Sample records for aircraft flight test

  1. PTERA - Modular Aircraft Flight Test

    NASA Image and Video Library

    2016-01-13

    Aerospace testing can be costly and time consuming but a new modular, subscale remotely piloted aircraft offers NASA researchers more affordable options for developing a wide range of cutting edge aviation and space technologies. The Prototype-Technology Evaluation and Research Aircraft (PTERA), developed by Area-I, Inc., of Kennesaw, Georgia, is an extremely versatile and high quality, yet inexpensive, flying laboratory bridging the gap between wind tunnels and crewed flight testing.

  2. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

  3. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  4. Aircraft flight test trajectory control

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Walker, R. A.

    1988-01-01

    Two control law design techniques are compared and the performance of the resulting controllers evaluated. The design requirement is for a flight test trajectory controller (FTTC) capable of closed-loop, outer-loop control of an F-15 aircraft performing high-quality research flight test maneuvers. The maneuver modeling, linearization, and design methodologies utilized in this research, are detailed. The results of applying these FTTCs to a nonlinear F-15 simulation are presented.

  5. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  6. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  7. Flight test techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.

    1987-01-01

    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.

  8. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    NASA Technical Reports Server (NTRS)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  9. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  10. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  11. Flight test evaluation of a method to determine the level flight performance propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.

    1976-01-01

    A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.

  12. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  13. Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Morris, P. M.

    1985-01-01

    The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.

  14. Autonomous Flight Safety System September 27, 2005, Aircraft Test

    NASA Technical Reports Server (NTRS)

    Simpson, James C.

    2005-01-01

    This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

  15. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  16. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  17. Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans

    NASA Astrophysics Data System (ADS)

    Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn

    2015-09-01

    To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.

  18. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  19. Qualification and Flight Test of Non-Chrome Primers for C-130 Aircraft

    DTIC Science & Technology

    2011-08-17

    system  Significant hexavalent chrome reduction in finish system  Potential exposure level of spray applied chromated conversion coating not as...Lockheed Martin Aeronautics Company Qualification and Flight Test of Non- Chrome Primers for C-130 Aircraft Scott Jones Lockheed Martin...00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Qualification and Flight Test of Non- Chrome Primers for C-130 Aircraft 5a. CONTRACT NUMBER 5b. GRANT

  20. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  1. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Astrophysics Data System (ADS)

    Murphy, Timothy A.; Stapleton, Brian P.

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  2. Flight test of ARINC 741 configuration low gain SATCOM system on Boeing 747-400 aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Timothy A.; Stapleton, Brian P.

    1990-01-01

    The Boeing company conducted a flight test of a SATCOM system similar to the ARINC 741 configuration on a production model 747-400. A flight plan was specifically designed to test the system over a wide variety of satellite elevations and aircraft attitudes as well as over land and sea. Interface bit errors, signal quality and aircraft position and navigational inputs were all recorded as a function of time. Special aircraft maneuvers were performed to demonstrate the potential for shadowing by aircraft structures. Both a compass rose test and the flight test indicated that shadowing from the tail is insignificant for the 747-400. However, satellite elevation angles below the aircraft horizon during banking maneuvers were shown to have a significant deleterious effect on SATCOM communications.

  3. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  4. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  5. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1988-01-01

    Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

  6. Analysis of an Artificial Tailplane Icing Flight Test of a High-Wing, Twin-Engine Aircraft

    NASA Astrophysics Data System (ADS)

    Shaikh, Shehzad M.

    The US Air Force Flight Test Center (AFFTC) conducted a civilian, Federal Aviation Administration (FAA) sponsored, evaluation of tailplane icing of a twin-turboprop business transport at Edwards Air Force Base. The flight test was conducted to evaluate ice shape growth and extent of ice on the tailplane for specific weather conditions of Liquid Water Content (LWC), droplet size, and ambient temperature. This work analyzes the flight test data comparing the drag for various tailplane icing conditions with respect to a flight test verified calibrated aircraft model. Although less than a third of the test aircraft was involved in the icing environment, the results of this analysis shows a significant increase in the aircraft drag with respect to the LWC, droplet size, and ambient temperature.

  7. Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.

    1984-01-01

    The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

  8. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  9. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  10. In-flight acoustic testing techniques using the YO-3A acoustic research aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1983-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  11. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  12. Propeller aircraft interior noise model. II - Scale-model and flight-test comparisons

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.

    1987-01-01

    A program for predicting the sound levels inside propeller driven aircraft arising from sidewall transmission of airborne exterior noise is validated through comparisons of predictions with both scale-model test results and measurements obtained in flight tests on a turboprop aircraft. The program produced unbiased predictions for the case of the scale-model tests, with a standard deviation of errors of about 4 dB. For the case of the flight tests, the predictions revealed a bias of 2.62-4.28 dB (depending upon whether or not the data for the fourth harmonic were included) and the standard deviation of the errors ranged between 2.43 and 4.12 dB. The analytical model is shown to be capable of taking changes in the flight environment into account.

  13. On-Line Mu Method for Robust Flutter Prediction in Expanding a Safe Flight Envelope for an Aircraft Model Under Flight Test

    NASA Technical Reports Server (NTRS)

    Lind, Richard C. (Inventor); Brenner, Martin J.

    2001-01-01

    A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.

  14. LFC leading edge glove flight: Aircraft modification design, test article development and systems integration

    NASA Technical Reports Server (NTRS)

    Etchberger, F. R.

    1983-01-01

    Reduction of skin friction drag by suction of boundary layer air to maintain laminar flow has been known since Prandtl's published work in 1904. The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments in designing and fabricating a leading-edge flight test article incorporating boundary layer suction slots to be flown by NASA on their modified JetStar aircraft. Lockheed-Georgia Company performed as the integration contractor to design the JetStar aircraft modification to accept both a Lockheed and a McDonnell Douglas flight test article. McDonnell Douglas uses a porous skin concept. The report describes aerodynamic analyses, fabrication techniques, JetStar modifications, instrumentation requirements, and structural analyses and testing for the Lockheed test article. NASA will flight test the two LFC leading-edge test articles in a simulated commercial environment over a 6 to 8 month period in 1984. The objective of the flight test program is to evaluate the effectiveness of LFC leading-edge systems in reducing skin friction drag and consequently improving fuel efficiency.

  15. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  16. Comparison of model and flight test data for an augmented jet flap STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Cook, W. L.; Whittley, D. C.

    1975-01-01

    Aerodynamic design data for the Augmented Jet Flap STOL Research Aircraft or commonly known as the Augmentor-Wing Jet-STOL Research Aircraft was based on results of tests carried out on a large scale research model in the NASA Ames 40- by 80-Foot Wind Tunnel. Since the model differs in some respects from the aircraft, precise correlation between tunnel and flight test is not expected, however the major areas of confidence derived from the wind tunnel tests are delineated, and for the most part, tunnel results compare favorably with flight experience. In some areas the model tests were known to be nonrepresentative so that a degree of uncertainty remained: these areas of greater uncertainty are identified, and discussed in the light of subsequent flight tests.

  17. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  18. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  19. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  20. Flight test results for the Daedalus and Light Eagle human powered aircraft

    NASA Technical Reports Server (NTRS)

    Sullivan, R. Bryan; Zerweckh, Siegfried H.

    1988-01-01

    The results of the flight test program of the Daedalus and Light Eagle human powered aircraft in the winter of 1987/88 are given. The results from experiments exploring the Light Eagle's rigid body and structural dynamics are presented. The interactions of these dynamics with the autopilot design are investigated. Estimates of the power required to fly the Daedalus aircraft are detailed. The system of sensors, signal conditioning boards, and data acquisition equipment used to record the flight data is also described. In order to investigate the dynamics of the aircraft, flight test maneuvers were developed to yield maximum data quality from the point of view of estimating lateral and longitudinal stability derivatives. From this data, structural flexibility and unsteady aerodynamics have been modeled in an ad hoc manner and are used to augment the equations of motion with flexibility effects. Results of maneuvers that were flown are compared with the predictions from the flexibility model. To extend the ad hoc flexibility model, a fully flexible aeroelastic model has been developed. The model is unusual in the approximate equality of many structural natural frequencies and the importance of unsteady aerodynamic effects. the Gossamer Albatross. It is hypothesized that this inverse ground effect is caused by turbulence in the Earth's boundary layer. The diameters of the largest boundary layer eddies (which represent most of the turbulent kinetic energy) are proportional to altitude; thus, closer to the ground, the energy in the boundary layer becomes concentrated in eddies of smaller and smaller diameter. Eventually the eddies become sufficiently small (approximately 0.5 cm) that they trip the laminar boundary layer on the wing. As a result, a greater percentage of the wing area is covered with turbulent flow. Consequently the aircraft's drag and the pow er required both increase as the aircraft flies closer to the ground. The results of the flight test program are

  1. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  2. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  3. Flight Test of ASAC Aircraft Interior Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

    1999-01-01

    A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

  4. NASA rotor systems research aircraft: Fixed-wing configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Cross, J. L.; Kufeld, R. M.; Acree, C. W.; Nguyen, D.; Hodge, R. W.

    1986-01-01

    The fixed-wing, airplane configuration flight-test results of the Rotor System Research Aircraft (RSRA), NASA 740, at Ames/Dryden Flight Research Center are documented. Fourteen taxi and flight tests were performed from December 1983 to October 1984. This was the first time the RSRA was flown with the main rotor removed; the tail rotor was installed. These tests confirmed that the RSRA is operable as a fixed-wing aircraft. Data were obtained for various takeoff and landing distances, control sensitivity, trim and dynamics stability characteristics, performance rotor-hub drag, and acoustics signature. Stability data were obtained with the rotor hub both installed and removed. The speed envelope was developed to 261 knots true airspeed (KTAS), 226 knots calibrated airspeed (KCAS) at 10,000 ft density altitude. The airplane was configured at 5 deg. wing incidence with 5 deg. wing flaps as a normal configuration. Level-flight data were acquired at 167 KCAS for wing incidence from 0 to 10 deg. Step inputs and doublet inputs of various magnitudes were utilized to acquire dynamic stability and control sensitivity data. Sine-wave inputs of constantly increasing frequency were used to generate parameter identification data. The maximum load factor attained was 2.34 g at 206 KCAS.

  5. Live Aircraft Encounter Visualization at FutureFlight Central

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  6. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors.

  7. Lateral and longitudinal aerodynamic stability and control parameters of the basic vortex flap research aircraft as determined from flight test data

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Batterson, J. G.

    1986-01-01

    The aerodynamics of the basic F-106B were determined at selected points in the flight envelope. The test aircraft and flight procedures were presented. Aircraft instrumentation and the data system were discussed. The parameter extraction procedure was presented along with a discussion of the test flight results. The results were used to predict the aircraft motions for maneuvers that were not used to determine the vehicle aerodynamics. The control inputs used to maneuver the aircraft to get data for the determination of the aerodynamic parameters were discussed in the flight test procedures. The results from the current flight tests were compared with the results from wind tunnel test of the basic F-106B.

  8. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  9. The design of a joined wing flight demonstrator aircraft

    NASA Technical Reports Server (NTRS)

    Smith, S. C.; Cliff, S. E.; Kroo, I. M.

    1987-01-01

    A joined-wing flight demonstrator aircraft has been developed at the NASA Ames Research Center in collaboration with ACA Industries. The aircraft is designed to utilize the fuselage, engines, and undercarriage of the existing NASA AD-1 flight demonstrator aircraft. The design objectives, methods, constraints, and the resulting aircraft design, called the JW-1, are presented. A wind-tunnel model of the JW-1 was tested in the NASA Ames 12-foot wind tunnel. The test results indicate that the JW-1 has satisfactory flying qualities for a flight demonstrator aircraft. Good agreement of test results with design predictions confirmed the validity of the design methods used for application to joined-wing configurations.

  10. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    the comparison of interpolated fatigue life using CSI value and fatigue test results, it is obvious that proposed advanced IAT method via flight-by-flight load spectra is more reliable and accurate than current IAT method. Therefore, the advanced aircraft service life monitoring method based on flight-by-flight load spectra not only monitors the individual aircraft consumed fatigue life for inspection but also ensures the structural reliability of aging aircrafts throughout their service periods.

  11. Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

    2007-01-01

    The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

  12. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  13. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  14. A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle

    2012-01-01

    Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.

  15. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  16. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.127 Tests: aircraft. (a) Each... test procedure and flight check-off form, and in accordance with that form, flight test each aircraft...

  17. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  18. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  19. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  20. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  1. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  2. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  3. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  4. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  5. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  6. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  7. Practical aspects of modeling aircraft dynamics from flight data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1984-01-01

    The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.

  8. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  9. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  10. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  11. Aircraft digital flight control technical review

    NASA Technical Reports Server (NTRS)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  12. A flight-test methodology for identification of an aerodynamic model for a V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Mcnally, B. David

    1988-01-01

    Described is a flight test methodology for developing a data base to be used to identify an aerodynamic model of a vertical and short takeoff and landing (V/STOL) fighter aircraft. The aircraft serves as a test bed at Ames for ongoing research in advanced V/STOL control and display concepts. The flight envelope to be modeled includes hover, transition to conventional flight, and back to hover, STOL operation, and normaL cruise. Although the aerodynamic model is highly nonlinear, it has been formulated to be linear in the parameters to be identified. Motivation for the flight test methodology advocated in this paper is based on the choice of a linear least-squares method for model identification. The paper covers elements of the methodology from maneuver design to the completed data base. Major emphasis is placed on the use of state estimation with tracking data to ensure consistency among maneuver variables prior to their entry into the data base. The design and processing of a typical maneuver is illustrated.

  13. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  14. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight test...

  15. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the FAA received a flight test report...

  16. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  17. Greased Lightning (GL-10) Flight Testing Campaign

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; McSwain, Robert G.; Beaton, Brian F.; Klassman, David W.; Theodore, Colin R.

    2017-01-01

    Greased Lightning (GL-10) is an aircraft configuration that combines the characteristics of a cruise efficient airplane with the ability to perform vertical takeoff and landing (VTOL). This aircraft has been designed, fabricated and flight tested at the small unmanned aerial system (UAS) scale. This technical memorandum will document the procedures and findings of the flight test experiments. The GL-10 design utilized two key technologies to enable this unique aircraft design; namely, distributed electric propulsion (DEP) and inexpensive closed loop controllers. These technologies enabled the flight of this inherently unstable aircraft. Overall it has been determined thru flight test that a design that leverages these new technologies can yield a useful VTOL cruise efficient aircraft.

  18. Flight testing a V/STOL aircraft to identify a full-envelope aerodynamic model

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Bach, Ralph E., Jr.

    1988-01-01

    Flight-test techniques are being used to generate a data base for identification of a full-envelope aerodynamic model of a V/STOL fighter aircraft, the YAV-8B Harrier. The flight envelope to be modeled includes hover, transition to conventional flight and back to hover, STOL operation, and normal cruise. Standard V/STOL procedures such as vertical takeoff and landings, and short takeoff and landings are used to gather data in the powered-lift flight regime. Long (3 to 5 min) maneuvers which include a variety of input types are used to obtain large-amplitude control and response excitations. The aircraft is under continuous radar tracking; a laser tracker is used for V/STOL operations near the ground. Tracking data are used with state-estimation techniques to check data consistency and to derive unmeasured variables, for example, angular accelerations. A propulsion model of the YAV-8B's engine and reaction control system is used to isolate aerodynamic forces and moments for model identification. Representative V/STOL flight data are presented. The processing of a typical short takeoff and slow landing maneuver is illustrated.

  19. Results of the recent precipitation static flight test program on the Navy P-3B antisubmarine aircraft

    NASA Technical Reports Server (NTRS)

    Whitaker, Mike

    1991-01-01

    Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.

  20. X-48B Flight Test Progress Overview

    NASA Technical Reports Server (NTRS)

    Risch, Timoth K.; Cosentino, Gary B.; Regan, Christopher D.; Kisska, Michael; Princen, Norman

    2009-01-01

    The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.

  1. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  2. ACAS-Xu Initial Self-Separation Flight Tests

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Baca, Gabe

    2015-01-01

    The purpose of this flight test report is to document and report the details of the ACAS Xu (Airborne Collision Avoidance System For Unmanned Aircraft) / Self-Separation flight test series performed at Edwards AFB from November to December of 2014. Included in this document are details about participating aircraft, aircrew, mission crew, system configurations, flight data, flight execution, flight summary, test results, and lessons learned.

  3. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  4. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  5. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  6. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  7. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  8. Flight Test of an Adaptive Configuration Optimization System for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Georgie, Jennifer; Barnicki, Joseph S.

    1999-01-01

    A NASA Dryden Flight Research Center program explores the practical application of real-time adaptive configuration optimization for enhanced transport performance on an L-1011 aircraft. This approach is based on calculation of incremental drag from forced-response, symmetric, outboard aileron maneuvers. In real-time operation, the symmetric outboard aileron deflection is directly optimized, and the horizontal stabilator and angle of attack are indirectly optimized. A flight experiment has been conducted from an onboard research engineering test station, and flight research results are presented herein. The optimization system has demonstrated the capability of determining the minimum drag configuration of the aircraft in real time. The drag-minimization algorithm is capable of identifying drag to approximately a one-drag-count level. Optimizing the symmetric outboard aileron position realizes a drag reduction of 2-3 drag counts (approximately 1 percent). Algorithm analysis of maneuvers indicate that two-sided raised-cosine maneuvers improve definition of the symmetric outboard aileron drag effect, thereby improving analysis results and consistency. Ramp maneuvers provide a more even distribution of data collection as a function of excitation deflection than raised-cosine maneuvers provide. A commercial operational system would require airdata calculations and normal output of current inertial navigation systems; engine pressure ratio measurements would be optional.

  9. Aircraft Carrier Flight Deck Fire Fighting Tactics and Equipment Evaluation Tests

    DTIC Science & Technology

    1987-02-26

    pattern nozzles; 8. proper fire fighting techniques for possible titanium ignition in an F-14 crash (deleted later by direction of FLSC, being studied ...separately); 9. effect of full fire involvement of "ready for flight" aircraft (deleted later by direction of FLSC, being studied separately). The...to refine and identify specific hardware and tactical requirements generated from the studies conducted during the scoping tests; 3. concept

  10. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator Knowledge Test Guide

    DOT National Transportation Integrated Search

    1995-01-01

    The Flight Standards Service of the Federal Aviation Administration (FAA) has developed this guide to help applicants meet the knowledge requirements for airline transport pilot, aircraft dispatcher, and flight navigator certification. This guide con...

  11. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  12. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  13. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  14. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    NASA Technical Reports Server (NTRS)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  15. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  16. Test Platforms for Model-Based Flight Research

    NASA Astrophysics Data System (ADS)

    Dorobantu, Andrei

    Demonstrating the reliability of flight control algorithms is critical to integrating unmanned aircraft systems into the civilian airspace. For many potential applications, design and certification of these algorithms will rely heavily on mathematical models of the aircraft dynamics. Therefore, the aerospace community must develop flight test platforms to support the advancement of model-based techniques. The University of Minnesota has developed a test platform dedicated to model-based flight research for unmanned aircraft systems. This thesis provides an overview of the test platform and its research activities in the areas of system identification, model validation, and closed-loop control for small unmanned aircraft.

  17. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  18. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  19. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  20. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft. (2...

  1. Flight Test Results on the Stability and Control of the F-15 Quiet Spike(TradeMark) Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; McWherter, Shaun C.; Cox, Timothy H.; Gera, Joe

    2012-01-01

    The Quiet Spike F-15B flight research program investigated supersonic shock reduction using a 24-ft sub-scale telescoping nose boom on an F-15B airplane. The program primary flight test objective was to collect flight data for aerodynamic and structural models validation up to 1.8 Mach. Other objectives were to validate the mechanical feasibility of a morphing fuselage at the operational conditions and determine the near-field shock wave characterization. The stability and controls objectives were to assess the effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire research flight envelop. The two main stability and controls issues were the effects of the telescoping nose boom influenced aerodynamics on the F-15B aircraft flight dynamics and air data and angle of attack sensors. This paper reports on the stability and controls flight envelope clearance methods and flight test analysis of the F-15B Quiet Spike. Brief pilot commentary on typical piloting tasks, approach and landing, refueling task, and air data sensitivity to the flight control system are also discussed in this report.

  2. Aircraft Fleet on the Tarmac at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1946-04-21

    This fleet of military aircraft was used in the 1940s for research at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio. The NACA Lewis flight research program was established in March 1943 to augment the lab’s wartime research efforts. NACA Lewis possessed a host of wind tunnels, test stands, and other ground facilities designed to replicate flight conditions, but actual flight tests remained an integral research tool. The military loaned NACA Lewis 15 different aircraft during World War II and six others in the six months following the end of hostilities. During the war these aircraft supported three main efforts: the improved performance of reciprocating engines, better fuel additives and mixtures, and deicing systems. The wartime researchers used the types of aircraft which the studies were intended to improve. After the war the research aircraft served as test beds to investigate engines or systems that often had little to do with the research aircraft. During the war, NACA Lewis’ three pilots were supported by 16 flight engineers, 36 mechanics, and 10 instrumentation specialists. The visible aircraft, from left to right, are a Boeing B-29 Superfortress, a Martin B-26A Marauder, two Consolidated B-24 Liberators, a Cessna UC-78 Bobcat, and a Northrop P-61 Black Widow. Partially obscured are a North American P-51 Mustang, a Bell P-63 King Cobra, a North American AT-6 Texan, and a Lockheed RA-29 Hudson.

  3. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  4. Aircraft Integration and Flight Testing of 4STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, CJ; Kassianov, E; Russell, P

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  5. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.127 Tests: aircraft. (a) Each person manufacturing aircraft under a type certificate must establish an approved production flight test procedure and...

  6. 14 CFR 21.127 - Tests: aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: aircraft. 21.127 Section 21.127... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.127 Tests: aircraft. (a) Each person manufacturing aircraft under a type certificate must establish an approved production flight test procedure and...

  7. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  8. Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis

    NASA Astrophysics Data System (ADS)

    Hendarko; Indriyanto, T.; Syardianto; Maulana, F. A.

    2018-05-01

    Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.

  9. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  10. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  11. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  12. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  13. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft is silhouetted against a clear blue sky as it soars aloft during a checkout flight from the Dryden Flight Research Center, Edwards, California, November, 1996.

  14. X-29A flight control system performance during flight test

    NASA Technical Reports Server (NTRS)

    Chin, J.; Chacon, V.; Gera, J.

    1987-01-01

    An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.

  15. Background Oriented Schlieren (BOS) of a Supersonic Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Banks, Daniel W.; Schairer, Edward T.; Haering, Edward A.; Bean, Paul S.

    2016-01-01

    This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date.

  16. ASTAR Flight Test: Overview and Spacing Results

    NASA Technical Reports Server (NTRS)

    Roper, Roy D.; Koch, Michael R.

    2016-01-01

    The purpose of the NASA Langley Airborne Spacing for Terminal Arrival Routes (ASTAR) research aboard the Boeing ecoDemonstrator aircraft was to demonstrate the use of NASA's ASTAR algorithm using contemporary tools of the Federal Aviation Administration's Next Generation Air Transportation System (NEXTGEN). EcoDemonstrator is a Boeing test program which utilizes advanced experimental equipment to accelerate the science of aerospace and environmentally friendly technologies. The ASTAR Flight Test provided a proof-of-concept flight demonstration that exercised an algorithmic-based application in an actual aircraft. The test aircraft conducted Interval Management operations to provide time-based spacing off a target aircraft in non-simulator wind conditions. Work was conducted as a joint effort between NASA and Boeing to integrate ASTAR in a Boeing supplied B787 test aircraft while using a T-38 aircraft as the target. This demonstration was also used to identify operational risks to future flight trials for the NASA Air Traffic Management Technology Demonstration expected in 2017.

  17. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  18. Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    NASA Technical Reports Server (NTRS)

    Yen, J. G.; Viswanathan, S.; Matthys, C. G.

    1976-01-01

    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft.

  19. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  20. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  1. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    DTIC Science & Technology

    1976-04-01

    U.S. DEPARTMENT OF CRY11ERCE Natioal Techaical Infnaitm Soice AD-A026 838 AGARD FLIGHT TEST INSTRUMENTATION SERIES VOLUME 7. STRAIN GUAGE...MEASUREMENTS ON AIRCRAFT ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PREPARED FOR.I NORTH ATLANTIC TREATY ORGANIZATION APRIL 1976 • • ,. h VI -i• d...INFORMATION DOCUMENT PROCESSING WORKSHEET ,5.RVICE USCOMM-DC 41420.P7I AGARD-AG-160 Volume 7 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE

  2. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  3. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  4. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  5. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract (particularly...

  6. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract (particularly...

  7. 48 CFR 1852.228-71 - Aircraft flight risks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Aircraft flight risks... 1852.228-71 Aircraft flight risks. (a) As prescribed in 1828.311-2, insert the following clause: Aircraft Flight Risks (DEC 1988) (a) Notwithstanding any other provision of this contract (particularly...

  8. A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Innis, R. C.; Grossmith, S.

    1974-01-01

    The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.

  9. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  10. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  11. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  12. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  13. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  14. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  15. A Flight Dynamic Model of Aircraft Spinning

    DTIC Science & Technology

    1990-06-01

    r Zaw rate about body axes S Aircraft wing area V Flight path velocity 3 a Angle of attack Sideslip angle 6, Aileron deflection, positive when right...Tests, May/June 1983 PartI. Unpublished data report. 6. MARTIN, C.A. and SECOMB, D.A. ; RAAF BPTA Phase II Wind Tun - nel Tests: Rotary Balance Tests

  16. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  17. Flight test investigation of certification issues pertaining to general-aviation-type aircraft with natural laminar flow

    NASA Technical Reports Server (NTRS)

    Doty, Wayne A.

    1990-01-01

    Development of Natural Laminar Flow (NLF) technology for application to general aviation-type aircraft has raised some question as to the adequacy of FAR Part 23 for certification of aircraft with significant NLF. A series of flight tests were conducted with a modified Cessna T210R to allow quantitative comparison of the aircraft's ability to meet certification requirements with significant NLF and with boundary layer transition fixed near the leading edge. There were no significant differences between the two conditions except an increasing in drag, which resulted in longer takeoff distances and reduced climb performance.

  18. Scaling Methods for Simulating Aircraft In-Flight Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Ruff, Gary A.

    1997-01-01

    This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.

  19. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  20. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or 135 of this chapter; (2) Has satisfactorily completed the training phases for the aircraft... appropriate training phases for the aircraft, including recurrent training, that are required to serve as a... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...

  1. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  2. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  3. 14 CFR 91.305 - Flight test areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight test areas. 91.305 Section 91.305... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.305 Flight test areas. No person may flight test an aircraft except over open water, or sparsely populated...

  4. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  5. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  6. Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

    2012-01-01

    This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of

  7. Directly measured cabin pressure conditions during Boeing 747-400 commercial aircraft flights.

    PubMed

    Kelly, Paul T; Seccombe, Leigh M; Rogers, Peter G; Peters, Matthew J

    2007-07-01

    In the low pressure environment of commercial aircraft, hypoxaemia may be common and accentuated in patients with lung or heart disease. Regulations specify a cabin pressure not lower than 750 hPa but it is not known whether this standard is met. This knowledge is important in determining the hazards of commercial flight for patients and the validity of current flight simulation tests. Using a wrist-watch recording altimeter, cabin pressure was recorded at 60 s intervals on 45 flights in Boeing 747-400 aircraft with three airlines. A log was kept of aircraft altitude using the in-flight display. Change in cabin pressure during flight, relationship between aircraft altitude and cabin pressure and proportion of flight time with cabin pressure approaching the minimum specified by regulation were determined. Flight duration averaged 10 h. Average cabin pressure during flight was 846 hPa. There was a linear fall in cabin pressure as the aircraft cruising altitude increased. At 10,300 m (34,000 ft) cabin pressure was 843 hPa and changed 8 hPa for every 300 m (1000 ft) change in aircraft altitude (r(2) = 0.993; P < 0.001). Lowest cabin pressure was 792 hPa at 12 200 m (40,000 ft) but during only 2% of flight time was cabin pressure less than 800 hPa. Cabin pressure is determined only by the engineering of the aircraft and its altitude and in the present study was always higher than required by regulation. Current fitness-to-fly evaluations simulate cabin conditions that passengers will not experience on these aircraft. There may be increased risks to patients should new or older aircraft operate nearer to the present minimum standard.

  8. Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.

  9. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  10. Space Shuttle Orbiter Approach and Landing Test Evaluation Report. Captive-Active Flight Test Summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.

  11. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  12. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  13. 14 CFR 375.31 - Demonstration flights of foreign aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Demonstration flights of foreign aircraft. 375.31 Section 375.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... Authorized Operations § 375.31 Demonstration flights of foreign aircraft. Flights of foreign civil aircraft...

  14. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  15. Parabolic Flights with Single-Engine Aerobatic Aircraft: Flight Profile and a Computer Simulator for its Optimization

    NASA Astrophysics Data System (ADS)

    Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura

    2014-11-01

    We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly

  16. SSI-ARC Flight Test 3 Data Review

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Wu, Minghong G.

    2015-01-01

    The "Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS)" Project conducted flight test program, referred to as Flight Test 3, at Armstrong Flight Research Center from June - August 2015. Four flight test days were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as Autoresolver. The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Resulting flight test data and analysis results will be used to evaluate the DAA system performance (e.g., trajectory prediction accuracy, threat detection) and to add fidelity to simulation models used to inform Minimum Operating Performance Standards (MOPS) for integrating UAS into routine NAS operations.

  17. A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Tapscott, Robert J.; Kelley, Henry L.

    1960-01-01

    Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.

  18. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  19. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  20. Statistical Detection of Atypical Aircraft Flights

    NASA Technical Reports Server (NTRS)

    Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; hide

    2006-01-01

    A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

  1. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  2. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  3. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engines, ground flight simulators, parts, components, and subassemblies. 10.183 Section 10.183 Customs... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and...

  4. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus

  5. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus

  6. Flight Testing the Landing Radar for Mars Science Laboratory

    NASA Image and Video Library

    2011-06-21

    A NASA Dryden Flight Research Center F/A-18 852 aircraft performs a roll during June 2011 flight tests of a Mars landing radar. A test model of the landing radar for NASA Mars Science Laboratory mission is inside a pod under the aircraft left wing.

  7. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    NASA Astrophysics Data System (ADS)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  8. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

  9. State estimation applications in aircraft flight-data analysis: A user's manual for SMACK

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.

    1991-01-01

    The evolution in the use of state estimation is traced for the analysis of aircraft flight data. A unifying mathematical framework for state estimation is reviewed, and several examples are presented that illustrate a general approach for checking instrument accuracy and data consistency, and for estimating variables that are difficult to measure. Recent applications associated with research aircraft flight tests and airline turbulence upsets are described. A computer program for aircraft state estimation is discussed in some detail. This document is intended to serve as a user's manual for the program called SMACK (SMoothing for AirCraft Kinematics). The diversity of the applications described emphasizes the potential advantages in using SMACK for flight-data analysis.

  10. Flight Test of GL-1 Glider Half Scale Prototype

    NASA Astrophysics Data System (ADS)

    Fikri Zulkarnain, Muhammad; Fazlur Rahman, Muhammad; Luthfi Imam Nurhakim, Muhammad; Arifianto, Ony; Mulyanto, Taufiq

    2018-04-01

    GL-1 is a single-seat mid-performance glider, designed to be Indonesian National Glider. The Glider have been developing since 2014. The development produced a half scale prototype called BL-1, which had accomplished static test in 2016, then followed by first flight test at April 20th 2017, and second flight test at May 21st 2017. The purpose of the flight test was to obtain familiarization of the aircraft, aerodynamics characteristics and flow visualization, with data from flight recorded in FDR. The flight test resulted in two flights with total length of 21 minutes. The data from FDR and flight test documents extracted to analyze the characteristics and behavior of the aircraft during flight test. The aerodynamics characteristic was close to analytical results. The control was good; however, the effectiveness of control surface may need to be further analyzed. The result of the flight test will be used as a reference for further improvements and may need further testing.

  11. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  12. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  13. 19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components, and... aircraft, aircraft engines, and ground flight simulators, including their parts, components, and... United States (HTSUS) by meeting the following requirements: (1) The aircraft, aircraft engines, ground...

  14. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  15. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    NASA Astrophysics Data System (ADS)

    Larrabee, Trenton Jameson

    sensing data using UAVs in formation flight. This has been achieved and well documented before in manned aircraft but very little work has been done on UAV wake sensing especially during flight testing. This document describes the development and flight testing of small unmanned aerial system (UAS) for wind and wake sensing purpose including a Ground Control Station (GCS) and UAVs. This research can be stated in four major components. Firstly, formation flight was obtained by integrating a formation flight controller on the WVU Phastball Research UAV aircraft platform from the Flight Control Systems Laboratory (FCSL) at West Virginia University (WVU). Second, a new approach to wind estimation using an Unscented Kalman filter (UKF) is discussed along with results from flight data. Third, wake modeling within a simulator and wake sensing during formation flight is shown. Finally, experimental results are used to discuss the "sweet spot" for energy harvesting in formation flight, a novel approach to cooperative wind estimation, and gust suppression control for a follower aircraft in formation flight.

  16. Aircraft Dispatcher - Practical Test Standards

    DOT National Transportation Integrated Search

    1995-06-01

    The Flight Standards Service of the FAA has developed this practical : test book as a standard to be used by FAA inspectors and designated : examiners when conducting the aircraft dispatcher practical test. : Instructors are expected to use this book...

  17. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  18. Investigation of fuselage acoustic treatment for a twin-engine turboprop aircraft in flight and laboratory tests

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Oneal, R. L.; Grosveld, F. W.

    1984-01-01

    A flight and laboratory study of sidewall acoustic treatment for cabin noise control is described. In flight, cabin noise levels were measured at six locations with three treatment configurations. Noise levels from narrow-band analysis are reduced to one-third octave format and used to calculate insertion loss, IL, defined as the reduction of interior noise associated with the addition of a treatment. Laboratory tests used a specially constructed structural panel modeled after the propeller plane section of the aircraft sidewall, and acoustic treatments representing those used in flight. Lab measured transmission loss and absorption values were combined using classical acoustic procedures to obtain a prediction of IL. Comparison with IL values measured in flight for the boundary layer component of the noise indicated general agreement.

  19. Flight Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2017-01-01

    This presentation presents an overview of flight control research for flexible high aspect wing aircraft in support of the NASA ARMD Advanced Air Transport Technology (AATT) project. It summarizes multi-objective flight control technology being developed for drag optimization, flutter suppression, and maneuver and gust load alleviation.

  20. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  1. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  2. Propulsion Control and Health Management (PCHM) Technology for Flight Test on the C-17 T-1 Aircraft

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay; Venti, Michael

    2004-01-01

    The C-I 7 T-l Globemaster III is an Air Force flight research vehicle located at Edwards Air Force Base. NASA Dryden and the C-17 System Program Office have entered into a Memorandum of Agreement to permit NASA the use of the C-I 7 T-I to conduct flight research on a mutually coordinated schedule. The C-17 Propulsion Control and Health Management (PCHM) Working Group was formed in order to foster discussion and coordinate planning amongst the various government agencies conducting PCHM research with a potential need for flight testing, and to communicate to the PCHM community the capabilities of the C-17 T-l aircraft to support such flight testing. This paper documents the output of this Working Group, including a summary of the candidate PCHM technologies identified and their associated benefits relative to NASA goals and objectives.

  3. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  4. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  5. 14 CFR 21.35 - Flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft type certificate (other than under §§ 21.24 through 21.29) must make the tests listed in paragraph (b...

  6. X-1 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee for Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Muroc Army Air Field (later redesignated Edwards Air Force Base) with Chalmers Goodlin, a Bell test pilot,at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before evermaking any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. The following movie runs about 20 seconds, and shows several air-to-air views of X-1 Number 2 and its modified B-50 mothership. It begins with different angles of the X-1 in-flight while mated to the B-50's bomb bay, and ends showing the air-launch. The X-1 drops below the B-50, then accelerates away as the rockets ignite.

  7. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  8. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  9. ERAST Program Proteus Aircraft in Flight

    NASA Image and Video Library

    1999-07-26

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.

  10. Pegasus air-launched space booster flight test program

    NASA Astrophysics Data System (ADS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-03-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  11. SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera

  12. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  13. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...

  14. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...

  15. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...

  16. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...

  17. 14 CFR 91.1041 - Aircraft proving and validation tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...

  18. In-flight rain damage tests of the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.; Barneburg, Jack

    1988-01-01

    NASA conducted in-flight rain damage tests of the Shuttle thermal protection system (TPS). Most of the tests were conducted on an F-104 aircraft at the Dryden Flight Research Facility of NASA's Ames Research Center, although some tests were conducted by NOAA on a WP-3D aircraft off the eastern coast of southern Florida. The TPS components tested included LI900 and LI2200 tiles, advanced flexible reusable surface insulation, reinforced carbon-carbon, and an advanced tufi tile. The objective of the test was to define the damage threshold of various thermal protection materials during flight through rain. The test hardware, test technique, and results from both F-104 and WP-3D aircraft are described. Results have shown that damage can occur to the Shuttle TPS during flight in rain.

  19. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  20. NASA Dryden's F-15B aircraft with the Gulfstream Quiet Spike sonic boom mitigator attached undergoes ground vibration testing in preparation for test flights

    NASA Image and Video Library

    2006-05-01

    NASA Dryden's F-15B testbed aircraft with the Gulfstream Quiet Spike sonic boom mitigator attached undergoes ground vibration testing in preparation for test flights. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  1. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    This paper presents a comparison of analysis and flight test data for a drone aircraft equipped with an active flutter suppression system. Emphasis is placed on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are presented for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. In addition to presenting the mathematical models and a brief description of existing analytical techniques, an alternative analytical technique for obtaining closed-loop results is presented.

  2. Flight Controller Software Protects Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Lightweight flexible aircraft may be the future of aviation, but a major problem is their susceptibility to flutter-uncontrollable vibrations that can destroy wings. Armstrong Flight Research Center awarded SBIR funding to Minneapolis, Minnesota-based MUSYN Inc. to develop software that helps program flight controllers to suppress flutter. The technology is now available for aircraft manufacturers and other industries that use equipment with automated controls.

  3. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  4. External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.

    2014-01-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  5. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Has satisfactorily completed the training phases for the aircraft, including recurrent training, that... satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications: Flight...

  6. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Research Team . Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.

  7. UAS in the NAS Flight Test Series 4 Overview

    NASA Technical Reports Server (NTRS)

    Murphy, Jim

    2016-01-01

    Flight Test Series 4 (FT4) provides the researchers with an opportunity to expand on the data collected during the first flight tests. Following Flight Test Series 3, additional scripted encounters with different aircraft performance and sensors will be conducted. FT4 is presently planned for Spring of 2016 to ensure collection of data to support the validation of the final RTCA Phase 1 DAA (Detect and Avoid) Minimum Operational Performance Standards (MOPS). There are three research objectives associated with this goal: Evaluate the performance of the DAA system against cooperative and non-cooperative aircraft encounters Evaluate UAS (Unmanned Aircraft Systems) pilot performance in response to DAA maneuver guidance and alerting with live intruder encounters Evaluate TCAS/DAA (Traffic Alert and Collision Avoidance System/Detect and Avoid) interoperability. This flight test series will focus on only the Scripted Encounters configuration, supporting the collection of data to validate the interoperability of DAA and collision avoidance algorithms.

  8. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine

  9. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  10. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  11. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  12. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  13. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  14. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  15. Knowledge-based processing for aircraft flight control

    NASA Technical Reports Server (NTRS)

    Painter, John H.

    1991-01-01

    The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

  16. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  17. Flight test investigation of rotorcraft wake vortices in forward flight.

    DOT National Transportation Integrated Search

    1996-02-01

    This report presents the results of helicopter flight test and wake vortex measurements which were designed to provide data necessary for the assessment of hazards to following aircraft. The tests described in this report were conducted using small p...

  18. A proposed criterion for aircraft flight in turbulence

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Robinson, A. C.

    1971-01-01

    A proposed criterion for aircraft flight in turbulent conditions is presented. Subjects discussed are: (1) the problem of flight safety in turbulence, (2) new criterion for turbulence flight where existing ones seem adequate, and (3) computational problems associated with new criterion. Primary emphasis is placed on catastrophic occurrences in subsonic cruise with the aircraft under automatic control. A Monte Carlo simulation is used in the formulation and evaluation of probabilities of survival of an encounter with turbulence.

  19. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  20. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The X-36 technology demonstrator shows off its distinctive shape as the remotely piloted aircraft flies a research mission over the Southern California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams

  1. Two YF-12 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The YF-12A (60-6935) carries the 'coldwall' heat transfer pod on a pylon beneath the forward fuselage. The pod is seen with its insulating coating intact. In the foreground, the YF-12C flies photo chase. The coldwall project, supported by Langley Research Center, consisted of a stainless steel tube equipped with thermocouples and pressure-sensors. A special insulating coating covered the tube, which was chilled with liquid nitrogen. At Mach 3, the insulation could be pyrotechnically blown away from the tube, instantly exposing it to the thermal environment. The experiment caused many inflight difficulties, such as engine unstarts, but eventually researchers got a successful flight. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse

  2. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  3. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  4. Development of flight testing techniques

    NASA Technical Reports Server (NTRS)

    Sandlin, D. R.

    1984-01-01

    A list of students involved in research on flight analysis and development is given along with abstracts of their work. The following is a listing of the titles of each work: Longitudinal stability and control derivatives obtained from flight data of a PA-30 aircraft; Aerodynamic drag reduction tests on a box shaped vehicle; A microprocessor based anti-aliasing filter for a PCM system; Flutter prediction of a wing with active aileron control; Comparison of theoretical and flight measured local flow aerodynamics for a low aspect ratio fin; In flight thrust determination on a real time basis; A comparison of computer generated lift and drag polars for a Wortmann airfoil to flight and wind tunnel results; and Deep stall flight testing of the NASA SGS 1-36.

  5. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  6. Simulation model for the Boeing 720B aircraft-flight control system in continuous flight.

    DOT National Transportation Integrated Search

    1971-08-01

    A mathematical model of the Boeing 720B aircraft and autopilot has been derived. The model is representative of the 720B aircraft for continuous flight within a flight envelope defined by a Mach number of .4 at 20,000 feet altitude in a cruise config...

  7. Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2011-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.

  8. J-FLiC UAS Flights for Acoustic Testing Research

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2016-01-01

    The jet-powered flying testbed (J-FLiC) unmanned aircraft system (UAS) successfully completed twenty-six flights at Fort AP Hill, VA, from 27 August until September 3 2015, supporting tests of a microphone array system for aircraft noise measurement. The test vehicles, J-FLiC NAVY2 (N508NU), and J-FLiC 4 (N509NU), were flown under manual and autopiloted control in a variety of test conditions: clean at speeds ranging from 80 to 150 knots; and full landing configuration at speeds ranging from 50 to 95 knots. During the test campaign, autopilot capability was incrementally improved to ultimately provide a high degree of accuracy and repeatability of the critical test requirements for airspeed, altitude, runway alignment and position over the microphone array. Manual flights were performed for test conditions at the both ends of the speed envelope where autopiloted flight would have required flight beyond visual range and more extensive developmental work. The research objectives of the campaign were fully achieved. The ARMD Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project aims to develop the enabling capabilities/technologies that will allow prediction/reduction of aircraft noise. A primary measurement tool for ascertaining and characterizing empirically the effectiveness of various noise reduction technologies is a microphone phased array system. Such array systems need to be vetted and certified for operational use via field deployments and overflights of the array with test aircraft, in this case with sUAS aircraft such as J-FLiC.

  9. The design, development, and flight test results of the Boeing 737 aircraft antennas for the ICAO demonstration of the TRSB microwave landing system

    NASA Technical Reports Server (NTRS)

    Campbell, T. G.; White, W. E.; Gilreath, M. C.

    1976-01-01

    The Research Support Flight System, a modified Boeing 737, was used to evaluate the performance of several aircraft antennas and locations for the Time Reference Scanning Beam (TRSB) Microwave Landing System (MLS). These tests were conducted at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey on December 18, 1975. The flight tests measured the signal strength and all pertinent MLS data during a straight-in approach, a racetrack approach, and ICAO approach profiles using the independent antenna-receiver combinations simultaneously on the aircraft. Signal drop-outs were experienced during the various approaches but only a small percentage could be attributed to antenna pattern effects.

  10. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  11. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  12. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  13. En route noise of turboprop aircraft and their acceptability: Report of tests

    NASA Technical Reports Server (NTRS)

    Held, Wolf

    1990-01-01

    The development of propfan-powered aircraft has been observed with great interest. It is obvious that during cruising flight, the aircraft powerplant (propellers) cause a noise clearly perceivable on the ground. It is the audible frequency spectrum of the propfan powerplants relative to the high tip speeds that presents the problem. A flight test was conducted on 30 April, 1989 at the Frankfurt Airport. Results of the test flight are present.

  14. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  15. A flight test facility design for examining digital information transfer

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  16. Flight test summary of modified fuel systems

    NASA Technical Reports Server (NTRS)

    Barrett, B. G.

    1976-01-01

    Two different aircraft designs, each with two modified fuel control systems, were evaluated. Each aircraft was evaluated in a given series of defined ground and flight conditions while quantitative and qualitative observations were made. During this program, some ten flights were completed, and a total of about 13 hours of engine run time was accumulated by the two airplanes. The results of these evaluations with emphasis on the operational and safety aspects were analyzed. Ground tests of the engine alone were not able to predict acceptable limiting lean mixture settings for the flight envelopes of the Cessna Models 150 and T337.

  17. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  18. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  19. Integrated controls pay-off. [for flight/propulsion aircraft systems

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  20. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    NASA Astrophysics Data System (ADS)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  1. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    NASA Technical Reports Server (NTRS)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  2. Application of the rapid update cycle (RUC) to aircraft flight simulation.

    DOT National Transportation Integrated Search

    2008-01-01

    An aircraft flight simulation model under development aims : to provide a computer simulation tool to investigate aircraft flight : performance during en route flight and landing under various : atmospherical conditions [1]. Within this model, the ai...

  3. Assessment of a wake vortex flight test program

    NASA Technical Reports Server (NTRS)

    Spangler, S. B.; Dillenius, M. F. E.; Schwind, R. G.; Nielsen, J. N.

    1974-01-01

    A proposed flight test program to measure the characteristics of wake vortices behind a T-33 aircraft was investigated. A number of facets of the flight tests were examined to define the parameters to be measured, the anticipated vortex characteristics, the mutual interference between the probe aircraft and the wake, the response of certain instruments to be used in obtaining measurements, the effect of condensation on the wake vortices, and methods of data reduction. Recommendations made as a result of the investigation are presented.

  4. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  5. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  6. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  7. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  8. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  9. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  10. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  11. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  12. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  13. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  14. Flight Crew Survey Responses from the Interval Management (IM) Avionics Phase 2 Flight Test

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Wilson, Sara R.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.

    2017-01-01

    The Interval Management (IM) Avionics Phase 2 flight test used three aircraft over a nineteen day period to operationally evaluate a prototype IM avionics. Quantitative data were collected on aircraft state data and IM spacing algorithm performance, and qualitative data were collected through end-of-scenario and end-of-day flight crew surveys. The majority of the IM operations met the performance goals established for spacing accuracy at the Achieve-by Point and the Planned Termination Point, however there were operations that did not meet goals for a variety of reasons. While the positive spacing accuracy results demonstrate the prototype IM avionics can contribute to the overall air traffic goal, critical issues were also identified that need to be addressed to enhance IM performance. The first category was those issues that impacted the conduct and results of the flight test, but are not part of the IM concept or procedures. These included the design of arrival and approach procedures was not ideal to support speed as the primary control mechanism, the ground-side of the Air Traffic Management Technology Demonstration (ATD-1) integrated concept of operations was not part of the flight test, and the high workload to manually enter the information required to conduct an IM operation. The second category was issues associated with the IM spacing algorithm or flight crew procedures. These issues include the high frequency of IM speed changes and reversals (accelerations), a mismatch between the deceleration rate used by the spacing algorithm and the actual aircraft performance, and some spacing error calculations were sensitive to normal operational variations in aircraft airspeed or altitude which triggered additional IM speed changes. Once the issues in these two categories are addressed, the future IM avionics should have considerable promise supporting the goals of improving system throughput and aircraft efficiency.

  15. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  16. Reverse Engineering Crosswind Limits - A New Flight Test Technique?

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Willliams, Timothy L.; Strovers, Brian K.

    2013-01-01

    During modification of a Gulfstream III test bed aircraft for an experimental flap project, all roll spoiler hardware had to be removed to accommodate the test article. In addition to evaluating the effects on performance and flying qualities resulting from the modification, the test team had to determine crosswind limits for an airplane previously certified with roll spoilers. Predictions for the modified aircraft indicated the maximum amount of steady state sideslip available during the approach and landing phase would be limited by aileron authority rather than by rudder. Operating out of a location that tends to be very windy, an arbitrary and conservative wind limit would have either been overly restrictive or potentially unsafe if chosen poorly. When determining a crosswind limit, how much reserve roll authority was necessary? Would the aircraft, as configured, have suitable handling qualities for long-term use as a flying test bed? To answer these questions, the test team combined two typical flight test techniques into a new maneuver called the sideslip-to-bank maneuver, and was able to gather flying qualities data, evaluate aircraft response and measure trends for various crosswind scenarios. This paper will describe the research conducted, the maneuver, flight conditions, predictions, and results from this in-flight evaluation of crosswind capability.

  17. Pathfinder on lakebed rolling out for test flight

    NASA Image and Video Library

    1995-12-10

    The Pathfinder research aircraft's wing structure is clearly defined in this photo as personnel from AeroVironment rolled it out onto the lakebed at NASA's Dryden Flight Research Center, Edwards, California, for another test flight.

  18. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  19. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  20. FT 3 Flight Test Cards for Export

    NASA Technical Reports Server (NTRS)

    Marston, Michael L.

    2015-01-01

    These flight test cards will be made available to stakeholders who participated in FT3. NASA entered into the relationship with our stakeholders, including the FAA, to develop requirements that will lead to routine flights of unmanned aircraft systems flying in the national airspace system.

  1. Real-time data display for AFTI/F-16 flight testing

    NASA Technical Reports Server (NTRS)

    Harney, P. F.

    1982-01-01

    Advanced fighter technologies to improve air to air and air to surface weapon delivery and survivability is demonstrated. Real time monitoring of aircraft operation during flight testing is necessary not only for safety considerations but also for preliminary evaluation of flight test results. The complexity of the AFTI/F-16 aircraft requires an extensive capability to accomplish real time data goals; that capability and the resultant product are described.

  2. In-flight near- and far-field acoustic data measured on the Propfan Test Assessment (PTA) testbed and with an adjacent aircraft

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1993-04-01

    Flight tests to define the far-field tone source at cruise conditions were completed on the full-scale SR-7L advanced turboprop that was installed on the left wing of a Gulfstream 2 aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long-distance propagation models to predict en route noise. In-flight data were taken for seven test cases. Near-field acoustic data were taken on the Gulfstream fuselage and on a microphone boom that was mounted on the Gulfstream wing outboard of the propeller. Far-field acoustic data were taken by an acoustically instrumented Learjet that flew in formation with the Gulfstream. These flight tests were flown from El Paso, Texas, and from the NASA Lewis Research Center. A comprehensive listing of the aeroacoustic results from these flight tests which may be used for future analysis are presented.

  3. In-flight near- and far-field acoustic data measured on the Propfan Test Assessment (PTA) testbed and with an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1993-01-01

    Flight tests to define the far-field tone source at cruise conditions were completed on the full-scale SR-7L advanced turboprop that was installed on the left wing of a Gulfstream 2 aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long-distance propagation models to predict en route noise. In-flight data were taken for seven test cases. Near-field acoustic data were taken on the Gulfstream fuselage and on a microphone boom that was mounted on the Gulfstream wing outboard of the propeller. Far-field acoustic data were taken by an acoustically instrumented Learjet that flew in formation with the Gulfstream. These flight tests were flown from El Paso, Texas, and from the NASA Lewis Research Center. A comprehensive listing of the aeroacoustic results from these flight tests which may be used for future analysis are presented.

  4. S-190 exposure verification flight test. [photographic emulsions and film

    NASA Technical Reports Server (NTRS)

    Perry, L.

    1973-01-01

    A flight test was conducted to determine the optimum exposures for the Skylab S-190A experiment. An aircraft multispectral photographic system (AMPS) which is installed in the NASA Earth Resources aircraft NP3A was used to simulate the S-190A system. The same film emulsions to be used for S-190A were used in the flight test. These rolls were on factory-loaded spools for use in the AMPS camera system. It was found that some variation is to be expected between these rolls and the S-190A flight loads.

  5. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  6. CID Aircraft in practice flight above target impact site with wing cutters

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  7. PIK-20 Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  8. HiMAT highly maneuverable aircraft technology, flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

  9. Research on flight stability performance of rotor aircraft based on visual servo control method

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  10. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  11. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  12. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  13. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  14. 14 CFR 135.97 - Aircraft and facilities for recent flight experience.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aircraft and facilities for recent flight experience. 135.97 Section 135.97 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight Operations § 135.97 Aircraft and facilities for recent flight experience. Each certificate holder...

  15. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  16. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  17. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  18. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  19. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  20. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control

  1. The NASA B-757 HIRF Test Series: Flight Test Results

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.

    1997-01-01

    In 1995, the NASA Langley Research Center conducted a series of aircraft tests aimed at characterizing the electromagnetic environment (EME) in and around a Boeing 757 airliner. Measurements were made of the electromagnetic energy coupled into the aircraft and the signals induced on select structures as the aircraft was flown past known RF transmitters. These measurements were conducted to provide data for the validation of computational techniques for the assessment of electromagnetic effects in commercial transport aircraft. This paper reports on the results of flight tests using RF radiators in the HF, VHF, and UHF ranges and on efforts to use computational and analytical techniques to predict RF field levels inside the airliner at these frequencies.

  2. AGARD Flight Test Instrumentation Series. Volume 19. Digital Signal Conditioning for Flight Test. (Le Traitement du Signal Numerique pour les Essais n Vol)

    DTIC Science & Technology

    1991-06-01

    intensive systems, including the use of onboard digital computers. Topics include: measurements that are digital in origin, sampling, encoding, transmitting...Individuals charged with designing aircraft measuring systems to become better acquainted with new solutions to their requirements. This volume Is...concerned with aircraft measuring systems as related to flight test and flight research. Measure - ments that are digital in origin or that must be

  3. Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods

    NASA Technical Reports Server (NTRS)

    Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan

    2009-01-01

    The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.

  4. Small-scale fixed wing airplane software verification flight test

    NASA Astrophysics Data System (ADS)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  5. Centurion Quarter-scale Prototype Pre-flight Taxi Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As crewmen jog and cycle alongside, a battery-powered, quarter-scale prototype of the remotely-piloted Centurion flying wing rolls across the El Mirage Dry Lake during pre-flight taxi tests. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  6. Control and Non-Payload Communications (CNPC) Prototype Radio Validation Flight Test Report

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Ishac, Joseph A.; Iannicca, Dennis C.; Bretmersky, Steven C.; Smith, Albert E.

    2017-01-01

    This report provides an overview and results from the unmanned aircraft (UA) Control and Non-Payload Communications (CNPC) Generation 5 prototype radio validation flight test campaign. The radios used in the test campaign were developed under cooperative agreement NNC11AA01A between the NASA Glenn Research Center and Rockwell Collins, Inc., of Cedar Rapids, Iowa. Measurement results are presented for flight tests over hilly terrain, open water, and urban landscape, utilizing radio sets installed into a NASA aircraft and ground stations. Signal strength and frame loss measurement data are analyzed relative to time and aircraft position, specifically addressing the impact of line-of-sight terrain obstructions on CNPC data flow. Both the radio and flight test system are described.

  7. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  8. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  9. Propfan test assessment testbed aircraft flutter model test report

    NASA Technical Reports Server (NTRS)

    Jenness, C. M. J.

    1987-01-01

    The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.

  10. UAS-NAS Flight Test Series 3: Test Environment Report

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  11. XV-15 Tiltrotor Aircraft: 1999 Acoustic Testing - Test Report

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    An XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during October 1999, at the BHTI test site near Waxahachie, Texas. As part of the NASA-sponsored Short Haul Civil Tiltrotor noise reduction initiative, this was the third in a series of three major XV-15 acoustic tests. Their purpose was to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and to minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and refine approach profiles, selected from previous (1995 & 1997) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  12. Fuel Subsystems Flight Test Handbook

    DTIC Science & Technology

    1981-12-01

    described in Flight and Maintenance Manuals and as it exists in hardware form. These versions may differ significantly in the development phase of a new ...Canter (AFFPTC), Edwards AFB, California. The work was done under the authority of the Study Plan for Development of a Handbook for Aircraft Fuel...10 Position of AFFTC in the Development and 10 Evaluation Process Agencies Involved 11 Multi-Purpose Flight Tests 11 FUEL SYSTEM FUNCTIONS AND

  13. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  14. Dryden F-8 Research Aircraft Fleet 1973 in flight, DFBW and SCW

    NASA Technical Reports Server (NTRS)

    1973-01-01

    . Digital-fly-by-wire is more efficient because it is lighter and takes up less space than the hydraulic systems it replaced. This either reduces the fuel required to fly or increases the number of passengers or pounds of cargo the aircraft can carry. Digital fly-by-wire is currently used in a variety of aircraft ranging from F/A-18 fighters to the Boeing 777. The DFBW research program is considered one of the most significant and most successful NASA aeronautical programs since the inception of the agency. F-8 aircraft were built originally for the U.S. Navy by LTV Aerospace of Dallas, Texas. The aircraft had a wingspan of 35 feet, 2 inches; was 54 feet, 6 inches long; and was powered by a Pratt & Whitney J57 turbojet engine. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every modern subsonic commercial transport. Results of the NASA project showed the SCW had increased the transonic efficiency of the F-8 as much as 15 percent and proved that passenger transports with supercritical wings, versus conventional wings, could save $78 million (in

  15. Instrumentation and telemetry systems for free-flight drop model testing

    NASA Technical Reports Server (NTRS)

    Hyde, Charles R.; Massie, Jeffrey J.

    1993-01-01

    This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.

  16. The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight on Dryden's F-15B Research Testbed aircraft

    NASA Image and Video Library

    2001-03-28

    The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight on Dryden's F-15B Research Testbed aircraft

  17. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph A.; Iannicca, Dennis C.; Shalkhauser, Kurt A.; Kachmar, Brian A.

    2014-01-01

    NASA Glenn Research Center conducted a series of flight tests for the purpose of evaluating air-to-ground communications links for future unmanned aircraft systems (UAS). The primary objective of the test effort was to evaluate the transition of the aircraft communications from one ground station to the next, and to monitor data flow during the "hand-off" event. To facilitate the testing, ground stations were installed at locations in Cleveland, Ohio and Albany, Ohio that each provides line-of-sight radio communications with an overflying aircraft. This report describes results from the flight tests including flight parameters, received signal strength measurements, data latency times, and performance observations for the air-to-ground channel.

  18. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  19. Flight tests of the 4D flight guidance display

    NASA Astrophysics Data System (ADS)

    Below, Christian; von Viebahn, Harro; Purpus, Matthias

    1997-06-01

    A perspective primary flight and a navigation display format were evaluated in a flying testbed. The flight tests comprised ILS- and standard approaches as well as low level operations utilizing the depiction of a spatial channel, and demonstrations of the inherent ground proximity warning function. In the cockpit of the VFW614, the left seat was equipped with a sidestick and a flat panel display, which showed both the 4D-display an the Navigation Display format. Airline and airforce pilots flew several missions each. Although most of the pilots criticizes that a typical flight director commanding the aircraft's attitude was missing, they could follow the channel precisely. However, some airline pilots stated a lack of vertical guidance information during the final approach. Leaving and re- entering the channel could be easily accomplished form any direction. In summary pilots' assessment of the display concept yielded an overall improvement of SA. In particular it was stated that displays are an appropriate means to avoid CFIT accidents. With the fist prototypes of 3D- graphics generators designed for avionics available the flight evaluation will continue including feasibility demonstrations of high-performance graphics for civil and military aircraft applications.

  20. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  1. Airsickness and aircraft motion during short-haul flights.

    PubMed

    Turner, M; Griffin, M J; Holland, I

    2000-12-01

    There is little quantitative information that can be used to predict the incidence of airsickness from the motions experienced in military or civil aviation. This study examines the relationship between low-frequency aircraft motion and passenger sickness in short-haul turboprop flights within the United Kingdom. A questionnaire survey of 923 fare-paying passengers was conducted on 38 commercial airline flights. Concurrent measurements of aircraft motion were made on all journeys, yielding approximately 30 h of aircraft motion data. Overall, 0.5% of passengers reported vomiting, 8.4% reported nausea (range 0% to 34.8%) and 16.2% reported illness (range 0% to 47.8%) during flight. Positive correlations were found between the percentage of passengers who experienced nausea or felt ill and the magnitude of low-frequency lateral and vertical motion, although neither motion uniquely predicted airsickness. The incidence of motion sickness also varied with passenger age, gender, food consumption and activity during air travel. No differences in sickness were found between passengers located in different seating sections of the aircraft, or as a function of moderate levels of alcohol consumption. The passenger responses suggest that a useful prediction of airsickness can be obtained from magnitudes of low frequency aircraft motion. However, some variations in airsickness may also be explained by individual differences between passengers and their psychological perception of flying.

  2. An Indispensable Ingredient: Flight Research and Aircraft Design

    NASA Technical Reports Server (NTRS)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  3. Flight test of the X-29A at high angle of attack: Flight dynamics and controls

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.; Clarke, Robert; Burken, John J.

    1995-01-01

    The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.

  4. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  5. First Phase of X-48B Flight Tests Completed

    NASA Image and Video Library

    2010-03-19

    A joint NASA/Boeing team completed the first phase of flight tests on the unique X-48B Blended Wing Body aircraft at NASA's Dryden Flight Research Center at Edwards, CA. The team completed the 80th and last flight of the project's first phase on March 19, 2010.

  6. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  7. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  8. Satellite images to aircraft in flight. [GEOS image transmission feasibility analysis

    NASA Technical Reports Server (NTRS)

    Camp, D.; Luers, J. K.; Kadlec, P. W.

    1977-01-01

    A study has been initiated to evaluate the feasibility of transmitting selected GOES images to aircraft in flight. Pertinent observations that could be made from satellite images on board aircraft include jet stream activity, cloud/wind motion, cloud temperatures, tropical storm activity, and location of severe weather. The basic features of the Satellite Aircraft Flight Environment System (SAFES) are described. This system uses East GOES and West GOES satellite images, which are interpreted, enhanced, and then retransmitted to designated aircraft.

  9. Stability and Control Estimation Flight Test Results for the SR-71 Aircraft With Externally Mounted Experiments

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Iliff, Kenneth

    2002-01-01

    A maximum-likelihood output-error parameter estimation technique is used to obtain stability and control derivatives for the NASA Dryden Flight Research Center SR-71A airplane and for configurations that include experiments externally mounted to the top of the fuselage. This research is being done as part of the envelope clearance for the new experiment configurations. Flight data are obtained at speeds ranging from Mach 0.4 to Mach 3.0, with an extensive amount of test points at approximately Mach 1.0. Pilot-input pitch and yaw-roll doublets are used to obtain the data. This report defines the parameter estimation technique used, presents stability and control derivative results, and compares the derivatives for the three configurations tested. The experimental configurations studied generally show acceptable stability, control, trim, and handling qualities throughout the Mach regimes tested. The reduction of directional stability for the experimental configurations is the most significant aerodynamic effect measured and identified as a design constraint for future experimental configurations. This report also shows the significant effects of aircraft flexibility on the stability and control derivatives.

  10. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  11. Development and Testing of the Phase 0 Autonomous Formation Flight Research System

    NASA Technical Reports Server (NTRS)

    Petersen, Shane; Fantini, Jay; Norlin, Ken; Theisen, John; Krasiewski, Steven

    2004-01-01

    The Autonomous Formation Flight (AFF) project was initiated in 1995 to demonstrate at least 10-percent drag reduction by positioning a trailing aircraft in the wingtip vortex of a leading aircraft. If successful, this technology would provide increased fuel savings, reduced emissions, and extended flight duration for fleet aircraft flying in formation. To demonstrate this technology, the AFF project at NASA Dryden Flight Research Center developed a system architecture incorporating two F-18 aircraft flying in leading-trailing formation. The system architecture has been designed to allow the trailing aircraft to maintain station-keeping position relative to the leading aircraft within +/-10 ft. Development of this architecture would be directed at the design and development of a computing system to feed surface position commands into the flight control computers, thereby controlling the longitudinal and lateral position of the trailing aircraft. In addition, modification to the instrumentation systems of both aircraft, pilot displays, and a means of broadcasting the leading aircraft inertial and global positioning system-based positional data to the trailing aircraft would be needed. This presentation focuses on the design and testing of the AFF Phase 0 research system.

  12. XV-15 Tiltrotor Aircraft: 1997 Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during June - July 1997, at the BHTI test site near Waxahachie, Texas. This was the second in a series of three XV-15 tests to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to: (1) support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and (2) refine approach profiles, selected from previous (1995) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  13. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  14. Pulmonary function abnormalities in never-smoking flight attendants exposed to secondhand tobacco smoke in the aircraft cabin.

    PubMed

    Arjomandi, Mehrdad; Haight, Thaddeus; Redberg, Rita; Gold, Warren M

    2009-06-01

    To determine whether the flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin have abnormal pulmonary function. We administered questionnaires and performed pulmonary function testing in 61 never-smoking female flight attendants who worked in active air crews before the smoking ban on commercial aircraft (preban). Although the preban flight attendants had normal FVC, FEV1, and FEV1/FVC ratio, they had significantly decreased flow at mid- and low-lung volumes, curvilinear flow-volume curves, and evidence of air trapping. Furthermore, the flight attendants had significantly decreased diffusing capacity (77.5% +/- 11.2% predicted normal) with 51% having a diffusing capacity below their 95% normal prediction limit. This cohort of healthy never-smoking flight attendants who were exposed to secondhand tobacco smoke in the aircraft cabin showed pulmonary function abnormalities suggestive of airway obstruction and impaired diffusion.

  15. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  16. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  17. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  18. Flight through thunderstorm outflows. [aircraft landing

    NASA Technical Reports Server (NTRS)

    Frost, W.; Crosby, B.; Camp, D. W.

    1978-01-01

    Computer simulation of aircraft landing through thunderstorm gust fronts is carried out. The two-dimensional, nonlinear equations or aircraft motion containing all wind shear terms are solved numerically. The gust front spatial wind field inputs are provided in the form of tabulated experimental data which are coupled with a computer table lookup routine to provide the required wind components and shear at any given position within an approximate 500 m by 1 km vertical plane. The aircraft is considered to enter the wind field at a specified position under trimmed conditions. Both fixed control and automatic control landings are simulated. Flight paths, as well as control inputs necessary to maintain specified trajectories, are presented and discussed for aircraft having characteristics of a DC-8, B-747, augmentor-wing STOL, and a DHC-6.

  19. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft

    NASA Astrophysics Data System (ADS)

    Bahri, S.; Sasongko, R. A.

    2018-04-01

    The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.

  20. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  1. A variational technique for smoothing flight-test and accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.

    1980-01-01

    The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.

  2. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    NASA Technical Reports Server (NTRS)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  3. Investigations of simulated aircraft flight through thunderstorm outflows

    NASA Technical Reports Server (NTRS)

    Frost, W.; Crosby, B.

    1978-01-01

    The effects of wind shear on aircraft flying through thunderstorm gust fronts were investigated. A computer program was developed to solve the two dimensional, nonlinear equations of aircraft motion, including wind shear. The procedure described and documented accounts for spatial and temporal variations of the aircraft within the flow regime. Analysis of flight paths and control inputs necessary to maintain specified trajectories for aircraft having characteristics of DC-8, B-747, augmentor wing STOL, and DHC-6 aircraft was recorded. From the analysis an attempt was made to find criteria for reduction of the hazards associated with landing through thunderstorm gust fronts.

  4. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The uniquely shaped Proteus high-altitude aircraft soars over California's Mojave Desert during a July 1999 flight. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer monitor at the show only moments after they were taken. This was the second successful demonstration of the ARTIS camera. The

  5. On-Line Safe Flight Envelope Determination for Impaired Aircraft

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John

    2015-01-01

    The design and simulation of an on-line algorithm which estimates the safe maneuvering envelope of aircraft is discussed in this paper. The trim envelope is estimated using probabilistic methods and efficient high-fidelity model based computations of attainable equilibrium sets. From this trim envelope, a robust reachability analysis provides the maneuverability limitations of the aircraft through an optimal control formulation. Both envelope limits are presented to the flight crew on the primary flight display. In the results section, scenarios are considered where this adaptive algorithm is capable of computing online changes to the maneuvering envelope due to impairment. Furthermore, corresponding updates to display features on the primary flight display are provided to potentially inform the flight crew of safety critical envelope alterations caused by the impairment.

  6. Real-Time Detection of In-flight Aircraft Damage

    DOE PAGES

    Blair, Brenton; Lee, Herbert K. H.; Davies, Misty

    2017-10-02

    When there is damage to an aircraft, it is critical to be able to quickly detect and diagnose the problem so that the pilot can attempt to maintain control of the aircraft and land it safely. We develop methodology for real-time classification of flight trajectories to be able to distinguish between an undamaged aircraft and five different damage scenarios. Principal components analysis allows a lower-dimensional representation of multi-dimensional trajectory information in time. Random Forests provide a computationally efficient approach with sufficient accuracy to be able to detect and classify the different scenarios in real-time. We demonstrate our approach by classifyingmore » realizations of a 45 degree bank angle generated from the Generic Transport Model flight simulator in collaboration with NASA.« less

  7. Real-Time Detection of In-flight Aircraft Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Brenton; Lee, Herbert K. H.; Davies, Misty

    When there is damage to an aircraft, it is critical to be able to quickly detect and diagnose the problem so that the pilot can attempt to maintain control of the aircraft and land it safely. We develop methodology for real-time classification of flight trajectories to be able to distinguish between an undamaged aircraft and five different damage scenarios. Principal components analysis allows a lower-dimensional representation of multi-dimensional trajectory information in time. Random Forests provide a computationally efficient approach with sufficient accuracy to be able to detect and classify the different scenarios in real-time. We demonstrate our approach by classifyingmore » realizations of a 45 degree bank angle generated from the Generic Transport Model flight simulator in collaboration with NASA.« less

  8. Preliminary Flight Tests of the N.A.C.A. Roots Type Aircraft Engine Supercharger

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Reid, Elliott G

    1928-01-01

    An investigation of the suitability of the N.A.C.A. Roots type aircraft engine supercharger to flight-operating conditions, as determined the effects of the use of the supercharger upon engine operation and airplane performance, is described in this report. Attention was concentrated on the operation of the engine-supercharger unit and on the improvement of climbing ability; some information concerning high speeds at altitude was obtained. The supercharger was found to be satisfactory under flight-operating conditions. Although two failures occurred during the tests, the causes of both were minor and have been eliminated. Careful examination of the engines revealed no detrimental effects which could be attributed to supercharging. Marked improvements in climbing ability and high speeds at altitude were effected. It was also found that the load which could be carried to a given moderate or high altitude in a fixed time was considerably augmented. A slight sacrifice of low-altitude performance was necessitated, however, by the use of a fixed-pitch propeller. From a consideration of the very satisfactory flight performance of the Roots supercharger and of its inherent advantages, it is concluded that this type is particularly attractive for use in certain classes of commercial airplanes and in a number of military types.

  9. 16-Inch Diameter Ramjet Prepared for Flight Test

    NASA Image and Video Library

    1947-07-21

    A NACA researcher prepares a 16-inch diameter and 16-foot long ramjet for a launch over Wallops Island in July 1947. The Lewis Flight Propulsion Laboratory conducted a wide variety of studies on ramjets in the 1940s and 1960s to determine the basic operational data necessary to design missiles. Although wind tunnel and test stand investigations were important first steps in determining these factors, actual flight tests were required. Lewis possessed several aircraft for the ramjet studies, including North American F-82 Mustangs, a Northrup P-61 Black Widow, and a Boeing B-29 Superfortress, which was used for this particular ramjet. This was Lewis’ first flight at over the experimental testing ground at Wallops Island. The NACA’s Langley laboratory established the station on the Virginia coast in 1945 to conduct early missile tests. This ramjet-powered missile was affixed underneath the B-29’s left wing and flown up to 29,000 feet. The ramjet was ignited as the aircraft reached Mach 0.5 and released. The flight went well, but a problem with the data recording prevented a successful mission. Nonetheless additional flights in November 1947 provided researchers with data on the engine’s combustion efficiency at different levels of fuel-air ratios, thrust coefficients, temperatures, and drag. Transonic flight data such as the rapid acceleration through varying flight conditions could not be easily captured in wind tunnels.

  10. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  11. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...

  12. A Review of Solar-Powered Aircraft Flight Activity at the Pacific Missile Range Test Facility, Kauai, Hawaii

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Donohue, Casey; Teets, Edward H., Jr.

    2004-01-01

    A series of solar-powered aircraft have been designed and operated by AeroVironment, Inc. (Monrovia, CA) as a part of National Aeronautics and Space Administration (NASA) objectives to develop energy-efficient high-altitude long-endurance platforms for earth observations and communications applications. Flight operations have been conducted at NASA's Dryden Flight Research Center, Edwards CA and at the U.S. Navy Pacific Missile Range Facility (PMRF) at Barking Sands, Kauai, HI. These aircraft flown at PMRF are named Pathfinder , Pathfinder Plus and Helios . Sizes of these three aircraft range from 560 lb with a 99-ft wingspan to 2300 lb with a 247-ft wingspan. Available payload capacity reaches approximately 200 lb. Pathfinder uses six engines and propellers: Pathfinder Plus 8; and Helios 14. The 2003 Helios fuel cell configurations used 10 engines and propellers. The PMRF was selected as a base of operations because if offers optimal summertime solar exposure, low prevailing wind-speeds on the runway, modest upper-air wind-speeds and the availability of suitable airspace. Between 1997 and 2001, successive altitude records of 71,530 ft, 80,200 ft, and 96,863 ft were established. Flight durations extended to 18 hours.

  13. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  14. ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California. In the Proteus Project, NASA's Dryden Flight Research Center, Edwards, California, is assisting Scaled Composites, Inc., Mojave, California, in developing a sophisticated station-keeping autopilot system and a Satellite Communications (SATCOM)-based uplink-downlink data system for aircraft and payload data under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. The ERAST Project is sponsored by the Office of Aero-Space Technology at NASA Headquarters, and is managed by the Dryden Flight Research Center. The Proteus is a unique aircraft, designed as a high-altitude, long-duration telecommunications relay platform with potential for use on atmospheric sampling and Earth-monitoring science missions. The aircraft is designed to be flown by two pilots in a pressurized cabin, but also has the potential to perform its missions semiautonomously or be flown remotely from the ground. Flight testing of the Proteus, beginning in the summer of 1998 at Mojave Airport through the end of 1999, included the installation and checkout of the autopilot system, including the refinement of the altitude hold and altitude change software. The SATCOM equipment, including avionics and antenna systems, had been installed and checked out in several flight tests. The systems performed flawlessly during the Proteus's deployment to the Paris Airshow in 1999. NASA's ERAST project funded development of an Airborne Real-Time Imaging System (ARTIS). Developed by HyperSpectral Sciences, Inc., the small ARTIS camera was demonstrated during the summer of 1999 when it took visual and near-infrared photos over the Experimental Aircraft Association's 'AirVenture 99' Airshow at Oshkosh, Wisconsin. The images were displayed on a computer

  15. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...

  16. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...

  17. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...

  18. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...

  19. 14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...

  20. X-48B Preliminary Flight Test Results

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2009-01-01

    This slide presentation reviews the preliminary Flight tests of the X-48B development program. The X-48B is a blended wing body aircraft that is being used to test various features of the BWB concept. The research concerns the following: (1) Turbofan Development, (2) Intelligent Flight Control and Optimization, (3) Airdata Calibration (4) Parameter Identification (i.e., Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response.)

  1. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  2. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  3. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    NASA Technical Reports Server (NTRS)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2017-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries. The second configuration included a surrogate unmanned vehicle (flown from a ground control station, with a safety pilot on board) flying a mission in a virtual air traffic control airspace sector using research pilot displays and Detect and Avoid advisories to maintain separation from live and virtual aircraft. The test was conducted over an eight-week span within the R-2508 Special Use Airspace. Over 200 encounters were flown for the first configuration, and although the second configuration was cancelled after three data collection flights, Flight Test 3 proved to be invaluable for the purposes of planning, managing, and execution of this type of integrated flight test.

  4. 14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United... required under § 91.203 if a special flight authorization for that operation is issued under this section... which the airshow is located. (b) The Administrator may issue a special flight authorization for a...

  5. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  6. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  7. 14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial and recurrent flight attendant...

  8. 14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Initial and recurrent flight attendant...

  9. 14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and recurrent flight attendant...

  10. 14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Initial and recurrent flight attendant...

  11. 14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and recurrent flight attendant...

  12. Tiltrotor Acoustic Flight Test: Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.

    1991-01-01

    This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades

  13. Flight Testing Surfaces Engineered for Mitigating Insect Adhesion on a Falcon HU-25C

    NASA Technical Reports Server (NTRS)

    Shanahan, Michelle; Wohl, Chris J.; Smith, Joseph G., Jr.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Penner, Ronald K.

    2015-01-01

    Insect residue contamination on aircraft wings can decrease fuel efficiency in aircraft designed for natural laminar flow. Insect residues can cause a premature transition to turbulent flow, increasing fuel burn and making the aircraft less environmentally friendly. Surfaces, designed to minimize insect residue adhesion, were evaluated through flight testing on a Falcon HU-25C aircraft flown along the coast of Virginia and North Carolina. The surfaces were affixed to the wing leading edge and the aircraft remained at altitudes lower than 1000 feet throughout the flight to assure high insect density. The number of strikes on the engineered surfaces was compared to, and found to be lower than, untreated aluminum control surfaces flown concurrently. Optical profilometry was used to determine insect residue height and areal coverage. Differences in results between flight and laboratory tests suggest the importance of testing in realistic use environments to evaluate the effectiveness of engineered surface designs.

  14. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  15. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  16. Comparison of nozzle and afterbody surface pressures from wind tunnel and flight test of the YF-17 aircraft

    NASA Technical Reports Server (NTRS)

    Lucas, E. J.; Fanning, A. E.; Steers, L. I.

    1978-01-01

    Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.

  17. Emergency in-flight egress opening for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    In support of a stall/spin research program, an emergency in-flight egress system is being installed in a light general aviation airplane. To avoid a major structural redesign for a mechanical door, an add-on 11.2 kg pyrotechnic-actuated system was developed to create an opening in the existing structure. The airplane skin will be explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel will be jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mock-ups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics.

  18. Missile airframe simulation testbed: MANPADS (MAST-M) for test and evaluation of aircraft survivability equipment

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe

    2011-06-01

    A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.

  19. The development of an augmentor wing jet STOL research aircraft (modified C-8A). Volume 2: Analysis of contractor's flight test

    NASA Technical Reports Server (NTRS)

    Skavdahl, H.; Patterson, D. H.

    1972-01-01

    The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.

  20. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  1. Flow Visualization of Aircraft in Flight by Means of Background Oriented Schlieren Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Hill, Michael A.; Haering, Edward A., Jr.

    2017-01-01

    The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.

  2. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS)samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation 'islands,' to document shear and shock loads.

  3. Closeup of F-15B Flight Test Fixture (FTF) with X-33 Thermal Protection Systems (TPS)

    NASA Image and Video Library

    1998-05-14

    A close up of the Flight Test Fixture II, mounted on the underside of the F-15B Aerodynamic Flight Facility aircraft. The Thermal Protection System (TPS) samples, which included metallic Inconel tiles, soft Advanced Flexible Reusable Surface Insulation tiles, and sealing materials, were attached to the forward-left side position of the test fixture. In-flight video from the aircraft's on-board video system, as well as chase aircraft photos and video footage, documented the condition of the TPS during flights. Surface pressures over the TPS was measured by thermocouples contained in instrumentation "islands," to document shear and shock loads.

  4. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  5. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  6. Identification of Low Order Equivalent System Models From Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    Identification of low order equivalent system dynamic models from flight test data was studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models characterized the total aircraft response including bare airframe and flight control system. Theoretical investigations were conducted and related to results found in the literature. Low order equivalent system modeling techniques using output error and equation error parameter estimation in the frequency domain were developed and validated on simulation data. It was found that some common difficulties encountered in identifying closed loop low order equivalent system models from flight test data could be overcome using the developed techniques. Implications for data requirements and experiment design were discussed. The developed methods were demonstrated using realistic simulation cases, then applied to closed loop flight test data from the NASA F-18 High Alpha Research Vehicle.

  7. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  8. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Image and Video Library

    1997-07-07

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft.

  9. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  10. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  11. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and

  12. Writing executable assertions to test flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  13. CFD to Flight: Some Recent Success Stories of X-plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and ight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the authors personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the authors experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further re ned CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of ow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  14. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  15. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems

  16. Description and flight tests of an oculometer

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.; Wise, M. A.; Holt, J. D.

    1977-01-01

    A remote sensing oculometer was successfully operated during flight tests with a NASA experimental Twin Otter aircraft at the Langley Research Center. Although the oculometer was designed primarily for the laboratory, it was able to track the pilot's eye-point-of-regard (lookpoint) consistently and unobtrusively in the flight environment. The instantaneous position of the lookpoint was determined to within approximately 1 deg. Data were recorded on both analog and video tape. The video data consisted of continuous scenes of the aircraft's instrument display and a superimposed white dot (simulating the lookpoint) dwelling on an instrument or moving from instrument to instrument as the pilot monitored the display information during landing approaches.

  17. Flight-Test Evaluation of Flutter-Prediction Methods

    NASA Technical Reports Server (NTRS)

    Lind, RIck; Brenner, Marty

    2003-01-01

    The flight-test community routinely spends considerable time and money to determine a range of flight conditions, called a flight envelope, within which an aircraft is safe to fly. The cost of determining a flight envelope could be greatly reduced if there were a method of safely and accurately predicting the speed associated with the onset of an instability called flutter. Several methods have been developed with the goal of predicting flutter speeds to improve the efficiency of flight testing. These methods include (1) data-based methods, in which one relies entirely on information obtained from the flight tests and (2) model-based approaches, in which one relies on a combination of flight data and theoretical models. The data-driven methods include one based on extrapolation of damping trends, one that involves an envelope function, one that involves the Zimmerman-Weissenburger flutter margin, and one that involves a discrete-time auto-regressive model. An example of a model-based approach is that of the flutterometer. These methods have all been shown to be theoretically valid and have been demonstrated on simple test cases; however, until now, they have not been thoroughly evaluated in flight tests. An experimental apparatus called the Aerostructures Test Wing (ATW) was developed to test these prediction methods.

  18. A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.

    1975-01-01

    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.

  19. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    NASA Technical Reports Server (NTRS)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  20. Comparison of analysis and flight test data for a drone aircraft with active flutter suppression

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Pototzky, A. S.

    1981-01-01

    A drone aircraft equipped with an active flutter suppression system is considered with emphasis on the comparison of modal dampings and frequencies as a function of Mach number. Results are presented for both symmetric and antisymmetric motion with flutter suppression off. Only symmetric results are given for flutter suppression on. Frequency response functions of the vehicle are presented from both flight test data and analysis. The analysis correlation is improved by using an empirical aerodynamic correction factor which is proportional to the ratio of experimental to analytical steady-state lift curve slope. The mathematical models are included and existing analytical techniques are described as well as an alternative analytical technique for obtaining closed-loop results.

  1. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  2. Use of the flight simulator in the design of a STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.

    1972-01-01

    Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.

  3. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  4. Runway Incursion Prevention System Testing at the Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2005-01-01

    A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

  5. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  6. Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory is a 272- by 150-foot hangar with an internal height up to 90 feet. The hangar’s massive 37.5-foot-tall and 250-foot-long doors can be opened in sections to suit different size aircraft. The hangar has sheltered a diverse fleet of aircraft over the decades. These have ranged from World War II bombers to Cessna trainers and from supersonic fighter jets to a DC–9 airliner. At the time of this September 1942 photograph, however, the hangar was being used as an office building during the construction of the laboratory. In December of 1941, the Flight Research Building became the lab’s first functional building. Temporary offices were built inside the structure to house the staff while the other buildings were completed. The hangar offices were used for an entire year before being removed in early 1943. It was only then that the laboratory acquired its first aircraft, pilots and flight mechanics. The temporary one-story offices can be seen in this photograph inside the large sliding doors. Also note the vertical lift gate below the NACA logo. The gate was installed so that the tails of larger aircraft could pass into the hangar. The white Farm House that served as the Administration Building during construction can be seen in the distance to the left of the hangar.

  7. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance

    NASA Technical Reports Server (NTRS)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  8. A real-time digital program for estimating aircraft stability and control parameters from flight test data by using the maximum likelihood method

    NASA Technical Reports Server (NTRS)

    Grove, R. D.; Mayhew, S. C.

    1973-01-01

    A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.

  9. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft equipped with wing spoilers

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1984-01-01

    As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was

  10. NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  11. Utilization of satellite imagery by in-flight aircraft. [for weather information

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1976-01-01

    Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate.

  12. Operational Overview for UAS Integration in the NAS Project Flight Test Series 3

    NASA Technical Reports Server (NTRS)

    Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael

    2018-01-01

    The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.

  13. Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1985-01-01

    Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

  14. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  15. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  16. Optimization models for flight test scheduling

    NASA Astrophysics Data System (ADS)

    Holian, Derreck

    As threats around the world increase with nations developing new generations of warfare technology, the Unites States is keen on maintaining its position on top of the defense technology curve. This in return indicates that the U.S. military/government must research, develop, procure, and sustain new systems in the defense sector to safeguard this position. Currently, the Lockheed Martin F-35 Joint Strike Fighter (JSF) Lightning II is being developed, tested, and deployed to the U.S. military at Low Rate Initial Production (LRIP). The simultaneous act of testing and deployment is due to the contracted procurement process intended to provide a rapid Initial Operating Capability (IOC) release of the 5th Generation fighter. For this reason, many factors go into the determination of what is to be tested, in what order, and at which time due to the military requirements. A certain system or envelope of the aircraft must be assessed prior to releasing that capability into service. The objective of this praxis is to aide in the determination of what testing can be achieved on an aircraft at a point in time. Furthermore, it will define the optimum allocation of test points to aircraft and determine a prioritization of restrictions to be mitigated so that the test program can be best supported. The system described in this praxis has been deployed across the F-35 test program and testing sites. It has discovered hundreds of available test points for an aircraft to fly when it was thought none existed thus preventing an aircraft from being grounded. Additionally, it has saved hundreds of labor hours and greatly reduced the occurrence of test point reflight. Due to the proprietary nature of the JSF program, details regarding the actual test points, test plans, and all other program specific information have not been presented. Generic, representative data is used for example and proof-of-concept purposes. Apart from the data correlation algorithms, the optimization associated

  17. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    NASA Astrophysics Data System (ADS)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  18. The Aerostructures Test Wing (ATW), which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft

    NASA Image and Video Library

    2001-03-28

    The Aerostructures Test Wing (ATW), which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft

  19. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  20. Aircraft in the Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-06-21

    A Consolidated B–24D Liberator (left), Boeing B–29 Superfortress (background), and Lockheed RA–29 Hudson (foreground) parked inside the Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. A P–47G Thunderbolt and P–63A King Cobra are visible in the background. The laboratory utilized 15 different aircraft during the final 2.5 years of World War II. This starkly contrasts with the limited-quantity, but long-duration aircraft of the NASA’s modern fleet. The Flight Research Building is a 272- by 150-foot hangar with an internal height ranging from 40 feet at the sides to 90 feet at its apex. The steel support trusses were pin-connected at the top with tension members extending along the corrugated transite walls down to the floor. The 37.5-foot-tall and 250-foot-long doors on either side can be opened in sections. The hangar included a shop area and stock room along the far wall, and a single-story office wing with nine offices, behind the camera. The offices were later expanded. The hangar has been in continual use since its completion in December 1942. Nearly 70 different aircraft have been sheltered here over the years. Temporary offices were twice constructed over half of the floor area when office space was at a premium.

  1. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  2. Flight Tests of a Remaining Flying Time Prediction System for Small Electric Aircraft in the Presence of Faults

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Kulkarni, Chetan S.; Vazquez, Sixto L.; Smalling, Kyle M.; Strom, Thomas H.; Hill, Boyd L.; Quach, Cuong C.

    2017-01-01

    This paper addresses the problem of building trust in the online prediction of a battery powered aircraft's remaining flying time. A series of flight tests is described that make use of a small electric powered unmanned aerial vehicle (eUAV) to verify the performance of the remaining flying time prediction algorithm. The estimate of remaining flying time is used to activate an alarm when the predicted remaining time is two minutes. This notifies the pilot to transition to the landing phase of the flight. A second alarm is activated when the battery charge falls below a specified limit threshold. This threshold is the point at which the battery energy reserve would no longer safely support two repeated aborted landing attempts. During the test series, the motor system is operated with the same predefined timed airspeed profile for each test. To test the robustness of the prediction, half of the tests were performed with, and half were performed without, a simulated powertrain fault. The pilot remotely engages a resistor bank at a specified time during the test flight to simulate a partial powertrain fault. The flying time prediction system is agnostic of the pilot's activation of the fault and must adapt to the vehicle's state. The time at which the limit threshold on battery charge is reached is then used to measure the accuracy of the remaining flying time predictions. Accuracy requirements for the alarms are considered and the results discussed.

  3. Overview of the preparation and use of an OV-10 aircraft for wake vortex hazards flight experiments

    NASA Technical Reports Server (NTRS)

    Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1995-01-01

    An overview is presented of the development, use, and current flight-test status of a highly instrumented North American Rockwell OV-10A Bronco as a wake-vortex-hazards research aircraft. A description of the operational requirements and measurements criteria, the resulting instrumentation systems and aircraft modifications, system-calibration and research flights completed to date, and current flight status are included. These experiments are being conducted by the National Aeronautics and Space Administration as part of an effort to provide the technology to safely improve the capacity of the nation's air transportation system and specifically to provide key data in understanding and predicting wake vortex decay, transport characteristics, and the dynamics of encountering wake turbulence. The OV-10A performs several roles including meteorological measurements platform, wake-decay quantifier, and trajectory-quantifier for wake encounters. Extensive research instrumentation systems include multiple airdata sensors, video cameras with cockpit displays, aircraft state and control-position measurements, inertial aircraft-position measurements, meteorological measurements, and an on-board personal computer for real-time processing and cockpit display of research data. To date, several of the preliminary system check flights and two meteorological-measurements deployments have been completed. Several wake encounter and wake-decay-measurements flights are planned for the fall of 1995.

  4. In-flight medical events and aircraft diversions: one airline's experience.

    PubMed

    Delaune, Eugene F; Lucas, Raymond H; Illig, Petra

    2003-01-01

    An aging population combined with the increasing mobility of people with acute and chronic illnesses could make an increase in the frequency of in-flight medical events aboard commercial aircraft likely. To determine the incidence of each type of in-flight medical complaint, the appropriateness of medical kit contents, which factors lead to aircraft diversion, and which factors effect the appropriateness of the decision to divert. Medical complaints reported aboard a sample airline from July 1, 1999 through June 30, 2000 were studied. The frequency of aircraft diversion was related to complaint and medical assistance provided. The appropriateness of the decision to divert was determined as a function of hospital admission rates. There was an incidence of 22.6 medical complaints per million passengers and 0.1 deaths per million passengers. There were 210 diversions per million flights with one of every 12.6 incidents resulting in a diversion. When a passenger volunteer was used, they opened the medical kit 62% of the time. When a physician participated in the decision to divert the hospital admission rate was 49% versus 15% with no physician input. Variations in incidence of medical complaints cited in previous studies demonstrate the need for an industry-wide standardized reporting method of in-flight medical events. All in-flight medical complaints could likely have been adequately treated with the contents of the FM's newly mandated medical kits. Physician participation in decisions to divert aircraft should be sought as it is associated with more appropriate divert decisions.

  5. UAS flight test for safety and for efficiency

    DOT National Transportation Integrated Search

    2017-04-01

    Manned aircraft that operate in the National Airspace System (NAS) typically undergo certification flight test to ensure they meet a prescribed level of safetydependent on their categorybefore they are able to enter service [for example, Federa...

  6. Emergency in-flight egress opening for general aviation aircraft. [pilot bailout

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1980-01-01

    An emergency in-flight egress system was installed in a light general aviation airplane. The airplane had no provision for egress on the left side. To avoid a major structural redesign for a mechanical door, an add on 11.2 kg (24.6 lb) pyrotechnic-actuated system was developed to create an opening in the existing structure. The skin of the airplane was explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel was jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mockups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics. This technology is applicable to any aircraft of similar construction.

  7. Recent flight-test results of optical airdata techniques

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.

    1993-01-01

    Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.

  8. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  9. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    NASA Astrophysics Data System (ADS)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  10. One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig

    NASA Technical Reports Server (NTRS)

    1999-01-01

    seek ways of reducing turbulence produced by large aircraft. Pilots flying as much as several miles behind large aircraft have encountered wake turbulence that have caused control problems. The NASA study helped the Federal Aviation Administration modify flight procedures for commercial aircraft during airport approaches and departures. Following the wake vortex studies, NASA 905 was modified by Boeing to its present SCA configuration and the aircraft was returned to Dryden for its role in the 1977 Space Shuttle Approach and Landing Tests (ALT). This series of eight captive and five free flights with the orbiter prototype Enterprise, in addition to ground taxi tests, validated the aircraft's performance as an SCA, in addition to verifying the glide and landing characteristics of the orbiter configuration -- paving the way for orbital flights. A flight crew escape system, consisting of an exit tunnel extending from the flight deck to a hatch in the bottom of the fuselage, was installed during the modifications. The system also included a pyrotechnic system to activate the hatch release and cabin window release mechanisms. The flight crew escape system was removed from the NASA 905 following the successful completion of the ALT program. NASA 905 was the only SCA used by the space shuttle program until November 1990, when NASA 911 was delivered as an SCA. Along with ferrying Enterprise and the flight-rated orbiters between the launch and landing sites and other locations, NASA 905 also ferried Enterprise to Europe for display in England and at the Paris Air Show. NASA 911 The second SCA is designated NASA 911. It was obtained by NASA from Japan Airlines (JAL) in 1989. It was also modified by Boeing Corporation. It was delivered to NASA 20 November 1990.

  11. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  12. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  13. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  14. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  15. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  16. Human factors implications of unmanned aircraft accidents : flight-control problems

    DOT National Transportation Integrated Search

    2006-04-01

    This research focuses on three types of flight control problems associated with unmanned aircraft systems. The : three flight control problems are: 1) external pilot difficulties with inconsistent mapping of the controls to the : movement of the airc...

  17. Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard

  18. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  19. Real Time Correction of Aircraft Flight Fonfiguration

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

  20. Vortex-Free Flight Corridors for Aircraft Executing Compressed Landing Operations

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2006-01-01

    A factor that limits airport arrival and departure rates is the need to wait between operations for the wake vortices of preceding aircraft to decay to a safe level. As airport traffic demand increases, creative methods will be needed to overcome the limitations caused by the hazard posed by vortex wakes so that airport capacities can be increased. The problem addressed here is the design of vortex-free trajectories for aircraft as they fly from their cruise altitudes down to their final approach paths and to a landing. The guidelines presented recommend that the flight path of each aircraft in a group executing nearly-simultaneous landings be spaced far enough apart laterally along organized flight paths so that the vortex wakes of preceding aircraft will not intrude into the airspace to be used by following aircraft. An example is presented as to how a combination of straight lines and circular arcs is able to provide each aircraft in a group with a vortex-free trajectory so that all are able to safely form the pattern needed for nearly simultaneous landings on a set of closely-spaced parallel runways. Although the guidelines me described for aircraft on approach, they are also applicable to departure, and to en route operations.

  1. NASA/FAA Tailplane Icing Program: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  2. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  3. Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.

  4. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  5. Challenges of CPAS Flight Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Morris, Aaron L.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits.

  6. Flight test to determine feasibility of a proposed airborne wake vortex detection concept

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Hastings, E. C., Jr.; Patterson, James C., Jr.

    1991-01-01

    This investigation was conducted to determine the radial extent at which aircraft mounted flow vanes or roll rate gyros can sense the circulatory flow field that exists around the lift induced vortex system generated by an aircraft in flight. The probe aircraft was equipped with wingtip sensors for measuring angle of attack and angle of sideslip, and with a fuselage mounted gyroscope for measuring roll rate. Analysis of flight test data indicated that the vortex was detectable at a lateral distance of about 105 feet (best results) using unsophisticated equipment. Measurements were made from the centerline of the probe aircraft to the center of the nearest vortex with the probe aircraft flying between one half and one and one half miles behind the vortex generating aircraft.

  7. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance.

    PubMed

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G

    2016-09-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  8. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    PubMed Central

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2018-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles. PMID:29348697

  9. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  10. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  11. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  12. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  13. Weather Associated with the Fall-2000 Turbulence Flight Tests

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2003-01-01

    This viewgraph presentation provides information on three flight tests in which NASA Langley's ARIES B-757 research aircraft was intentionally piloted into areas with a high risk for severe atmospheric turbulence. During its encounter with turbulence, instruments aboard the aircraft monitored wind, temperature and acceleration, and onboard Doppler radar detected forward turbulence. Data was collected along a spectrum, from smooth air to severe turbulence.

  14. A historical overview of flight flutter testing

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1995-01-01

    This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.

  15. Flight testing and frequency domain analysis for rotorcraft handling qualities characteristics

    NASA Technical Reports Server (NTRS)

    Ham, Johnnie A.; Gardner, Charles K.; Tischler, Mark B.

    1993-01-01

    A demonstration of frequency domain flight testing techniques and analyses was performed on a U.S. Army OH-58D helicopter in support of the OH-58D Airworthiness and Flight Characteristics Evaluation and the Army's development and ongoing review of Aeronautical Design Standard 33C, Handling Qualities Requirements for Military Rotorcraft. Hover and forward flight (60 knots) tests were conducted in 1 flight hour by Army experimental test pilots. Further processing of the hover data generated a complete database of velocity, angular rate, and acceleration frequency responses to control inputs. A joint effort was then undertaken by the Airworthiness Qualification Test Directorate (AQTD) and the U.S. Army Aeroflightdynamics Directorate (AFDD) to derive handling qualities information from the frequency response database. A significant amount of information could be extracted from the frequency domain database using a variety of approaches. This report documents numerous results that have been obtained from the simple frequency domain tests; in many areas, these results provide more insight into the aircraft dynamics that affect handling qualities than to traditional flight tests. The handling qualities results include ADS-33C bandwidth and phase delay calculations, vibration spectral determinations, transfer function models to examine single axis results, and a six degree of freedom fully coupled state space model. The ability of this model to accurately predict aircraft responses was verified using data from pulse inputs. This report also documents the frequency-sweep flight test technique and data analysis used to support the tests.

  16. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    NASA Technical Reports Server (NTRS)

    Patt, R. F.

    1980-01-01

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  17. Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, R.F.

    Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

  18. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  19. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  20. Flight Testing of the Gulfstream Quiet Spike(TradeMark) on a NASA F-15B

    NASA Technical Reports Server (NTRS)

    Smolka, James W.; Cowert, Robert A.; Molzahn, Leslie M.

    2007-01-01

    Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the

  1. Investigation of controlled flight into terrain : descriptions of flight paths for selected controlled flight into terrain (CFIT) aircraft accidents, 1985-1997

    DOT National Transportation Integrated Search

    1999-03-01

    This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...

  2. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  3. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  4. Propfan Test Assessment (PTA): Flight test report

    NASA Technical Reports Server (NTRS)

    Little, B. H.; Bartel, H. W.; Reddy, N. N.; Swift, G.; Withers, C. C.; Brown, P. C.

    1989-01-01

    The Propfan Test Assessment (PTA) aircraft was flown to obtain glade stress and noise data for a 2.74m (9 ft.) diameter single rotation propfan. Tests were performed at Mach numbers to 0.85 and altitudes to 12,192m (40,000 ft.). The propfan was well-behaved structurally over the entire flight envelope, demonstrating that the blade design technology was completely adequate. Noise data were characterized by strong signals at blade passage frequency and up to 10 harmonics. Cabin noise was not so high as to preclude attainment of comfortable levels with suitable wall treatment. Community noise was not excessive.

  5. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  6. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  7. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global

  8. Ground and flight test results of a total main rotor isolation system

    NASA Technical Reports Server (NTRS)

    Halwes, Dennis R.

    1987-01-01

    A six degree-of-freedom (DOF) isolation system using six LIVE units has been installed under an Army/NASA contract on a Bell 206LM helicopter. This system has been named the Total Rotor Isolation System, or TRIS. To determine the effectiveness of TRIS in reducing helicopter vibration, a flight verification study was conducted at Bell's Flight Research Center in Arlington, Texas. The flight test data indicate that the 4/rev vibration level at the pilot's seat were suppressed below the 0.04g level throughout the transition envelope. Flight tests indicate over 95% suppression of vibration level from the rotor hub to the pilot's seat. The TRIS installation was designed with a decoupled control system and has shown a significant improvement in aircraft flying qualities, such that it permitted the trimmed aircraft to be flown hands-off for a significant period of time, over 90 seconds. The TRIS flight test program has demonstrated a system that greatly reduces vibration levels of a current-generation helicopter, while significantly improving the flying qualities to a point where stability augmentation is no longer a requirement.

  9. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  10. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  11. Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.

    2005-01-01

    Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance. A flight test evaluation was conducted in the summer of 2004 by NASA Langley Research Center under NASA s Aviation Safety and Security, Synthetic Vision System - Commercial and Business program. A Gulfstream G-V aircraft, modified and operated under NASA contract by the Gulfstream Aerospace Corporation, was flown over a 3-week period at the Reno/Tahoe International Airport and an additional 3-week period at the NASA Wallops Flight Facility to evaluate integrated Synthetic Vision System concepts. Flight testing was conducted to evaluate the performance, usability, and acceptance of an integrated synthetic vision concept which included advanced Synthetic Vision display concepts for a transport aircraft flight deck, a Runway Incursion Prevention System, an Enhanced Vision Systems (EVS), and real-time Database Integrity Monitoring Equipment. This paper focuses on comparing qualitative and subjective results between EVS and SVS display concepts.

  12. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  13. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    NASA Technical Reports Server (NTRS)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic and transonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  14. Occupant injury and fatality in general aviation aircraft for which dynamic crash testing is certification-mandated.

    PubMed

    Boyd, Douglas D

    2015-06-01

    Towards further improving general aviation aircraft crashworthiness, multi-axis dynamic tests have been required for aircraft certification (14CFR23.562) since 1985. The objective of this study was to determine if occupants in aircraft certified to these higher crashworthiness standards show a mitigated fraction of fatal accidents and/or injury severity. The NTSB aviation database was queried for accidents occurring between 2002 and 2012 involving aircraft certified to, or immune from, dynamic crash testing and manufactured after 1999. Only operations conducted under 14CFR Part 91 were considered. Statistical analysis employed proportion tests and logistic regression. Off-airport landings are associated with high decelerative forces; however for off-airport landings, the fraction of fatal accidents for aircraft subject to, or exempt from, dynamic crash testing was similar (0.53 and 0.60, respectively). Unexpectedly, for on-airport landings a higher fraction of fatalities was evident for aircraft whose certification mandated dynamic crash testing. Improved crashworthiness standards would be expected to translate into a reduced severity of accident injuries. For all accidents, as well as for those deemed survivable, the fraction of minor and serious injuries was reduced for occupants in aircraft certified to the higher crashworthiness standards. Surprisingly, the fraction of occupants fatally injured was not decreased for aircraft subject to dynamic crash tests. To shed light on this unexpected finding flight history, airman demographics and post-impact fires for aircraft for which dynamic crash testing is mandatory or exempt was examined. For the former cohort the median distance of the accident flight was nearly 44% higher. Aircraft subject to dynamic crash testing were also involved in a greater fraction (0.25 versus 0.12, respectively) of post-impact fires. Our data suggest that while the more stringent crashworthiness standards have mitigated minor and serious

  15. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center at Mojave Airport in Southern California.

    NASA Image and Video Library

    2003-04-03

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center at Mojave Airport in Southern California. The unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests. NASA Dryden's F/A-18 Hornet was one of many different aircraft used in the tests.

  16. Numerical and flight measured interior noise characteristics of a twin-engine turboprop general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Marulo, F.; Lecce, L.; de Rosa, S.; D'Amato, C. A.; Verde, G.

    The paper presents the flight test results of an interior noise measurement campaign on a twin-engine turboprop general aviation aircraft conducted for assessing the real values inside such aircraft and for approaching the problem of its noise reduction. Simultaneously a numerical study has been performed in order to correlate the experimental and the theoretical values, trying to come out with some guidelines for possible improvements without increasing excessively the costs of such study.

  17. Application and flight test of linearizing transformations using measurement feedback to the nonlinear control problem

    NASA Technical Reports Server (NTRS)

    Antoniewicz, Robert F.; Duke, Eugene L.; Menon, P. K. A.

    1991-01-01

    The design of nonlinear controllers has relied on the use of detailed aerodynamic and engine models that must be associated with the control law in the flight system implementation. Many of these controllers were applied to vehicle flight path control problems and have attempted to combine both inner- and outer-loop control functions in a single controller. An approach to the nonlinear trajectory control problem is presented. This approach uses linearizing transformations with measurement feedback to eliminate the need for detailed aircraft models in outer-loop control applications. By applying this approach and separating the inner-loop and outer-loop functions two things were achieved: (1) the need for incorporating detailed aerodynamic models in the controller is obviated; and (2) the controller is more easily incorporated into existing aircraft flight control systems. An implementation of the controller is discussed, and this controller is tested on a six degree-of-freedom F-15 simulation and in flight on an F-15 aircraft. Simulation data are presented which validates this approach over a large portion of the F-15 flight envelope. Proof of this concept is provided by flight-test data that closely matches simulation results. Flight-test data are also presented.

  18. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft

    NASA Image and Video Library

    2001-03-15

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  19. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Tran, Boi N.

    1992-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  20. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Astrophysics Data System (ADS)

    Simpson, Myles A.; Tran, Boi N.

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  1. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  2. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  3. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  4. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  5. Flight investigation of a four-dimensional terminal area guidance system for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Hardy, G. H.

    1981-01-01

    A series of flight tests and fast-time simulations were conducted, using the augmentor wing jet STOL research aircraft and the STOLAND 4D-RNAV system to add to the growing data base of 4D-RNAV system performance capabilities. To obtain statistically meaningful data a limited amount of flight data were supplemented by a statistically significant amount of data obtained from fast-time simulation. The results of these tests are reported. Included are comparisons of the 4D-RNAV estimated winds with actual winds encountered in flight, as well as data on along-track navigation and guidance errors, and time-of-arrival errors at the final approach waypoint. In addition, a slight improvement of the STOLAND 4D-RNAV system is proposed and demonstrated, using the fast-time simulation.

  6. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  7. Simulations for the Test Flight of an Experimental HALE Aircraft

    DTIC Science & Technology

    2011-06-01

    as a plant representation for HALE aircraft control design. It focuses on a reduced number of states to represent the complex nonlinear problem...Atkins, Ella M., Shearer, Christopher M. and Nathan A. Pitcher . “X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests.” (AIAA 2010-2715), April

  8. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  9. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  10. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  11. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  12. Step 1: Human System Integration Simulation and Flight Test Progress Report

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  13. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  14. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  15. Correlation of low speed wind tunnel and flight test data for V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cook, W. L.; Hickey, D. H.

    1975-01-01

    The XV-5B fan-in-wing aircraft and the Y0V-10 RCF rotating cylinder flap aircraft were subjected to wind tunnel tests. These tests were conducted specifically to provide for correlation between wind tunnel and inflight aerodynamics and noise test data. Correlation between aerodynamic and noise data are presented and testing techniques that are related to the accuracy of the data, or that might affect the correlations, are discussed.

  16. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  17. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  18. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  19. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  20. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  1. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2008-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  2. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Smith, Mark S.

    2010-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  3. In-flight observation of long duration gamma-ray glows by aircraft

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; (Lex) van Deursen, A. P. J.; de Boer, Alte; Bardet, Michiel; Allasia, Cedric; Boissin, Jean Francois; Ostgaard, Nikolai

    2017-04-01

    The Gamma-Ray Glow is a long-lasting (several seconds to minutes) X- and gamma radiation presumably originated from high-electric field of thunderclouds. Such glows were previously observed by aircraft, balloons, and from the ground. When detected on ground with other particles, i.e. electrons and neutrons, they are usually called Thunderstorm Ground Enhancements (TGEs). Their measured spectra are often consistent with Relativistic Runaway Electron Avalanche (RREA) mechanism. That is why RREA is a commonly accepted explanation for their existence. The gamma-ray glows are observed to be interrupted by lightning discharge, which terminates the high-electric field region. In January 2016 an Airbus A340 factory test aircraft was performing intentional flights through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system called ILDAS (http://ildas.nlr.nl). The system also contained two scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. While being at 12 km altitude the system detected a gamma-ray flux enhancement 30 times the background counts. It lasted for 20 seconds and was abruptly terminated by a lightning flash. The flash hit the aircraft and its parameters were recorded with 10 ns sampling time including gamma radiation. Ground-based lightning detection network WWLLN detected 4 strikes in the nearby region, all in association with the same flash. The ILDAS system recorded the time-resolved spectrum of the glow. In 6 minutes, after making a U-turn, the aircraft passed the same glow region. Smaller gamma-ray enhancement was again detected. In this presentation we will show the mapped event timeline including airplane, gamma-ray glow, WWLLN, and cloud data. We will discuss the glow's properties, i.e. intensity and differential spectrum, and its possible origin. This result will also be compared to previously reported observations.

  4. The chocolate-colored expanse of Rogers Dry Lake frames the sleek lines of the Boeing / NASA X-48B subscale demonstrator during a test flight at Edwards AFB

    NASA Image and Video Library

    2007-08-14

    Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.

  5. Wheel-well and cargo compartment temperatures of large aircraft in flight: implications for stowaways.

    PubMed

    Perry, Gad

    2002-07-01

    Desperate people sometimes risk journeys as stowaways in aircraft wheel-wells. Some of them survive, despite the risks of being crushed by retracting landing gear, falling when the gear deploys for landing, or experiencing severe hypoxia and hypobaria in-flight. This study evaluates the level of hypothermia to which stowaways in aircraft may be exposed. Miniature dataloggers were used to record in-flight temperatures in aircraft wheel-wells and cargo compartments. Temperatures were measured for front and side wheel-wells (FW and SW, respectively) on 36 flights by C-130 aircraft (mean duration 3.3 h, mean cruise altitude 5588 m (18,333 ft)) and 11 flights by C-141 aircraft (6.7 h and 10,744 m (35,250 ft)). Mean minimum temperatures for the C-130 remained above freezing and averaged 5.1 degrees C for FW and 11.9 degrees C for SW. The higher, longer C-141 flights produced temperatures below freezing with mean minimum temperatures of -18.0 degrees C for FW and -12.4 degrees C for SW. In general, temperatures in wheel-wells remained about 20 degrees C above outside air temperature (OAT) at all altitudes. This increase reflects the fact that wheel-wells are closed spaces within the aircraft body, in addition to which they contain sources of heat such as hydraulic lines and electrical equipment. Cargo compartment minimum temperature was relatively high (mean = 18.6 degrees C for commercial airline). A search of the medical literature and lay press produced information on 46 incidents of people found in wheel-wells after landing where there was no evidence of trauma. The 15 survivors had stowed away on relatively short flights (mean = 4.8 h, maximum = 10 h) compared with fatalities (mean = 7.5 h, range = 3-12 h). Temperatures in wheel-wells during short flights may sustain life. Long flights add severe hypothermia to acute hypoxia and hypobaria as potentially fatal environmental factors faced by wheel-well stowaways.

  6. Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.

    1995-01-01

    Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.

  7. Walter C. Williams Research Aircraft Integration Facility (RAIF)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  8. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    NASA Glenn Research Center at Lewis Field's aviation Weather Information Communications (WINCOMM) and NASA Langley Research Center's Aviation Weather Information (AWIN) programs collaborated in a flight test and evaluation of a worldwide weather data-link capability using satellites. This successful flight testing moves NASA closer to its goal of developing advanced communications and information technologies to enable high-quality and timely dissemination of aviation weather information to all relevant users on the aviation information network. Recognized as a major contributing factor in aviation accidents and incidents, weather contributes directly or indirectly to nearly 80 percent of fatal general aviation (small private aircraft) accidents. In 1997, the Aeronautics Safety Investment Strategy Team s weather team produced a prioritized list of investment areas under weather accident prevention. Weather data dissemination is the most critical and highest ranked priority on the list. NASA's Aviation Safety Program founded the Aviation Weather Information initiative to focus efforts on significantly reducing the number of weather-related aviation fatalities. Access to accurate and timely weather data could contribute to a major reduction of weather-related incidents and accidents. However, a cost-effective solution has eluded most general aviation pilots because of the high cost of onboard weather radar equipment. Rockwell Collins, through a contract with NASA and in cooperation with WorldSpace Corporation, successfully completed ground and flight testing of a receiver and antenna in Johannesburg, South Africa. This NASA/Rockwell Collins project is an evaluation of worldwide weather data-link capability using transmissions from the Satellite Digital Audio Radio Services (S DARS) AfriStar satellite. Owned and operated by WorldSpace, AfriStar is a geostationary satellite that broadcasts commercial digital audio services to stationary and mobile platforms. S DARS

  9. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  10. Video analysis of the flight of a model aircraft

    NASA Astrophysics Data System (ADS)

    Tarantino, Giovanni; Fazio, Claudio

    2011-11-01

    A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the phugoid model for longitudinal flight. A comparison with the parameters and performance of the full-size aircraft has also been outlined.

  11. Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave

  12. VSTOL Systems Research Aircraft (VSRA) Harrier

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.

  13. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially

  14. Investigation of controlled flight into terrain : aircraft accidents involving turbine-powered aircraft with six or more passenger seats flying under FAR part 91 flight rules and the potential for their prevention by ground proximity warning systems

    DOT National Transportation Integrated Search

    1996-03-01

    This two-volume study documents an investigation of controlled flight into terrain (CFIT) aircraft accidents involving turbine-powered aircraft with six or more passenger seats flying under Federal Aviation Regulations (FAR) Part 91 flight rules, and...

  15. Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv

    2001-01-01

    Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.

  16. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  17. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  18. Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Cobleigh, Brent R.

    2002-01-01

    Previous investigations into formation flight have shown the possibility for significant fuel savings through drag reduction. Using two F/A-18 aircraft, NASA Dryden Flight Research Center has investigated flying aircraft in autonomous formation. Positioning the trailing airplane for best drag reduction requires investigation of the wingtip vortex effects induced by the leading airplane. A full accounting of the vortex effect on the trailing airplane is desired to validate vortex-effect prediction methods and provide a database for the design of a formation flight autopilot. A recent flight phase has mapped the complete wingtip vortex effects at two flight conditions with the trailing airplane at varying distances behind the leading one. Force and moment data at Mach 0.56 and an altitude of 25,000 ft and Mach 0.86 and an altitude of 36,000 ft have been obtained with 20, 55, 110, and 190 ft of longitudinal distance between the aircraft. The moments induced by the vortex on the trailing airplane were well within the pilot's ability to control. This report discusses the data analysis methods and vortex-induced effects on moments and side force. An assessment of the impact of the nonlinear vortex effects on the design of a formation autopilot is offered.

  19. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  20. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.