

  16. A wideband propagation simulator for high speed mobile radio communications

    NASA Astrophysics Data System (ADS)

    Busson, P.; Lejannic, J. C.; Elzein, G.; Citerne, J.

    1994-07-01

    Multipath, jamming, listening and detection are the main limitations for mobile radio communications. Spread spectrum techniques, especially frequency hopping, can be used to avoid these problems. Therefore, a wideband simulation for multipath mobile channels appeared the most appropriate evaluation technique. It also gives useful indications for system characteristic improvements. This paper presents the design and realization of a new UHF-VHF propagation simulator, which can be considered as an extended version of Bussgang's one. This frequency hopping simulator (up to 100,000 hops per second) is wideband thus capable to deal with spread spectrum signals. As it generates up to 16 paths, it can be used in almost all mobile radio propagation situations. Moreover, it is also able to simulate high mobile relative speeds up to 2000km/h such as air-air communication systems. This simulator can reproduce, in laboratory, 16 rays Rician or Rayleigh fading channels with a maximum time delay of about 15 ms. At the highest frequency of 1200 MHz, Doppler rates up to 2 kHz can be generated corresponding to vehicle speeds up to 2000 km/h. Let note that the Bussgang simulator was defined for narrowband and fixed radio communications. In both equipments, in-phase and quadrature signals are obtained using two numerical transversal filters. Simulation results were derived in various situations especially in terrestrial urban and suburban environments, where they could be compared with measurements. The main advantage of the simulator lies in its capacity to simulate the high speed and wideband mobile radio communication channels.

  17. Wide-band heterodyne receiver development for effluent measurements

    SciTech Connect

    Hutchinson, D.P.; Richards, R.K.; Simpson, M.L.; Bennett, C.A.; Liu, H.C.; Buchanan, M.

    1998-05-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced infrared heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Passive heterodyne radiometry in the LWIR region of the spectrum has historically been restricted by HgCdTe (MCT) detector technology to receiver bandwidths of only 2 GHz. Given typical atmospheric line widths of approximately 3 GHz, a CO{sub 2} (or isotope) laser local oscillator with an average line spacing of 50 GHz, and an MCT detector, only chemical species whose absorptions fall directly on top of laser lines can be measured. Thus, with traditional narrow-band heterodyne radiometry, much of the LWIR spectrum is missed and the less complex direct detection DIAL has been the preferred technique in remote sensing applications. Wide-band heterodyne receivers offer significant improvements in remote measurement capability. Progress at the Institute for Microstructural Sciences (IMS) at National Research Council of Canada and at ORNL in wide-band quantum-well infrared photodetectors (QIPs) and receivers is significantly enhancing the bandwidth capabilities of heterodyne radiometers. ORNL recently made measurements in the lab using QWIPs developed at IMS that demonstrate heterodyne quantum efficiencies of 5% with a heterodyne bandwidth of 7 GHz. The path forward indicates that > 10% heterodyne quantum efficiencies and 30-GHz bandwidths are achievable with current QWIP technology. With a chopped, 30-GHz passive heterodyne receiver, a much larger portion of the LWIR spectrum can now be covered. One potential advantage of wide-band heterodyne receivers for effluent measurements is to dramatically reduce the number of laser lines needed to characterize and distinguish multiple chemical species of interest. In the following paper, the authors discuss this and other implications of these new technologies to the characterization of effluents using both passive heterodyne radiometry and thermo-luminescence.

  18. 15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. ELEVATED CAMERA STAND, SHOWING LINE OF CAMERA STANDS PARALLEL TO SLED TRACK. Looking west southwest down Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  19. High Resolution Airborne Digital Imagery for Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Herwitz, Stanley R.

    1998-01-01

    The Environmental Research Aircraft and Sensor Technology (ERAST) program is a NASA initiative that seeks to demonstrate the application of cost-effective aircraft and sensor technology to private commercial ventures. In 1997-98, a series of flight-demonstrations and image acquisition efforts were conducted over the Hawaiian Islands using a remotely-piloted solar- powered platform (Pathfinder) and a fixed-wing piloted aircraft (Navajo) equipped with a Kodak DCS450 CIR (color infrared) digital camera. As an ERAST Science Team Member, I defined a set of flight lines over the largest coffee plantation in Hawaii: the Kauai Coffee Company's 4,000 acre Koloa Estate. Past studies have demonstrated the applications of airborne digital imaging to agricultural management. Few studies have examined the usefulness of high resolution airborne multispectral imagery with 10 cm pixel sizes. The Kodak digital camera integrated with ERAST's Airborne Real Time Imaging System (ARTIS) which generated multiband CCD images consisting of 6 x 106 pixel elements. At the designated flight altitude of 1,000 feet over the coffee plantation, pixel size was 10 cm. The study involved the analysis of imagery acquired on 5 March 1998 for the detection of anomalous reflectance values and for the definition of spectral signatures as indicators of tree vigor and treatment effectiveness (e.g., drip irrigation; fertilizer application).

  20. Cophasal horizontal wideband array antennas for transmitting with asymmetric output

    NASA Astrophysics Data System (ADS)

    Belousov, S. P.; Kliger, G. A.; Eskin, N. A.

    1985-03-01

    Type SGDRA cophasal horizontal wideband antennas for transmitters with asymmetric (single-stage) output are described. An antenna of this kind consists of rigid shunt vibrators and an asymmetric feeder channel. The latter is formed by symmetric overhead feeders, a symmetrizing device being available for operation with a single-stage transmitter. Two typical construction are: one tower section with four tiers of vibrator groups and two tower sections with eight tiers of vibrator groups on each, with an adapter from symmetric to asymmetric feeder channel in each case. Various arrangements for power feed are possible, coaxial cables being most suitable for this purpose. The performance characteristics of these antennas are discussed.

  1. A concept for hip prosthesis identification using ultra wideband radar.

    PubMed

    Lui, Hoi-Shun; Shuley, Nicholas; Crozier, Stuart

    2004-01-01

    Ultra wideband (UWB) radar has been extensively investigated both theoretically and practically for the identification buried artifacts. Ground probe radar (GPR) concentrates on the identification of lightly buried land mines, unexploded ordnance (UXO) and archeological targets. The same technology is proposed in a similar context for the rapid identification of in vivo implanted metallic prostheses. The technique is based on resonance based target identification and the paper investigates UWB scattering from a metallic hip prosthesis in free space as a first step in the identification process. PMID:17271965

  2. Spotforming with an Array of Ultra-Wideband Radio Transmitters

    SciTech Connect

    Dowla, F; Spiridon, A

    2003-09-29

    Ultra-wideband (UWB) array signal processing has the distinct advantage in that it is possible to illuminate or focus on ''spots'' at distant points in space, as opposed to just illuminating or steering at certain directions for narrowband array processing. The term ''spotforming'' is used to emphasize the property that point-focusing techniques with UWB waveforms can be viewed as a generalization of the well-known narrowband beamforming techniques. Because methods in spotforming can lead to powerful applications for UWB systems, in this paper we derive, simulate and experimentally verify UWB spot size as a function of frequency, bandwidth and array aperture.

  3. Spotforming with an array of ultra-wideband radio transmitters

    SciTech Connect

    Dowla, F; Spiridon, A

    2004-02-05

    Ultra-wideband (UWB) array signal processing has the distinct advantage in that it is possible to illuminate or focus on ''spots'' at distant points in space, as opposed to just illuminating or steering at certain directions for narrowband array processing. The term ''spotforming'' is used to emphasize the property that point-focusing techniques with UWB waveforms can be viewed as a generalization of the well-known narrowband beamforming techniques. Because methods in spotforming can lead to powerful applications for UWB systems, in this paper we derive, simulate and experimentally verify UWB spot size as a function of frequency, bandwidth and array aperture.

  4. Wideband propagation measurement system using spread spectrum signaling and TDRS

    NASA Technical Reports Server (NTRS)

    Jenkins, Jeffrey D.; Fan, Yiping; Osborne, William P.

    1995-01-01

    In this paper, a wideband propagation measurement system, which consisted of a ground-based transmitter, a mobile receiver, and a data acquisition system, was constructed. This system has been employed in a study of the characteristics of different propagation environments, such as urban, suburban and rural areas, by using a pseudonoise spreading sequence transmitted over NASA's Tracking and Data Relay Satellite System. The hardware and software tests showed that it met overall system requirements and it was very robust during a 3-month-long outdoor data collection experiment.

  5. UCom: Ultra-wideband Communications in Harsh Propagation Environments

    SciTech Connect

    Nekoogar, F

    2007-03-14

    LLNL has developed an ultra-wideband (UWB) system that provides unique, through-the-wall wireless communications in heavy metallic and heavy concrete indoor channels. LLNL's UWB system is the only available wireless communications system that performs successfully and reliably in facilities where conventional narrowband communications usually fail due to destructive reflections from multiple surfaces. These environments include: cargo ships and reinforced, heavy concrete buildings. LLNL's revolutionary system has applications for the military, as well as commercial indoor communications in multistory buildings, and cluttered industrial structures.

  6. Wide-band six-region phase mask coronagraph.

    PubMed

    Hou, Fanzhen; Cao, Qing; Zhu, Minning; Ma, Ourui

    2014-01-27

    An achromatic six-region phase mask coronagraph, used for the detection of exoplanets, is proposed. The mask has six regions in angular direction and could work in wideband. Furthermore, a six-level phase mask, as an example of the six-region phase mask, is theoretically investigated. According to numerical simulations, this specific mask has a deep elimination of starlight, good performance of achromatism and small inner working angle. As a single phase mask, the ratio of the remaining starlight of the six-level phase mask to the total incident starlight is less than 0.001 when the wavelength is between 500 nm and 600 nm. PMID:24515197

  7. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  8. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  9. Coherence properties of wideband satellite signals caused by ionospheric scintillation

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    Radio scintillation on satellite signals caused by small-scale irregularities in F-region ionospheric electron density can be an important limitation on earth-satellite communication and navigation systems. Scintillation imposes distortion in both amplitude and phase on wideband signals. In the present work, the shallow-modulated phase screen theory is developed in terms of coherence bandwidth including a model based on a turbulent-like power-law description of the irregularities. The model results usually show a greater coherence bandwidth in the signal phase than in the signal amplitude. Therefore, systems that require phase coherence over a large bandwidth should be less affected than those requiring amplitude coherence.

  10. Penetration of Ultra-wideband (UWB) Communication Signals Through Walls

    NASA Astrophysics Data System (ADS)

    Buccella, Concettina; Feliziani, Mauro; Manzi, Giuliano

    Ultra-wideband (UWB) radio propagation is investigated to evaluate the signal attenuation due to walls of common materials widely used in indoor environment as glass, wood and dry wall. This study is carried out by experimental and analytical techniques. Time domain measurements of the shielding effect produced by panels of dispersive materials are presented. The experimental set-up for UWB applications is also described. A procedure based on the transmission line (TL) theory applied to shielding problems is developed to calculate the field attenuation in frequency domain and the transient results are then obtained by the Inverse Fast Fourier Transform (IFFT). The analytical and the experimental results are finally compared.

  11. Design and Performance of a Wideband Radio Telescope

    NASA Technical Reports Server (NTRS)

    Weinreb, Sander; Imbriale, William A.; Jones, Glenn; Mani, Handi

    2012-01-01

    The Goldstone Apple Valley Radio Telescope (GAVRT) is an outreach project, a partnership involving NASA's Jet Propulsion Laboratory (JPL), the Lewis Center for Educational Research (LCER), and the Apple Valley Unified School District near the NASA Goldstone deep space communication complex. This educational program currently uses a 34-meter antenna, DSS12, at Goldstone for classroom radio astronomy observations via the Internet. The current program utilizes DSS12 in two narrow frequency bands around S-band (2.3 GHz) and X-band (8.45 GHz), and is used by a training program involving a large number of secondary school teachers and their classrooms. To expand the program, a joint JPL/LCER project was started in mid-2006 to retrofit an additional existing 34-meter beam-waveguide antenna, DSS28, with wideband feeds and receivers to cover the 0.5-to- 14-GHz frequency bands. The DSS28 antenna has a 34-meter diameter main reflector, a 2.54-meter subreflector, and a set of beam waveguide mirrors surrounded by a 2.43-meter tube. The antenna was designed for high power and a narrow frequency band around 7.2 GHz. The performance at the low end of the frequency band desired for the educational program would be extremely poor if the beam waveguide system was used as part of the feed system. Consequently, the 34-meter antenna was retrofitted with a tertiary offset mirror placed at the vertex of the main reflector. The tertiary mirror can be rotated to use two wideband feeds that cover the 0.5-to-14-GHz band. The earlier designs for both GAVRT and the DSN only used narrow band feeds and consequently, only covered a small part of the S- and X-band frequencies. By using both a wideband feed and wideband amplifiers, the entire band from 0.5 to 14 GHz is covered, expanding significantly the science activities that can be studied using this system.

  12. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.

    1999-01-12

    A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.

  13. Real-time wideband cylindrical holographic surveillance system

    DOEpatents

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.

    1999-01-01

    A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.

  14. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  15. Combustion pinhole camera system

    DOEpatents

    Witte, Arvel B.

    1984-02-21

    A pinhole camera system utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor.

  16. Combustion pinhole camera system

    DOEpatents

    Witte, A.B.

    1984-02-21

    A pinhole camera system is described utilizing a sealed optical-purge assembly which provides optical access into a coal combustor or other energy conversion reactors. The camera system basically consists of a focused-purge pinhole optical port assembly, a conventional TV vidicon receiver, an external, variable density light filter which is coupled electronically to the vidicon automatic gain control (agc). The key component of this system is the focused-purge pinhole optical port assembly which utilizes a purging inert gas to keep debris from entering the port and a lens arrangement which transfers the pinhole to the outside of the port assembly. One additional feature of the port assembly is that it is not flush with the interior of the combustor. 2 figs.

  17. The NEAT Camera Project

    NASA Technical Reports Server (NTRS)

    Jr., Ray L. Newburn

    1995-01-01

    The NEAT (Near Earth Asteroid Tracking) camera system consists of a camera head with a 6.3 cm square 4096 x 4096 pixel CCD, fast electronics, and a Sun Sparc 20 data and control computer with dual CPUs, 256 Mbytes of memory, and 36 Gbytes of hard disk. The system was designed for optimum use with an Air Force GEODSS (Ground-based Electro-Optical Deep Space Surveillance) telescope. The GEODSS telescopes have 1 m f/2.15 objectives of the Ritchey-Chretian type, designed originally for satellite tracking. Installation of NEAT began July 25 at the Air Force Facility on Haleakala, a 3000 m peak on Maui in Hawaii.

  18. LSST Camera Optics

    SciTech Connect

    Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

    2006-06-05

    The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

  19. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  20. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  1. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  2. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  3. Hemispherical Laue camera

    DOEpatents

    Li, James C. M.; Chu, Sungnee G.

    1980-01-01

    A hemispherical Laue camera comprises a crystal sample mount for positioning a sample to be analyzed at the center of sphere of a hemispherical, X-radiation sensitive film cassette, a collimator, a stationary or rotating sample mount and a set of standard spherical projection spheres. X-radiation generated from an external source is directed through the collimator to impinge onto the single crystal sample on the stationary mount. The diffracted beam is recorded on the hemispherical X-radiation sensitive film mounted inside the hemispherical film cassette in either transmission or back-reflection geometry. The distances travelled by X-radiation diffracted from the crystal to the hemispherical film are the same for all crystal planes which satisfy Bragg's Law. The recorded diffraction spots or Laue spots on the film thereby preserve both the symmetry information of the crystal structure and the relative intensities which are directly related to the relative structure factors of the crystal orientations. The diffraction pattern on the exposed film is compared with the known diffraction pattern on one of the standard spherical projection spheres for a specific crystal structure to determine the orientation of the crystal sample. By replacing the stationary sample support with a rotating sample mount, the hemispherical Laue camera can be used for crystal structure determination in a manner previously provided in conventional Debye-Scherrer cameras.

  4. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  5. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  6. Development of an airborne laser bathymeter

    NASA Technical Reports Server (NTRS)

    Kim, H., H.; Cervenka, P. O.; Lankford, C. B.

    1975-01-01

    An airborne laser depth sounding system was built and taken through a complete series of field tests. Two green laser sources were tried: a pulsed neon laser at 540 nm and a frequency-doubled Nd:YAG transmitter at 532 nm. To obtain a depth resolution of better than 20 cm, the pulses had a duration of 5 to 7 nanoseconds and could be fired up to at rates of 50 pulses per second. In the receiver, the signal was detected by a photomultiplier tube connected to a 28 cm diameter Cassegrainian telescope that was aimed vertically downward. Oscilloscopic traces of the signal reflected from the sea surface and the ocean floor could either be recorded by a movie camera on 35 mm film or digitized into 500 discrete channels of information and stored on magnetic tape, from which depth information could be extracted. An aerial color movie camera recorded the geographic footprint while a boat crew of oceanographers measured depth and other relevant water parameters. About two hundred hours of flight time on the NASA C-54 airplane in the area of Chincoteague, Virginia, the Chesapeake Bay, and in Key West, Florida, have yielded information on the actual operating conditions of such a system and helped to optimize the design. One can predict the maximum depth attainable in a mission by measuring the effective attenuation coefficient in flight. This quantity is four times smaller than the usual narrow beam attenuation coefficient. Several square miles of a varied underwater landscape were also mapped.

  7. Airborne radioactive contamination monitoring

    SciTech Connect

    Whitley, C.R.; Adams, J.R.; Bounds, J.A.; MacArthur, D.W.

    1996-03-01

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination.

  8. Airborne Raman lidar

    NASA Astrophysics Data System (ADS)

    Heaps, Wm. S.; Burris, J.

    1996-12-01

    We designed and tested an airborne lidar system using Raman scattering to make simultaneous measurements of methane, water vapor, and temperature in a series of flights on a NASA-operated C-130 aircraft. We present the results for methane detection, which show that the instrument has the requisite sensitivity to atmospheric trace gases. Ultimately these measurements can be used to examine the transport of chemically processed air from within the polar vortex to mid-latitudinal regions and the exchange of stratospheric air between tropical and mid-latitudinal regions.

  9. Airborne Oceanographic Lidar System

    NASA Technical Reports Server (NTRS)

    Bressel, C.; Itzkan, I.; Nunes, J. E.; Hoge, F.

    1977-01-01

    The Airborne Oceanographic Lidar (AOL), a spatially scanning range-gated device installed on board a NASA C-54 aircraft, is described. The AOL system is capable of measuring topographical relief or water depth (bathymetry) with a range resolution of plus or minus 0.3 m in the vertical dimension. The system may also be used to measure fluorescent spectral signatures from 3500 to 8000 A with a resolution of 100 A. Potential applications of the AOL, including sea state measurements, water transparency assessments, oil spill identification, effluent identification and crop cover assessment are also mentioned.

  10. Wide-Area Persistent Airborne Video: Architecture and Challenges

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Rao, Raghuveer M.; Seetharaman, Guna

    The need for persistent video covering large geospatial areas using embedded camera networks and stand-off sensors has increased over the past decade. The availability of inexpensive, compact, light-weight, energy-efficient, high resolution optical sensors and associated digital image processing hardware has led to a new class of airborne surveillance platforms. Traditional tradeoffs posed between lens size and resolution, that is the numerical aperture of the system, can now be mitigated using an array of cameras mounted in a specific geometry. This fundamental advancement enables new imaging systems to cover very large fields of view at high resolution, albeit with spatially varying point spread functions. Airborne imaging systems capable of acquiring 88 megapixels per frame, over a wide field-of-view of 160 degrees or more at low frame rates of several hertz along with color sampling have been built using an optical array with up to eight cameras. These platforms fitted with accurate orientation sensors circle above an area of interest at constant altitude, adjusting steadily the orientation of the camera array fixed around a narrow area of interest, ideally locked to a point on the ground. The resulting image sequence maintains a persistent observation of an extended geographical area depending on the altitude of the platform and the configuration of the camera array. Suitably geo-registering and stabilizing these very large format videos provide a virtual nadir view of the region being monitored enabling a new class of urban scale activity analysis applications. The sensor geometry, processing challenges and scene interpretation complexities are highlighted.

  11. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  12. Wideband Fractal Antennas for Holographic Imaging and Rectenna Applications

    SciTech Connect

    Bunch, Kyle J.; McMakin, Douglas L.; Sheen, David M.

    2008-04-18

    At Pacific Northwest National Laboratory, wideband antenna arrays have been successfully used to reconstruct three-dimensional images at microwave and millimeter-wave frequencies. Applications of this technology have included portal monitoring, through-wall imaging, and weapons detection. Fractal antennas have been shown to have wideband characteristics due to their self-similar nature (that is, their geometry is replicated at different scales). They further have advantages in providing good characteristics in a compact configuration. We discuss the application of fractal antennas for holographic imaging. Simulation results will be presented. Rectennas are a specific class of antennas in which a received signal drives a nonlinear junction and is retransmitted at either a harmonic frequency or a demodulated frequency. Applications include tagging and tracking objects with a uniquely-responding antenna. It is of interest to consider fractal rectenna because the self-similarity of fractal antennas tends to make them have similar resonance behavior at multiples of the primary resonance. Thus, fractal antennas can be suited for applications in which a signal is reradiated at a harmonic frequency. Simulations will be discussed with this application in mind.

  13. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  14. High-latitude upgrade to the Wideband ionospheric scintillation model

    NASA Astrophysics Data System (ADS)

    Secan, J. A.; Bussey, R. M.; Fremouw, E. J.; Basu, S.

    1997-07-01

    The high-latitude sections of the Wideband ionospheric scintillation model (WBMOD) have been upgraded extensively, based on analysis of scintillation data from the Defense Nuclear Agency Wideband, HiLat, and Polar BEAR satellite-beacon experiments. Data collected at Sondre Stromfjord, Greenland; Tromso, Norway; Fort Churchill, Canada; and Bellevue, Washington (United States) over a 4-year period were analyzed, and the results of these analyses were used to construct a completely new model for the behavior of the height-integrated irregularity-strength parameter (CkL) at high latitudes. The new high-latitude CkL model includes variations with sunspot number, geomagnetic activity (Kp), latitude, local time, longitude, and season. The new WBMOD CkL models (equatorial and high-latitude) have been implemented in a more versatile code, denoted SCINTMOD, which has the capability to generate a wide range of user-controlled maps of scintillation effects over large spatial areas. Examples of the types of graphical output that SCINTMOD can generate are presented.

  15. Digital Front End for Wide-Band VLBI Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les; Proctor, Robert; Rayhrer, Benno

    2006-01-01

    An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.

  16. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  17. The Estimation of Hydrometeor Profiles from Wideband Microwave Observations

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail M.; Wang, James R.

    1999-01-01

    Profiles of the microphysical properties of clouds and raincells are essential in many areas of atmospheric research and operational meteorology. In order to enhance the understanding of the nonlinear and underconstrained relationships between cloud and hydrometeor microphysical profiles and passive microwave brightness temperatures, estimations of cloud profiles for an anvil, a convective, and an updraft region of an oceanic squall were performed. The estimations relied on comparisons between radiative transfer calculations of incrementally estimated microphysical profiles and concurrent dual-altitude wideband brightness temperatures from the 22 February 1993 flight during TOGA-COARE. The wideband observations (10--220 GHz) are necessary for estimating cloud profiles reaching up to 20 km. The low frequencies enhance the rain and cloud water profiles, while the high frequencies are required to detail the higher altitude ice microphysics. A microphysical profile was estimated for each of the three regions of the storm. Each of the three estimated profiles produced calculated brightness temperatures within approximately 10 K of the observations. A majority, of the total iterative adjustment were to the estimated profile's frozen hydrometeor characteristics and were necessary to match the high frequency calculations with the observations. This indicates a need to validate cloud resolving models using high frequencies. Some difficulties matching the 37 GHz observation channels on the DC-8 and ER-2 aircrafts with the calculations simulated at the two aircraft heights (approximately 11 km and 20 km, respectively) were noted and potential causes presented.

  18. Wideband fractal antennas for holographic imaging and rectenna applications

    NASA Astrophysics Data System (ADS)

    Bunch, Kyle J.; McMakin, Douglas L.; Sheen, David M.

    2008-04-01

    At Pacific Northwest National Laboratory, wideband antenna arrays have been successfully used to reconstruct three-dimensional images at microwave and millimeter-wave frequencies. Applications of this technology have included portal monitoring, through-wall imaging, and weapons detection. Fractal antennas have been shown to have wideband characteristics due to their self-similar nature (that is, their geometry is replicated at different scales). They further have advantages in providing good characteristics in a compact configuration. We discuss the application of fractal antennas for holographic imaging. Simulation results will be presented. Rectennas are a specific class of antennas in which a received signal drives a nonlinear junction and is retransmitted at either a harmonic frequency or a demodulated frequency. Applications include tagging and tracking objects with a uniquely-responding antenna. It is of interest to consider fractal rectenna because the self-similarity of fractal antennas tends to make them have similar resonance behavior at multiples of the primary resonance. Thus, fractal antennas can be suited for applications in which a signal is reradiated at a harmonic frequency. Simulations will be discussed with this application in mind.

  19. Detection of antipodal signalling and its application to wideband SETI

    NASA Astrophysics Data System (ADS)

    Morrison, Ian S.

    2012-09-01

    The SETI community is becoming increasingly interested in extending its searches to include wideband signals, such as information-bearing beacons. However, prior to discovery of a target signal, a SETI receiver has no knowledge of the signal parameters (bandwidth, carrier frequency, modulation type, etc.) and so detection can be very challenging, especially at low signal-to-noise ratios. However, this paper shows by example that there exist signal classes and corresponding detection methods that permit straightforward discovery of wideband signals of unknown structure. The example given is a form of binary antipodal signalling that utilises spread-spectrum modulation, which offers benefits to the receiver in terms of immunity to noise/interference and ease of detection. The proposed detection method is a 'symbol-wise' autocorrelation process that takes advantage of the cyclostationarity property of modulated signals. Detection sensitivity is suboptimal in comparison with what is possible if the target signal structure is known. However, this deficit can be overcome by processing longer timespans of signal, providing scope for detection at extremely low signal-to-noise ratios. It is postulated that antipodal signalling represents an attractive option for interstellar beacons because it is both power efficient and there exists a simple complementary detection method not requiring explicit coordination between the transmitter and receiver. This in turn suggests there is a case for extending future SETI searches to include this class of signal.

  20. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    PubMed Central

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  1. Estimation of angle of arrival for wideband and coherent signals

    NASA Astrophysics Data System (ADS)

    Miyoshi, Akito; Kobayashi, Hirokazu

    1997-06-01

    For angle of arrival (AOA), angle resolution and classification of coherent and non-coherent wideband signals will be major problems, especially under the electronic warfare environment. Several methods have been considered for the estimation of the AOA. Multiple signal classification (MUSIC) is one of new suitable methods. But, the method has a disadvantage that it is impossible to estimate the AOA, if the inputs include coherent signal sources such as multipath. In this paper, the array antenna is constructed by some sub-array antennas. The elements of a sub-array antenna are arranged with non-equispace for the classification of noncoherent signals over wideband and some sub-array antennas are also arranged at non-equal distances for the rejection of the angle ambiguity of coherent signals. We applied MUSIC with a spatial smoothing to the array antenna and study how to reject the ambiguity and how to reduce the sidelobe level by using computer simulations. We also make experiments in anechoic chamber to confirm the simulation results. We then indicate that the spatial smoothing of sub-arrays with non-equispace removes the ambiguity of AOA and the classification of coherent signals and noncoherent signals over 8-18GHz is possible.

  2. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  3. Location of the Rhine plume front by airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Ruddick, K. G.; Lahousse, L.; Donnay, E.

    1994-04-01

    The aim of this study was to determine the feasibility of using airborne remote sensing to locate the Rhine plume front. Interest in fronts arises from the desire to predict the fate of pollutants and biological nutrients discharged from rivers into the open sea. Observations were made during flights over the Dutch coastal waters using a vertically-mounted video camera and a side-looking airborne radar (SLAR) designed for oil slick detection. Comparison of radar images with visual observations of the sea colour discontinuity and foam line establish that fronts can indeed be detected by SLAR because of high radar backscatter along the convergence line, where the fresh water jet impinges on saltier water. This provides a sound basis for future investigations using Synthetic Aperture Radar as mounted on ERS-1. An estimation of errors is given, identifying priorities for improvement of the technique. The accuracy achieved is considered sufficient for the validation of hydrodynamic models.

  4. Airborne transmission of lyssaviruses.

    PubMed

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  5. Far Ultraviolet Imaging from the Image Spacecraft. 2; Wideband FUV Imaging

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Geller, S. P.; Abiad, R.; Siegmund, O. H. W.; Tremsin, A. S.; Spann, J.; Dougani, H.

    2000-01-01

    The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the aurora] source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is Sufficient to resolve auroras on a scale of 1 to 2 latitude degrees, The instrument is sensitive in the spectral region from 140- 190 nm. The WIC is mounted on the rotating, IMAGE spacecraft viewing radially outward and has a field of view of 17 deg in the direction parallel to the spacecraft spin axis. Its field of view is 30 deg in the direction perpendicular to the spin axis, although only a 17 deg x 17 deg image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region, The detector consists of a MCP-Intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. Tile phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then Coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512 by 256 pixel) per second with an exposure time of 0.033 s. The image motion (file to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300

  6. Solar-Powered Airplane with Cameras and WLAN

    NASA Technical Reports Server (NTRS)

    Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.; Johnson, Lee; Arvesen, John C.

    2004-01-01

    An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.

  7. DEVICE CONTROLLER, CAMERA CONTROL

    Energy Science and Technology Software Center (ESTSC)

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  8. Adaptive compressive sensing camera

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Hsu, Ming K.; Cha, Jae; Iwamura, Tomo; Landa, Joseph; Nguyen, Charles; Szu, Harold

    2013-05-01

    We have embedded Adaptive Compressive Sensing (ACS) algorithm on Charge-Coupled-Device (CCD) camera based on the simplest concept that each pixel is a charge bucket, and the charges comes from Einstein photoelectric conversion effect. Applying the manufactory design principle, we only allow altering each working component at a minimum one step. We then simulated what would be such a camera can do for real world persistent surveillance taking into account of diurnal, all weather, and seasonal variations. The data storage has saved immensely, and the order of magnitude of saving is inversely proportional to target angular speed. We did design two new components of CCD camera. Due to the matured CMOS (Complementary metal-oxide-semiconductor) technology, the on-chip Sample and Hold (SAH) circuitry can be designed for a dual Photon Detector (PD) analog circuitry for changedetection that predicts skipping or going forward at a sufficient sampling frame rate. For an admitted frame, there is a purely random sparse matrix [Φ] which is implemented at each bucket pixel level the charge transport bias voltage toward its neighborhood buckets or not, and if not, it goes to the ground drainage. Since the snapshot image is not a video, we could not apply the usual MPEG video compression and Hoffman entropy codec as well as powerful WaveNet Wrapper on sensor level. We shall compare (i) Pre-Processing FFT and a threshold of significant Fourier mode components and inverse FFT to check PSNR; (ii) Post-Processing image recovery will be selectively done by CDT&D adaptive version of linear programming at L1 minimization and L2 similarity. For (ii) we need to determine in new frames selection by SAH circuitry (i) the degree of information (d.o.i) K(t) dictates the purely random linear sparse combination of measurement data a la [Φ]M,N M(t) = K(t) Log N(t).

  9. Phoenix Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Goetz, W.; Hartwig, H.; Hviid, S. F.; Kramm, R.; Markiewicz, W. J.; Reynolds, R.; Shinohara, C.; Smith, P.; Tanner, R.; Woida, P.; Woida, R.; Bos, B. J.; Lemmon, M. T.

    2008-10-01

    The Phoenix Robotic Arm Camera (RAC) is a variable-focus color camera mounted to the Robotic Arm (RA) of the Phoenix Mars Lander. It is designed to acquire both close-up images of the Martian surface and microscopic images (down to a scale of 23 μm/pixel) of material collected in the RA scoop. The mounting position at the end of the Robotic Arm allows the RAC to be actively positioned for imaging of targets not easily seen by the Stereo Surface Imager (SSI), such as excavated trench walls and targets under the Lander structure. Color information is acquired by illuminating the target with red, green, and blue light-emitting diodes. Digital terrain models (DTM) can be generated from RAC images acquired from different view points. This can provide high-resolution stereo information about fine details of the trench walls. The large stereo baseline possible with the arm can also provide a far-field DTM. The primary science objectives of the RAC are the search for subsurface soil/ice layering at the landing site and the characterization of scoop samples prior to delivery to other instruments on board Phoenix. The RAC shall also provide low-resolution panoramas in support of SSI activities and acquire images of the Lander deck for instrument and Lander check out. The camera design was inherited from the unsuccessful Mars Polar Lander mission (1999) and further developed for the (canceled) Mars Surveyor 2001 Lander (MSL01). Extensive testing and partial recalibration qualified the MSL01 RAC flight model for integration into the Phoenix science payload.

  10. DEVICE CONTROLLER, CAMERA CONTROL

    SciTech Connect

    Perry, Marcia

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher), devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.

  11. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  12. Wideband signal upconversion and phase shifting based on a frequency tunable optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Liu, Shifeng; Zhu, Dan; Pan, Shilong

    2014-03-01

    A wideband signal upconversion and phase shifting scheme based on a frequency tunable optoelectronic oscillator (OEO) are proposed and demonstrated. The OEO performs simultaneously tunable high-quality local oscillator (LO) signal generation, wideband frequency upconversion, and phase shifting within the whole 2π range. With the generated LO tuning from 9.549 to 11.655 GHz, wideband square signals are successfully upconverted to the X band. The phase of the upconverted signal is tuned from 0 to 360 deg. The phase noise of the oscillation signal is about -104 dBc/Hz at 10 kHz offset with or without the injected baseband signal.

  13. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    NASA Astrophysics Data System (ADS)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  14. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    NASA Astrophysics Data System (ADS)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  15. Wide-Band Microwave Receivers Using Photonic Processing

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Yu, Nan; Strekalov, Dmitry; Savchenkov, Anatoliy

    2008-01-01

    In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, wide-band microwave receivers refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest. In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceeding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering gallery mode (WGM) resonator made of LiNbO3. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances. The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both

  16. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  17. Stereoscopic camera design

    NASA Astrophysics Data System (ADS)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  18. NFC - Narrow Field Camera

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Srba, J.; Gorková, S.

    2015-01-01

    We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.

  19. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    NASA Astrophysics Data System (ADS)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  20. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  1. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  2. Airborne agent concentration analysis

    DOEpatents

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  3. Airborne Wind Turbine

    SciTech Connect

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  4. Airborne Cloud Computing Environment (ACCE)

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  5. Wideband dipole antenna with inter-digital capacitor

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Hong, Jin-Song; Jin, Da-Lin

    2013-04-01

    A dipole antenna with wideband characteristics is presented. The proposed antenna consists of a dipole with periodic capacitive loading and a pair of coplanar striplines (CPSs) as an impedance transformer. By adding interlaced coupling lines at each section, periodic capacitive loading is realized. The periodic interlaced coupling lines divide each arm of the dipole into five sections, and currents are distributed on different sections at different frequencies, which is useful to achieve a wide impedance bandwidth. By parametric study using HFSS, the optimized parameters of this dipole antenna are obtained. In order to validate the simulation results, a prototype of the proposed dipole antenna is fabricated and tested. The results show that the proposed antenna can achieve a gain of 3.1 dB-5.1 dB and bandwidth of 51% for |S11| < -10 dB over the band of 3.9 GHz-6.6 GHz, indicating its good radiation performance and radiation efficiency.

  6. DSN 34-meter Antenna Optics Analysis for Wideband SETI Investigations

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1985-01-01

    A DSN 34-meter symmetric Cassegrain antenna configuration is examined for wideband use over the frequency range of 1 to 10 GHz, rather than only at the narrow-band operational design frequencies of 2.295 GHz (S-band) and 8.448 GHz (X-band). Aperture efficiency and surface efficiency are calculated as the components determining the gain of the antenna. Noise temperature contributions arise from the ground, atmosphere, and quadripod scattering. These components are calculated as a function of frequency elevation angle to determine a G/T (gain/system noise temperature) figure-of-merit for a nominal 34-meter antenna configuration. A computational method was developed which will enable design of a multi-horn antenna feed system to optimally cover the 1 to 10 GHz frequency range.

  7. A GPU-Based Wide-Band Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  8. Calculations of a wideband metamaterial absorber using equivalent medium theory

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  9. Wideband link-budget analysis for undersea acoustic signaling

    NASA Astrophysics Data System (ADS)

    Rice, Joseph A.; Hansen, Joseph T.

    2002-11-01

    Link-budget analysis is commonly applied to satellite and wireless communications for estimating the signal-to-noise ratio (SNR) at the receiver. Link-budget analysis considers transmitter power, transmitter antenna gain, channel losses, channel noise, and receiver antenna gain. For underwater signaling, the terms of the sonar equation readily translate to a formulation of the link budget. However, the strong frequency dependence of underwater acoustic propagation requires special consideration, and is represented as an intermediate result called the channel SNR. The channel SNR includes ambient-noise and transmission-loss components. Several acoustic communication and navigation problems are addressed through wideband link-budget analyses. [Work sponsored by ONR 321.

  10. Daredevil: ultra-wideband radar sensing for small UGVs

    NASA Astrophysics Data System (ADS)

    Yamauchi, Brian

    2007-04-01

    We are developing an ultra wideband (UWB) radar sensor payload for the man-portable iRobot PackBot UGV. Our goal is to develop a sensor array that will allow the PackBot to navigate autonomously through foliage (such as tall grass) while avoiding obstacles and building a map of the terrain. We plan to use UWB radars in conjunction with other sensors such as LIDAR and vision. We propose an algorithm for using polarimetric (dual-polarization) radar arrays to classify radar returns as either vertically-aligned foliage or solid objects based on their differential reflectivity, a function of their aspect ratio. We have conducted preliminary experiments to measure the ability of UWB radars to detect solid objects through foliage. Our initial results indicate that UWB radars are very effective at penetrating sparse foliage, but less effective at penetrating dense foliage.

  11. Fiber optic distribution system for wideband, high performance video

    NASA Astrophysics Data System (ADS)

    Kline, A. R.

    A wideband fiber-optic video distribution system with a bandwidth exceeding 20 MHz has been developed for the NASA Space Station Freedom. The system uses FM modulation and light emitting diodes in combination with lightweight and rugged fiber-optic cables and digital switching elements to provide lightweight, reliable, high-performance video signal distribution over the full extent of the Space Station. The author addresses the Space Station requirements, including environmental constraints, which led to the selected system architecture and choice of components. The design of the modulators and demodulators, optical transmitters and receivers, fiber-optic cable, and the video switches is discussed. Also presented is a description of how the technology can be applied to those military needs which would benefit from the performance, reliability, and EMI/TEMPEST features of the system.

  12. Ultra Wideband Electromagnetic Phantoms for Antennas and Propagation Studies

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hironobu; Zhou, Jian; Kobayashi, Takehiko

    Ultra wideband (UWB) technologies are expected to be used in ultra-high-speed wireless personal area networks (WPAN) and wireless body area networks (WBAN). UWB human electromagnetic phantoms are useful for performance evaluation of antennas mounted in the vicinity of a human body and channel assessment when a human body blocks a propagation path. Publications on UWB phantoms, however, have been limited so far. This paper describes the development of liquid UWB phantom material (aqueous solution of sucrose) and UWB arm and torso phantoms. The UWB phantoms are not intended to evaluate a specific absorption rate (SAR) in a human body, because UWB devices are supposed to transmit at very low power and thus should pose no human hazard.

  13. Dendritic wideband metamaterial absorber based on resistance film

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Gong, Bo Yi; Wang, Mei; Weng, Bin; Zhao, Xiaopeng

    2015-03-01

    A type of dendritic wideband metamaterial absorber was designed and constructed from resistance film composed of indium-tin oxide conductive film having a dendritic metamaterial structure, dielectric layer made of polymethacrylimide foam, and metallic sheet based on the equivalent circuit model. In terms of normal incidence, the simulation using the absorber yielded operating absorption rates >80 % in the frequency range of 8-27.9 GHz. In addition, the experimental measurements verified 8-17 GHz range of more than 80 % absorption rate, whereas its relative bandwidth reached 72 %. Moreover, this reasonable absorption performance was maintained for oblique incidences of <60°. The effects of dielectric layer thickness on absorption properties were verified.

  14. Wideband Waveform Design principles for Solid-state Weather Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.

    2012-01-01

    The use of solid-state transmitter is becoming a key part of the strategy to realize a network of low cost electronically steered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper a frequency diversity wideband waveforms design is proposed to mitigate low sensitivity of solid-state transmitters. In addition, the waveforms mitigate the range eclipsing problem associated with long pulse compression. An analysis of the performance of pulse compression using mismatched compression filters designed to minimize side lobe levels is presented. The impact of range side lobe level on the retrieval of Doppler moments are presented. Realistic simulations are performed based on CSU-CHILL radar data and Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project I (IP1) radar data.

  15. Miniature PCM compatible wideband spectral analyzer for hypersonic flight research

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1988-01-01

    The design concept and prototype performance of a 10-400-kHz wideband spectral analyzer being developed at NASA Langley as part of the Hypersonic Flight Instrumentation Research Experiment are described and illustrated with diagrams and graphs. The analyzer is intended to compress the bandwidth of data from up to 20 hot-film anemometers, so that the analog PSD waveform from each sensor can be encoded for serial PCM telemetry. Components include an analog multiplier, digital waveform generator, sine-wave VCO, digital VCO, analog low-pass filter, switched-capacitor filter, and rms-dc detector. The prototype demonstrated 1-percent accuracy (referred to a 5-V full-scale output) for sweep rates up to 3/sec over the 10-400-kHz spectrum.

  16. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented. PMID:25570432

  17. Reconfigurable Wideband Circularly Polarized Microstrip Patch Antenna for Wireless Applications

    NASA Astrophysics Data System (ADS)

    Khidre, Ahmed

    In this thesis, developments of rectangular microstrip patch antenna to have circular polarization agility with wideband performance, for wireless applications are presented. First, a new technique to achieve circularly polarized (CP) probe feed single-layer microstrip patch antenna with wideband characteristics is proposed. The antenna is a modified form of the popular E-shaped patch, used to broaden the impedance bandwidth of a basic rectangular patch antenna. This is established by letting the two parallel slots of the E-patch unequal. Thus, by introducing asymmetry two orthogonal currents on the patch are excited and circularly polarized fields are realized. The proposed technique exhibits the advantage of the simplicity inherent in the E-shaped patch design. It requires only slot lengths, widths, and position parameters to be determined. Also, it is suitable for later adding the reconfigurable capability. With the aid of full-wave simulator Ansoft HFSS, investigations on the effect of various dimensions of the antenna have been carried out via parametric analysis. Based on these investigations, a design procedure for a CP E-shaped patch is summarized. Various design examples with different substrate thicknesses and material types are presented and compared, with CP U-slot patch antennas, recently proposed in the literature. A prototype has been constructed following the suggested design procedure to cover the IEEE 802.11b/g WLAN band. The performance of the fabricated antenna was measured and compared with the simulation results for the reflection coefficient, axial ratio, radiation pattern, and antenna gain. Good agreement is achieved between simulation and measured results demonstrating a high gain and wideband performance. Second, a polarization reconfigurable single feed E-shaped patch antenna with wideband performance is proposed. The antenna is capable of switching from right-hand circular polarization (RHCP) to left-hand circular polarization (LHCP) and

  18. Ultra-wideband Location Authentication for Item Tracking

    SciTech Connect

    Rowe, Nathan C; Kuhn, Michael J; Stinson, Brad J; Holland, Stephen A

    2012-01-01

    International safeguards is increasingly utilizing unattended and remote monitoring methods to improve inspector efficiency and the timeliness of diversion detection. Item identification and tracking has been proposed as one unattended remote monitoring method, and a number of radio-frequency (RF) technologies have been proposed. When utilizing location information for verification purposes, strong assurance of the authenticity of the reported location is required, but most commercial RF systems are vulnerable to a variety of spoofing and relay attacks. ORNL has developed a distance bounding method that uses ultra-wideband technology to provide strong assurance of item location. This distance bounding approach can be coupled with strong symmetric key authentication methods to provide a fully authenticable tracking system that is resistant to both spoofing and relay attacks. This paper will discuss the overall problems associated with RF tracking including the common spoofing and relay attack scenarios, the ORNL distance bounding approach for authenticating location, and the potential applications for this technology.

  19. A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.

    PubMed

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2016-01-01

    The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz. PMID:27563897

  20. Miniature biotelemeter giving 10 channels of wideband biomedical data.

    NASA Technical Reports Server (NTRS)

    Carraway, J.

    1972-01-01

    A miniature biotelemeter has been developed for sensing and transmitting multiple channels of wideband biomedical data over a radio link. Its small size and weight make it capable of being carried by free-moving laboratory animals as small as rats. Ten data channels each of 5-kHz data bandwidth are provided to permit monitoring of a wide variety of physiological signals. Multichannel telemetry of electroencephalograms, electrocardiograms, electromyograms, state functions, and dynamic processes such as blood flow and body chemistry are possible applications. Utilization of newly available monolithic chip components, low-power COS/MOS MSI digital logic, and state-of-the-art hybrid mounting techniques makes this novel device useful for both research and clinical bioinstrumentation.

  1. Cognitive wideband spectrum sensing using cosine-modulated filter banks

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Pu, Fangling; Xu, Xin; Chen, Nengcheng

    2015-11-01

    A multichannel joint spectrum sensing strategy based on cosine-modulated filter banks (CMFBs) was developed to improve sensing efficiency. The received wideband signal was split into several bands through the filters that are constructed by grouping continuous sub-band filters. Through flexibly designing prototype filter, not only the spectrum of non-uniform bandwidth can be estimated, but also the spectral leakage between adjacent channels can be adjusted. The probabilities of false alarm and detection for multichannel jointly spectrum sensing in the Rayleigh fading channel were deduced. The decision thresholds of different channels were obtained as regards the probability of false alarm. Simulation results show that compared with the traditional energy detector, the detection capability and sensing efficiency have been improved, especially at low signal-to-noise ratio. The CMFB-based multichannel joint sensing scheme not only increases the efficiency of detection, but also enhances the flexibility on the control of bandwidth and spectral leakage between neighbouring channels.

  2. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  3. Ultra-wideband horn antenna with abrupt radiator

    DOEpatents

    McEwan, T.E.

    1998-05-19

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna. 8 figs.

  4. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  5. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    NASA Technical Reports Server (NTRS)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  6. Ultra-wideband Radar Methods and Techniques of Medical Sensing and Imaging

    SciTech Connect

    Paulson, C N; Chang, J T; Romero, C E; Watson, J; Pearce, F J; Levin, N

    2005-10-07

    Ultra-wideband radar holds great promise for a variety of medical applications. We have demonstrated the feasibility of using ultra-wideband sensors for detection of internal injuries, monitoring of respiratory and cardiac functions, and continuous non-contact imaging of the human body. Sensors are low-power, portable, and do not require physical contact with the patient. They are ideal for use by emergency responders to make rapid diagnosis and triage decisions. In the hospital, vital signs monitoring and imaging application could improve patient outcomes. In this paper we present an overview of ultra-wideband radar technology, discuss key design tradeoffs, and give examples of ongoing research in applying ultra-wideband technology to the medical field.

  7. A different approach to use narrowband super-resolution multiple signal classification algorithm on wideband sources.

    PubMed

    Asgari, Mohammad; Soltani, Nasim Yahya; Riahi, Ali

    2010-01-01

    There are varieties of wideband direction-of-arrival (DOA) estimation algorithms. Their structure comprises a number of narrowband ones, each performs in one frequency in a given bandwidth, and then different responses should be combined in a proper way to yield true DOAs. Hence, wideband algorithms are always complex and so non-real-time. This paper investigates a method to derive a flat response of narrowband multiple signal classification (MUSIC) [R. O. Schmidt, IEEE Trans. Antennas Propag., 34, 276-280 (1986)] algorithm in the whole frequencies of given band. Therefore, required conditions of applying narrowband algorithm on wideband impinging signals will be given through a concrete analysis. It could be found out that array sensor locations are able to compensate the frequency variations to reach a flat response of DOAs in a specified wideband frequency. PMID:20058975

  8. Target-Tracking Camera for a Metrology System

    NASA Technical Reports Server (NTRS)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  9. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  10. A Motionless Camera

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Omniview, a motionless, noiseless, exceptionally versatile camera was developed for NASA as a receiving device for guiding space robots. The system can see in one direction and provide as many as four views simultaneously. Developed by Omniview, Inc. (formerly TRI) under a NASA Small Business Innovation Research (SBIR) grant, the system's image transformation electronics produce a real-time image from anywhere within a hemispherical field. Lens distortion is removed, and a corrected "flat" view appears on a monitor. Key elements are a high resolution charge coupled device (CCD), image correction circuitry and a microcomputer for image processing. The system can be adapted to existing installations. Applications include security and surveillance, teleconferencing, imaging, virtual reality, broadcast video and military operations. Omniview technology is now called IPIX. The company was founded in 1986 as TeleRobotics International, became Omniview in 1995, and changed its name to Interactive Pictures Corporation in 1997.

  11. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    NASA Technical Reports Server (NTRS)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  12. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  13. Camera Calibration for Uav Application Using Sensor of Mobile Camera

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Chikatsu, H.

    2015-05-01

    Recently, 3D measurements using small unmanned aerial vehicles (UAVs) have increased in Japan, because small type UAVs is easily available at low cost and the analysis software can be created the easily 3D models. However, small type UAVs have a problem: they have very short flight times and a small payload. In particular, as the payload of a small type UAV increases, its flight time decreases. Therefore, it is advantageous to use lightweight sensors in small type UAVs. A mobile camera is lightweight and has many sensors such as an accelerometer, a magnetic field, and a gyroscope. Moreover, these sensors can be used simultaneously. Therefore, the authors think that the problems of small UAVs can be solved using the mobile camera. The authors executed camera calibration using a test target for evaluating sensor values measured using a mobile camera. Consequently, the authors confirmed the same accuracy with normal camera calibration.

  14. The underwater camera calibration based on virtual camera lens distortion

    NASA Astrophysics Data System (ADS)

    Qin, Dahui; Mao, Ting; Cheng, Peng; Zhang, Zhiliang

    2011-08-01

    The machine view is becoming more and more popular in underwater. It is a challenge to calibrate the camera underwater because of the complicated light ray path in underwater and air environment. In this paper we firstly analyzed characteristic of the camera when light transported from air to water. Then we proposed a new method that takes the high-level camera distortion model to compensate the deviation of the light refraction when light ray come through the water and air media. In the end experience result shows the high-level distortion model can simulate the effect made by the underwater light refraction which also makes effect on the camera's image in the process of the camera underwater calibration.

  15. Comparison of Digital Surface Models for Snow Depth Mapping with Uav and Aerial Cameras

    NASA Astrophysics Data System (ADS)

    Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C.

    2016-06-01

    Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  16. A method for measuring aircraft height and velocity using dual television cameras

    NASA Technical Reports Server (NTRS)

    Young, W. R.

    1977-01-01

    A unique electronic optical technique, consisting of two closed circuit television cameras and timing electronics, was devised to measure an aircraft's horizontal velocity and height above ground without the need for airborne cooperative devices. The system is intended to be used where the aircraft has a predictable flight path and a height of less than 660 meters (2,000 feet) at or near the end of an air terminal runway, but is suitable for greater aircraft altitudes whenever the aircraft remains visible. Two television cameras, pointed at zenith, are placed in line with the expected path of travel of the aircraft. Velocity is determined by measuring the time it takes the aircraft to travel the measured distance between cameras. Height is determined by correlating this speed with the time required to cross the field of view of either camera. Preliminary tests with a breadboard version of the system and a small model aircraft indicate the technique is feasible.

  17. Airborne Particulate Threat Assessment

    SciTech Connect

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  18. Photometry of Galactic and Extragalactic Far-Infrared Sources using the 91.5 cm Airborne Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Harper, D. A.

    1996-01-01

    The objective of this grant was to construct a series of far infrared photometers, cameras, and supporting systems for use in astronomical observations in the Kuiper Airborne Observatory. The observations have included studies of galaxies, star formation regions, and objects within the Solar System.

  19. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  20. Digital Cameras for Student Use.

    ERIC Educational Resources Information Center

    Simpson, Carol

    1997-01-01

    Describes the features, equipment and operations of digital cameras and compares three different digital cameras for use in education. Price, technology requirements, features, transfer software, and accessories for the Kodak DC25, Olympus D-200L and Casio QV-100 are presented in a comparison table. (AEF)

  1. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites. Meteorites have great…

  2. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  3. Radiation camera motion correction system

    DOEpatents

    Hoffer, P.B.

    1973-12-18

    The device determines the ratio of the intensity of radiation received by a radiation camera from two separate portions of the object. A correction signal is developed to maintain this ratio at a substantially constant value and this correction signal is combined with the camera signal to correct for object motion. (Official Gazette)

  4. SEOS frame camera applications study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research and development satellite is discussed which will provide opportunities for observation of transient phenomena that fall within the fixed viewing circle of the spacecraft. The evaluation of possible applications for frame cameras, for SEOS, are studied. The computed lens characteristics for each camera are listed.

  5. Multi-PSPMT scintillation camera

    SciTech Connect

    Pani, R.; Pellegrini, R.; Trotta, G.; Scopinaro, F.; Soluri, A.; Vincentis, G. de; Scafe, R.; Pergola, A.

    1999-06-01

    Gamma ray imaging is usually accomplished by the use of a relatively large scintillating crystal coupled to either a number of photomultipliers (PMTs) (Anger Camera) or to a single large Position Sensitive PMT (PSPMT). Recently the development of new diagnostic techniques, such as scintimammography and radio-guided surgery, have highlighted a number of significant limitations of the Anger camera in such imaging procedures. In this paper a dedicated gamma camera is proposed for clinical applications with the aim of improving image quality by utilizing detectors with an appropriate size and shape for the part of the body under examination. This novel scintillation camera is based upon an array of PSPMTs (Hamamatsu R5900-C8). The basic concept of this camera is identical to the Anger Camera with the exception of the substitution of PSPMTs for the PMTs. In this configuration it is possible to use the high resolution of the PSPMTs and still correctly position events lying between PSPMTs. In this work the test configuration is a 2 by 2 array of PSPMTs. Some advantages of this camera are: spatial resolution less than 2 mm FWHM, good linearity, thickness less than 3 cm, light weight, lower cost than equivalent area PSPMT, large detection area when coupled to scintillating arrays, small dead boundary zone (< 3 mm) and flexibility in the shape of the camera.

  6. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F., III; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  7. Airborne GLM Simulator (FEGS)

    NASA Astrophysics Data System (ADS)

    Quick, M.; Blakeslee, R. J.; Christian, H. J., Jr.; Stewart, M. F.; Podgorny, S.; Corredor, D.

    2015-12-01

    Real time lightning observations have proven to be useful for advanced warning and now-casting of severe weather events. In anticipation of the launch of the Geostationary Lightning Mapper (GLM) onboard GOES-R that will provide continuous real time observations of total (both cloud and ground) lightning, the Fly's Eye GLM Simulator (FEGS) is in production. FEGS is an airborne instrument designed to provide cal/val measurements for GLM from high altitude aircraft. It consists of a 5 x 5 array of telescopes each with a narrow passband filter to isolate the 777.4 nm neutral oxygen emission triplet radiated by lightning. The telescopes will measure the optical radiance emitted by lightning that is transmitted through the cloud top with a temporal resolution of 10 μs. When integrated on the NASA ER-2 aircraft, the FEGS array with its 90° field-of-view will observe a cloud top area nearly equal to a single GLM pixel. This design will allow FEGS to determine the temporal and spatial variation of light that contributes to a GLM event detection. In addition to the primary telescope array, the instrument includes 5 supplementary optical channels that observe alternate spectral emission features and will enable the use of FEGS for interesting lightning physics applications. Here we present an up-to-date summary of the project and a description of its scientific applications.

  8. Airborne rescue system

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1991-01-01

    The airborne rescue system includes a boom with telescoping members for extending a line and collar to a rescue victim. The boom extends beyond the tip of the helicopter rotor so that the victim may avoid the rotor downwash. The rescue line is played out and reeled in by winch. The line is temporarily retained under the boom. When the boom is extended, the rescue line passes through clips. When the victim dons the collar and the tension in the line reaches a predetermined level, the clips open and release the line from the boom. Then the rescue line can form a straight line between the victim and the winch, and the victim can be lifted to the helicopter. A translator is utilized to push out or pull in the telescoping members. The translator comprises a tape and a rope. Inside the telescoping members the tape is curled around the rope and the tape has a tube-like configuration. The tape and rope are provided from supply spools.

  9. LISS-4 camera for Resourcesat

    NASA Astrophysics Data System (ADS)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  10. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  11. Coherent infrared imaging camera (CIRIC)

    SciTech Connect

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  12. Operation Sun Beam, Shots Little Feller II and Small Boy. Project Officer's report - Project 7. 16. Airborne E-field radiation measurements of electromagnetic-pulse phenomena

    SciTech Connect

    Butler, K.L.

    1985-09-01

    Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.

  13. Field of view selection for optimal airborne imaging sensor performance

    NASA Astrophysics Data System (ADS)

    Goss, Tristan M.; Barnard, P. Werner; Fildis, Halidun; Erbudak, Mustafa; Senger, Tolga; Alpman, Mehmet E.

    2014-05-01

    The choice of the Field of View (FOV) of imaging sensors used in airborne targeting applications has major impact on the overall performance of the system. Conducting a market survey from published data on sensors used in stabilized airborne targeting systems shows a trend of ever narrowing FOVs housed in smaller and lighter volumes. This approach promotes the ever increasing geometric resolution provided by narrower FOVs, while it seemingly ignores the influences the FOV selection has on the sensor's sensitivity, the effects of diffraction, the influences of sight line jitter and collectively the overall system performance. This paper presents a trade-off methodology to select the optimal FOV for an imaging sensor that is limited in aperture diameter by mechanical constraints (such as space/volume available and window size) by balancing the influences FOV has on sensitivity and resolution and thereby optimizing the system's performance. The methodology may be applied to staring array based imaging sensors across all wavebands from visible/day cameras through to long wave infrared thermal imagers. Some examples of sensor analysis applying the trade-off methodology are given that highlights the performance advantages that can be gained by maximizing the aperture diameters and choosing the optimal FOV for an imaging sensor used in airborne targeting applications.

  14. Airborne lidar experiments at the Savannah River Plant, June 1985

    SciTech Connect

    Krabill, W.B.; Swift, R.N.

    1987-09-01

    Results are presented from a series of studies conducted at the Department of Energy (DOE) Savannah River Plant (SRP) with the NASA Airborne Oceanographic Lidar (AOL). These studies included a topographic survey of a {approximately}1000 acre lake basin (presently designated L Lake) which had been excavated for use as a cooling pond for L Reactor; a study of the movement of discharged cooling water in Pond C and the warm arm of Par Pond using Rhodamine WT dye as a tag; initial baseline studies of the vegetation cover of the Steel Creek corridor (through which the outflow of L Lake is carried to the Savannah River); and a demonstration of potential forestry applications of the AOL. These investigations were conducted over a 3-day period in June 1985. The AOL is an advanced airborne laser system capable of making temporal or time history measurements of laser backscatter (bathymetry mode) or spectral measurements of laser induced fluorescence from waterborne constituents (fluorosensing mode). The AOL is flown together with auxiliary instruments and camera systems on board a four engine P-3A aircraft. Recent modifications to the AOL allow in-flight changes between the two basic operational modes of the instrument which permitted the topographic study to be conducted on the same flights as the fluorescent dye study. The L Lake topographic survey represents a state-of-the-art demonstration of airborne laser surveying capability.

  15. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  16. Cameras for digital microscopy.

    PubMed

    Spring, Kenneth R

    2013-01-01

    This chapter reviews the fundamental characteristics of charge-coupled devices (CCDs) and related detectors, outlines the relevant parameters for their use in microscopy, and considers promising recent developments in the technology of detectors. Electronic imaging with a CCD involves three stages--interaction of a photon with the photosensitive surface, storage of the liberated charge, and readout or measurement of the stored charge. The most demanding applications in fluorescence microscopy may require as much as four orders of greater magnitude sensitivity. The image in the present-day light microscope is usually acquired with a CCD camera. The CCD is composed of a large matrix of photosensitive elements (often referred to as "pixels" shorthand for picture elements, which simultaneously capture an image over the entire detector surface. The light-intensity information for each pixel is stored as electronic charge and is converted to an analog voltage by a readout amplifier. This analog voltage is subsequently converted to a numerical value by a digitizer situated on the CCD chip, or very close to it. Several (three to six) amplifiers are required for each pixel, and to date, uniform images with a homogeneous background have been a problem because of the inherent difficulties of balancing the gain in all of the amplifiers. Complementary metal oxide semiconductor sensors also exhibit relatively high noise associated with the requisite high-speed switching. Both of these deficiencies are being addressed, and sensor performance is nearing that required for scientific imaging. PMID:23931507

  17. Lights, Camera, Courtroom? Should Trials Be Televised?

    ERIC Educational Resources Information Center

    Kirtley, Jane E.; Brothers, Thomas W.; Veal, Harlan K.

    1999-01-01

    Presents three differing perspectives from American Bar Association members on whether television cameras should be allowed in the courtroom. Contends that cameras should be allowed with differing degrees of certainty: cameras truly open the courts to the public; cameras must be strategically placed; and cameras should be used only with the…

  18. Airborne test results for smart pushbroom imaging system with optoelectronic image correction

    NASA Astrophysics Data System (ADS)

    Tchernykh, Valerij; Dyblenko, Serguei; Janschek, Klaus; Seifart, Klaus; Harnisch, Bernd

    2004-02-01

    Smart pushbroom imaging system (SMARTSCAN) solves the problem of image correction for satellite pushbroom cameras which are disturbed by satellite attitude instability effects. Satellite cameras with linear sensors are particularly sensitive to attitude errors, which cause considerable image distortions. A novel solution of distortions correction is presented, which is based on the real-time recording of the image motion in the focal plane of the satellite camera. This allows using such smart pushbroom cameras (multi-/hyperspectral) even on moderately stabilised satellites, e.g. small sat's, LEO comsat's. The SMARTSCAN concept uses in-situ measurements of the image motion with additional CCD-sensors in the focal plane and real-time image processing of these measurements by an onboard Joint Transform Optical Correlator. SMARTSCAN has been successfully demonstrated with breadboard models for the Optical Correlator and a Smart Pushbroom Camera at laboratory level (satellite motion simulator on base of a 5 DOF industrial robot) and by an airborne flight demonstration in July 2002. The paper describes briefly the principle of operation of the system and gives a description of the hardware model are provided. Detailed results of the airborne tests and performance analysis are given as well as detailed tests description.

  19. Passive front-ends for wideband millimeter wave electronic warfare

    NASA Astrophysics Data System (ADS)

    Jastram, Nathan Joseph

    This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with

  20. Airborne Laser Polar Nephelometer

    NASA Technical Reports Server (NTRS)

    Grams, Gerald W.

    1973-01-01

    A polar nephelometer has been developed at NCAR to measure the angular variation of the intensity of light scattered by air molecules and particles. The system has been designed for airborne measurements using outside air ducted through a 5-cm diameter airflow tube; the sample volume is that which is common to the intersection of a collimated source beam and the detector field of view within the airflow tube. The source is a linearly polarized helium-neon laser beam. The optical system defines a collimated field-of-view (0.5deg half-angle) through a series of diaphragms located behind a I72-mm focal length objective lens. A photomultiplier tube is located immediately behind an aperture in the focal plane of the objective lens. The laser beam is mechanically chopped (on-off) at a rate of 5 Hz; a two-channel pulse counter, synchronized to the laser output, measures the photomultiplier pulse rate with the light beam both on and off. The difference in these measured pulse rates is directly proportional to the intensity of the scattered light from the volume common to the intersection of the laser beam and the detector field-of-view. Measurements can be made at scattering angles from 15deg to 165deg with reference to the direction of propagation of the light beam. Intermediate angles are obtained by selecting the angular increments desired between these extreme angles (any multiple of 0.1deg can be selected for the angular increment; 5deg is used in normal operation). Pulses provided by digital circuits control a stepping motor which sequentially rotates the detector by pre-selected angular increments. The synchronous photon-counting system automatically begins measurement of the scattered-light intensity immediately after the rotation to a new angle has been completed. The instrument has been flown on the NASA Convair 990 airborne laboratory to obtain data on the complex index of refraction of atmospheric aerosols. A particle impaction device is operated simultaneously

  1. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.

    PubMed

    Allison, Robert S; Johnston, Joshua M; Craig, Gregory; Jennings, Sion

    2016-01-01

    For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context. PMID:27548174

  2. The Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Clampin, M.; Ford, H. C.; Feldman, P.; Golimowski, D.; Tsvetanov, Z.; Bartko, F.; Brown, B.; Burrows, C.; Hartig, G.; Postman, M.; Rafal, M.; Sparks, B.; White, R.; Crocker, J.; Bely, P.; Cheng, E.; Krebs, C.; Kimble, R.; Neff, S.; Illingworth, G.; Lesser, M.; Broadhurst, T.; Miley, G.; Lajeunesse, T.; Woodruff, B.

    1998-01-01

    The Advanced Camera for Surveys (ACS) is to be installed in the Hubble Space Telescope (HST) during the third HST servicing mission in December 1999. The ACS comprises three cameras each designed to achieve specific goals. The first, the Wide Field Camera, will be a high throughput, wide field (200" x 204"), visible to nar-IR camera that is half critically sampled at 500 nm. The second, the High Resolution Camera (HRC), is critically sampled at 500 nm, and has a 26" x 29" field of view. The HRC optical path includes a coronagraph which will improve the HST's contrast near bright objects by a factor of 10. The third camera is a far ultraviolet, Solar-Blind Camera (SBC),with a field of 26" x 29". ACS will increase HST's capability for imaging surveys and discovery by at least a factor of 10. We give an overview of the ACS design and discuss image the quality of the optics and the performance of the CCD and MAMA detectors. The plans for the GTO science program are reviewed, and specific scientific capabilities of the instrument reviewed.

  3. Advanced airborne ISR demonstration system (USA)

    NASA Astrophysics Data System (ADS)

    Henry, Daniel J.

    2005-05-01

    Recon/Optical, Inc. (ROI) is developing an advanced airborne Intelligence, Surveillance, and Reconnaissance (ISR) demonstration system based upon the proven ROI technology used in the SHAred Reconnaissance Pod (SHARP) for the U.S. Navy F/A-18. The demonstration system, which includes several state-of-the-art technology enhancements for next-generation ISR, is scheduled for flight testing in the summer of 2005. The demonstration system contains a variant of the SHARP medium altitude CA-270 camera, comprising an inertially stabilized Visible/NIR 5Kx5K imager and MWIR 2Kx2K imager to provide simultaneous high resolution/wide area coverage dual-band operation. The imager has been upgraded to incorporate a LN-100G GPS/INS within the sensor passive isolation loop to improve the accuracy of the NITF image metadata. The Image Processor is also based upon the SHARP configuration, but the demo system contains several enhancements including increased image processing horsepower, Ethernet-based Command & Control, next-generation JPEG2000 image compression, JPEG2000 Interactive Protocol (JPIP) network data server/client architecture, bi-directional RF datalink, advanced image dissemination/exploitation, and optical Fibrechannel I/O to the solid state recorder. This paper describes the ISR demonstration system and identifies the new network centric CONOPS made possible by the technology enhancements.

  4. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%. PMID:26560615

  5. Airborne reconnaissance XIII; Proceedings of the Meeting, San Diego, CA, Aug. 7-9, 1989

    NASA Technical Reports Server (NTRS)

    Henkel, Paul A. (Editor); Lagesse, Francis R. (Editor); Schurter, Wayne W. (Editor)

    1989-01-01

    The present conference on airborne reconnaissance discusses topics in imagery exploitation, reconsystem modeling and analysis, and reconnaissance optics and electronics configurations. Attention is given to airborne minefield detection, the optimization of an IR linescanner for RPV operations, real-time display of IR linescanner data for RPVs, three-dimensional model-guided site recognition, the AMIDARS high-performance real-time display, and MMW sensor image analysis. Also discussed are reconnaissance concepts for the 3-5 micron spectral window, sensor concept development for hazard detection, a stabilization system for a large aperture camera, three-axis image stabilization with a two-axis mirror, the results of performance tests on the TOW target collimator design, and the replacement of film by electrooptic media in advanced tactical airborne reconnaissance.

  6. Vision Sensors and Cameras

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Silicon charge-coupled-device (CCD) imagers have been and are a specialty market ruled by a few companies for decades. Based on CMOS technologies, active-pixel sensors (APS) began to appear in 1990 at the 1 μm technology node. These pixels allow random access, global shutters, and they are compatible with focal-plane imaging systems combining sensing and first-level image processing. The progress towards smaller features and towards ultra-low leakage currents has provided reduced dark currents and μm-size pixels. All chips offer Mega-pixel resolution, and many have very high sensitivities equivalent to ASA 12.800. As a result, HDTV video cameras will become a commodity. Because charge-integration sensors suffer from a limited dynamic range, significant processing effort is spent on multiple exposure and piece-wise analog-digital conversion to reach ranges >10,000:1. The fundamental alternative is log-converting pixels with an eye-like response. This offers a range of almost a million to 1, constant contrast sensitivity and constant colors, important features in professional, technical and medical applications. 3D retino-morphic stacking of sensing and processing on top of each other is being revisited with sub-100 nm CMOS circuits and with TSV technology. With sensor outputs directly on top of neurons, neural focal-plane processing will regain momentum, and new levels of intelligent vision will be achieved. The industry push towards thinned wafers and TSV enables backside-illuminated and other pixels with a 100% fill-factor. 3D vision, which relies on stereo or on time-of-flight, high-speed circuitry, will also benefit from scaled-down CMOS technologies both because of their size as well as their higher speed.

  7. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  8. A liquid xenon radioisotope camera.

    NASA Technical Reports Server (NTRS)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  9. Dark energy survey and camera

    SciTech Connect

    William Wester

    2004-08-16

    The authors describe the Dark Energy Survey and Camera. The survey will image 5000 sq. deg. in the southern sky to collect 300 million galaxies, 30,000 galaxy clusters and 2000 Type Ia supernovae. They expect to derive a value for the dark energy equation of state parameters, w, to a precision of 5% by combining four distinct measurement techniques. They describe the mosaic camera that will consist of CCDs with enhanced sensitivity in the near infrared. The camera will be mounted at the prime focus of the 4m Blanco telescope.

  10. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  11. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  12. Wideband Heterodyne QWIP Receiver Development for Thermonuclear Fusion Measurements

    SciTech Connect

    Bennett, C.A.; Buchanan, M.; Hutchinson, D.P.; Liu, H.C.; Richards, R.K.; Simpson, M.L.

    1998-11-01

    Oak Ridge National Laboratory (ORNL) has been developing heterodyne receivers for plasma diagnostic applications for over 20 years. One area of this work has been the development of a diagnostic system for the measurement of the energy of alpha particles created in a thermonuclear fusion reactor. These particles originate with an energy of 3.5 MeV and cool to the thermal energy of the plasma (around 15 keV) after several seconds. To measure the velocity distribution of these alpha particles, a Thomson scattering diagnostic is under development based on a high power CO{sub 2} laser at 10 microns with a heterodyne receiver. The Doppler shift generated by Thomson scattering of the alpha particles requires a wideband heterodyne receiver (greater than 10 GHz). Because Mercury-Cadimum-Telluride (MCT) detectors are limited to a bandwidth of approximately 2 GHz, a Quantum Well Infrared Photodetector (QWIP) detector was obtained from the National Research Council of Canada (NRC) and evaluated for its heterodyne performance using the heterodyne testing facility developed at ORNL.

  13. Wideband polarization-insensitive metamaterial absorber with perfect dual resonances

    NASA Astrophysics Data System (ADS)

    Ayop, Osman; Rahim, Mohamad Kamal A.; Murad, Noor Asniza; Samsuri, Noor Asmawati

    2016-04-01

    This paper presents the analysis of wideband polarization-insensitive metamaterial absorber with perfect dual resonances. The structure is designed using lossy FR4 substrate with copper layers. The resonating elements are designed using the combination of circular ring with modified circle-shaped structure. The resonating elements are printed on the top surface of FR4 substrate, while the bottom surface is printed with full copper ground plane. From the simulation, the proposed design achieves nearly perfect absorbance at dual resonant frequency with improved bandwidth compared to the general circular ring design. Two peaks absorbance of 98.66 and 99.84 % are observed at 9.81 and 10.41 GHz respectively with full width half maximum (FWHM) bandwidth of 1050 MHz or 10.38 % at normal incident EM wave. The structure is also simulated for different polarization angles and it is observed that the structure can maintain the absorbance characteristic for all polarization angles. The experimental work is done to validate the simulated result. It is confirmed that two peaks absorbance are achieved with magnitudes of 99.88 and 99.67 % at 10.14 and 10.79 GHz, respectively. The measured FWHM is 1160 MHz.

  14. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  15. Predicting the intelligibility of vocoded and wideband Mandarin Chinese

    PubMed Central

    Chen, Fei; Loizou, Philipos C.

    2011-01-01

    Due to the limited number of cochlear implantees speaking Mandarin Chinese, it is extremely difficult to evaluate new speech coding algorithms designed for tonal languages. Access to an intelligibility index that could reliably predict the intelligibility of vocoded (and non-vocoded) Mandarin Chinese is a viable solution to address this challenge. The speech-transmission index (STI) and coherence-based intelligibility measures, among others, have been examined extensively for predicting the intelligibility of English speech but have not been evaluated for vocoded or wideband (non-vocoded) Mandarin speech despite the perceptual differences between the two languages. The results indicated that the coherence-based measures seem to be influenced by the characteristics of the spoken language. The highest correlation (r= 0.91–0.97) was obtained in Mandarin Chinese with a weighted coherence measure that included primarily information from high-intensity voiced segments (e.g., vowels) containing F0 information, known to be important for lexical tone recognition. In contrast, in English, highest correlation was obtained with a coherence measure that included information from weak consonants and vowel∕consonant transitions. A band-importance function was proposed that captured information about the amplitude envelope contour. A higher modulation rate (100 Hz) was found necessary for the STI-based measures for maximum correlation (r = 0.94–0.96) with vocoded Mandarin and English recognition. PMID:21568429

  16. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    PubMed Central

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  17. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  18. Optimal Waveforms Design for Ultra-Wideband Impulse Radio Sensors

    PubMed Central

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  19. Signal processing techniques for stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2014-05-01

    The U.S. Army Research Laboratory (ARL) has developed the impulse-based, ground vehicle-based, forward-looking ultra-wideband (UWB), synthetic aperture radar (SAR) to detect concealed targets. Although the impulse-based architecture offers its own advantages, one of the important challenges is that when using this architecture it is very difficult to transmit a radar signal with an arbitrary bandwidth and shape. This feature is crucial for the radar to be compliant with the local frequency authority. In addition, being able to transmit signals with an arbitrary spectral shape is an important step in creating the next generation of smart (cognitive) radars. Therefore, we have designed a next-generation prototype radar to take advantage of the stepped frequency architecture. The design and building of the radar hardware is underway. In this paper, we study the radar transmit and acquisition scheme; the trade-offs between SAR image performance and various key radar parameters; and data reconstruction techniques for radar signals with an arbitrary spectrum. This study demonstrates performance, provides some guidelines for the radar design, and serves as a foundation for the signal and image processing stage.

  20. Ultra-Wideband Angle-of-Arrival Tracking Systems

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  1. A wideband channel model for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich

    1995-01-01

    A wideband channel model for Land Mobile Satellite (LMS) services is presented which characterizes the time-varying transmission channel between a satellite and a mobile user terminal. The channel model statistic parameters are the results of fitting procedures to measured data. The data used for fitting have a time resolution of 33 ns corresponding to a bandwidth of 30 MHz. Thus, the model is capable to characterize the channel behaviour for a wide range of services e.g., voice transmission, digital audio broadcasting (DAB), and spread spectrum modulation schemes. The model is presented for different environments and scenarios. The model is derived for a quasi-mobile user with hand-held terminal being in two different environments: rural and urban. The parameters needed for the description are (a) the number of echoes, (b) the distribution of the echo power, and (c) the distribution of the echo delay. It is shown that the direct path follows a Rician distribution whereas the reflected paths are Rayleigh/lognormal distributed. The parameters are given for an elevation angle of 25 deg.

  2. Collaborative Wideband Compressed Signal Detection in Interplanetary Internet

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei

    2014-07-01

    As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.

  3. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    PubMed

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  4. Field test of a wideband downhole EM transmitter

    SciTech Connect

    Becker, Alex; Lee, Ki Ha; Reginato, Lou

    1999-07-01

    A viable large bandwidth TEM transmitter can be constructed using very conventional means although in the present case the effective magnetic permeability of the solenoid core was lower than expected. Only a small number of turns can be used too maintain reasonably low inductance. This has to be compensated with the use of large currents. In this case, good ventilation must be provided to avoid overheating the electronics. In our case the most temperature sensitive element was the optic fiber transmitter which usually failed after about an hour of operation. Care must also be taken to guarantee balance between the negative and positive pulses as this improves the signal/noise ratio. Finally, we reiterate the need to review the origin and nature of the trigger pulse so that consistent properly clocked data can be acquired. In spite of the unlimited nature of the RFS tests which prevented us from acquiring data suitable for a direct demonstration of the wavefield transform, we did secure high quality wideband data that confirmed the proper performance of the prototype transmitter. We are certain that this equipment can now be used in an oil-field environment to acquire data suitable for a practical verification of the wavefield transform.

  5. Ultra Wideband (UWB) communication vulnerability for security applications.

    SciTech Connect

    Cooley, H. Timothy

    2010-07-01

    RF toxicity and Information Warfare (IW) are becoming omnipresent posing threats to the protection of nuclear assets, and within theatres of hostility or combat where tactical operation of wireless communication without detection and interception is important and sometimes critical for survival. As a result, a requirement for deployment of many security systems is a highly secure wireless technology manifesting stealth or covert operation suitable for either permanent or tactical deployment where operation without detection or interruption is important The possible use of ultra wideband (UWB) spectrum technology as an alternative physical medium for wireless network communication offers many advantages over conventional narrowband and spread spectrum wireless communication. UWB also known as fast-frequency chirp is nonsinusoidal and sends information directly by transmitting sub-nanosecond pulses without the use of mixing baseband information upon a sinusoidal carrier. Thus UWB sends information using radar-like impulses by spreading its energy thinly over a vast spectrum and can operate at extremely low-power transmission within the noise floor where other forms of RF find it difficult or impossible to operate. As a result UWB offers low probability of detection (LPD), low probability of interception (LPI) as well as anti-jamming (AJ) properties in signal space. This paper analyzes and compares the vulnerability of UWB to narrowband and spread spectrum wireless network communication.

  6. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, J.P.; Mast, J.E.

    1998-11-10

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 11 figs.

  7. Ultra wideband ground penetrating radar imaging of heterogeneous solids

    DOEpatents

    Warhus, John P.; Mast, Jeffrey E.

    1998-01-01

    A non-invasive imaging system for analyzing engineered structures comprises pairs of ultra wideband radar transmitters and receivers in a linear array that are connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitters and receivers are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receivers are moved about the surface, e.g., attached to the bumper of a truck, to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  8. Rapid Synchronization of Ultra-Wideband Transmitted-Reference Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-05-21

    Time synchronization is a major challenge and a rich area of study in ultra-wideband (UWB) communication systems. Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking of integration window that defines the limits of the finite integrator prior to final decision block. In this paper we propose a novel rapid synchronization technique that allows us to extract the timing information very accurately in UWB-TR receivers in the presence of a variety of channel noise and interference. The principles of the method are presented and the BER performance of a synchronized UWB-TR receiver is investigated in the presence of a range of values for timing jitter by computer simulations. Our studies show that the proposed synchronization technique greatly improves the performance of UWB-TR receivers in the presence of jitter and AWGN with modest increase in complexity.

  9. Sensing RF signals with the optical wideband converter

    NASA Astrophysics Data System (ADS)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  10. Predicting the intelligibility of vocoded and wideband Mandarin Chinese.

    PubMed

    Chen, Fei; Loizou, Philipos C

    2011-05-01

    Due to the limited number of cochlear implantees speaking Mandarin Chinese, it is extremely difficult to evaluate new speech coding algorithms designed for tonal languages. Access to an intelligibility index that could reliably predict the intelligibility of vocoded (and non-vocoded) Mandarin Chinese is a viable solution to address this challenge. The speech-transmission index (STI) and coherence-based intelligibility measures, among others, have been examined extensively for predicting the intelligibility of English speech but have not been evaluated for vocoded or wideband (non-vocoded) Mandarin speech despite the perceptual differences between the two languages. The results indicated that the coherence-based measures seem to be influenced by the characteristics of the spoken language. The highest correlation (r = 0.91-0.97) was obtained in Mandarin Chinese with a weighted coherence measure that included primarily information from high-intensity voiced segments (e.g., vowels) containing F0 information, known to be important for lexical tone recognition. In contrast, in English, highest correlation was obtained with a coherence measure that included information from weak consonants and vowel/consonant transitions. A band-importance function was proposed that captured information about the amplitude envelope contour. A higher modulation rate (100 Hz) was found necessary for the STI-based measures for maximum correlation (r = 0.94-0.96) with vocoded Mandarin and English recognition. PMID:21568429

  11. Principles and Limitations of Ultra-Wideband FM Communications Systems

    NASA Astrophysics Data System (ADS)

    Gerrits, John F. M.; Kouwenhoven, Michiel H. L.; van der Meer, Paul R.; Farserotu, John R.; Long, John R.

    2005-12-01

    This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1-10 kbps) and medium (100-1000 kbps) bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  12. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  13. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  14. WESTERN AIRBORNE CONTAMINANTS ASSESSMENT PROJECT RESEARCH PLAN

    EPA Science Inventory

    The goal of the Western Airborne Contaminants Assessment Project (WACAP) is to assess the deposition of airborne contaminants in Western National Parks, providing regional and local information on exposure, accumulation, impacts, and probable sources. This project is being desig...

  15. Modified Wideband Three-Dimensional Late Gadolinium Enhancement MRI for Patients with Implantable Cardiac Devices

    PubMed Central

    Rashid, Shams; Rapacchi, Stanislas; Shivkumar, Kalyanam; Plotnik, Adam; Finn, J. Paul; Hu, Peng

    2015-01-01

    Purpose To study the effects of cardiac devices on three-dimensional (3D) late gadolinium enhancement (LGE) MRI and to develop a 3D LGE protocol for implantable cardioverter defibrillator (ICD) patients with reduced image artifacts. Theory and Methods The 3D LGE sequence was modified by implementing a wideband inversion pulse, which reduces hyperintensity artifacts, and by increasing bandwidth of the excitation pulse. The modified wideband 3D LGE sequence was tested in phantoms and evaluated in six volunteers and five patients with ICDs. Results Phantom and in vivo studies results demonstrated extended signal void and ripple artifacts in 3D LGE that were associated with ICDs. The reason for these artifacts was slab profile distortion and the subsequent aliasing in the slice-encoding direction. The modified wideband 3D LGE provided significantly reduced ripple artifacts than 3D LGE with wideband inversion only. Comparison of 3D and 2D LGE images demonstrated improved spatial resolution of the heart using 3D LGE. Conclusion Increased bandwidth of the inversion and excitation pulses can significantly reduce image artifacts associated with ICDs. Our modified wideband 3D LGE protocol can be readily used for imaging patients with ICDs given appropriate safety guidelines are followed. PMID:25772155

  16. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    SciTech Connect

    Zhang, Chi Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-07-28

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.

  17. An Inexpensive Digital Infrared Camera

    ERIC Educational Resources Information Center

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  18. The future of consumer cameras

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Moltisanti, Marco

    2015-03-01

    In the last two decades multimedia, and in particular imaging devices (camcorders, tablets, mobile phones, etc.) have been dramatically diffused. Moreover the increasing of their computational performances, combined with an higher storage capability, allows them to process large amount of data. In this paper an overview of the current trends of consumer cameras market and technology will be given, providing also some details about the recent past (from Digital Still Camera up today) and forthcoming key issues.

  19. Solid State Television Camera (CID)

    NASA Technical Reports Server (NTRS)

    Steele, D. W.; Green, W. T.

    1976-01-01

    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC.

  20. NASA Airborne Lidar 1982-1984 Flights

    Atmospheric Science Data Center

    2016-05-26

    NASA Airborne Lidar 1982-1984 Flights Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon ... continuing to January 1984. Transcribed from the following NASA Tech Reports: McCormick, M. P., and M. T. Osborn, Airborne lidar ...

  1. Fundus Camera Guided Photoacoustic Ophthalmoscopy

    PubMed Central

    Liu, Tan; Li, Hao; Song, Wei; Jiao, Shuliang; Zhang, Hao F.

    2014-01-01

    Purpose To demonstrate the feasibility of fundus camera guided photoacoustic ophthalmoscopy (PAOM) system and its multimodal imaging capabilities. Methods We integrated PAOM and a fundus camera consisting of a white-light illuminator and a high-sensitivity, high-speed CCD. The fundus camera captures both retinal anatomy and PAOM illumination at the same time to provide a real-time feedback when we position the PAOM illuminating light. We applied the integrated system to image rat eyes in vivo and used full-spectrum, visible (VIS), and near infrared (NIR) illuminations in fundus photography. Results Both albino and pigmented rat eyes were imaged in vivo. During alignment, different trajectories of PAOM laser scanning were successfully visualized by the fundus camera, which reduced the PAOM alignment time from several minutes to 30 s. In albino eyes, in addition to retinal vessels, main choroidal vessels were observed using VIS-illumination, which is similar to PAOM images. In pigmented eyes, the radial striations of retinal nerve fiber layer were visualized by fundus photography using full-spectrum illumination; meanwhile, PAOM imaged both retinal vessels and the retinal pigmented epithelium melanin distribution. Conclusions The results demonstrated that PAOM can be well-integrated with fundus camera without affecting its functionality. The fundus camera guidance is faster and easier comparing with our previous work. The integrated system also set the stage for the next-step verification between oximetry methods based on PAOM and fundus photography. PMID:24131226

  2. Streak camera dynamic range optimization

    SciTech Connect

    Wiedwald, J.D.; Lerche, R.A.

    1987-09-01

    The LLNL optical streak camera is used by the Laser Fusion Program in a wide range of applications. Many of these applications require a large recorded dynamic range. Recent work has focused on maximizing the dynamic range of the streak camera recording system. For our streak cameras, image intensifier saturation limits the upper end of the dynamic range. We have developed procedures to set the image intensifier gain such that the system dynamic range is maximized. Specifically, the gain is set such that a single streak tube photoelectron is recorded with an exposure of about five times the recording system noise. This ensures detection of single photoelectrons, while not consuming intensifier or recording system dynamic range through excessive intensifier gain. The optimum intensifier gain has been determined for two types of film and for a lens-coupled CCD camera. We have determined that by recording the streak camera image with a CCD camera, the system is shot-noise limited up to the onset of image intensifier nonlinearity. When recording on film, the film determines the noise at high exposure levels. There is discussion of the effects of slit width and image intensifier saturation on dynamic range. 8 refs.

  3. Wide Dynamic Range CCD Camera

    NASA Astrophysics Data System (ADS)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  4. The virtual gamma camera room.

    PubMed

    Penrose, J M; Trowbridge, E A; Tindale, W B

    1996-05-01

    The installation of a gamma camera is time-consuming and costly and, once installed, the camera position is unlikely to be altered during its working life. Poor choice of camera position therefore has long-term consequences. Additional equipment such as collimators and carts, the operator's workstation and wall-mounted display monitors must also be situated to maximize access and ease of use. The layout of a gamma camera room can be optimized prior to installation by creating a virtual environment. Super-Scape VRT software running on an upgraded 486 PC microprocessor was used to create a 'virtual camera room'. The simulation included an operator's viewpoint and a controlled tour of the room. Equipment could be repositioned as required, allowing potential problems to be identified at the design stage. Access for bed-ridden patients, operator ergonomics, operator and patient visibility were addressed. The display can also be used for patient education. Creation of a virtual environment is a valuable tool which allows different camera systems to be compared interactively in terms of dimensions, extent of movement and use of a defined space. Such a system also has applications in radiopharmacy design and simulation. PMID:8736511

  5. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  6. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    NASA Astrophysics Data System (ADS)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  7. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  8. Wideband propagation measurements at 30.3 GHz through a pecan orchard in Texas

    NASA Astrophysics Data System (ADS)

    Papazian, Peter B.; Jones, David L.; Espeland, Richard H.

    1992-09-01

    Wideband propagation measurements were made in a pecan orchard in Texas during April and August of 1990 to examine the propagation characteristics of millimeter-wave signals through vegetation. Measurements were made on tree obstructed paths with and without leaves. The study presents narrowband attenuation data at 9.6 and 28.8 GHz as well as wideband impulse response measurements at 30.3 GHz. The wideband probe (Violette et al., 1983), provides amplitude and delay of reflected and scattered signals and bit-error rate. This is accomplished using a 500 MBit/sec pseudo-random code to BPSK modulate a 28.8 GHz carrier. The channel impulse response is then extracted by cross correlating the received pseudo-random sequence with a locally generated replica.

  9. Wideband antireflection coatings on germanium and filters for second optical window

    NASA Astrophysics Data System (ADS)

    Ciosek, Jerzy; Firak, Jozef; Stanislawek, Urszula; Kwasny, Miroslaw; Kopczynski, Krzysztof

    2003-10-01

    The investigation results of wideband (8-12 μm) antireflection coatings on germanium substrate and spectral characteristics of interference wideband filter for spectral range of 8-12 μm are presented. For design of filters and antireflection coatings the following layer materials were used: Ge, ZnS and Mira, and substrate materials such as: Ge for antireflection coatings and ZnSe for interference filters. Wideband filter for the range of 8-12 μm requires application of additional two filters cutting off radiation from the range of 1-7 μm. The cutting off filters are interference filters for which construction germanium, Mira, and ZnS were used. The constructions of basic and cutting off filters were designed considering technical possibilities of vacuum device BAK 550 of the Balzers firm.

  10. Experimental Investigation of Low-Jitter and Wide-Band Dual Cascaded PLL System

    NASA Astrophysics Data System (ADS)

    Telba, Ahmed; Qasim, Syed Manzoor

    2011-08-01

    Jitter is a matter of great concern for high-speed digital designers because of its ability to degrade the overall system performance. Designing a low-jitter and wide-band phase locked loop (PLL) system is of practical importance because of its application in high speed digital systems. This paper experimentally investigates a low-jitter and wide-band dual cascaded PLL system using a single crystal oscillator. The first PLL used in the system employs a voltage-controlled crystal oscillator (VCXO) to eliminate the input jitter whereas the second PLL provides wide bandwidth. Field Programmable Gate Array (FPGA) is used to generate a jittered clock source which is then passed through the proposed system to achieve wide-band and low-jitter signal. Experimental results are presented to validate the proposed technique for different carrier frequencies.

  11. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  12. Ultra-Wideband Tapered Slot Antenna Arrays with Parallel-Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Miyashita, Hiroaki; Takahashi, Toru; Otsuka, Masataka; Konishi, Yoshihiko

    Owing to their ultra-wideband characteristics, tapered slot antennas (TSAs) are used as element antennas in wideband phased arrays. However, when the size of a TSA is reduced in order to prevent the generation of a grating lobe during wide-angle beam scanning, the original ultra-wideband characteristics are degraded because of increased reflections from the ends of the tapered slot aperture. To overcome this difficulty, we propose a new antenna structure in which parallel-plate waveguides are added to the TSA. The advantage of this new structure is that the reflection characteristics of individual antenna elements are not degraded even if the width of the antenna aperture is very small, i.e., approximately one-half the wavelength of the highest operating frequency. In this study, we propose a procedure for designing the new antenna through numerical simulations by using the FDTD method. In addition, we verify the performance of the antenna array by experiments.

  13. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  14. The MC and LFC cameras. [metric camera (MC); large format camera (LFC)

    NASA Technical Reports Server (NTRS)

    Norton, Clarice L.; Schroeder, Manfried; Mollberg, Bernard

    1986-01-01

    The characteristics of the shuttle-borne Large Format Camera are listed. The LFC focal plane format was 23 by 46 cm, double the usual size, thereby acquiring approximately double the ground area. Forward motion compensation was employed. With the stable platform (shuttle) it was possible to use the slow exposure, high resolution, Kodak aerial films; 3414 and 3412 black and white, SO-242 color, and SO-131 aerochrome infrared. The camera was designed to maintain stability during varying temperature extremes of space.

  15. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  16. Airborne fungi--a resurvey

    SciTech Connect

    Meyer, G.H.; Prince, H.E.; Raymer, W.J.

    1983-07-01

    A 15-month survey of airborne fungi at 14 geographical stations was conducted to determine the incidence of different fungal genera. Five of these stations were surveyed 25 years earlier. A comparison between previous studies and present surveys revealed similar organisms at each station with slight shifts in frequency of dominant genera.

  17. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  18. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  19. Airborne asbestos in public buildings

    SciTech Connect

    Chesson, J.; Hatfield, J.; Schultz, B.; Dutrow, E.; Blake, J. )

    1990-02-01

    The U.S. Environmental Protection Agency sampled air in 49 government-owned buildings (six buildings with no asbestos-containing material, six buildings with asbestos-containing material in generally good condition, and 37 buildings with damaged asbestos-containing material). This is the most comprehensive study to date of airborne asbestos levels in U.S. public buildings during normal building activities. The air outside each building was also sampled. Air samples were analyzed by transmission electron microscopy using a direct transfer preparation technique. The results show an increasing trend in average airborne asbestos levels; outdoor levels are lowest and levels in buildings with damaged asbestos-containing material are highest. However, the measured levels and the differences between indoors and outdoors and between building categories are small in absolute magnitude. Comparable studies from Canada and the UK, although differing in their estimated concentrations, also conclude that while airborne asbestos levels may be elevated in buildings that contain asbestos, levels are generally low. This conclusion does not eliminate the possibility of higher airborne asbestos levels during maintenance or renovation that disturbs the asbestos-containing material.

  20. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  1. Augmented reality using ultra-wideband radar imagery

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Koenig, Francois; Sherbondy, Kelly

    2011-06-01

    The U.S. Army Research Laboratory (ARL) has been investigating the utility of ultra-wideband (UWB) synthetic aperture radar (SAR) technology for detecting concealed targets in various applications. We have designed and built a vehicle-based, low-frequency UWB SAR radar for proof-of-concept demonstration in detecting obstacles for autonomous navigation, detecting concealed targets (mines, etc.), and mapping internal building structures to locate enemy activity. Although the low-frequency UWB radar technology offers valuable information to complement other technologies due to its penetration capability, it is very difficult to comprehend the radar imagery and correlate the detection list from the radar with the objects in the real world. Using augmented reality (AR) technology, we can superimpose the information from the radar onto the video image of the real world in real-time. Using this, Soldiers would view the environment and the superimposed graphics (SAR imagery, detection locations, digital map, etc.) via a standard display or a head-mounted display. The superimposed information would be constantly changed and adjusted for every perspective and movement of the user. ARL has been collaborating with ITT Industries to implement an AR system that integrates the video data captured from the real world and the information from the UWB radar. ARL conducted an experiment and demonstrated the real-time geo-registration of the two independent data streams. The integration of the AR sub-system into the radar system is underway. This paper presents the integration of the AR and SAR systems. It shows results that include the real-time embedding of the SAR imagery and other information into the video data stream.

  2. A wideband analog correlating spectrometer for millimeter astronomy

    NASA Astrophysics Data System (ADS)

    Goeller, Robert E.

    2007-08-01

    This project developed an analog correlating spectrometer intended for use in millimeter Astronomy. It is based in part on the Wideband Analog Spectrometers (WASP and WASP-II) built by Harris, et al (See Harris, et al, (1998), and Harris and Zmuidzinas, (2001)). Like WASP, we use tapped microstrip traces etched on a circuit board as delay lines to produce the autocorrelation function (ACF) of the incoming signal. We then get the spectrum by taking the Fourier Transform of the ACF. A major innovation of our design is the use of a single delay line (per segment) where the signal to be analyzed is launched on to the same delay line from either end. We produce the discrete autocorrelation function of the incoming signal via resistive taps coupled to detector diodes. Multiplication of the signals from each end is accomplished using the detector diode characteristics, along with phase switches and synchronous detectors, eliminating the need for expensive Gilbert Cell multipliers. We designed, built, and tested a complete prototype system with a bandwidth of 6.7 GHz and a resolution of 31 MHz. In this work we describe the detailed design, operation and performance of the prototype spectrometer. The work culminated with the observation of several nearby galaxies; M82, NGC253, IC342 and NGC1068 as well as Sagittarius B2 and Venus, using the prototype spectrometer. We used the FCRAO 14 meter radio telescope with the SEQUOIA receiver, which covers from 85 to 115.5 GHz. Our observations produced continuous spectra over 4 bands, giving near continuous coverage from 86 GHz to 115.5 GHz.

  3. Airborne lidar imaging of salmon.

    PubMed

    Churnside, James H; Wilson, James J

    2004-02-20

    Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter. PMID:15008549

  4. Wide-band imaging for enhanced day and night vision

    NASA Astrophysics Data System (ADS)

    Rafferty, Conor; King, Clifford; Ackland, Bryan; Sproul, Jason; Aberg, Ingvar; O'Neill, Jay; Sriram, T. S.; Godek, Corbin; Lattes, Analisa; Pappas, Seth; Buck, Arnie; Jovanovic, Vasilije

    2010-04-01

    Visible-band cameras using silicon imagers provide excellent video under daylight conditions, but become blind at night. The night sky provides illumination from 1-2 μm which cannot be detected with a silicon sensor. Adding short-wave infrared detectors to a CMOS imager would enable a camera which can be used day or night. A germanium-enhanced CMOS imager (TriWave®) has been developed with broadband sensitivity from 0.4 μm to 1.6 μm. A 744 x 576 format imager with 10 μm pixel pitch provides a large field of view without incurring a size and weight penalty in the optics. The small pixel size is achieved by integrating a germanium photodetector into a mainstream CMOS process. A sensitive analog signal chain provides a noise floor of 5 electrons. The imagers are hermetically packaged with a thermo-electric cooler in a windowed metal package 5 cm3 in volume. A compact (<650 cm3) camera core has been designed around the imager. Camera functions implemented include correlated double sampling, dark frame subtraction and non-uniformity corrections. In field tests, videos recorded with different filters in daylight show useful fog and haze penetration over long distances. Under clear moonless conditions, short-wave infrared (SWIR) images recorded with TriWave make visible individuals that cannot be seen in videos recorded simultaneously using an EMCCD. Band-filtered videos confirm that the night-sky illumination is dominated by wavelengths above 1200 nm.

  5. Sub-Camera Calibration of a Penta-Camera

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  6. Data fusion techniques for object space classification using airborne laser data and airborne digital photographs

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong

    The objective of this research is to investigate possible strategies for the fusion of airborne laser data with passive optical data for object space classification. A significant contribution of our work is the development and implementation of a data-level fusion technique, direct digital image georeferencing (DDIG). In DDIG, we use navigation data from an integrated system (composed of global positioning system (GPS) and inertial measurement unit (IMU)) to project three-dimensional data points measured with the University of Florida's airborne laser swath mapping (ALSM) system onto digital aerial photographs. As an underlying math model, we use the familiar collinearity condition equations. After matching the ALSM object space points to their corresponding image space pixels, we resample the digital photographs using cubic convolution techniques. We call the resulting images pseudo-ortho-rectified images (PORI) because they are orthographic at the ground surface but still exhibit some relief displacement for elevated objects; and because they have been resampled using a interpolation technique. Our accuracy tests on these PORI images show that they are planimetrically correct to about 0.4 meters. This accuracy is sufficient to remove most of the effects of the central perspective projection and enable a meaningful fusion of the RGB data with the height and intensity data produced by the laser. PORI images may also be sufficiently accurate for many other mapping applications, and may in some applications be an attractive alternative to traditional photogrammetric techniques. A second contribution of our research is the development of several strategies for the fusion of data from airborne laser and camera systems. We have conducted our work within the sensor fusion paradigm formalized in the optical engineering community. Our work explores the fusion of these two types of data for precision mapping applications. Specifically, we combine three different types of

  7. Wideband multilayer gratings for the 17-25 nm spectral region.

    PubMed

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Sawhney, Kawal; Wang, Zhanshan

    2016-06-27

    An approach to designing wideband blazed multilayer gratings is introduced and applied to gratings operating at 17-25 nm. We demonstrate single-order operation of broadband multilayer gratings, despite their very wide spectral and angular bandpass, when only one diffraction wave is excited and the diffraction efficiency reaches the reflectivity of a conventional depth-graded multilayer mirror, eliminating overlapping of different-order diffraction waves. The selection principles for the geometrical parameters of gratings are discussed. We formulate a "law of similarity" for wideband gratings that allows us to design gratings with different geometrical parameters but practically the same spectral dependence of the diffraction efficiency. PMID:27410659

  8. Wideband induction acceleration and its intrinsic nature in the KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Yoshimoto, T.; Hirose, M.; Liu, X.; Adachi, T.; Kadokura, E.; Kawakubo, T.; Takano, S.; Takayama, K.

    2015-10-01

    The wideband induction acceleration method makes it possible to accelerate any ion species directly from the low-energy region of several hundred kiloelectron volts in the KEK induction synchrotron. The wideband acceleration method for heavy ions in the KEK digital accelerator (KEK-DA), which is a fast cycling induction synchrotron, is presented and the experimental results are discussed. A macroparticle simulation is described that well reproduces the longitudinal beam motion of the experiment, which is characterized by a non-uniform bunch motion in the longitudinal phase space. This is caused by as an intrinsic characteristic of the current acceleration system of the KEK-DA.

  9. Size, gain and bandwidth trade-offs for wideband diamond dipole with AMC reflector

    NASA Astrophysics Data System (ADS)

    Joshi, Chetan; Lepage, Anne Claire; Sarrazin, Julien; Begaud, Xavier

    2016-03-01

    Compact and directive ultra-wideband antennas are required in variety of applications. Directional wideband antennas can be designed by using a reflector to redirect the energy back in half space and increase the gain. Use of artificial magnetic conductors (AMC) as reflectors for antennas allows reduction in the thickness of an antenna using traditional perfect electrical conductors (PEC) reflectors. The lateral size of the reflector also has an important effect on the antenna performance. In this paper, we study the trade-offs involved in the design of an AMC used as a reflector for broadband diamond dipole antenna by simulating various sizes of the reflector.

  10. Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers.

    PubMed

    Sanad, Mohamed; Hassan, Noha

    2014-01-01

    A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas. PMID:24558322

  11. An estimate of the response of a telephone repeater to a wideband pulse using FAAT techniques

    SciTech Connect

    Bacon, L.D.; Hoffman, J.M.

    1992-09-01

    The purpose of a FAAT analysis is to estimate the probability of system upset to an electromagnetic threat, for systems on which we have incomplete information. As an example of this process, we will discuss the response of part of a telephone repeater system to wideband transients. We first estimate the currents induced on above-ground and buried cables. After that, we describe the simple circuit we used to build a model of the amplifier and protective devices. Finally, we describe the scaling of the energy deposited in the electronics, including its nonlinear large-signal response, with the amplitude of the wideband waveforms.

  12. Progress in the development of airborne remote sensing instrumentation for the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; McCorkel, Joel; Hamlin, Louise; Green, Robert O.; Krause, Keith S.; Johnson, Brian R.

    2011-09-01

    The National Ecological Observatory Network (NEON) is a planned facility of the National Science Foundation with the mission to enable understanding and forecasting of the impacts of climate change, land use change and invasive species on continental-scale ecology. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON Airborne Observation Platform is designed to bridge scales from organism and stand scales, as captured by plot and tower observations, to the scale of satellite based remote sensing. Fused airborne spectroscopy and waveform LiDAR is used to quantify vegetation composition and structure. Panchromatic photography at better than 30 cm resolution will retrieve fine-scale information on land use, roads, impervious surfaces, and built structures. NEON will build three airborne systems to allow for regular coverage of NEON sites and the capacity to respond to investigator requests for specific projects. The system design achieves a balance between performance and development cost and risk, taking full advantage of existing commercial airborne LiDAR and camera components. To reduce risk during NEON construction, an imaging spectrometer design verification unit is being developed at the Jet Propulsion Laboratory to demonstrate that operational and performance requirements can be met. As part of this effort, NEON is also focusing on science algorithm development, computing hardware prototyping and early airborne test flights with similar technologies. This paper presents an overview of the development status of the NEON airborne instrumentation in the context of the NEON mission.

  13. Distributed consensus on camera pose.

    PubMed

    Jorstad, Anne; DeMenthon, Daniel; Wang, I-Jeng; Burlina, Philippe

    2010-09-01

    Our work addresses pose estimation in a distributed camera framework. We examine how processing cameras can best reach a consensus about the pose of an object when they are each given a model of the object, defined by a set of point coordinates in the object frame of reference. The cameras can only see a subset of the object feature points in the midst of background clutter points, not knowing which image points match with which object points, nor which points are object points or background points. The cameras individually recover a prediction of the object's pose using their knowledge of the model, and then exchange information with their neighbors, performing consensus updates locally to obtain a single estimate consistent across all cameras, without requiring a common centralized processor. Our main contributions are: 1) we present a novel algorithm performing consensus updates in 3-D world coordinates penalized by a 3-D model, and 2) we perform a thorough comparison of our method with other current consensus methods. Our method is consistently the most accurate, and we confirm that the existing consensus method based upon calculating the Karcher mean of rotations is also reliable and fast. Experiments on simulated and real imagery are reported. PMID:20363678

  14. The Clementine longwave infrared camera

    SciTech Connect

    Priest, R.E.; Lewis, I.T.; Sewall, N.R.; Park, H.S.; Shannon, M.J.; Ledebuhr, A.G.; Pleasance, L.D.; Massie, M.A.; Metschuleit, K.

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. The longwave-infrared (LWIR) camera supplemented the UV/Visible and near-infrared mapping cameras providing limited strip coverage of the moon, giving insight to the thermal properties of the soils. This camera provided {approximately}100 m spatial resolution at 400 km periselene, and a 7 km across-track swath. This 2.1 kg camera using a 128 x 128 Mercury-Cadmium-Telluride (MCT) FPA viewed thermal emission of the lunar surface and lunar horizon in the 8.0 to 9.5 {micro}m wavelength region. A description of this light-weight, low power LWIR camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  15. CARTOGAM: a portable gamma camera

    NASA Astrophysics Data System (ADS)

    Gal, O.; Izac, C.; Lainé, F.; Nguyen, A.

    1997-02-01

    The gamma camera is devised to establish the cartography of radioactive sources against a visible background in quasi real time. This device is designed to spot sources from a distance during the preparation of interventions on active areas of nuclear installations. This implement will permit to optimize interventions especially on the dosimetric level. The camera consists of a double cone collimator, a scintillator and an intensified CCD camera. This chain of detection provides the formation of both gamma images and visible images. Even though it is wrapped in a denal shield, the camera is still portable (mass < 15 kg) and compact (external diameter = 8 cm). The angular resolution is of the order of one degree for gamma rays of 1 MeV. In a few minutes, the device is able to measure a dose rate of 10 μGy/h delivered for instance by a source of 60Co of 90 mCi located at 10 m from the detector. The first images recorded in the laboratory will be presented and will illustrate the performances obtained with this camera.

  16. Traditional gamma cameras are preferred.

    PubMed

    DePuey, E Gordon

    2016-08-01

    Although the new solid-state dedicated cardiac cameras provide excellent spatial and energy resolution and allow for markedly reduced SPECT acquisition times and/or injected radiopharmaceutical activity, they have some distinct disadvantages compared to traditional sodium iodide SPECT cameras. They are expensive. Attenuation correction is not available. Cardio-focused collimation, advantageous to increase depth-dependent resolution and myocardial count density, accentuates diaphragmatic attenuation and scatter from subdiaphragmatic structures. Although supplemental prone imaging is therefore routinely advised, many patients cannot tolerate it. Moreover, very large patients cannot be accommodated in the solid-state camera gantries. Since data are acquired simultaneously with an arc of solid-state detectors around the chest, no temporally dependent "rotating" projection images are obtained. Therefore, patient motion can be neither detected nor corrected. In contrast, traditional sodium iodide SPECT cameras provide rotating projection images to allow technologists and physicians to detect and correct patient motion and to accurately detect the position of soft tissue attenuators and to anticipate associated artifacts. Very large patients are easily accommodated. Low-dose x-ray attenuation correction is widely available. Also, relatively inexpensive low-count density software is provided by many vendors, allowing shorter SPECT acquisition times and reduced injected activity approaching that achievable with solid-state cameras. PMID:27072004

  17. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  18. Medium Format Camera Evaluation Based on the Latest Phase One Technology

    NASA Astrophysics Data System (ADS)

    Tölg, T.; Kemper, G.; Kalinski, D.

    2016-06-01

    In early 2016, Phase One Industrial launched a new high resolution camera with a 100 MP CMOS sensor. CCD sensors excel at ISOs up to 200, but in lower light conditions, exposure time must be increased and Forward Motion Compensation (FMC) has to be employed to avoid smearing the images. The CMOS sensor has an ISO range of up to 6400, which enables short exposures instead of using FMC. This paper aims to evaluate the strengths of each of the sensor types based on real missions over a test field in Speyer, Germany, used for airborne camera calibration. The test field area has about 30 Ground Control Points (GCPs), which enable a perfect scenario for a proper geometric evaluation of the cameras. The test field includes both a Siemen star and scale bars to show any blurring caused by forward motion. The result of the comparison showed that both cameras offer high accuracy photogrammetric results with post processing, including triangulation, calibration, orthophoto and DEM generation. The forward motion effect can be compensated by a fast shutter speed and a higher ISO range of the CMOS-based camera. The results showed no significant differences between cameras.

  19. Satellite and airborne IR sensor validation by an airborne interferometer

    SciTech Connect

    Gumley, L.E.; Delst, P.F. van; Moeller, C.C.

    1996-11-01

    The validation of in-orbit longwave IR radiances from the GOES-8 Sounder and inflight longwave IR radiances from the MODIS Airborne Simulator (MAS) is described. The reference used is the airborne University of Wisconsin High Resolution Interferometer Sounder (HIS). The calibration of each sensor is described. Data collected during the Ocean Temperature Interferometric Survey (OTIS) experiment in January 1995 is used in the comparison between sensors. Detailed forward calculations of at-sensor radiance are used to account for the difference in GOES-8 and HIS altitude and viewing geometry. MAS radiances and spectrally averaged HIS radiances are compared directly. Differences between GOES-8 and HIS brightness temperatures, and GOES-8 and MAS brightness temperatures, are found to be with 1.0 K for the majority of longwave channels examined. The same validation approach will be used for future sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). 11 refs., 2 figs., 4 tabs.

  20. Cameras for semiconductor process control

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  1. Camera-on-a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.

  2. Aerial camera auto focusing system

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  3. Dark Energy Camera for Blanco

    SciTech Connect

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  4. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  5. The GISMO-2 Bolometer Camera

    NASA Technical Reports Server (NTRS)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  6. Geiger-mode ladar cameras

    NASA Astrophysics Data System (ADS)

    Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison; Van Duyne, Stephen; Pauls, Greg; Gaalema, Stephen

    2011-06-01

    The performance of Geiger-mode LAser Detection and Ranging (LADAR) cameras is primarily defined by individual pixel attributes, such as dark count rate (DCR), photon detection efficiency (PDE), jitter, and crosstalk. However, for the expanding LADAR imaging applications, other factors, such as image uniformity, component tolerance, manufacturability, reliability, and operational features, have to be considered. Recently we have developed new 32×32 and 32×128 Read-Out Integrated Circuits (ROIC) for LADAR applications. With multiple filter and absorber structures, the 50-μm-pitch arrays demonstrate pixel crosstalk less than 100 ppm level, while maintaining a PDE greater than 40% at 4 V overbias. Besides the improved epitaxial and process uniformity of the APD arrays, the new ROICs implement a Non-uniform Bias (NUB) circuit providing 4-bit bias voltage tunability over a 2.5 V range to individually bias each pixel. All these features greatly increase the performance uniformity of the LADAR camera. Cameras based on these ROICs were integrated with a data acquisition system developed by Boeing DES. The 32×32 version has a range gate of up to 7 μs and can cover a range window of about 1 km with 14-bit and 0.5 ns timing resolution. The 32×128 camera can be operated at a frame rate of up to 20 kHz with 0.3 ns and 14-bit time resolution through a full CameraLink. The performance of the 32×32 LADAR camera has been demonstrated in a series of field tests on various vehicles.

  7. Techniques for radar imaging using a wideband adaptive array

    NASA Astrophysics Data System (ADS)

    Curry, Mark Andrew

    A microwave imaging approach is simulated and validated experimentally that uses a small, wideband adaptive array. The experimental 12-element linear array and microwave receiver uses stepped frequency CW signals from 2--3 GHz and receives backscattered energy from short range objects in a +/-90° field of view. Discone antenna elements are used due to their wide temporal bandwidth, isotropic azimuth beam pattern and fixed phase center. It is also shown that these antennas have very low mutual coupling, which significantly reduces the calibration requirements. The MUSIC spectrum is used as a calibration tool. Spatial resampling is used to correct the dispersion effects, which if not compensated causes severe reduction in detection and resolution for medium and large off-axis angles. Fourier processing provides range resolution and the minimum variance spectral estimate is employed to resolve constant range targets for improved angular resolution. Spatial smoothing techniques are used to generate signal plus interference covariance matrices at each range bin. Clutter affects the angular resolution of the array due to the increase in rank of the signal plus clutter covariance matrix, whereas at the same time the rank of this matrix is reduced for closely spaced scatterers due to signal coherence. A method is proposed to enhance angular resolution in the presence of clutter by an approximate signal subspace projection (ASSP) that maps the received signal space to a lower effective rank approximation. This projection operator has a scalar control parameter that is a function of the signal and clutter amplitude estimates. These operations are accomplished without using eigendecomposition. The low sidelobe levels allow the imaging of the integrated backscattering from the absorber cones in the chamber. This creates a fairly large clutter signature for testing ASSP. We can easily resolve 2 dihedrals placed at about 70% of a beamwidth apart, with a signal to clutter ratio

  8. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  9. Introduction of a Photogrammetric Camera System for Rpas with Highly Accurate Gnss/imu Information for Standardized Workflows

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Geßner, M.; Meißner, H.; Przybilla, H. J.; Gerke, M.

    2016-03-01

    In this paper we present the evaluation of DLR's modular airborne camera system MACS-Micro for remotely piloted aircraft system (RPAS) with a maximum takeoff weight (MTOW) less than 5kg. The main focus is on standardized calibration and test procedures as well as on standardized photogrammetric workflows as a proof of feasibility for this aerial camera concept. The prototype consists of an industrial grade frame imaging camera and a compact GNSS/IMU solution which are operated by an embedded PC. The camera has been calibrated pre- and post- flight using a three dimensional test field. The validation of the latest prototype is done by a traditional photogrammetric evaluation of an aerial survey using 39 ground control points. The results, concerning geometric and radiometric features of the present system concept as well as the quality of the aero triangulation, fulfill many of the aimed keyspecifications.

  10. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  11. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  12. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  13. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation of wideband systems within the band 5925-7250 MHz. 15.250 Section 15.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.250...

  14. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation of wideband systems within the band 5925-7250 MHz. 15.250 Section 15.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.250...

  15. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation of wideband systems within the band 5925-7250 MHz. 15.250 Section 15.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.250...

  16. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation of wideband systems within the band 5925-7250 MHz. 15.250 Section 15.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.250...

  17. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband systems within the band 5925-7250 MHz. 15.250 Section 15.250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.250...

  18. Provision of 9.6-kbps wideband data rate capability in the DSN

    NASA Technical Reports Server (NTRS)

    Brunder, G. J.

    1982-01-01

    The new 9.6-kbps wideband data rate capability in the DSN is reviewed. A functional description of the completed implementation is presented, together with a plan to upgrade the central communications terminal for additional 9.6 s operational flexibility.

  19. Laser optoacoustic diagnostics of femtosecond filaments in air using wideband piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Uryupina, D. S.; Bychkov, A. S.; Pushkarev, D. V.; Mitina, E. V.; Savel’ev, A. B.; Kosareva, O. G.; Panov, N. A.; Karabutov, A. A.; Cherepetskaya, E. B.

    2016-09-01

    New opportunities in ultrasound diagnostics of femtosecond laser filaments with wideband piezoelectric transducers are considered. Transverse spatial resolution better than 100 microns is demonstrated in the single and regular multiple filamentation regime making path toward 3D filament tomography. The simple analytical model of the cylindrical acoustic source fitted well with the experimental data.

  20. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste. PMID:23047084

  1. Airborne lidar global positioning investigations

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.

    1988-01-01

    The Global Positioning System (GPS) network of satellites shows high promise of revolutionizing methods for conducting surveying, navigation, and positioning. This is especially true in the case of airborne or satellite positioning. A single GPS receiver (suitably adapted for aircraft deployment) can yield positioning accuracies (world-wide) in the order of 30 to 50 m vertically, as well as horizontally. This accuracy is dramatically improved when a second GPS receiver is positioned at a known horizontal and vertical reference. Absolute horizontal and vertical positioning of 1 to 2 m are easily achieved over areas of separation of tens of km. If four common satellites remain in lock in both receivers, then differential phase pseudo-ranges on the GPS L-band carrier can be utilized to achieve accuracies of + or - 10 cm and perhaps as good as + or - 2 cm. The initial proof of concept investigation for airborne positioning using the phase difference between the airborne and stationary GPS receivers was conducted and is examined.

  2. NASA Student Airborne Research Program

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  3. Airborne particulate matter in spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  4. Measuring Distances Using Digital Cameras

    ERIC Educational Resources Information Center

    Kendal, Dave

    2007-01-01

    This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…

  5. Gamma-ray camera flyby

    SciTech Connect

    2010-01-01

    Animation based on an actual classroom demonstration of the prototype CCI-2 gamma-ray camera's ability to image a hidden radioactive source, a cesium-137 line source, in three dimensions. For more information see http://newscenter.lbl.gov/feature-stories/2010/06/02/applied-nuclear-physics/.

  6. Camera assisted multimodal user interaction

    NASA Astrophysics Data System (ADS)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  7. Television Camera Operator. Student's Manual.

    ERIC Educational Resources Information Center

    Grimes, L. A., Jr.

    This student manual is one in a series of individualized instructional materials for use under the supervision of an instructor. The self-contained manual was developed for persons training to become television camera operators. Each assignment has all the information needed, including a list of objectives that should be met and exercise questions…

  8. The Camera Comes to Court.

    ERIC Educational Resources Information Center

    Floren, Leola

    After the Lindbergh kidnapping trial in 1935, the American Bar Association sought to eliminate electronic equipment from courtroom proceedings. Eventually, all but two states adopted regulations applying that ban to some extent, and a 1965 Supreme Court decision encouraged the banning of television cameras at trials as well. Currently, some states…

  9. Camera lens adapter magnifies image

    NASA Technical Reports Server (NTRS)

    Moffitt, F. L.

    1967-01-01

    Polaroid Land camera with an illuminated 7-power magnifier adapted to the lens, photographs weld flaws. The flaws are located by inspection with a 10-power magnifying glass and then photographed with this device, thus providing immediate pictorial data for use in remedial procedures.

  10. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1991-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.

  11. High speed multiwire photon camera

    NASA Technical Reports Server (NTRS)

    Lacy, Jeffrey L. (Inventor)

    1989-01-01

    An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.

  12. Full Stokes polarization imaging camera

    NASA Astrophysics Data System (ADS)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  13. Making Films without a Camera.

    ERIC Educational Resources Information Center

    Cox, Carole

    1980-01-01

    Describes draw-on filmmaking as an exciting way to introduce children to the plastic, fluid nature of the film medium, to develop their appreciation and understanding of divergent cinematic techniques and themes, and to invite them into the dream world of filmmaking without the need for a camera. (AEA)

  14. Stratoscope 2 integrating television camera

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development, construction, test and delivery of an integrating television camera for use as the primary data sensor on Flight 9 of Stratoscope 2 is described. The system block diagrams are presented along with the performance data, and definition of the interface of the telescope with the power, telemetry, and communication system.

  15. Multispectral light scattering imaging and multivariate analysis of airborne particulates

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Skelsey, Charles R.; Fuerstenau, Stephen D.

    2005-05-01

    Light scattering patterns from non-spherical particles and aggregates exhibit complex structure that is only revealed when observing in two angular dimensions. However, due to the varied shape and packing of such aerosols, the rich structure in the two-dimensional angular optical scattering (TAOS) pattern varies from particle to particle. We examine two-dimensional light scattering patterns obtained at multiple wavelengths using a single CCD camera with minimal cross talk between channels. The integration of the approach with a single CCD camera assures that data is acquired within the same solid angle and orientation. Since the optical size of the scattering particle is inversely proportional to the illuminating wavelength, the spectrally resolved scattering information provides characteristic information about the airborne particles simultaneously in two different scaling regimes. The simultaneous acquisition of data from airborne particulate matter at two different wavelengths allows for additional degrees of freedom in the analysis and characterization of the aerosols. Whereas our previous multivariate analyses of aerosol particles has relied solely on spatial frequency components, our present approach attempts to incorporate the relative symmetry of the particledetector system while extracting information content from both spectral channels. In addition to single channel data, this current approach also examines relative metrics. Consequently, we have begun to employ multivariate techniques based on novel morphological descriptors in order to classify "unknown" particles within a database of TAOS patterns from known aerosols utilizing both spectral and spatial information acquired. A comparison is made among several different classification metrics, all of which show improved classification capabilities relative to our previous approaches.

  16. Survival rate of airborne Mycobacterium bovis.

    PubMed

    Gannon, B W; Hayes, C M; Roe, J M

    2007-04-01

    Despite years of study the principle transmission route of bovine tuberculosis to cattle remains unresolved. The distribution of pathological lesions, which are concentrated in the respiratory system, and the very low dose of Mycobacterium bovis needed to initiate infection from a respiratory tract challenge suggest that the disease is spread by airborne transmission. Critical to the airborne transmission of a pathogenic microorganism is its ability to survive the stresses incurred whilst airborne. This study demonstrates that M. bovis is resistant to the stresses imposed immediately after becoming airborne, 94% surviving the first 10 min after aerosolisation. Once airborne the organism is robust, its viability decreasing with a half-life of approximately 1.5 hours. These findings support the hypothesis that airborne transmission is the principle route of infection for bovine tuberculosis. PMID:17045316

  17. A Robust Separating and Tracking Method on Two Wideband Sources by Subspace Rotation with One Vector Hydrophone

    NASA Astrophysics Data System (ADS)

    Wang, De-jun; Li, Feng-hua

    2010-09-01

    It has been proved theoretically that two incompletely correlated sources can be identified by linear signal processing methods. However, it is difficult in practice. A new method to separate two wideband sources with one vector sensor is presented in this paper. The method is the combination of subspace rotation and spatial matched filter. Simulations show that this method is insensitive to the initial azimuth error, independent of signal spectrum, and better man wideband focusing subspace methods at low SNR. The sea trial is performed and the experiment results show that the proposed method is effective to separate and track two wideband sources in the underwater environment.

  18. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  19. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  20. Airborne multisensor system for the autonomous detection of land mines

    NASA Astrophysics Data System (ADS)

    Scheerer, Klaus

    1997-07-01

    A concept of a modular multisensor system for use on an airborne platform is presented. THe sensor system comprises two high resolution IR sensors working in the mid and far IR spectral regions, a RGB video camera with its sensitivity extended to the near IR in connection with a laser illuminator, and a radar with a spatial resolution adapted to the expected mine sizes. The sensor concept emerged from the evaluation of comprehensive static and airborne measurements on numerous buried and unburied mines. The measurements were performed on single mines and on minefields, layed down according to military requirements. The system has an on-board realtime image processing capability and is intended to operate autonomously with a data link to a mobile groundstation. Data from a navigation unit serve to transform the location of identified mines into a geodetic coordinate system. The system will be integrated into a cylindrical structure of about 40 cm diameter. This may be a drone or simply a tube which can be mounted on any carrier whatever. The realization of a simplified demonstrator for captive flight tests is planned by 1998.