Sample records for aircraft including unmanned

  1. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  2. Accelerating the Kill Chain via Future Unmanned Aircraft

    DTIC Science & Technology

    2007-04-01

    Controller JTRS Joint Tactical Radio System Lasercom Laser communications LDHD Low Density High Demand LEO Low Earth Orbit LGB Laser Guided Bomb...published the Unmanned Aircraft Systems Roadmap 2005 that included the terms Unmanned Aircraft System (UAS) and Unmanned Aircraft (UA). This...comprehensive publication used the term Unmanned Aircraft Systems when referring to the entire system and the term Unmanned Aircraft when referring only to the

  3. Coexistence Analysis of Civil Unmanned Aircraft Systems at Low Altitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Yuzhe

    2016-11-01

    The requirement of unmanned aircraft systems in civil areas is growing. However, provisioning of flight efficiency and safety of unmanned aircraft has critical requirements on wireless communication spectrum resources. Current researches mainly focus on spectrum availability. In this paper, the unmanned aircraft system communication models, including the coverage model and data rate model, and two coexistence analysis procedures, i. e. the interference and noise ratio criterion and frequency-distance-direction criterion, are proposed to analyze spectrum requirements and interference results of the civil unmanned aircraft systems at low altitudes. In addition, explicit explanations are provided. The proposed coexistence analysis criteria are applied to assess unmanned aircraft systems' uplink and downlink interference performances and to support corresponding spectrum planning. Numerical results demonstrate that the proposed assessments and analysis procedures satisfy requirements of flexible spectrum accessing and safe coexistence among multiple unmanned aircraft systems.

  4. Manned-Unmanned Teaming of Aircraft - Literature Search

    DTIC Science & Technology

    2013-12-01

    unmanned aircraft reconnaissance system MQ 8B Fire Scout vertical takeoff and landing unmanned system MQ 5B Hunter medium altitude unmanned aerial...201140, and allows their crew to view sensor data from unmanned aircraft systems (UAS) and send data from the helicopter’s sensors to the ground.35 No...Helicopter, AAI unmanned Aircraft Systems , and Textron Inc. It opened in December 2012 in Huntsville Alabama. It will enable “a software and

  5. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  6. A Historical Review of Training Requirements for Unmanned Aircraft Systems, Small Unmanned Aircraft Systems, and Manned Operations (1997-2014)

    DOT National Transportation Integrated Search

    2017-08-01

    There are several mature Unmanned Aircraft System (UAS) and Small Unmanned Aircraft System (sUAS) training programs available for analysis. Many of these programs were developed by the various branches with the U.S. Department of Defense (DoD) in con...

  7. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  8. Small unmanned aircraft and the U.S. Forest Service : benefits, costs, and recommendations for using small unmanned aircraft in Forest Service operations

    DOT National Transportation Integrated Search

    2016-08-01

    This paper provides information to Forest Service leadership about how the agency could use unmanned aircraft across different programs, especially in program areas where aircraft use is currently limited. It draws from published uses of unmanned air...

  9. Breakaway: A Look at the Integration of Aerial Refueling and Unmanned Aircraft Systems in Future Operations

    DTIC Science & Technology

    2007-06-15

    possibility of air refueling unmanned platforms that will prolong their loiter time. Because of the senior leader pressure to get a persistent presence...future force of 2025 will undoubtedly include many unmanned aircraft and manned aircraft. This thesis investigates how aerial refueling and unmanned...leader pressure to get a persistent presence of unmanned aircraft through air refueling, they might have waived the “sanity check” for this, or

  10. Development of an Unmanned Aircraft Systems Program: ACUASI

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2017-12-01

    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  11. Preliminary Considerations for Classifying Hazards of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; Szatkowski, George N.; Ulrey, Michael L.; DeWalt, Michael P.; Spitzer, Cary R.

    2007-01-01

    The use of unmanned aircraft in national airspace has been characterized as the next great step forward in the evolution of civil aviation. To make routine and safe operation of these aircraft a reality, a number of technological and regulatory challenges must be overcome. This report discusses some of the regulatory challenges with respect to deriving safety and reliability requirements for unmanned aircraft. In particular, definitions of hazards and their classification are discussed and applied to a preliminary functional hazard assessment of a generic unmanned system.

  12. Unmanned aircraft system bridge inspection demonstration project phase II final report.

    DOT National Transportation Integrated Search

    2017-06-01

    An Unmanned Aircraft System (UAS) is defined by the Federal Aviation Administration (FAA) as an aircraft operated without the possibility of direct human intervention from within the aircraft. Unmanned aircraft are familiarly referred to as drones, a...

  13. 78 FR 12259 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT... Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is to develop a body of data and operational...

  14. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  15. 75 FR 2925 - Sixteenth Plenary Meeting: RTCA Special Committee 203: Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Special Committee 203: Unmanned Aircraft Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 203: Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 203: Unmanned Aircraft Systems. DATES...

  16. Unmanned Aircraft House Hearing

    NASA Image and Video Library

    2013-02-15

    Dr. Gerald Dillingham, Director, Civil Aviation Issues, Government Accounting Office (GAO), talks during a House Subcommittee on Oversight hearing titled "Operating Unmanned Aircraft Systems in the National Airspace System: Assessing Research and Development Efforts to Ensure Safety" on Friday, Feb. 15, 2013 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  17. Perspectives on Unmanned Aircraft Classification for Civil Airworthiness Standards

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Hayhurst, Kelly J.; Koppen, Daniel M.; Upchurch, Jason M.; Morris, A. Terry; Verstynen, Harry A.

    2013-01-01

    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. This paper provides observations related to how the current regulations for classifying manned aircraft could apply to UAS.

  18. Advanced imaging of transportation infrastructure using unmanned aircraft systems : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    The University of Alaska Fairbanks has been conducting research into unmanned : aircraft systems (UAS) since 2000, with more missions and mission diversity than : any other university. With the creation of the Alaska Center for Unmanned Aircraft : Sy...

  19. Unmanned Aircraft House Hearing

    NASA Image and Video Library

    2013-02-15

    Dr. Edgar Waggoner, Director, Integrated Systems research Program Office, National Aeronautics and Space Administration (NASA), takes notes during a House Subcommittee on Oversight hearing titled "Operating Unmanned Aircraft Systems in the National Airspace System: Assessing Research and Development Efforts to Ensure Safety" on Friday, Feb. 15, 2013 at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  20. U.S. Army unmanned aircraft systems roadmap 2010-2035

    DOT National Transportation Integrated Search

    2010-01-01

    The Unmanned Aircraft System (UAS) Roadmap outlines how the U.S. Army will develop, organize, and employ UAS from 2010 to 2035 across full spectrum operations. The Army UAS Roadmap is nested with the Unmanned Systems (UMS) Initial Capabilities Docume...

  1. Unmanned Aircraft Systems Roadmap 2005-2030

    DOT National Transportation Integrated Search

    2005-01-01

    This document presents the Department of Defense's (DoD) roadmap for developing and employing unmanned aircraft systems over the next 25 years (2005 to 2030). It describes the missions identified by theater warfighters to which systems could be appli...

  2. Swarming Unmanned Aircraft Systems

    DTIC Science & Technology

    2008-09-01

    systems may become a viable part of strategy and tactics in the future. Specific to Unmanned Aircraft Sys- tems ( UAS ). they see a strong and central...system itself. They do not want to limit direct access to only Military Occupational Specialty (MOS) trained UAS operators. Rather, they feel that...Collaborating (SASC) characteristics within swarms of UAS that support operations. Technical Approach The approach taken to model this system begins with an

  3. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    NASA Technical Reports Server (NTRS)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  4. Unmanned aircraft systems for transportation decision support.

    DOT National Transportation Integrated Search

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  5. Unmanned Aircraft System Applications in International Railroads

    DOT National Transportation Integrated Search

    2018-02-01

    This report summarizes the current uses and issues associated with Unmanned Aircraft Systems (UAS) in railroad applications, and provides the use cases employed by railroads. The report highlights global UAS market outlooks as well as regulations tha...

  6. Sense-and-Avoid Equivalent Level of Safety Definition for Unmanned Aircraft Systems. Revision 9

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Since unmanned aircraft do not have a pilot on-board the aircraft, they cannot literally comply with the "see and avoid" requirement beyond a short distance from the location of the unmanned pilot. No performance standards are presently defined for unmanned Sense and Avoid systems, and the FAA has no published approval criteria for a collision avoidance system. Before the FAA can develop the necessary guidance (rules / regulations / policy) regarding the see-and-avoid requirements for Unmanned Aircraft Systems (UAS), a concise understanding of the term "equivalent level of safety" must be attained. Since this term is open to interpretation, the UAS industry and FAA need to come to an agreement on how this term can be defined and applied for a safe and acceptable collision avoidance capability for unmanned aircraft. Defining an equivalent level of safety (ELOS) for sense and avoid is one of the first steps in understanding the requirement and developing a collision avoidance capability. This document provides a functional level definition of see-and-avoid as it applies to unmanned aircraft. The sense and avoid ELOS definition is intended as a bridge between the see and avoid requirement and the system level requirements for unmanned aircraft sense and avoid systems. Sense and avoid ELOS is defined in a rather abstract way, meaning that it is not technology or system specific, and the definition provides key parameters (and a context for those parameters) to focus the development of cooperative and non-cooperative sense and avoid system requirements.

  7. 78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... operation of the UAS Test Sites. They are not intended to pre-determine the long- term policy and regulatory...-0061] Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach AGENCY: Federal... the unmanned aircraft systems (UAS) test site program. The FAA is seeking the views from the public...

  8. Aircraft Survivability: Unmanned Aircraft Systems Survivability. Fall 2008

    DTIC Science & Technology

    2008-01-01

    until June 2005. Upon deactivation, LtCol Matthews became the “Marine JCAT of One” and was assigned to the 4th Marine Aircraft Wing as a drilling ...strain gauges along with high- speed video. Seven tests were accomplished (Figure 5): four with no airflow, and three with 200 knots of airflow across...collection for manned and unmanned systems to support vulnerability testing and analysis. As Figure 7 illustrates, the system uses advanced metrology

  9. Considerations of Unmanned Aircraft Classification for Civil Airworthiness Standards

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Hayhurst, Kelly J.; Morris, A. Terry; Verstynen, Harry A.

    2013-01-01

    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. Classification is useful for ensuring that meaningful differences in design are accommodated by certification to different standards, and that aircraft with similar risk profiles are held to similar standards. This paper provides observations related to how the current regulations for classifying manned aircraft, based on dimensions of aircraft class and operational aircraft categories, could apply to UAS. This report finds that existing aircraft classes are well aligned with the types of UAS that currently exist; however, the operational categories are more difficult to align to proposed UAS use in the NAS. Specifically, the factors used to group manned aircraft into similar risk profiles do not necessarily capture all relevant UAS risks. UAS classification is investigated through gathering approaches to classification from a broad spectrum of organizations, and then identifying and evaluating the classification factors from these approaches. This initial investigation concludes that factors in addition to those currently used today to group manned aircraft for the purpose of assigning airworthiness standards will be needed to adequately capture risks associated with UAS and their operations.

  10. All weather collision avoidance for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Contarino, Mark

    2010-04-01

    For decades, military and other national security agencies have been denied unfettered access to the National Air Space (NAS) because their unmanned aircraft lack a highly reliable and effective collision avoidance capability. The controlling agency, the Federal Aviation Administration, justifiably demands "no harm" to the safety of the NAS. To overcome the constraints imposed on Unmanned Aircraft Systems (UAS) use of the NAS, a new, complex, conformable collision avoidance system has been developed - one that will be effective in all flyable weather conditions, overcoming the shortfalls of other sensing systems, including radar, lidar, acoustic, EO/IR, etc., while meeting form factor and cost criteria suitable for Tier II UAS operations. The system also targets Tier I as an ultimate goal, understanding the operational limitations of the smallest UASs may require modification of the design that is suitable for Tier II and higher. The All Weather Sense and Avoid System (AWSAS) takes into account the FAA's plan to incorporate ADS-B (out) for all aircraft by 2020, and it is intended to make collision avoidance capability available for UAS entry into the NAS as early as 2013. When approved, UASs can fly mission or training flights in the NAS free of the constraints presently in place. Upon implementation this system will achieve collision avoidance capability for UASs deployed for national security purposes and will allow expansion of UAS usage for commercial or other civil purposes.

  11. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  12. Robustness of mission plans for unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Niendorf, Moritz

    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls

  13. Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2015-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.

  14. Control and Non-Payload Communications Links for Integrated Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Griner, James H.

    2012-01-01

    Technology for unmanned aircraft has advanced so rapidly in recent years that many new applications to public and commercial use are being proposed and implemented. In many countries, emphasis is now being placed on developing the means to allow unmanned aircraft to operate within non-segregated airspace along with commercial, cargo and other piloted and passenger-carrying aircraft.In the U.S., Congress has mandated that the Federal Aviation Administration reduce and remove restrictions on unmanned aircraft operations in a relatively short time frame. To accomplish this, a number of technical and regulatory hurdles must be overcome. A key hurdle involve the communications link connecting the remote pilot located at a ground control station with the aircraft in the airspace, referred to as the Control and Non-Payload Communications (CNPC) link. This link represents a safety critical communications link, and thus requires dedicated and protected aviation spectrum as well as national and international standards defining the operational requirements the CNPC system. The CNPC link must provide line-of-site (LOS) communications, primarily through a ground-based communication system, and beyond-line-of-sight (BLOS) communication achieved using satellite communications. In the U.S., the National Aeronautics and Space Administration (NASA) is charged with providing the technical body of evidence to support spectrum allocation requirements and national and international standards development for the CNPC link. This paper provides a description of the CNPC system, an overview of NASA's CNPC project, and current results in technology assessment, air-ground propagation characterization, and supporting system studies and analyses will be presented.

  15. Aptitude and Trait Predictors of Manned and Unmanned Aircraft Pilot Job Performance

    DTIC Science & Technology

    2016-04-22

    actually fly RPAs. To address this gap, the present study evaluated pre-accession trait (Big Five personality domains) and aptitude (spatial...knowledge, and personality traits that predict successful job performance for manned aircraft pilots also predict successful job performance for RPA...aptitude and personality traits , job performance, remotely-piloted aircraft, unmanned aircraft systems 16. SECURITY CLASSIFICATION OF: 17

  16. 78 FR 68360 - Unmanned Aircraft System Test Site Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT...'') test site program; response to comments. SUMMARY: On February 22, 2013 the FAA published and requested public comment on the proposed privacy requirements (the ``Draft Privacy Requirements'') for UAS test...

  17. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests

  18. Human factors implications of unmanned aircraft accidents : flight-control problems

    DOT National Transportation Integrated Search

    2006-04-01

    This research focuses on three types of flight control problems associated with unmanned aircraft systems. The : three flight control problems are: 1) external pilot difficulties with inconsistent mapping of the controls to the : movement of the airc...

  19. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS

  20. Mitigating the Impact of Sensor Uncertainty on Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Sturdy, James L.

    2017-01-01

    Without a pilot onboard an aircraft, a Detect-and-Avoid (DAA) system, in conjunction with surveillance sensors, must be used to provide the remotely-located Pilot-in-Command sufficient situational awareness in order to keep the Unmanned Aircraft (UA) safely separated from other aircraft. To facilitate safe operations of UA within the U.S.' National Airspace System, the uncertainty associated with surveillance sensors must be accounted for. An approach to mitigating the impact of sensor uncertainty on achievable separation has been developed to support technical requirements for DAA systems.

  1. Unmanned Carrier-Based Aircraft System: Debate over Systems Role Led to Focus on Aerial Refueling

    DTIC Science & Technology

    2016-03-24

    Unmanned Carrier-Based Aircraft System: Debate over System’s Role Led to Focus on Aerial Refueling Prior to February 2016, the Navy had planned to...award of the air system development contract by about 3 years from 2014 to 2017. In that report, we also found that knowledge the Navy had obtained...strike 1Pub. L. No. 113-66, § 213(d) (2013). 2GAO, Unmanned Carrier-Based Aircraft System: Navy Needs

  2. Remote sensing with unmanned aircraft systems for precision agriculture applications

    USDA-ARS?s Scientific Manuscript database

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  3. Monitoring nitrogen status of potatoes using small unmanned aircraft system

    USDA-ARS?s Scientific Manuscript database

    Small Unmanned Aircraft Systems (sUAS) are potential remote-sensing platforms to manage fertilization for precision agriculture. An experiment was established in an irrigated potato field with different N fertilization rates, and a small parafoil was used to acquire color-infrared images over the 20...

  4. Group 3 Unmanned Aircraft Systems Maintenance Challenges Within The Naval Aviation Enterprise

    DTIC Science & Technology

    2017-12-01

    cross winds . We again went through the mishap processes and reviewed training and maintenance records. A couple months later, there was a third crash...gas turbine engines powering aircraft with humans on board (DON, 2017). Group 3 unmanned aircraft utilize a sealed fuel system. The tank is filled...aircraft do not use gas turbine engines. They use either rotary Wankle or piston driven engines with much simpler fuel delivery systems such as carburetors

  5. Comparison of aerial imagery from manned and unmanned aircraft platforms for monitoring cotton growth

    USDA-ARS?s Scientific Manuscript database

    Unmanned aircraft systems (UAS) have emerged as a low-cost and versatile remote sensing platform in recent years, but little work has been done on comparing imagery from manned and unmanned platforms for crop assessment. The objective of this study was to compare imagery taken from multiple cameras ...

  6. Initial Study of an Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    NASA Technical Reports Server (NTRS)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  7. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    NASA Technical Reports Server (NTRS)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  8. Supporting the Use of Unmanned Aircraft Systems(UAS) for Global Science Observations in Civil and Segregated Airspace

    NASA Technical Reports Server (NTRS)

    Mulac, B. L.; Reider. K/

    2010-01-01

    Unmanned Aircraft Systems (UAS) are growing more popular within the earth science community as a way to augment measurements currently made with manned aircraft. UAS arc uniquely suited for applications that require long dwell times and/or in locations that are generally too dangerous for manned aircraft. Environmental monitoring in areas like the Arctic or obtaining data within a hurricane are just a couple of examples of many applications to which UAS are ideally suited. However, UAS are not without their challenges. Most unmanned aircraft are unable to meet current airspace regulations that are in place for manned aircraft, and specific airspace standards and regulations for unmanned aircraft do not exist. As a result, gaining access to civil airspace for flights is very difficult around the world. Under Term of Reference 48 within the ISPRS Commission 1, WGI/I: Standardization of Aircraft Interfaces, efforts have been made to understand and quantify the current state of UAS airspace access on a global scale. The results of these efforts will be presented along with examples of successful science missions that have been conducted internationally during the past year.

  9. The Application of Unmanned Rotary-Wing Aircraft in Tactical Logistics in Support of Joint Operations

    DTIC Science & Technology

    2013-12-13

    Reconnaissance Squadrons with a fixed-wing unmanned aircraft troop or company, and is in the market for an autonomous cargo unmanned rotary-wing...Warwick, Graham. “Sky Patrol.” Aviation Week & Space Technology 174, no. 32 (September 3, 2012): 55. Military & Government Collection, EBSCOhost

  10. Detection of nitrogen deficiency in potatoes using unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. We set up a nitrogen rate experiment in 2013 with ‘Ranger Russet’ potatoes by applying four rates of nitrogen fertilizer (112, 224, 337, and 449 kg N/ha) in a randomized...

  11. Rapid detection of Colorado potato beetle damage using small unmanned aircraft

    USDA-ARS?s Scientific Manuscript database

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. Damage to potato fields by the Colorado potato beetle (Leptinotarsa decemlineata) rapidly increases from initial...

  12. A summary of unmanned aircraft accident/incident data : human factors implications

    DOT National Transportation Integrated Search

    2004-12-01

    A review and analysis of unmanned aircraft (UA) accident data was conducted to identify important human factors issues related to their use. UA accident data were collected from the U.S. Army, Navy, and Air Force. Classification of the accident data ...

  13. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Otto, Neil M.

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  14. Evolution of A Distributed Live, Virtual, Constructive Environment for Human in the Loop Unmanned Aircraft Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Jim; Otto, Neil

    2017-01-01

    NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The projects integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.

  15. An Investigation of Multiple Unmanned Aircraft Systems Control from the Cockpit of an AH-64 Apache Helicopter

    DTIC Science & Technology

    2014-12-01

    An Investigation of Multiple Unmanned Aircraft Systems Control from the Cockpit of an AH-64 Apache Helicopter by Jamison S Hicks and David B...estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense , Washington...infantrymen, aircraft pilots, or dedicated UAS ground control station (GCS) operators. The purpose of the UAS is to allow for longer and more discrete

  16. Unmanned Aircraft Hazards and their Implications for Regulation

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; DeWalt, Michael P.; McCormick, G. Frank

    2006-01-01

    Use of unmanned aircraft systems (UASs) has been characterized as the next great step forward in the evolution of civil aviation. Indeed, UASs are in limited civil use in the United States today, and many believe that the time is rapidly approaching when they will move into the commercial marketplace, too. To make this a reality, a number of challenges must be overcome to develop the necessary regulatory framework for assuring safe operation of this special class of aircraft. This paper discusses some of what must be done to establish that framework. In particular, we examine hazards specific to the design, operation, and flight crew of UASs, and discuss implications of these hazards for existing policy and guidance. Understanding unique characteristics of UASs that pose new hazards is essential to developing a cogent argument, and the corresponding regulatory framework, for safely integrating these aircraft into civil airspace.

  17. Formal Analysis of Extended Well-Clear Boundaries for Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony

    2016-01-01

    This paper concerns the application of formal methods to the definition of a detect and avoid concept for unmanned aircraft systems (UAS). In particular, it illustrates how formal analysis was used to explain and correct unexpected behaviors of the logic that issues alerts when two aircraft are predicted not to be well clear from one another. As a result of this analysis, a recommendation was proposed to, and subsequently adopted by, the US standards organization that defines the minimum operational requirements for the UAS detect and avoid concept.

  18. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  19. Detection of nitrogen deficiency in potatoes using small unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Small Unmanned Aircraft Systems (sUAS) are recognized as potentially important remote-sensing platforms for precision agriculture. However, research is required to determine which sensors and data processing methods are required to use sUAS in an efficient and cost-effective manner. We set up a ni...

  20. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  1. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  2. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  3. The Development of Empirically-Based Medical Standards for Large and Weaponized Unmanned Aircraft System Pilots

    DTIC Science & Technology

    2006-10-01

    for UAS pilot applicants to complete a limited period of manned aircraft flight training early in their training pipeline. Subsequently, there will...applicable for the initial period of manned aircraft flight training: Federal Aviation Administration third class medical standards or AF148-123V3... flight training could not be adequately addressed during training with unmanned aircraft. In the interim, the USAF has decided manned aircraft training is

  4. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  5. Arctic Atmospheric Measurements Using Manned and Unmanned Aircraft, Tethered Balloons, and Ground-Based Systems at U.S. DOE ARM Facilities on the North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Roesler, E. L.; Hillman, B. R.; Hardesty, J. O.

    2016-12-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data to the international Arctic research community via research sites located on the North Slope of Alaska and an open data archive maintained by the ARM program. In 2016, DOE continued investments in improvements to facilities and infrastructure at Oliktok Point Alaska to support operations of ground-based facilities and unmanned aerial systems for science missions in the Arctic. The Third ARM Mobile Facility, AMF3, now deployed at Oliktok Point, was further expanded in 2016. Tethered instrumented balloons were used at Oliktok to make measurements of clouds in the boundary layer including mixed-phase clouds and to compare measurements with those from the ground and from unmanned aircraft operating in the airspace above AMF3. The ARM facility at Oliktok Point includes Special Use Airspace. A Restricted Area, R-2204, is located at Oliktok Point. Roughly 4 miles in diameter, it facilitates operations of tethered balloons and unmanned aircraft. R-2204 and a new Warning Area north of Oliktok, W-220, are managed by Sandia National Laboratories for DOE Office of Science/BER. These Special Use Airspaces have been successfully used to launch and operate unmanned aircraft over the Arctic Ocean and in international airspace north of Oliktok Point.A steady progression towards routine operations of unmanned aircraft and tethered balloon systems continues at Oliktok. Small unmanned aircraft (DataHawks) and tethered balloons were successfully flown at Oliktok starting in June of 2016. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska.

  6. Real-Time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Management (UTM)

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Capristan, Francisco M.; Foster, John V.; Condotta, Ryan

    2017-01-01

    The new Federal Aviation Administration (FAA) Small Unmanned Aircraft rule (Part 107) marks the first national regulations for commercial operation of small unmanned aircraft systems (sUAS) under 55 pounds within the National Airspace System (NAS). Although sUAS flights may not be performed beyond visual line-of-sight or over non- participant structures and people, safety of sUAS operations must still be maintained and tracked at all times. Moreover, future safety-critical operation of sUAS (e.g., for package delivery) are already being conceived and tested. NASA's Unmanned Aircraft System Trac Management (UTM) concept aims to facilitate the safe use of low-altitude airspace for sUAS operations. This paper introduces the UTM Risk Assessment Framework (URAF) which was developed to provide real-time safety evaluation and tracking capability within the UTM concept. The URAF uses Bayesian Belief Networks (BBNs) to propagate off -nominal condition probabilities based on real-time component failure indicators. This information is then used to assess the risk to people on the ground by calculating the potential impact area and the effects of the impact. The visual representation of the expected area of impact and the nominal risk level can assist operators and controllers with dynamic trajectory planning and execution. The URAF was applied to a case study to illustrate the concept.

  7. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  8. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the

  9. Unmanned Aircraft Systems in the National Airspace System: A Formal Methods Perspective

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Dutle, Aaron; Narkawicz, Anthony; Upchurch, Jason

    2016-01-01

    As the technological and operational capabilities of unmanned aircraft systems (UAS) have grown, so too have international efforts to integrate UAS into civil airspace. However, one of the major concerns that must be addressed in realizing this integration is that of safety. For example, UAS lack an on-board pilot to comply with the legal requirement that pilots see and avoid other aircraft. This requirement has motivated the development of a detect and avoid (DAA) capability for UAS that provides situational awareness and maneuver guidance to UAS operators to aid them in avoiding and remaining well clear of other aircraft in the airspace. The NASA Langley Research Center Formal Methods group has played a fundamental role in the development of this capability. This article gives a selected survey of the formal methods work conducted in support of the development of a DAA concept for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations.

  10. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  11. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands

    USDA-ARS?s Scientific Manuscript database

    Using five centimeter resolution images acquired with an unmanned aircraft system (UAS), we developed and evaluated an image processing workflow that included the integration of resolution-appropriate field sampling, feature selection, object-based image analysis, and processing approaches for UAS i...

  12. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  13. National Unmanned Aircraft Systems Project Office

    USGS Publications Warehouse

    Goplen, Susan E.; Sloan, Jeff L.

    2015-01-01

    The U.S. Geological Survey (USGS) National Unmanned Aircraft Systems (UAS) Project Office leads the implementation of UAS technology in the Department of the Interior (DOI). Our mission is to support the transition of UAS into DOI as a new cost-effective tool for collecting remote-sensing data to monitor environmental conditions, respond to natural hazards, recognize the consequences and benefits of land and climate change and conduct wildlife inventories. The USGS is teaming with all DOI agencies and academia as well as local, State, and Tribal governments with guidance from the Federal Aviation Administration and the DOI Office of Aviation Services (OAS) to lead the safe, efficient, costeffective and leading-edge adoption of UAS technology into the scientific research and operational activities of the DOI.

  14. Unmanned Aircraft Systems For CryoSat-2 Validation

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian; Maslanik, James A.

    2011-02-01

    A suite of sensors has been assembled to map surface elevation with fine-resolution from small unmanned aircraft systems (UAS). The sensor package consists of a light detecting and ranging (LIDAR) instrument, an inertial measurement unit (IMU), a GPS module, and digital still and video cameras. It has been utilized to map ice sheet topography in Greenland and to measure sea ice freeboard and roughness in Fram Strait. Data collected during these campaigns illustrate its potential to compliment ongoing CryoSat-2 (CS-2) calibration and validation efforts.

  15. MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-424 MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper) As of FY 2017 President’s Budget...Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:18:05 UNCLASSIFIED MQ-9 Reaper December 2015 SAR March 23, 2016 16:18:05...2015 SAR March 23, 2016 16:18:05 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager

  16. Sense and avoid technology for unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    McCalmont, John; Utt, James; Deschenes, Michael; Taylor, Michael; Sanderson, Richard; Montgomery, Joel; Johnson, Randal S.; McDermott, David

    2007-04-01

    The Sensors Directorate of the Air Force Research Laboratory (AFRL), in conjunction with the Global Hawk Systems Group, the J-UCAS System Program Office and contractor Defense Research Associates, Inc. (DRA) is conducting an Advanced Technology Demonstration (ATD) of a sense-and-avoid capability with the potential to satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aircraft Systems (UAS) to provide "an equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for UAS operations within the national airspace. The Sense-and-Avoid, Phase I (Man-in-the-Loop) and Phase II (Autonomous Maneuver) ATD demonstrated an on-board, wide field of regard, multi-sensor visible imaging system operating in real time and capable of passively detecting approaching aircraft, declaring potential collision threats in a timely manner and alerting the human pilot located in the remote ground control station or autonomously maneuvered the aircraft. Intruder declaration data was collected during the SAA I & II Advanced Technology Demonstration flights conducted during December 2006. A total of 27 collision scenario flights were conducted and analyzed. The average detection range was 6.3 NM and the mean declaration range was 4.3 NM. The number of false alarms per engagement has been reduced to approximately 3 per engagement.

  17. Cascaded Optimization for a Persistent Data Ferrying Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Carfang, Anthony

    This dissertation develops and assesses a cascaded method for designing optimal periodic trajectories and link schedules for an unmanned aircraft to ferry data between stationary ground nodes. This results in a fast solution method without the need to artificially constrain system dynamics. Focusing on a fundamental ferrying problem that involves one source and one destination, but includes complex vehicle and Radio-Frequency (RF) dynamics, a cascaded structure to the system dynamics is uncovered. This structure is exploited by reformulating the nonlinear optimization problem into one that reduces the independent control to the vehicle's motion, while the link scheduling control is folded into the objective function and implemented as an optimal policy that depends on candidate motion control. This formulation is proven to maintain optimality while reducing computation time in comparison to traditional ferry optimization methods. The discrete link scheduling problem takes the form of a combinatorial optimization problem that is known to be NP-Hard. A derived necessary condition for optimality guides the development of several heuristic algorithms, specifically the Most-Data-First Algorithm and the Knapsack Adaptation. These heuristics are extended to larger ferrying scenarios, and assessed analytically and through Monte Carlo simulation, showing better throughput performance in the same order of magnitude of computation time in comparison to other common link scheduling policies. The cascaded optimization method is implemented with a novel embedded software system on a small, unmanned aircraft to validate the simulation results with field experiments. To address the sensitivity of results on trajectory tracking performance, a system that combines motion and link control with waypoint-based navigation is developed and assessed through field experiments. The data ferrying algorithms are further extended by incorporating a Gaussian process to opportunistically learn

  18. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  19. Detection of potato beetle damage using remote sensing from small unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center (HAREC...

  20. 78 FR 20168 - Twenty Fourth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Washington, DC, on March 28, 2013. Paige Williams, Management Analyst, NextGen, Business Operations Group... Introductions Review Meeting Agenda Review/Approval of Twenty Third Plenary Meeting Summary Leadership Update... for Unmanned Aircraft Systems and Minimum Aviation System Performance Standards Other Business Adjourn...

  1. Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    Since 2006, NASA fs Dryden Flight Research Center (DFRC) and Ames Research Center have been perfecting and demonstrating a new capability for geolocation of wildfires and the real-time delivery of data to firefighters. Managed for the Western States Fire Mission, the Ames-developed Autonomous Modular Scanner (AMS), mounted beneath a wing of DFRC fs MQ-9 Ikhana remotely piloted aircraft, contains an infrared sensor capable of discriminating temperatures within 0.5 F (approx. = 0.3 C), up to 1,000 F (approx. = 540 C). The AMS operates like a digital camera with specialized filters to detect light energy at visible, infrared, and thermal wavelengths. By placing the AMS aboard unmanned aircraft, one can gather information and imaging for thousands of square miles, and provide critical information about the location, size, and terrain around fires to commanders in the field. In the hands of operational agencies, the benefits of this NASA research and development effort can support nationwide wildfire fighting efforts. The sensor also provides data for post-burn and vegetation regrowth analyses. The MQ-9 Unmanned Aircraft System (UAS), a version of the Predator-B, can operate over long distances, staying aloft for over 24 hours, and controlled via a satellite-linked command and control system. This same link is used to deliver the fire location data directly to fire incident commanders, in less than 10 minutes from the time of overflight. In the current method, similarly equipped short-duration manned aircraft, with limited endurance and range, must land, hand-carry, and process data, and then deliver information to the firefighters, sometimes taking several hours in the process. Meanwhile, many fires would have moved over great distances and changed direction. Speed is critical. The fire incident commanders must assess a very dynamic situation, and task resources such as people, ground equipment, and retardant-dropping aircraft, often in mountainous terrain obscured by

  2. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?

    USDA-ARS?s Scientific Manuscript database

    Civilian applications of unmanned aircraft systems (UAS, also called drones) are rapidly expanding into crop production. UAS acquire high spatial resolution remote sensing imagery that can be used three different ways in agriculture. One is to assist crop scouts looking for problems in crop fields....

  3. How Should the Joint Force Handle the Command and Control of Unmanned Aircraft Systems?

    DTIC Science & Technology

    2008-11-18

    personnel, and control apparatus. Collectively these are the unmanned aircraft system (UAS). The outputs of a UAS can range from full motion video ...reconnaissance aircraft, like the pilotless Predator drone that provides real-time surveillance video to the battlefield.”55 He continued, “While...www.foxnews.com/story/0,2933,351964,00.html [accessed July 7, 2008]. Baldor, Lolita C. Associated Press. “Increased UAV Reliance Evident in 2009 Budget

  4. Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms

    DTIC Science & Technology

    2017-05-21

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY IDEAL DIRECTED- ENERGY SYSTEM TO DEFEAT SMALL UNMANNED AIRCRAFT SYSTEM SWARMS by David F. Pina...directed energy (DE) developmental systems indicate this class of weapons is the best solution. A review of several continuous wave laser, pulsed high...powered microwave, and electronic warfare/jamming systems indicate the following attributes as ideal for a future directed energy weapon (DEW) system

  5. Covering the Homeland: National Guard Unmanned Aircraft Systems Support for Wildland Firefighting and Natural Disaster Events

    DTIC Science & Technology

    2008-12-01

    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave...National Guard, Unmanned Aircraft System, Wildland Forest Fire, Natural Disaster, MQ- 1 Predator, MQ-9 Reaper, Autonomous Modular Sensor, National

  6. Semi-Autonomous Small Unmanned Aircraft Systems for Sampling Tornadic Supercell Thunderstorms

    NASA Astrophysics Data System (ADS)

    Elston, Jack S.

    This work describes the development of a network-centric unmanned aircraft system (UAS) for in situ sampling of supercell thunderstorms. UAS have been identified as a well-suited platform for meteorological observations given their portability, endurance, and ability to mitigate atmospheric disturbances. They represent a unique tool for performing targeted sampling in regions of a supercell thunderstorm previously unreachable through other methods. Doppler radar can provide unique measurements of the wind field in and around supercell thunderstorms. In order to exploit this capability, a planner was developed that can optimize ingress trajectories for severe storm penetration. The resulting trajectories were examined to determine the feasibility of such a mission, and to optimize ingress in terms of flight time and exposure to precipitation. A network-centric architecture was developed to handle the large amount of distributed data produced during a storm sampling mission. Creation of this architecture was performed through a bottom-up design approach which reflects and enhances the interplay between networked communication and autonomous aircraft operation. The advantages of the approach are demonstrated through several field and hardware-in-the-loop experiments containing different hardware, networking protocols, and objectives. Results are provided from field experiments involving the resulting network-centric architecture. An airmass boundary was sampled in the Collaborative Colorado Nebraska Unmanned Aircraft Experiment (CoCoNUE). Utilizing lessons learned from CoCoNUE, a new concept of operations (CONOPS) and UAS were developed to perform in situ sampling of supercell thunderstorms. Deployment during the Verification of the Origins of Rotation in Tornadoes Experiment 2 (VORTEX2) resulted in the first ever sampling of the airmass associated with the rear flank downdraft of a tornadic supercell thunderstorm by a UAS. Hardware-in-the-loop simulation capability

  7. Flying Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is pioneering various Unmanned Aircraft System (UAS) technologies and procedures which may enable routine access to the National Airspace System (NAS), with an aim for Next Gen NAS. These tools will aid in the development of technologies and integrated capabilities that will enable high value missions for science, security, and defense, and open the door to low-cost, extreme-duration, stratospheric flight. A century of aviation evolution has resulted in accepted standards and best practices in the design of human-machine interfaces, the displays and controls of which serve to optimize safe and efficient flight operations and situational awareness. The current proliferation of non-standard, aircraft-specific flight crew interfaces in UAS, coupled with the inherent limitations of operating UAS without in-situ sensory input and feedback (aural, visual, and vestibular cues), has increased the risk of mishaps associated with the design of the "cockpit." The examples of current non- or sub- standard design features range from "annoying" and "inefficient", to those that are difficult to manipulate or interpret in a timely manner, as well as to those that are "burdensome" and "unsafe." A concerted effort is required to establish best practices and standards for the human-machine interfaces, for the pilot as well as the air traffic controller. In addition, roles, responsibilities, knowledge, and skill sets are subject to redefining the terms, "pilot" and "air traffic controller", with respect to operating UAS, especially in the Next-Gen NAS. The knowledge, skill sets, training, and qualification standards for UAS operations must be established, and reflect the aircraft-specific human-machine interfaces and control methods. NASA s recent experiences flying its MQ-9 Ikhana in the NAS for extended duration, has enabled both NASA and the FAA to realize the full potential for UAS, as well as understand the implications of

  8. 78 FR 59974 - Centennial Challenges 2014 Unmanned Aircraft Systems (UAS) Airspace Operations Challenge (AOC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Centennial Challenges 2014 Unmanned Aircraft Systems... wish to compete may now register. Centennial Challenges is a program of prize competitions to stimulate...: http://www.uasaoc.org For general information on the NASA Centennial Challenges Program please visit...

  9. Registration and Marking Requirements for UAS. Unmanned Aircraft System (UAS) Registration

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The registration of an aircraft is a prerequisite for issuance of a U.S. certificate of airworthiness by the FAA. The procedures and requirements for aircraft registration, and the subsequent issuance of registration numbers, are contained in FAR Part 47. However, the process/method(s) for applying the requirements of Parts 45 & 47 to Unmanned Aircraft Systems (UAS) has not been defined. This task resolved the application of 14 CFR Parts 45 and 47 to UAS. Key Findings: UAS are aircraft systems and as such the recommended approach to registration is to follow the same process for registration as manned aircraft. This will require manufacturers to comply with the requirements for 14 CFR 47, Aircraft Registration and 14 CFR 45, Identification and Registration Marking. In addition, only the UA should be identified with the N number registration markings. There should also be a documentation link showing the applicability of the control station and communication link to the UA. The documentation link can be in the form of a Type Certificate Data Sheet (TCDS) entry or a UAS logbook entry. The recommended process for the registration of UAS is similar to the manned aircraft process and is outlined in a 6-step process in the paper.

  10. Compound Wing Vertical Takeoff and Landing Small Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Inventor); Motter, Mark A. (Inventor); Deloach, Richard (Inventor); Vranas, Thomas L. (Inventor); Prendergast, Joseph M. (Inventor); Lipp, Brittney N. (Inventor)

    2017-01-01

    Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.

  11. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments

    USDA-ARS?s Scientific Manuscript database

    Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...

  12. Operator Selection for Unmanned Aerial Vehicle Operators: A Comparison of Video Game Players and Manned Aircraft Pilots

    DTIC Science & Technology

    2009-11-01

    AFRL-RH-WP-TR-2010-0057 Operator Selection for Unmanned Aerial Vehicle Operators: A Comparison of Video Game Players and Manned Aircraft...Oct-2008 - 30-Nov-2009 4. TITLE AND SUBTITLE Operator Selection for Unmanned Aerial Vehicle Operators: A Comparison of Video Game Players...training regimens leading to a potential shortage of qualified UAS pilots. This study attempted to discover whether video game players (VGPs) possess

  13. System level airworthiness tool: A comprehensive approach to small unmanned aircraft system airworthiness

    NASA Astrophysics Data System (ADS)

    Burke, David A.

    One of the pillars of aviation safety is assuring sound engineering practices through airworthiness certification. As Unmanned Aircraft Systems (UAS) grow in popularity, the need for airworthiness standards and verification methods tailored for UAS becomes critical. While airworthiness practices for large UAS may be similar to manned aircraft, it is clear that small UAS require a paradigm shift from the airworthiness practices of manned aircraft. Although small in comparison to manned aircraft these aircraft are not merely remote controlled toys. Small UAS may be complex aircraft flying in the National Airspace System (NAS) over populated areas for extended durations and beyond line of sight of the operators. A comprehensive systems engineering framework for certifying small UAS at the system level is needed. This work presents a point based tool that evaluates small UAS by rewarding good engineering practices in design, analysis, and testing. The airworthiness requirements scale with vehicle size and operational area, while allowing flexibility for new technologies and unique configurations.

  14. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    USGS Publications Warehouse

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  15. Atmospheric Observations from Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2008-01-01

    Unmanned Aircraft Systems (UASs) provide a new and exciting avenue for atmospheric observations. NASA has a number of UASs. Amongst these are the Ikhana (24 hrs., 7000 km), the Altair (120 hrs., 6500 km), the Aerosonde (30 hrs., 3000 km), and the Global Hawk (30 hrs., 22,000 km). This presentation provides a brief history of UASs which is followed by a description of their capabilities. The presentation concludes by describing an example mission - the UAS Aura Validation Experiment (UAS-AVE). This mission will be flown on the NASA Global Hawk in the Spring/Summer of 2009. The goals fo the mission are to: 1) provide Aura validation observations, 2) sample the break up of the Arctic polar vortex, 3) observed cross-Pacific transport of aerosols and pollutants such as ozone, and 4) sample intense water advective events that impact the U.S. west coast (atmospheric rivers). Because of their range and duration, UASs provide new and exciting opportunities for atmospheric science.

  16. U.S. Geological Survey Emerging Applications of Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.

    2012-12-01

    In anticipation of transforming the research methods and resource management techniques employed across the Department of the Interior, the U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is conducting missions using small UAS- sUAS platforms (<20 lbs.). The USGS is dedicated to expanding the use of sUAS technology in support of scientific, resource and land management missions. UAS technology is currently being used by USGS and our partners to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Our ultimate goal is to support informed decision making by creating the opportunity, via UAS technology, to gain access to an increased level of persistent monitoring of earth surface processes (forest health conditions, wildfires, earthquake zones, invasive species, etc.) in areas that have been logistically difficult, cost prohibitive or technically impossible to obtain consistent, reliable, timely information. USGS is teaming with the Department of the Interior Aviation Management Directorate to ensure the safe and cost effective adoption of UAS technology. While the USGS is concentrating on operating sUAS, the immense value of increased flight time and more robust sensor capabilities available on larger platforms cannot be ignored. We are partnering with several groups including the Department of Homeland Security, National Aeronautics and Space Administration, Department of Defense, and National Oceanic and Atmospheric Administration for access to data collected from their fleet of high altitude, long endurance (HALE) UAS. The HALE systems include state of the art sensors including Electro-Optical, Thermal Infrared and Synthetic Aperture Radar (SAR). The data being collected by High Altitude, Long Endurance (HALE) systems is can be routinely

  17. MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-253 MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 8, 2016 11:20:32 UNCLASSIFIED MQ-8 Fire Scout December 2015 SAR March 8, 2016...Scout December 2015 SAR March 8, 2016 11:20:32 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program

  18. Ice Sheet and Sea Ice Observations from Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, R. I.; Maslanik, J. A.

    2011-12-01

    A suite of sensors has been assembled to map ice sheet and sea ice surface topography with fine-resolution from small unmanned aircraft systems (UAS). This payload is optimized to provide coincident surface elevation and imagery data, and with its low cost and ease of reproduction, it has the potential to become a widely-distributed observational resource to complement polar manned-aircraft and satellite missions. To date, it has been deployed to map ice sheet elevations near Jakobshavn Isbræ in Greenland, and to measure sea ice freeboard and roughness in Fram Strait off the coast of Svalbard. Data collected during these campaigns have facilitate a detailed assessment of the system's surface elevation measurement accuracy, and provide a glimpse of the summer 2009 Fram Strait sea ice conditions. These findings are presented, along with a brief overview of our future Arctic UAS operations.

  19. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  20. Multi-Source Sensor Fusion for Small Unmanned Aircraft Systems Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Cook, Brandon; Cohen, Kelly

    2017-01-01

    As the applications for using small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) continue to grow in the coming years, it is imperative that intelligent sensor fusion techniques be explored. In BVLOS scenarios the vehicle position must accurately be tracked over time to ensure no two vehicles collide with one another, no vehicle crashes into surrounding structures, and to identify off-nominal scenarios. Therefore, in this study an intelligent systems approach is used to estimate the position of sUAS given a variety of sensor platforms, including, GPS, radar, and on-board detection hardware. Common research challenges include, asynchronous sensor rates and sensor reliability. In an effort to realize these challenges, techniques such as a Maximum a Posteriori estimation and a Fuzzy Logic based sensor confidence determination are used.

  1. DETERMINING ELECTRONIC AND CYBER ATTACK RISK LEVEL FOR UNMANNED AIRCRAFT IN A CONTESTED ENVIRONMENT

    DTIC Science & Technology

    2016-08-01

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY DETERMINING ELECTRONIC AND CYBER ATTACK RISK LEVEL FOR UNMANNED AIRCRAFT IN A CONTESTED ENVIRONMENT...iii ABSTRACT During operations in a contested air environment, adversary electronic warfare (EW) and cyber-attack capability will pose a high...10 Russian Federation Electronic Warfare Systems ...................................................12 Chinese Cyber Warfare Program

  2. Development of an Unmanned Aircraft System and Cyberinfrastructure for Environmental Science Research

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Tweedie, C. E.; Escapita, I. J.

    2009-12-01

    There is a fundamental need to improve capacities for monitoring environmental change using remote sensing technologies. Recently, researchers have begun using Unmanned Aerial Vehicles (UAVs) to expand and improve upon remote sensing capabilities. Limitations to most non-military and relatively small-scale Unmanned Aircraft Systems (UASs) include a need to develop more reliable communications between ground and aircraft, tools to optimize flight control, real time data processing, and visually ascertaining the quantity of data collected while in air. Here we present a prototype software system that has enhanced communication between ground and the vehicle, can synthesize near real time data acquired from sensors on board, can log operation data during flights, and can visually demonstrate the amount and quality of data for a sampling area. This software has the capacity to greatly improve the utilization of UAS in the environmental sciences. The software system is being designed for use on a paraglider UAV that has a suite of sensors suitable for characterizing the footprints of eddy covariance towers situated in the Chihuahuan Desert and in the Arctic. Sensors on board relay operational flight data (airspeed, ground speed, latitude, longitude, pitch, yaw, roll, acceleration, and video) as well as a suite of customized sensors. Additional sensors can be added to an on board laptop or a CR1000 data logger thereby allowing data from these sensors to be visualized in the prototype software. This poster will describe the development, use and customization of our UAS and multimedia will be available during AGU to illustrate the system in use. UAV on workbench in the lab UAV in flight

  3. Designing Unmanned Systems with Greater Autonomy: Using a Federated, Partially Open Systems Architecture Approach

    DTIC Science & Technology

    2014-01-01

    system UAV unmanned aircraft vehicle UCI User -Computer Interface UCS UAS control segment Abbreviations xxix UGS unmanned ground system UGV unmanned ...made substantial progress in the deployment of more capable sensors, unmanned aircraft systems (UAS), and other unmanned systems (UxS). Innovative...progress in fielding more, and more capable unmanned aircraft systems (UAS) to meet the needs of warfighters

  4. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    NASA Technical Reports Server (NTRS)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  5. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis

    2016-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  6. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  7. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with d...

  8. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  9. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  10. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  11. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  12. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  13. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica using unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Seefeldt, M. W.; Palo, S.; Knuth, S. L.; Bradley, A. C.; Herrman, P. D.; Kernebone, P. A.; Logan, N. J.

    2015-12-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air - sea ice - ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aircraft systems (UAS) sampling the atmosphere over Terra Nova Bay on five different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A dataset containing the atmospheric and surface data as well as operational aircraft data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  14. Further Exploring the Potential for Assimilation of Unmanned Aircraft Observations to Benefit Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Sippel, Jason A.; Zhang, Fuqing; Weng, Yonghui; Braun, Scott A.; Cecil, Daniel J.

    2015-01-01

    This study explores the potential of assimilating data from multiple instruments onboard high-altitude, long-endurance unmanned aircraft to improve hurricane analyses and forecasts. A recent study found a significant positive impact on analyses and forecasts of Hurricane Karl when an ensemble Kalman filter was used to assimilate data from the High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), a new Doppler radar onboard the NASA Global Hawk (GH) unmanned airborne system. The GH can also carry other useful instruments, including dropsondes and the Hurricane Imaging Radiometer (HIRAD), which is a new radiometer that estimates large swaths of wind speeds and rainfall at the ocean surface. The primary finding is that simultaneously assimilating data from HIWRAP and the other GH-compatible instruments results in further analysis and forecast improvement for Karl. The greatest improvement comes when HIWRAP, HIRAD, and dropsonde data are simultaneously assimilated.

  15. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    PubMed

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  16. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  17. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

    NASA Technical Reports Server (NTRS)

    Fern, Lisa

    2017-01-01

    This presentation summarizes the simulation work conducted by the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project. It focuses on the contribution of that research to the development of RTCA Special Committee 228's (SC-228) Minimum Operational Performance Standards (MOPS) for UAS. The research objectives and primary findings from four different human-in-the-loop simulations are discussed, along with the specific requirements these studies led to in the final MOPS document.

  18. Compact survey and inspection day/night image sensor suite for small unmanned aircraft systems (EyePod)

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Linne von Berg, Dale; Davidson, Morgan; Holt, Niel; Kruer, Melvin; Wilson, Michael L.

    2010-04-01

    EyePod is a compact survey and inspection day/night imaging sensor suite for small unmanned aircraft systems (UAS). EyePod generates georeferenced image products in real-time from visible near infrared (VNIR) and long wave infrared (LWIR) imaging sensors and was developed under the ONR funded FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) program. FEATHAR is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) and FEATHAR's goal is to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). The EyePod suite consists of two VNIR/LWIR (day/night) gimbaled sensors that, combined, provide broad area survey and focused inspection capabilities. Each EyePod sensor pairs an HD visible EO sensor with a LWIR bolometric imager providing precision geo-referenced and fully digital EO/IR NITFS output imagery. The LWIR sensor is mounted to a patent-pending jitter-reduction stage to correct for the high-frequency motion typically found on small aircraft and unmanned systems. Details will be presented on both the wide-area and inspection EyePod sensor systems, their modes of operation, and results from recent flight demonstrations.

  19. Lighter-Than-Air (LTA) "AirStation": Unmanned Aircraft System (UAS) Carrier Concept

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ronald D.; Bosma, John; Chachad, Girish H.; Blanken, Matthew L.

    2016-01-01

    The advantages of utilizing an airship as an airborne carrier for support and deployment of Unmanned Aircraft Systems (UAS) are examined. Whether as a stand-alone platform or in concert with conventional aircraft, the airship UAS carrier provides a number of compelling benefits for both military and civilian missions. As a mobile base it can remain operational despite political fallout that may render ground or ocean based UAS sites unavailable. It offers the psychological impact of a power projection tool that has few geographical limits, and holds promise as a new method for cost-saving intelligence gathering. It is also adaptable for civilian variants for supporting: emergency response, security/surveillance, delivery of medical/food supplies, as well as commercial package delivery to metropolitan and remote communities. This paper presents the background on airship-aircraft operations, and explores the general airship carrier concept. Additionally, a catalog of contemporary technologies available to support the airship carrier concept are discussed, and essential elements for an Air-Station Development program proposed.

  20. Coastal Survey Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2012-12-01

    Generating high-resolution 3-dimensional costal imagery from imagery collected on small-unmanned aircraft is opening many opportunities to study marine wildlife and its use of costal habitats as well as climate change effects on northern coasts where storm surges are radically altering the coastline. Additionally, the technology is being evaluated for oil spill response planning and preparation. The University of Alaska Fairbanks works extensively with small-unmanned aircraft and recently began evaluating the aircraft utility for generating survey grade mapping of topographic features. When generating 3-D maps of coastal regions however there are added challenges that the University have identified and are trying to address. Recent projects with Alaska fisheries and BP Exploration Alaska have demonstrated that small-unmanned aircraft can support the generation of map-based products that are nearly impossible to generate with other technologies.

  1. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  2. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.

    PubMed

    Van Tilburg, Christopher

    2017-06-01

    Unmanned aircraft systems (UAS), colloquially called drones, are used commonly for military, government, and civilian purposes, including both commercial and consumer applications. During a search and rescue mission in Oregon, a UAS was used to confirm a fatality in a slot canyon; this eliminated the need for a dangerous rappel at night by rescue personnel. A second search mission in Oregon used several UAS to clear terrain. This allowed search of areas that were not accessible or were difficult to clear by ground personnel. UAS with cameras may be useful for searching, observing, and documenting missions. It is possible that UAS might be useful for delivering equipment in difficult areas and in communication. Copyright © 2017. Published by Elsevier Inc.

  3. Multispectral Remote Sensing of the Earth and Environment Using KHawk Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Gowravaram, Saket

    This thesis focuses on the development and testing of the KHawk multispectral remote sensing system for environmental and agricultural applications. KHawk Unmanned Aircraft System (UAS), a small and low-cost remote sensing platform, is used as the test bed for aerial video acquisition. An efficient image geotagging and photogrammetric procedure for aerial map generation is described, followed by a comprehensive error analysis on the generated maps. The developed procedure is also used for generation of multispectral aerial maps including red, near infrared (NIR) and colored infrared (CIR) maps. A robust Normalized Difference Vegetation index (NDVI) calibration procedure is proposed and validated by ground tests and KHawk flight test. Finally, the generated aerial maps and their corresponding Digital Elevation Models (DEMs) are used for typical application scenarios including prescribed fire monitoring, initial fire line estimation, and tree health monitoring.

  4. The Development of Human Factor Guidelines for Unmanned Aircraft System Control Stations

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan

    2014-01-01

    Despite being referred to as unmanned some of the major challenges confronting unmanned aircraft systems (UAS) relate to human factors. NASA is conducting research to address the human factors relevant to UAS access to non-segregated airspace. This work covers the issues of pilot performance, interaction with ATC, and control station design. A major outcome of this research will be recommendations for human factors design guidelines for UAS control stations to support routine beyond-line-of-sight operations in the US national airspace system (NAS). To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. In developing guidelines, we recognize that existing regulatory and guidance material may already provide adequate coverage of certain issues. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.

  5. A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities

    DTIC Science & Technology

    2017-10-01

    reduction in manning from the multiple program office structure to the new single program management model. Additional information regarding this...OFFICE MANAGING JOINT ISR CAPABILITIES by Angela E. Burris A Research Report Submitted to the Faculty In Partial Fulfillment of...research paper is to answer how a single management office could provide greater agility for unmanned aircraft systems (UAS); supporting Joint concepts

  6. Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Lachenmeier, T.; Hatfield, M. C.

    2014-12-01

    The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.

  7. The Goodrich 3rd generation DB-110 system: operational on tactical and unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Iyengar, Mrinal; Lange, Davis

    2006-05-01

    Goodrich's DB-110 Reconnaissance Airborne Pod for TORnado (RAPTOR) and Data Link Ground Station (DLGS) have been used operationally for several years by the Royal Air Force (RAF). A variant of the RAPTOR DB-110 Sensor System is currently being used by the Japan Maritime Self Defense Force (JMSDF). Recently, the DB-110 system was flown on the Predator B Unmanned Aerial Vehicle (UAV), demonstrating the DB-110 system's utility on unmanned reconnaissance aircraft. The DB-110 is a dual-band EO and IR imaging capability for long, medium, and short standoff ranges, including oblique and over-flight imaging, in a single sensor package. The DB-110 system has also proven performance for real-time high bandwidth data link imagery transmission. Goodrich has leveraged this operational experience in building a 3rd Generation DB-110 system including new Reconnaissance Airborne Pod and Ground System, to be first used by the Polish Air Force. This 3rd Generation system maintains all the capability of the current 2nd Generation DB-110 system and adds several new features. The 3rd Generation system upgrades include an increase in resolution via new focal planes, addition of a third ("super-wide") field of view, and new avionics. This paper summarizes the Goodrich DB-110 3rd Generation System in terms of its basic design and capabilities. Recent demonstration of the DB-110 on the Predator B UAV is overviewed including sample imagery.

  8. Evaluating and operationalizing unmanned aircraft for wildland fire use

    NASA Astrophysics Data System (ADS)

    Watts, A.

    2015-12-01

    Many potential uses of unmanned aircraft systems (UAS) related to wildland fire research and operations have been demonstrated, but the vast majority of these have been proof-of-concept or one-time flights. Scientists, practitioners, and firefighting agencies look forward to the widespread adoption of this powerful technology and its regular use. Similarly, the UAS industry awaits opportunities for commercialization. Our collaboration brings together UAS industry, research and management agencies, and universities in the USA and Canada to investigate the perceived effectiveness of UAS for wildland fire use, and the factors affecting their commercial-scale employment. Our current and future activities include market research, training and technology transfer, and deployment of UAS over fires to promote development of sensors as well as their safe integration into fire operations. We will present initial results, and as a part of our presentation we also invite participation of the AGU community for planned future project phases. We anticipate that the outcomes of our work will be useful to potential users who are unfamiliar with UAS, and to researchers and practitioners with experience or an interest in their use in fire and related natural-resource disciplines.

  9. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-420 MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 17:33:19 UNCLASSIFIED MQ-1C Gray Eagle December 2015 SAR March 21...Gray Eagle December 2015 SAR March 21, 2016 17:33:19 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM

  10. Unmanned aircraft system sense and avoid integrity and continuity

    NASA Astrophysics Data System (ADS)

    Jamoom, Michael B.

    This thesis describes new methods to guarantee safety of sense and avoid (SAA) functions for Unmanned Aircraft Systems (UAS) by evaluating integrity and continuity risks. Previous SAA efforts focused on relative safety metrics, such as risk ratios, comparing the risk of using an SAA system versus not using it. The methods in this thesis evaluate integrity and continuity risks as absolute measures of safety, as is the established practice in commercial aircraft terminal area navigation applications. The main contribution of this thesis is a derivation of a new method, based on a standard intruder relative constant velocity assumption, that uses hazard state estimates and estimate error covariances to establish (1) the integrity risk of the SAA system not detecting imminent loss of '"well clear," which is the time and distance required to maintain safe separation from intruder aircraft, and (2) the probability of false alert, the continuity risk. Another contribution is applying these integrity and continuity risk evaluation methods to set quantifiable and certifiable safety requirements on sensors. A sensitivity analysis uses this methodology to evaluate the impact of sensor errors on integrity and continuity risks. The penultimate contribution is an integrity and continuity risk evaluation where the estimation model is refined to address realistic intruder relative linear accelerations, which goes beyond the current constant velocity standard. The final contribution is an integrity and continuity risk evaluation addressing multiple intruders. This evaluation is a new innovation-based method to determine the risk of mis-associating intruder measurements. A mis-association occurs when the SAA system incorrectly associates a measurement to the wrong intruder, causing large errors in the estimated intruder trajectories. The new methods described in this thesis can help ensure safe encounters between aircraft and enable SAA sensor certification for UAS integration into

  11. Analysis of the Sustainment Organization and Process for the Marine Corps’ RQ-11B Raven Small Unmanned Aircraft System (SUAS)

    DTIC Science & Technology

    2012-03-01

    Vehicle UAS Unmanned Aircraft System UCAV Unmanned Combat Air Vehicles xvii UNS Universal Needs Statement USMC United States Marine Corps VLC ...she helped motivate me to finish this project—as challenging as it may be to work under the conditions set by an infant. And, finally, thanks to...In every aspect of program management, the DoD acquisition workforce is constantly challenged to balance cost, schedule, and performance. In a

  12. The New Intelligence, Surveillance, and Reconnaissance Cockpit: Examining the Contributions of Emerging Unmanned Aircraft Systems

    DTIC Science & Technology

    2010-04-25

    similar to the architecture of the right hemisphere of the brain. 169 The other method involves the development of software-based pheromones ...borrowing from the genetic behaviors employed by ants and termites . 170 UAVs and UCAVs employing this theoretical technique can essentially mark...coverage areas and targets with “digital pheromones .” 171 Both concepts are being designed to allow relatively inexpensive unmanned aircraft to cue

  13. Implementation of unmanned aircraft systems by the U.S. Geological Survey

    USGS Publications Warehouse

    Cress, J.J.; Sloan, J.L.; Hutt, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.

  14. NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    NASA Technical Reports Server (NTRS)

    Chavez, Carlos; Hammel, Bruce; Hammel, Allan; Moore, John R.

    2014-01-01

    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process

  15. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  16. A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System

    DTIC Science & Technology

    2012-07-01

    and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general

  17. Development of Autonomous Optimal Cooperative Control in Relay Rover Configured Small Unmanned Aerial Systems

    DTIC Science & Technology

    2013-03-01

    Unmanned Aircraft Systems Flight Plan that identified small unmanned aerial systems ( SUAS ) as “a profound technological...advances in small unmanned aerial systems ( SUAS ) cooperative control. The end state objective of the research effort was to flight test an autonomous...requirements were captured in the Unmanned Aircraft Systems Flight Plan . The flight plan

  18. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  19. Scientific Infrastructure To Support Manned And Unmanned Aircraft, Tethered Balloons, And Related Aerial Activities At Doe Arm Facilities On The North Slope Of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Helsel, F.

    2015-12-01

    The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) facilities, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. DOE has recently invested in improvements to facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska. A new ground facility, the Third ARM Mobile Facility, was installed at Oliktok Point Alaska in 2013. Tethered instrumented balloons were used to make measurements of clouds in the boundary layer including mixed-phase clouds. A new Special Use Airspace was granted to DOE in 2015 to support science missions in international airspace in the Arctic. Warning Area W-220 is managed by Sandia National Laboratories for DOE Office of Science/BER. W-220 was successfully used for the first time in July 2015 in conjunction with Restricted Area R-2204 and a connecting Altitude Reservation Corridor (ALTRV) to permit unmanned aircraft to operate north of Oliktok Point. Small unmanned aircraft (DataHawks) and tethered balloons were flown at Oliktok during the summer and fall of 2015. This poster will discuss how principal investigators may apply for use of these Special Use Airspaces, acquire data from the Third ARM Mobile Facility, or bring their own instrumentation for deployment at Oliktok Point, Alaska. The printed poster will include the standard DOE funding statement.

  20. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Unmanned Aircraft Detect-And-Avoid Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is generic since it was designed without any assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Therefore, GRACE was adopted as a core component of the Java Architecture for Detect-And-Avoid (DAA) Extensibility and Modeling, developed by NASA as a research and modeling tool for Unmanned Aerial Systems Integration in the National Airspace System (NAS). GRACE has been used in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  1. Development and Deployment of Unmanned Aircraft Instrumentation for Measuring Quantities Related to Land Surface-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Lawrence, D.; Elston, J.; Argrow, B. M.; Palo, S. E.; Curry, N.; Finamore, W.; Mack, J.; LoDolce, G.; Schmid, B.; Long, C. N.; Bland, G.; Maslanik, J. A.; Gao, R. S.; Telg, H.; Semmer, S.; Maclean, G.; Ivey, M.; Hock, T. F.; Bartram, B.; Bendure, A.; Stachura, M.

    2015-12-01

    Use of unmanned aircraft systems (UAS) in evaluation of geophysical parameters is expanding at a rapid rate. Despite limitation imposed by necessary regulations related to operation of UAS in the federal airspace, several groups have developed and deployed a variety of UAS and the associated sensors to make measurements of the atmosphere, land surface, ocean and cryosphere. Included in this grouping is work completed at the University of Colorado - Boulder, which has an extended history of operating UAS and expanding their use in the earth sciences. Collaborative projects between the department of Aerospace Engineering, the Cooperative Institute for Research in Environmental Sciences (CIRES), the Research and Engineering Center for Unmanned Vehicles (RECUV), the National Oceanographic and Atmospheric Administration (NOAA) and National Centers for Atmospheric Research (NCAR) have resulted in deployment of UAS to a variety of environments, including the Arctic. In this presentation, I will give an overview of some recent efforts lead by the University of Colorado to develop and deploy a variety of UAS. Work presented will emphasize recent campaigns and instrument development and testing related to understanding the land-atmosphere interface. Specifically, information on systems established for evaluating surface radiation (including albedo), turbulent exchange of water vapor, heat and gasses, and aerosol processes will be presented, along with information on the use of terrestrial ecosystem sensing to provide critical measurments for the evaluation of lower atmospheric flux measurements.

  2. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    NASA Astrophysics Data System (ADS)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  3. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  4. An Alternative Time Metric to Modified Tau for Unmanned Aircraft System Detect And Avoid

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Bageshwar, Vibhor L.; Euteneuer, Eric A.

    2017-01-01

    A new horizontal time metric, Time to Protected Zone, is proposed for use in the Detect and Avoid (DAA) Systems equipped by unmanned aircraft systems (UAS). This time metric has three advantages over the currently adopted time metric, modified tau: it corresponds to a physical event, it is linear with time, and it can be directly used to prioritize intruding aircraft. The protected zone defines an area around the UAS that can be a function of each intruding aircraft's surveillance measurement errors. Even with its advantages, the Time to Protected Zone depends explicitly on encounter geometry and may be more sensitive to surveillance sensor errors than modified tau. To quantify its sensitivity, simulation of 972 encounters using realistic sensor models and a proprietary fusion tracker is performed. Two sensitivity metrics, the probability of time reversal and the average absolute time error, are computed for both the Time to Protected Zone and modified tau. Results show that the sensitivity of the Time to Protected Zone is comparable to that of modified tau if the dimensions of the protected zone are adequately defined.

  5. Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Glaab, Louis J.; Craig, Timothy

    2016-01-01

    This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).

  6. Unmanned Aircraft System (UAS) Delegation of Separation in NextGen Airspace

    NASA Technical Reports Server (NTRS)

    Kenny, Caitlin A.; Shively, Robert J.; Jordan, Kevin

    2014-01-01

    The purpose of this study was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study show benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD), and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD was not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.

  7. Unmanned aircraft system (UAS) delegation of separation in NextGen airspace

    NASA Astrophysics Data System (ADS)

    Kenny, Caitlin A.

    The purpose of this thesis was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study showed benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD) and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD were not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1B Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2018-01-01

    This presentation provides an overview of the primary results from the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project's second Terminal Operations human-in-the-loop simulation. This talk covers the background of this follow-on experiment, which includes an overview of the first Terminal Operations HITL performed by the project. The primary results include a look at the number and durations of detect and avoid (DAA) alerts issued by the two DAA systems under test. It also includes response time metrics and metrics on the ability of the pilot-in-command (PIC) to maintain sufficient separation. Additional interoperability metrics are included to illustrate how pilots interact with the tower controller. Implications and conclusions are covered at the end.

  9. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  10. Non-Maximally Decimated Filter Banks Enable Adaptive Frequency Hopping for Unmanned Aircraft Vehicles

    NASA Technical Reports Server (NTRS)

    Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan

    2017-01-01

    In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.

  11. Capabilities of unmanned aircraft vehicles for low altitude weed detection

    NASA Astrophysics Data System (ADS)

    Pflanz, Michael; Nordmeyer, Henning

    2014-05-01

    Sustainable crop production and food security require a consumer and environmental safe plant protection. It is recently known, that precise weed monitoring approaches could help apply pesticides corresponding to field variability. In this regard the site-specific weed management may contribute to an application of herbicides with higher ecologically aware and economical savings. First attempts of precision agriculture date back to the 1980's. Since that time, remote sensing from satellites or manned aircrafts have been investigated and used in agricultural practice, but are currently inadequate for the separation of weeds in an early growth stage from cultivated plants. In contrast, low-cost image capturing at low altitude from unmanned aircraft vehicles (UAV) provides higher spatial resolution and almost real-time processing. Particularly, rotary-wing aircrafts are suitable for precise path or stationary flight. This minimises motion blur and provides better image overlapping for stitching and mapping procedures. Through improved image analyses and the recent increase in the availability of microcontrollers and powerful batteries for UAVs, it can be expected that the spatial mapping of weeds will be enhanced in the future. A six rotors microcopter was equipped with a modified RGB camera taking images from agricultural fields. The hexacopter operates within predefined pathways at adjusted altitudes (from 5 to 10 m) by using GPS navigation. Different scenarios of optical weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. Our experiences showed high capabilities for site-specific weed control. Image analyses with regard to recognition of weed patches can be used to adapt herbicide application to varying weed occurrence across a field.

  12. Manned and Unmanned Aircraft Effectiveness in Fast Attack Craft / Fast Inshore Attack Craft ASUW Kill Chain Execution

    DTIC Science & Technology

    2016-09-01

    par. 4) Based on a RED projected size of 22.16 m, a sample calculation for the unadjusted single shot probability of kill for HELLFIRE missiles is...framework based on intelligent objects (SIMIO) environment to model a fast attack craft/fast inshore attack craft anti-surface warfare expanded kill chain...concept of operation efficiency. Based on the operational environment, low cost and less capable unmanned aircraft provide an alternative to the

  13. Real-time unmanned aircraft systems surveillance video mosaicking using GPU

    NASA Astrophysics Data System (ADS)

    Camargo, Aldo; Anderson, Kyle; Wang, Yi; Schultz, Richard R.; Fevig, Ronald A.

    2010-04-01

    Digital video mosaicking from Unmanned Aircraft Systems (UAS) is being used for many military and civilian applications, including surveillance, target recognition, border protection, forest fire monitoring, traffic control on highways, monitoring of transmission lines, among others. Additionally, NASA is using digital video mosaicking to explore the moon and planets such as Mars. In order to compute a "good" mosaic from video captured by a UAS, the algorithm must deal with motion blur, frame-to-frame jitter associated with an imperfectly stabilized platform, perspective changes as the camera tilts in flight, as well as a number of other factors. The most suitable algorithms use SIFT (Scale-Invariant Feature Transform) to detect the features consistent between video frames. Utilizing these features, the next step is to estimate the homography between two consecutives video frames, perform warping to properly register the image data, and finally blend the video frames resulting in a seamless video mosaick. All this processing takes a great deal of resources of resources from the CPU, so it is almost impossible to compute a real time video mosaic on a single processor. Modern graphics processing units (GPUs) offer computational performance that far exceeds current CPU technology, allowing for real-time operation. This paper presents the development of a GPU-accelerated digital video mosaicking implementation and compares it with CPU performance. Our tests are based on two sets of real video captured by a small UAS aircraft; one video comes from Infrared (IR) and Electro-Optical (EO) cameras. Our results show that we can obtain a speed-up of more than 50 times using GPU technology, so real-time operation at a video capture of 30 frames per second is feasible.

  14. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Zhang, Youmin

    2015-04-01

    Unmanned Aircraft Systems (UASs) are becoming ever more promising over the last decade. The Sense and Avoid (S&A) system plays a profoundly important role in integrating UASs into the National Airspace System (NAS) with reliable and safe operations. After analyzing the manner of S&A system, this paper systematically presents an overview on the recent progress in S&A technologies in the sequence of fundamental functions/components of S&A in sensing techniques, decision making, path planning, and path following. The approaches to these four aspects are outlined and summarized, based on which the existing challenges and potential solutions are highlighted for facilitating the development of S&A systems.

  15. Air Traffic Controller Acceptability of Unmanned Aircraft System Detect-and-Avoid Thresholds

    NASA Technical Reports Server (NTRS)

    Mueller, Eric R.; Isaacson, Douglas R.; Stevens, Derek

    2016-01-01

    A human-in-the-loop experiment was conducted with 15 retired air traffic controllers to investigate two research questions: (a) what procedures are appropriate for the use of unmanned aircraft system (UAS) detect-and-avoid systems, and (b) how long in advance of a predicted close encounter should pilots request or execute a separation maneuver. The controller participants managed a busy Oakland air route traffic control sector with mixed commercial/general aviation and manned/UAS traffic, providing separation services, miles-in-trail restrictions and issuing traffic advisories. Controllers filled out post-scenario and post-simulation questionnaires, and metrics were collected on the acceptability of procedural options and temporal thresholds. The states of aircraft were also recorded when controllers issued traffic advisories. Subjective feedback indicated a strong preference for pilots to request maneuvers to remain well clear from intruder aircraft rather than deviate from their IFR clearance. Controllers also reported that maneuvering at 120 seconds until closest point of approach (CPA) was too early; maneuvers executed with less than 90 seconds until CPA were more acceptable. The magnitudes of the requested maneuvers were frequently judged to be too large, indicating a possible discrepancy between the quantitative UAS well clear standard and the one employed subjectively by manned pilots. The ranges between pairs of aircraft and the times to CPA at which traffic advisories were issued were used to construct empirical probability distributions of those metrics. Given these distributions, we propose that UAS pilots wait until an intruder aircraft is approximately 80 seconds to CPA or 6 nmi away before requesting a maneuver, and maneuver immediately if the intruder is within 60 seconds and 4 nmi. These thresholds should make the use of UAS detect and avoid systems compatible with current airspace procedures and controller expectations.

  16. A Review of Current and Prospective Factors for Classification of Civil Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Morris, A. Terry; Neogi, Natasha; Verstynen, Harry A.

    2014-01-01

    While progress is being made on integrating unmanned aircraft systems (UAS) into our national airspace on a broad scale, much work remains to establish appropriate certification standards and operational procedures, particularly with respect to routine commercial operations. This paper summarizes research to examine the extent to which today's civil aircraft taxonomy applies to UAS, and, if needed, how that taxonomy could be amended to better cover different UAS designs and operations. Factors that shape the current taxonomy, as defined in the Federal Aviation Regulations, were assessed for applicability to UAS, potential incompatibilities were identified, and additional factors were proposed that might be useful for an updated aircraft taxonomy intended to cover UAS. The results suggest the possibility of constructing new groups in the taxonomy for UAS under a restricted category that share common airworthiness standards. Establishing distinct groups for UAS and associated standards that enable low risk operations for compensation or hire could be a timely step toward full integration. Such a step would allow the civil aviation industry and regulators to gain valuable experience with UAS while carefully controlling access and potential harm to the aviation system as a whole.

  17. Modeling Aircraft Position and Conservatively Calculating Airspace Violations for an Autonomous Collision Awareness System for Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Ueunten, Kevin K.

    With the scheduled 30 September 2015 integration of Unmanned Aerial System (UAS) into the national airspace, the Federal Aviation Administration (FAA) is concerned with UAS capabilities to sense and avoid conflicts. Since the operator is outside the cockpit, the proposed collision awareness plugin (CAPlugin), based on probability and error propagation, conservatively predicts potential conflicts with other aircraft and airspaces, thus increasing the operator's situational awareness. The conflict predictions are calculated using a forward state estimator (FSE) and a conflict calculator. Predicting an aircraft's position, modeled as a mixed Gaussian distribution, is the FSE's responsibility. Furthermore, the FSE supports aircraft engaged in the following three flight modes: free flight, flight path following and orbits. The conflict calculator uses the FSE result to calculate the conflict probability between an aircraft and airspace or another aircraft. Finally, the CAPlugin determines the highest conflict probability and warns the operator. In addition to discussing the FSE free flight, FSE orbit and the airspace conflict calculator, this thesis describes how each algorithm is implemented and tested. Lastly two simulations demonstrates the CAPlugin's capabilities.

  18. Application of Multiple Categories of Unmanned Aircraft Systems (uas) in Different Airspaces for Bushfire Monitoring and Response

    NASA Astrophysics Data System (ADS)

    Homainejad, N.; Rizos, C.

    2015-08-01

    Demand and interest in Unmanned Aircraft Systems (UAS) for civilian applications, and advances in technology such as development of sense-and-avoid systems, will soon allow UAS to be flown alongside manned aircrafts in non-segregated airspace. An area that can benefit from the application of UAS is the bushfire services sector. Currently such services rely on watchtowers, fixed-wing manned aircrafts and satellite data for reliable information. UAS are a promising alternative to traditional methods of collecting bushfire data. There are several varieties of UAS and each category has certain limitations, hence a combination of multiple UAS with features appropriate for bushfire emergencies can be used simultaneously for collecting valuable data. This paper will describe the general UAS categories, some characteristics of Australian bushfires, and speculate on how a combination of several UAS operating in different airspaces can be of benefit for bushfire response personnel and firefighters.

  19. Unmanned Aircraft System Control and ATC Communications Bandwidth Requirements

    NASA Technical Reports Server (NTRS)

    Henriksen, Steve

    2008-01-01

    There are significant activities taking place to establish the procedures and requirements for safe and routine operation of unmanned aircraft systems (UAS) in the National Airspace System (NAS). Among the barriers to overcome in achieving this goal is the lack of sufficient frequency spectrum necessary for the UAS control and air traffic control (ATC) communications links. This shortcoming is compounded by the fact that the UAS control communications links will likely be required to operate in protected frequency spectrum, just as ATC communications links are, because they relate to "safety and regularity of flight." To support future International Telecommunications Union (ITU) World Radio Conference (WRC) agenda items concerning new frequency allocations for UAS communications links, and to augment the Future Communications Study (FCS) Technology Evaluation Group efforts, NASA Glenn Research Center has sponsored a task to estimate the UAS control and ATC communications bandwidth requirements for safe, reliable, and routine operation of UAS in the NAS. This report describes the process and results of that task. The study focused on long-term bandwidth requirements for UAS approximately through 2030.

  20. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  1. The Use of a Satellite Communications System for Command and Control of the National Aeronautics and Space Administration Surrogate Unmanned Aerial System Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Jones, Frank; Hutchinson, Brian; Joyce, Claude; Nelson, Skip; Melum, Mike

    2017-01-01

    The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into an Unmanned Aerial Systems (UAS) Surrogate research aircraft which has served for several years as a platform for unmanned systems research and development. The aircraft is manned with a Safety Pilot and a Research Systems Operator (RSO) that allows for flight operations almost any-where in the national airspace system (NAS) without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be remotely controlled from a modular, transportable ground control station (GCS) like a true UAS. Ground control of the aircraft is accomplished by the use of data links that allow the two-way passage of the required data to control the aircraft and provide the GCS with situational awareness. The original UAS Surrogate data-link system was composed of redundant very high frequency (VHF) data radio modems with a maximum range of approximately 40 nautical miles. A new requirement was developed to extend this range beyond visual range (BVR). This new requirement led to the development of a satellite communications system that provided the means to command and control the UAS Surrogate at ranges beyond the limits of the VHF data links. The system makes use of the Globalstar low earth orbit (LEO) satellite communications system. This paper will provide details of the development, implementation, and flight testing of the satellite data communications system on the UAS Surrogate research aircraft.

  2. Human Factors of Remotely Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan Neville

    2014-01-01

    The civilian use of remotely piloted, or unmanned aircraft is expected to increase rapidly in the years ahead. Despite being referred to as unmanned some of the major challenges confronting this emerging sector relate to human factors. As unmanned aircraft systems (UAS) are introduced into civil airspace, a failure to adequately consider human factors could result in preventable accidents that may not only result in loss of life, but may also undermine public confidence in remotely piloted operations. Key issues include pilot situational awareness, collision avoidance in the absence of an out-the-window view, the effects of time delays in communication and control systems, control handovers, the challenges of very long duration flights, and the design of the control station. Problems have included poor physical layout of controls, non-intuitive automation interfaces, an over-reliance on text displays, and complicated sequences of menu selection to perform routine tasks. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material.

  3. A study of how unmanned aircraft systems can support the Kansas Department of Transportation's efforts to improve efficiency, safety, and cost reduction : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    Regulations for using Unmanned Aircraft Systems (UAS) are not yet standardized by the Federal Aviation : Administration (FAA). This creates tedious obstacles for those who wish to utilize the technology. The goal of this : research is to provide a ju...

  4. 78 FR 69928 - First Meeting: RTCA Special Committee 228-Minimum Operational Performance Standards for Unmanned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... 228--Minimum Operational Performance Standards for Unmanned Aircraft Systems AGENCY: Federal Aviation...--Minimum Operational Performance Standards for Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 228--Minimum Operational Performance...

  5. 78 FR 38093 - First Meeting: RTCA Special Committee 228-Minimum Operational Performance Standards for Unmanned...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... 228--Minimum Operational Performance Standards for Unmanned Aircraft Systems AGENCY: Federal Aviation...--Minimum Operational Performance Standards for Unmanned Aircraft Systems. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 228--Minimum Operational Performance...

  6. Coyote unmanned aircraft system observations in Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Cione, J. J.; Kalina, E. A.; Uhlhorn, E. W.; Farber, A. M.; Damiano, B.

    2016-09-01

    Horizontal wind, temperature, and moisture observations are presented from two Coyote unmanned aircraft system (UAS) flights in the boundary layer of Hurricane Edouard (2014). The first flight sampled the meteorological conditions in the eye and eyewall at altitudes from 900 to 1500 m while Edouard was a major hurricane (105 kt) on 16 September 2014. The following day, a second Coyote sampled the inflow layer outside of the storm core at 760 m altitude, when Edouard had weakened to an 80-kt hurricane. These flights represent the first deployments of a UAS from an airborne manned aircraft into a tropical cyclone. Comparisons between the Coyote data and the Lockheed WP-3D Orion (WP-3D) flight-level measurements and analyses constructed from dropsonde data are also provided. On 16 September 2014, the Coyote-measured horizontal wind speeds agree, on average, to within 1 m s-1 of the wind speeds observed by the WP-3D and reproduce the shape of the radial wind profile from the WP-3D measurements. For the inflow layer experiment on 17 September, the mean wind speeds from the Coyote and the dropsonde analysis differ by only 0.5 m s-1, while the Coyote captured increased variability (σ = 3.4 m s-1) in the horizontal wind field compared to the dropsonde analysis (σ = 2.2 m s-1). Thermodynamic data from the Coyote and dropsondes agree well for both flights, with average discrepancies of 0.4°C and 0.0°C for temperature and 0.7°C and 1.3°C for dew point temperature on 16 and 17 September, respectively

  7. Cadastral Audit and Assessments Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K.; Walker, G.; Stahlke, E.; Wilson, R.

    2011-09-01

    Ground surveys and remote sensing are integral to establishing fair and equitable property valuations necessary for real property taxation. The International Association of Assessing Officers (IAAO) has embraced aerial and street-view imaging as part of its standards related to property tax assessments and audits. New technologies, including unmanned aerial systems (UAS) paired with imaging sensors, will become more common as local governments work to ensure their cadastre and tax rolls are both accurate and complete. Trends in mapping technology have seen an evolution in platforms from large, expensive manned aircraft to very small, inexpensive UAS. Traditional methods of photogrammetry have also given way to new equipment and sensors: digital cameras, infrared imagers, light detection and ranging (LiDAR) laser scanners, and now synthetic aperture radar (SAR). At the University of Alaska Fairbanks (UAF), we work extensively with unmanned aerial systems equipped with each of these newer sensors. UAF has significant experience flying unmanned systems in the US National Airspace, having begun in 1969 with scientific rockets and expanded to unmanned aircraft in 2003. Ongoing field experience allows UAF to partner effectively with outside organizations to test and develop leading-edge research in UAS and remote sensing. This presentation will discuss our research related to various sensors and payloads for mapping. We will also share our experience with UAS and optical systems for creating some of the first cadastral surveys in rural Alaska.

  8. Engine-propeller power plant aircraft community noise reduction key methods

    NASA Astrophysics Data System (ADS)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.

    2018-04-01

    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  9. Unmanned aircraft systems (UAS) activities at the Department of the Interior

    USGS Publications Warehouse

    Quirk, Bruce K.; Hutt, Michael E.

    2014-01-01

    The U.S. Department of the Interior (DOI) is responsible for protecting and managing the natural resources and heritage on almost 20% of the land in the United States. The DOI’s mission requires access to remotely sensed data over vast lands, including areas that are remote and potentially dangerous to access. Unmanned Aircraft Systems (UAS) technology has the potential to enable the DOI to be a better steward of the land by: (1) Improving natural hazard forecasting and the analysis of the impacts. (2) Improving the understanding of climate change to better plan for likely impacts. (3) Developing precipitation and evaporation forecasting to better manage water resources. (4) Monitoring Arctic ice change and its impacts on ecosystems, coasts, and transportation. (5) Increasing safety and effectiveness of wildland fire management. (6) Enhancing search and rescue capabilities. (7) Broadening the abilities to monitor environmental or landscape conditions and changes. (8) Better understanding and protecting the Nation’s ecosystems. The initial operational testing and evaluations performed by the DOI have proven that UAS technology can be used to support many of the Department’s activities. UAS technology provides scientists a way to look longer, closer and more frequently at some of Earth’s most remote areas—places that were previously too dangerous or expensive to monitor in detail. The flexibility of operations and relative low cost to purchase and operate Small Unmanned Aerial System (sUAS) enhances the ability to track long-term landscape and environmental change. The initial testing indicates the operational costs are approximately 10% of traditional manned aircraft. In addition, users can quickly assess landscape-altering events such as wildland fires, floods and volcanoes. UAS technology will allow the DOI to do more with less and in the process enhance the Department’s ability to provide unbiased scientific information to help stakeholders make

  10. 75 FR 51953 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Accidents or Incidents and Overdue Aircraft, and Preservation of Aircraft Wreckage, Mail, Cargo, and Records... its regulations on the notification and reporting of aircraft accidents or incidents by adding a definition of ``unmanned aircraft accident'' and requiring that operators notify the NTSB of accidents...

  11. Advances in Small Remotely Piloted Aircraft Communications and Remote Sensing in Maritime Environments including the Arctic

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.

    2011-12-01

    Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we

  12. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  13. Bridging Operational and Strategic Communication Architectures: Integrating Small Unmanned Aircraft Systems as Airborne Tactical Relay Communication Vertical Nodes

    DTIC Science & Technology

    2012-09-01

    Surveillance Reconnaissance JUAS Joint Unmanned Aircraft System LAN Local Area Network LOS Line of Sight xiv MANET Mobile Ad Hoc Network...terrain, which severely impacted the ability to communicate with the line of sight ( LOS ) tactical radios used by small units. Much like the commercial...Selectable – NB: 10W, SATCOM: 20W, WB: 20W peak/5W average Operational Mode: Voice/Data (to 3.6Mbps) Distance: 300 meters to 35 Kilometers or LOS

  14. DAIDALUS: Detect and Avoid Alerting Logic for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Narkawicz, Anthony; Hagen, George; Upchurch, Jason; Dutle, Aaron; Consiglio, Maria; Chamberlain, James

    2015-01-01

    This paper presents DAIDALUS (Detect and Avoid Alerting Logic for Unmanned Systems), a reference implementation of a detect and avoid concept intended to support the integration of Unmanned Aircraft Systems into civil airspace. DAIDALUS consists of self-separation and alerting algorithms that provide situational awareness to UAS remote pilots. These algorithms have been formally specified in a mathematical notation and verified for correctness in an interactive theorem prover. The software implementation has been verified against the formal models and validated against multiple stressing cases jointly developed by the US Air Force Research Laboratory, MIT Lincoln Laboratory, and NASA. The DAIDALUS reference implementation is currently under consideration for inclusion in the appendices to the Minimum Operational Performance Standards for Unmanned Aircraft Systems presently being developed by RTCA Special Committee 228.

  15. Systems and Methods for Collaboratively Controlling at Least One Aircraft

    NASA Technical Reports Server (NTRS)

    Estkowski, Regina I. (Inventor)

    2016-01-01

    An unmanned vehicle management system includes an unmanned aircraft system (UAS) control station controlling one or more unmanned vehicles (UV), a collaborative routing system, and a communication network connecting the UAS and the collaborative routing system. The collaborative routing system being configured to receive flight parameters from an operator of the UAS control station and, based on the received flight parameters, automatically present the UAS control station with flight plan options to enable the operator to operate the UV in a defined airspace.

  16. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey

    2017-11-01

    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  17. Unmanned Aircraft Systems Used over Western U.S. Rangelands to Characterize Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Rango, A.

    2015-12-01

    New remote sensing methods to quantify terrestrial ecosystems have developed rapidly over the past 10 years. New platforms with improved aeronautical capabilities have become known as Unmanned Aircraft Systems (UAS). In addition to the new aircraft, sensors are becoming smaller and some can fit into limited payload bays. The miniaturization process is well underway, but much remains to be done. Rather than using a wide variety of sensors, a limited number of instruments is recommended. At the moment we fly 2-3 instruments (digital SLR camera, 6-band multispectral camera, and single video camera). Our flights are primarily over low population density western U.S. rangeland with objectives to assess rangeland health, active erosion, vegetation change, phenology, livestock movement, and vegetation type consumed by grazing animals. All of our UAS flights are made using a serpentine flight path with overlapping images at an altitude of 700 ft (215 m). This altitude allows hyperspatial imagery with a resolution of 5-15 cm depending upon the sensor being used, and it allows determination of vegetation type based on the plant structure and vegetation geometries, or by multispectral analysis. In addition to advances in aircraft and sensor technology, image processing software has become more sophisticated. Future development is necessary, and we can expect improvement in sensors, aircraft, data collection, and application to terrestrial ecosystems. Of 17 ARS research laboratories across the country four laboratories are interested in future UAS applications and another 13 already have at least one UAS. In 2015 the Federal Aviation Administration proposed a framework of recommendations that would allow routine use of certain small UAS (those weighing less than 55 lb (25 kg)). Although these new regulations will provide increased flexibility in how flights are made, other operations will still require the use of a Certificate of Authorization.

  18. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    NASA Technical Reports Server (NTRS)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  19. Focused Lens on Unmanned Aerial Systems: An Evaluation of Department of Defense’s Unmanned Aerial Vision 2011

    DTIC Science & Technology

    2014-06-13

    Break Free of Regulations.” 69Barbara Opall -Rome, “ Israel Tackles The Last Frontier Of UAS Technology: Israel Moves Closer Toward Flying UASs In...with the new F-35 Joint Strike Fighter once it comes online, or with helicopters aboard the Littoral Combat Ship. Unmanned mine hunters could operate...Office, 2002. ———. Unmanned Aircraft Systems Roadmap 2005-2030. Washington, DC: Government Publishing Office, 2005. Opall -Rome, Barbra. “Israel

  20. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  1. Development and prospect of unmanned aerial vehicles for agricultural production management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles have been developed and applied to support agricultural production management. Compared to piloted aircrafts, an Unmanned Aerial Vehicle (UAV) can focus on small crop fields in lower flight altitude than regular airplanes to perform site-specific management with high precisi...

  2. A review of unmanned aircraft system ground risk models

    NASA Astrophysics Data System (ADS)

    Washington, Achim; Clothier, Reece A.; Silva, Jose

    2017-11-01

    There is much effort being directed towards the development of safety regulations for unmanned aircraft systems (UAS). National airworthiness authorities have advocated the adoption of a risk-based approach, whereby regulations are driven by the outcomes of a systematic process to assess and manage identified safety risks. Subsequently, models characterising the primary hazards associated with UAS operations have now become critical to the development of regulations and in turn, to the future of the industry. Key to the development of airworthiness regulations for UAS is a comprehensive understanding of the risks UAS operations pose to people and property on the ground. A comprehensive review of the literature identified 33 different models (and component sub models) used to estimate ground risk posed by UAS. These models comprise failure, impact location, recovery, stress, exposure, incident stress and harm sub-models. The underlying assumptions and treatment of uncertainties in each of these sub-models differ significantly between models, which can have a significant impact on the development of regulations. This paper reviews the state-of-the-art in research into UAS ground risk modelling, discusses how the various sub-models relate to the different components of the regulation, and explores how model-uncertainties potentially impact the development of regulations for UAS.

  3. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  4. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  5. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  6. COCAP: a carbon dioxide analyser for small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Lavric, Jost V.; Gerbig, Christoph; Tans, Pieter; Neff, Don; Hummelgård, Christine; Martin, Hans; Rödjegård, Henrik; Wrenger, Burkhard; Heimann, Martin

    2018-03-01

    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 µmol mol-1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.

  7. Unmanned Aircraft Systems (UAS) Traffic Management (UTM) National Campaign II

    NASA Technical Reports Server (NTRS)

    Aweiss, Arwa S.; Owens, Brandon D.; Rios, Joseph L.; Homola, Jeffrey R.; Mohlenbrink, Christoph P.

    2018-01-01

    The Unmanned Aircraft System (UAS) Traffic Management (UTM) effort at NASA aims to enable access to low-altitude airspace for small UAS. This goal is being pursued partly through partnerships that NASA has developed with the UAS stakeholder community, the FAA, other government agencies, and the designated FAA UAS Test Sites. By partnering with the FAA UAS Test Sites, NASA's UTM project has performed a geographically diverse, simultaneous set of UAS operations at locations in six states. The demonstrations used an architecture that was developed by NASA in partnership with the FAA to safely coordinate such operations. These demonstrations-the second or 'Technical Capability Level (TCL 2)' National Campaign of UTM testing-was performed from May 15 through June 9, 2017. Multiple UAS operations occurred during the testing at sites located in Alaska, Nevada, Texas, North Dakota, Virginia, and New York with multiple organizations serving as UAS Service Suppliers and/or UAS Operators per the specifications provided by NASA. By engaging various members of the UAS community in development and operational roles, this campaign provided initial validation of different aspects of the UTM concept including: UAS Service Supplier technologies and procedures; geofencing technologies/conformance monitoring; ground-based surveillance/sense and avoid; airborne sense and avoid; communication, navigation, surveillance; and human factors related to UTM data creation and display. Additionally, measures of performance were defined and calculated from the flight data to establish quantitative bases for comparing flight test activities and to provide potential metrics that might be routinely monitored in future operational UTM systems.

  8. Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).

    NASA Astrophysics Data System (ADS)

    Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.

    2017-12-01

    Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.

  9. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.

    PubMed

    Mulero-Pázmány, Margarita; Jenni-Eiermann, Susanne; Strebel, Nicolas; Sattler, Thomas; Negro, Juan José; Tablado, Zulima

    2017-01-01

    The use of small Unmanned Aircraft Systems (UAS; also known as "drones") for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices.

  10. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review

    PubMed Central

    Jenni-Eiermann, Susanne; Strebel, Nicolas; Sattler, Thomas; Negro, Juan José; Tablado, Zulima

    2017-01-01

    The use of small Unmanned Aircraft Systems (UAS; also known as “drones”) for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals’ responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals’ reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices. PMID:28636611

  11. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  12. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those

  13. 75 FR 35329 - Notification and Reporting of Aircraft Accidents or Incidents and Overdue Aircraft, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-driven fixed-wing aircraft heavier than air, that is supported in flight by the dynamic reaction of the... reporting of runway incursions: ``Any event in which an aircraft operated by an air carrier: (i) Lands or... during normal operations, such as those involving seaplanes, hot-air balloons, unmanned aircraft systems...

  14. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  15. Unmanned Aircraft System (UAS) Applications to Land and Natural Resource Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert; Smith, Karen; Wescott, Konstance

    Unmanned Aircraft Systems (UASs) have made dramatic technical advances in the past decade. Their use domestically is currently tightly constrained by existing Federal Aviation Administration (FAA) regulations. Within the next few years, the FAA is expected to provide a regulatory framework that allows for a greatly expanded role for UASs in domestic airspace for a wide variety of applications. One of those will be remote sensing for land and natural resource monitoring. While there has recently been a large body of published research on UAS applications to environmental monitoring, in practice, very little has been operationalized by private or publicmore » entities to date. In July 2014, Argonne National Laboratory hosted a workshop dedicated to environmental monitoring UAS applications with attendance by representatives from 11 federal agencies as well as academics. The workshop reviewed the UAS state-of-the-art within the federal arena and barriers to broader UAS use. While a number of agencies, the including National Oceanic and Atmosphere Administration, the United States Geological Survey, National Aeronautics and Space Administration, and the Bureau of Land Management have conducted proof-of-concept UAS demonstrations, typically using surplus Department of Defense equipment, the promise of UAS systems at the moment remains untapped for a variety of reasons. The consensus was, however, that UAS systems will play an increasingly important role in cost-effectively supporting timely natural-resource and land-management monitoring needs. Environmental Practice 17: 170–177 (2015)« less

  16. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  17. Unmanned Aircraft Systems Roadmap, 2005-2030

    DTIC Science & Technology

    2005-01-01

    directly addresses the dangerous mission of attacking or degrading integrated air defense systems. The attributes that make the use of unmanned...meter of reinforced concrete covered by one meter of soil . The Air Force hopes to deploy it by 2007 on the F-15E, followed by deployment on several... degradation from repeated analog-digital-analog conversions. For this reason, multispectral versions of digital focal arrays are critical. Additionally

  18. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  19. Optimal Remote Sensing with Small Unmanned Aircraft Systems and Risk Management

    NASA Astrophysics Data System (ADS)

    Stark, Brandon

    Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs) has blossomed into a new component of the aviation industry. Though regulations within the United States lagged, the promise of the ability of Small Unmanned Aircraft Systems (SUASs), or those UAS that weigh less than 55 lbs, has driven significant advances in small scale aviation technology. The dream of a small, low-cost aerial platform that can fly anywhere and keep humans safely away from the `dull, dangerous and dirty' jobs, has encouraged many to examine the possibilities of utilizing SUAS in new and transformative ways, especially as a new tool in remote sensing. However, as with any new tool, there remains significant challenges in realizing the full potential of SUAS-based remote sensing. Within this dissertation, two specific challenges are addressed: validating the use of SUAS as a remote sensing platform and improving the safety and management of SUAS. The use of SUAS in remote sensing is a relatively new challenge and while it has many similarities to other remote sensing platforms, the dynamic nature of its operation makes it unique. In this dissertation, a closer look at the methodology of using SUAS reveals that while many view SUAS as an alternative to satellite imagery, this is an incomplete view and that the current common implementation introduces a new source of error that has significant implications on the reliability of the data collected. It can also be seen that a new approach to remote sensing with an SUAS can be developed by addressing the spatial, spectral and temporal factors that can now be more finely adjusted with the use of SUAS. However, to take the full advantage of the potential of SUAS, they must uphold the promise of improved safety. This is not a trivial challenge, especially for the integration into the National Airspace System (NAS) and for the safety management and oversight of diverse UAS operations. In this dissertation, the challenge of integrating

  20. The Ground Control Room as an Enabling Technology in the Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Gear, Gary; Mace, Thomas

    2007-01-01

    This viewgraph presentation reviews the development of the ground control room as an required technology for the use of an Unmanned Aerial system. The Unmanned Aerial system is a strategic component of the Global Observing System, which will serve global science needs. The unmanned aerial system will use the same airspace as manned aircraft, therefore there will be unique telemetry needs.

  1. Detail design of empennage of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Sarker, Md. Samad; Panday, Shoyon; Rasel, Md; Salam, Md. Abdus; Faisal, Kh. Md.; Farabi, Tanzimul Hasan

    2017-12-01

    In order to maintain the operational continuity of air defense systems, unmanned autonomous or remotely controlled unmanned aerial vehicle (UAV) plays a great role as a target for the anti-aircraft weapons. The aerial vehicle must comply with the requirements of high speed, remotely controlled tracking and navigational aids, operational sustainability and sufficient loiter time. It can also be used for aerial reconnaissance, ground surveillance and other intelligence operations. This paper aims to develop a complete tail design of an unmanned aerial vehicle using Systems Engineering approach. The design fulfils the requirements of longitudinal and directional trim, stability and control provided by the horizontal and vertical tail. Tail control surfaces are designed to provide sufficient control of the aircraft in critical conditions. Design parameters obtained from wing design are utilized in the tail design process as required. Through chronological calculations and successive iterations, optimum values of 26 tail design parameters are determined.

  2. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate

  3. Aerial imaging with manned aircraft for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Over the last two decades, numerous commercial and custom-built airborne imaging systems have been developed and deployed for diverse remote sensing applications, including precision agriculture. More recently, unmanned aircraft systems (UAS) have emerged as a versatile and cost-effective platform f...

  4. The development of an autonomous gust insensitive unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Pisano, William James

    The study of a small Unmanned Aerial Vehicle (UAV) that is designed towards eventual operation in harsh storm-like conditions is presented. Investigation of the aircraft equations of motion shows that the selection of certain aerodynamic derivatives has a significant effect on the gust response of a small unmanned aircraft. Analytical comparison of this newly formulated Autonomous Gust Insensitive Aircraft (AGIA) to a conventionally designed aircraft shows a significant reduction in undesirable roll motion caused by gusts. A simulation is presented showing that the AGIA is capable of operating in more extreme environments than a conventional aircraft, and puts less strain on the control system components in both extreme and calm environments. The role that aircraft size plays in gust response is also studied. Pilot instinct dictates that smaller aircraft are more difficult to fly in windy environments than larger ones. This phenomenon is investigated using an analytic approach, providing insight into why smaller aircraft are indeed more difficult to fly in more challenging environments. As an aircraft gets smaller, its natural aerodynamic modes and response get faster. In an ideal system, this does not limit small aircraft to poor performance (in fact it will be shown that idealized small aircraft theoretically perform better than their larger counterparts). A more realistic system is presented that includes not only aerodynamics, but also realistic sensor and actuator dynamics. It is shown that these additional dynamics become a limiting factor in control system performance, and thus limit the closed-loop flight performance of small aircraft in turbulent environments. It is shown that the AGIA design approach plays a more significant role the as an aircraft gets smaller. To provide experimental validation of the gust insensitive theory presented herein, a representative small conventional aircraft was built alongside a similar aircraft that incorporated the AGIA

  5. Small unmanned aircraft system for remote contour mapping of a nuclear radiation field

    NASA Astrophysics Data System (ADS)

    Guss, Paul; McCall, Karen; Malchow, Russell; Fischer, Rick; Lukens, Michael; Adan, Mark; Park, Ki; Abbott, Roy; Howard, Michael; Wagner, Eric; Trainham, Clifford P.; Luke, Tanushree; Mukhopadhyay, Sanjoy; Oh, Paul; Brahmbhatt, Pareshkumar; Henderson, Eric; Han, Jinlu; Huang, Justin; Huang, Casey; Daniels, Jon

    2017-09-01

    For nuclear disasters involving radioactive contamination, small unmanned aircraft systems (sUASs) equipped with nuclear radiation detection and monitoring capability can be very important tools. Among the advantages of a sUAS are quick deployment, low-altitude flying that enhances sensitivity, wide area coverage, no radiation exposure health safety restriction, and the ability to access highly hazardous or radioactive areas. Additionally, the sUAS can be configured with the nuclear detecting sensor optimized to measure the radiation associated with the event. In this investigation, sUAS platforms were obtained for the installation of sensor payloads for radiation detection and electro-optical systems that were specifically developed for sUAS research, development, and operational testing. The sensor payloads were optimized for the contour mapping of a nuclear radiation field, which will result in a formula for low-cost sUAS platform operations with built-in formation flight control. Additional emphases of the investigation were to develop the relevant contouring algorithms; initiate the sUAS comprehensive testing using the Unmanned Systems, Inc. (USI) Sandstorm platforms and other acquired platforms; and both acquire and optimize the sensors for detection and localization. We demonstrated contour mapping through simulation and validated waypoint detection. We mounted a detector on a sUAS and operated it initially in the counts per second (cps) mode to perform field and flight tests to demonstrate that the equipment was functioning as designed. We performed ground truth measurements to determine the response of the detector as a function of source-to-detector distance. Operation of the radiation detector was tested using different unshielded sources.

  6. Application of Unmanned Aircraft System Instrumentation to Study Coastal Geochemistry

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Osburn, C. L.; Smith, J. P.

    2016-02-01

    Coastal evaluation of key geochemical cycles is in strong need for thorough spatial data to address diverse topics. In many field studies we find that fixed station data taken from ship operations does not provide complete understanding of key research questions. In complicated systems where there is a need to integrate physical, chemical and biological parameters data taken from research vessels needs to be interpreted across large spatial areas. New technology in Unmanned Aircraft System (UAS) instrumentation coupled with ship board data can provide the thorough spatial data needed for a thorough evaluation of coastal sciences. This presentation will provide field data related to UAS application in two diverse environments. One study focuses on the flux of carbon dioxide and methane from Alaskan Arctic tundra and shallow Beaufort Sea coastal region to the atmosphere. In this study gas chemistry from samples is used to predict the relative fluxes to the atmosphere. A second study applies bio-optical analyses to differentiate between Gulf of Mexico coastal water column DOC and Lignin. This wide range of parameters in diverse ecosystems is selected to show current capability for application of UAS and the potential for understanding large scale questions about climate change and carbon cycling in coastal waters.

  7. Unmanned Aircraft Systems Minimum Operations Performance Standards End-to-End Verification and Validation (E2-V2) Simulation

    NASA Technical Reports Server (NTRS)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Vincent, Michael J.; Sturdy, James L.; Munoz, Cesar A.; Hoffler, Keith D.; Dutle, Aaron M.; Myer, Robert R.; Dehaven, Anna M.; hide

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The current NAS relies on pilot's vigilance and judgement to remain Well Clear (CFR 14 91.113) of other aircraft. RTCA SC-228 has defined DAA Well Clear (DAAWC) to provide a quantified Well Clear volume to allow systems to be designed and measured against. Extended research efforts have been conducted to understand and quantify system requirements needed to support a UAS pilot's ability to remain well clear of other aircraft. The efforts have included developing and testing sensor, algorithm, alerting, and display requirements. More recently, sensor uncertainty and uncertainty mitigation strategies have been evaluated. This paper discusses results and lessons learned from an End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS). NASA Langley Research Center (LaRC) was called upon to develop a system that evaluates a specific set of encounters, in a variety of geometries, with end-to-end DAA functionality including the use of sensor and tracker models, a sensor uncertainty mitigation model, DAA algorithmic guidance in both vertical and horizontal maneuvering, and a pilot model which maneuvers the ownship aircraft to remain well clear from intruder aircraft, having received collective input from the previous modules of the system. LaRC developed a functioning batch simulation and added a sensor/tracker model from the Federal Aviation Administration (FAA) William J. Hughes Technical Center, an in-house developed sensor uncertainty mitigation strategy, and implemented a pilot

  8. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  9. Multispectral and DSLR sensors for assessing crop stress in corn and cotton using fixed-wing unmanned air systems

    NASA Astrophysics Data System (ADS)

    Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.

    2016-05-01

    As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.

  10. Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Verstraete, D.; Lehmkuehler, K.; Gong, A.; Harvey, J. R.; Brian, G.; Palmer, J. L.

    2014-03-01

    Advanced hybrid powerplants combining a fuel cell and battery can enable significantly higher endurance for small, electrically powered unmanned aircraft systems, compared with batteries alone. However, detailed investigations of the static and dynamic performance of such systems are required to address integration challenges. This article describes a series of tests used to characterise the Horizon Energy Systems' AeroStack hybrid, fuel-cell-based powertrain. The results demonstrate that a significant difference can exist between the dynamic performance of the fuel-cell system and its static polarisation curve, confirming the need for detailed measurements. The results also confirm that the AeroStack's lithium-polymer battery plays a crucial role in its response to dynamic load changes and protects the fuel cell from membrane dehydration and fuel starvation. At low static loads, the AeroStack fuel cell recharges the battery with currents up to 1 A, which leads to further differences with the polarisation curve.

  11. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    NASA Astrophysics Data System (ADS)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  12. A fault-tolerant control architecture for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Drozeski, Graham R.

    Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised

  13. Potential for Small Unmanned Aircraft Systems applications for identifying groundwater-surface water exchange in a meandering river reach

    USGS Publications Warehouse

    Pai, H.; Malenda, H.; Briggs, Martin A.; Singha, K.; González-Pinzón, R.; Gooseff, M.; Tyler, S.W.; ,

    2017-01-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here, we describe the use of a suite of high spatial-resolution remote-sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index (NDVI) mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW “shortcutting” through meander necks, which was corroborated by temperature data at the riverbed interface.

  14. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    NASA Astrophysics Data System (ADS)

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  15. Initial design and performance of the near surface unmanned aircraft system sensor suite in support of the GOES-R field campaign

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Shao, Xi; Cao, Changyong; Goodman, Steven J.

    2016-09-01

    One of the main objectives of the Geostationary Operational Environmental Satellite R-Series (GOES-R) field campaign is to validate the SI traceability of the Advanced Baseline Imager. The campaign plans include a feasibility demonstration study for new near surface unmanned aircraft system (UAS) measurement capability that is being developed to meet the challenges of validating geostationary sensors. We report our progress in developing our initial systems by presenting the design and preliminary characterization results of the sensor suite. The design takes advantage of off-the-shelf technologies and fiber-based optical components to make hemispheric directional measurements from a UAS. The characterization results - including laboratory measurements of temperature effects and polarization sensitivity - are used to refine the radiometric uncertainty budget towards meeting the validation objectives for the campaign. These systems will foster improved validation capabilities for the GOES-R field campaign and other next generation satellite systems.

  16. RQ-2 Pioneer: The Flawed System that Redefined US Unmanned Aviation

    DTIC Science & Technology

    2012-02-01

    Periscope.com, “RQ-2 Pioneer,” http://www.militaryperiscope.com/weapons/aircraft/rpv- dron /w0004685.html 28 Ibid. 29 Jane’s Unmanned Aerial...Military Periscope.com, “RQ-2 Pioneer.” http://www.militaryperiscope.com/weapons/aircraft/rpv- dron /w0004685.html Polmar, Norman, The Naval

  17. Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.

  18. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  19. IR radiation characteristics and operating range research for a quad-rotor unmanned aircraft vehicle.

    PubMed

    Gong, Mali; Guo, Rui; He, Sifeng; Wang, Wei

    2016-11-01

    The security threats caused by multi-rotor unmanned aircraft vehicles (UAVs) are serious, especially in public places. To detect and control multi-rotor UAVs, knowledge of IR characteristics is necessary. The IR characteristics of a typical commercial quad-rotor UAV are investigated in this paper through thermal imaging with an IR camera. Combining the 3D geometry and IR images of the UAV, a 3D IR characteristics model is established so that the radiant power from different views can be obtained. An estimation of operating range to detect the UAV is calculated theoretically using signal-to-noise ratio as the criterion. Field experiments are implemented with an uncooled IR camera in an environment temperature of 12°C and a uniform background. For the front view, the operating range is about 150 m, which is close to the simulation result of 170 m.

  20. Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS

    NASA Technical Reports Server (NTRS)

    Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank

    2006-01-01

    This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.

  1. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  2. Acoustic Characterization and Prediction of Representative, Small-Scale Rotary-Wing Unmanned Aircraft System Components

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.; Burley, Casey L.

    2016-01-01

    In this study, hover performance and acoustic measurements are taken on two different isolated rotors representative of small-scale rotary-wing unmanned aircraft systems (UAS) for a range of rotation rates. Each rotor system consists of two fixed-pitch blades powered by a brushless motor. For nearly the same thrust condition, significant differences in overall sound pressure level (OASPL), up to 8 dB, and directivity were observed between the two rotor systems. Differences are shown to be in part attributed to different rotor tip speeds, along with increased broadband and motor noise levels. In addition to acoustic measurements, aeroacoustic predictions were implemented in order to better understand the noise content of the rotor systems. Numerical aerodynamic predictions were computed using the unsteady Reynoldsaveraged Navier Stokes code OVERFLOW2 on one of the isolated rotors, while analytical predictions were computed using the Propeller Analysis System of the Aircraft NOise Prediction Program (ANOPP-PAS) on the two rotor configurations. Preliminary semi-empirical frequency domain broadband noise predictions were also carried out based on airfoil self-noise theory in a rotational reference frame. The prediction techniques further supported trends identified in the experimental data analysis. The brushless motors were observed to be important noise contributors and warrant further investigation. It is believed that UAS acoustic prediction capabilities must consider both rotor and motor components as part of a combined noise-generating system.

  3. BLM Unmanned Aircraft Systems (UAS) Resource Management Operations

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Breen, A. L.; Thurau, R.

    2016-12-01

    The Department of the Interior Bureau of Land Management is funding research at the University of Alaska Fairbanks to study Unmanned Aircraft Systems (UAS) Resource Management Operations. In August 2015, the team conducted flight research at UAF's Toolik Field Station (TFS). The purpose was to determine the most efficient use of small UAS to collect low-altitude airborne digital stereo images, process the stereo imagery into close-range photogrammetry products, and integrate derived imagery products into the BLM's National Assessment, Inventory and Monitoring (AIM) Strategy. The AIM Strategy assists managers in answering questions of land resources at all organizational levels and develop management policy at regional and national levels. In Alaska, the BLM began to implement its AIM strategy in the National Petroleum Reserve-Alaska (NPR-A) in 2012. The primary goals of AIM-monitoring at the NPR-A are to implement an ecological baseline to monitor ecological trends, and to develop a monitoring network to understand the efficacy of management decisions. The long-term AIM strategy also complements other ongoing NPR-A monitoring processes, collects multi-use and multi-temporal data, and supports understanding of ecosystem management strategies in order to implement defensible natural resource management policy. The campaign measured vegetation types found in the NPR-A, using UAF's TFS location as a convenient proxy. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. The payload was a stereo camera system consisting of Sony NEX7's with various lens configurations (16/20/24/35 mm). A total of 77 flights were conducted over a 4 ½ day period, with 1.5 TB of data collected. Mission variables included camera height, UAS speed, transect overlaps, and camera lenses/settings. Invaluable knowledge was gained as to

  4. Evaluation of Unmanned Aircraft System (UAS) to Monitor Forest Health Conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Webley, P. W.; Hatfield, M. C.; Heutte, T. M.; Winton, L. M.

    2017-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks (UAF), Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating the capability of Unmanned Aerial Systems (UAS, "drone" informally) to monitor forest health conditions in Alaska's Interior Region. On July 17-20 2017, FHP and ACUASI deployed two different UAS at permanent forest inventory plots managed by the UAF programs Bonanza Creek Long Term Ecological Research (LTER) and Cooperative Alaska Forest Inventory (CAFI). The purpose of the mission was to explore capabilities of UAS for evaluating aspen tree mortality at inaccessible locations and at a scale and precision not generally achievable with currently used ground- or air-based methods. Drawing from experience gained during the initial 2016 campaign, this year emphasized the efficient use of UAS to accomplish practical field research in a variety of realistic situations. The vehicles selected for this years' effort included the DJI Matrice quadcopter with the Zenmuse-X3 camera to quickly capture initial video of the site and tree conditions; followed by the ING Responder (single rotor electric helicopter based on the Gaui X7 airframe) outfitted with a Nikon D810 camera to collect high-resolution stills suitable for construction of orthomosaic models. A total of 12 flights were conducted over the campaign, with two full days dedicated to the Delta Junction Gerstle River Intermediate (GRI) sites and the remaining day at the Bonanza Creek site. In addition to demonstrating the ability of UAS to operate safely and effectively in various canopy conditions, the effort also validated the ability of teams to deliver UAS and scientific payloads into challenging terrain using all-terrain vehicles (ATV) and foot traffic. Analysis of data from the campaign is underway. Because the permanent plots have been recently evaluated it is known that nearly all aspen mortality is caused by an aggressive canker

  5. Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection

    NASA Astrophysics Data System (ADS)

    Mitchell, Taylor Austin

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.

  6. New Tools for New Missions - Unmanned Aircraft Systems Offer Exciting Capabilities

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Pieri, D. C.; Coronado, P. L.; Fladeland, M. M.; Diaz, J. A.; Cione, J.; Maslanik, J. A.; Roman, M. O.; de Boer, G.; Argrow, B. M.; Novara, J.; Stachura, M.; Neal, D.; Moisan, J. R.

    2015-12-01

    There are numerous emerging possibilities for utilizing unmanned aircraft systems (UAS) to investigate a variety of natural hazards, both for prediction and analysis of specific events. Additionally, quick response capabilities will provide affordable, low risk support for emergency management teams. NASA's partnerships with commercial, university and other government agency teams are bringing new capabilities to research and emergency management communities. New technology platforms and instrument systems are gaining momentum for stand-off remote sensing observations, as well as penetration and detailed in-situ examination of natural and anthropogenic phenomena. Several pioneering investigations have provided the foundation for this development, including NASA projects with Aerosonde, Dragon Eye, and SIERRA platforms. With miniaturized instrument and platform technologies, these experiments demonstrated that previously unobtainable observations may significantly aid in the understanding, prediction, and assessment of natural hazards such as storms, volcanic eruptions, floods, and the potential impact of environmental changes. Remote sensing observations of storms and fires have also been successfully demonstrated through NASA's efforts with larger UAS such as the Global Hawk and Ikhana platforms. The future may unfold with new high altitude and/or long endurance capabilities, in some cases with less size and costs as payload capacity requirements are reduced through further miniaturization, and alternatively with expanded instrumentation and mission profiles. Several new platforms and instrument development projects are underway that will enable affordable, quick response observations. Additionally, distributed measurements that will provide near-simultaneous coverage at multiple locations will be possible - an exciting new mission concept that will greatly aid many observation scenarios. Partnerships with industry, academia, and other government agencies are all

  7. Live Aircraft Encounter Visualization at FutureFlight Central

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  8. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  9. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  10. Experimental flights using a small unmanned aircraft system for mapping emergent sandbars

    USGS Publications Warehouse

    Kinzel, Paul J.; Bauer, Mark A.; Feller, Mark R.; Holmquist-Johnson, Christopher; Preston, Todd

    2015-01-01

    The US Geological Survey and Parallel Inc. conducted experimental flights with the Tarantula Hawk (T-Hawk) unmanned aircraft system (UAS ) at the Dyer and Cottonwood Ranch properties located along reaches of the Platte River near Overton, Nebraska, in July 2013. We equipped the T-Hawk UAS platform with a consumer-grade digital camera to collect imagery of emergent sandbars in the reaches and used photogrammetric software and surveyed control points to generate orthophotographs and digital elevation models (DEMS ) of the reaches. To optimize the image alignment process, we retained and/or eliminated tie points based on their relative errors and spatial resolution, whereby minimizing the total error in the project. Additionally, we collected seven transects that traversed emergent sandbars concurrently with global positioning system location data to evaluate the accuracy of the UAS survey methodology. The root mean square errors for the elevation of emergent points along each transect across the DEMS ranged from 0.04 to 0.12 m. If adequate survey control is established, a UAS combined with photogrammetry software shows promise for accurate monitoring of emergent sandbar morphology and river management activities in short (1–2 km) river reaches.

  11. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery

    NASA Astrophysics Data System (ADS)

    Chu, Tianxing; Chen, Ruizhi; Landivar, Juan A.; Maeda, Murilo M.; Yang, Chenghai; Starek, Michael J.

    2016-07-01

    This paper explores the potential of using unmanned aircraft system (UAS)-based visible-band images to assess cotton growth. By applying the structure-from-motion algorithm, the cotton plant height (ph) and canopy cover (cc) information were retrieved from the point cloud-based digital surface models (DSMs) and orthomosaic images. Both UAS-based ph and cc follow a sigmoid growth pattern as confirmed by ground-based studies. By applying an empirical model that converts the cotton ph to cc, the estimated cc shows strong correlation (R2=0.990) with the observed cc. An attempt for modeling cotton yield was carried out using the ph and cc information obtained on June 26, 2015, the date when sigmoid growth curves for both ph and cc tended to decline in slope. In a cross-validation test, the correlation between the ground-measured yield and the estimated equivalent derived from the ph and/or cc was compared. Generally, combining ph and cc, the performance of the yield estimation is most comparable against the observed yield. On the other hand, the observed yield and cc-based estimation produce the second strongest correlation, regardless of the complexity of the models.

  12. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  13. The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Chilson, P. B.; Fiebrich, C. A.; Huck, R.; Grimsley, J.; Salazar-Cerreno, J.; Carson, K.; Jacob, J.

    2017-12-01

    Fixed monitoring sites, such as those in the US National Weather Service Automated Surface Observing System (ASOS) and the Oklahoma Mesonet provide valuable, high temporal resolution information about the atmosphere to forecasters and the general public. The Oklahoma Mesonet is comprised of a network of 120 surface sites providing a wide array of atmospheric measurements up to a height of 10 m with an update time of five minutes. The deployment of small unmanned aircraft to collect in-situ vertical measurements of the atmospheric state in conjunction with surface conditions has potential to significantly expand weather observation capabilities. This concept can enhance the safety of individuals and support commerce through improved observations and short-term forecasts of the weather and other environmental variables in the lower atmosphere. We report on a concept of adding the capability of collecting vertical atmospheric measurements (profiles) through the use of unmanned aerial systems (UAS) at remote Oklahoma sites deemed suitable for this application. While there are a number of other technologies currently available that can provide measurements of one or a few variables, the proposed UAS concept will be expandable and modular to accommodate several different sensor packages and provide accurate in-situ measurements in virtually all weather conditions. Such a system would facilitate off-site maintenance and calibration and would provide the ability to add new sensors as they are developed or as new requirements are identified. The small UAS must be capable of accommodating the weight of all sensor packages and have lighting, communication, and aircraft avoidance systems necessary to meet existing or future FAA regulations. The system must be able to operate unattended, which necessitates the inclusion of risk mitigation measures such as a detect and avoid radar and the ability to transmit and receive transponder signals. Moreover, the system should be able to

  14. Solar-powered unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less

  15. Event-based measurement of boundary-layer winds and topographic effects with a small unmanned aircraft system (sUas)

    NASA Astrophysics Data System (ADS)

    Riddell, K.; Hugenholtz, C.

    2012-12-01

    Numerical models are invaluable tools for developing and testing hypotheses about interactions and feedbacks between wind and topography. However, field-based measurements are equally important for building and enhancing confidence in model output. Several field methods are available, including conventional approaches using tall masts equipped with an array of anemometers, as well as weather balloons, but few methods are able to match the level of detail available in model simulations of topographically-modified windflow. Here we propose an alternative method that may enhance numerical models. The method involves a small unmanned aircraft system (sUas) equipped with a meteorological sensor payload. The sUas is a two blade helicopter that weighs 5.5 kg, and has a length of 1.32 m. We designed a simple measurement and control system using an Arduino micro-controller, which acquired measurements at pre-defined coordinates autonomously. The entire survey was pre-configured and uploaded to the aircraft, effectively avoiding the need for manual aircraft operation and data collection. We collected raw measurements at each waypoint, yielding a point cloud of windspeed data. During test flights the sUas was able to maintain a stable position (± 0.6 m vertical and horizontal) in wind speeds up to 50 km/h. We used the raw data to map the wind speed-up ratio relative to a reference anemometer. Although it would be preferable to acquire continuous measurements at each waypoint, the sUas method only provides a snapshot of wind at each location. However, despite this limitation, the sUas does fill a void in terms of spatial measurements within the boundary layer. It may be possible to enhance this method in the future through deployment of sUas swarms that measure wind concurrently at many locations. Furthermore, other sensors can be deployed on sUas for measuring aeolian processes such as dust.

  16. Design of a GaAs/Ge Solar Array for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  17. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  18. Overview of TAMU-CC Unmanned Aircraft Systems Coastal Research in the Port Mansfield Area, June 2015

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Bridges, D. H.

    2016-02-01

    In June, 2015, the TAMU-CC Unmanned Aircraft Systems Program, with the support of the Lone Star UAS Center of Excellence and Innovation, conducted a week-long UAS exercise in the coastal region near Port Mansfield, Texas. The platform used was TAMU-CC's RS-16, a variant of the Arcturus T-16XL, that was equipped with a three-camera imaging system which acquired high-resolution images in the optical range of the electromagnetic spectrum and lower resolution images in the infrared and ultraviolet ranges of the spectrum. The RS-16 has a wingspan of 12.9 ft, a typical take-off weight of 70 lbs, and a typical cruising speed of 60 kt. A total of 9 flights were conducted over 7 days, with a total of 22.9 flight hours. Different areas of interest were mapped for different researchers investigating specific coastal phenomena. This poster will describe the overall operational aspects of the exercise. The aircraft and imaging system will be described in detail, as will the operational procedures and subsequent data reduction procedures. The process of selection of the coastal regions for investigation and the flight planning involved in mapping those regions will be discussed. A summary of the resulting image data will be presented.

  19. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  20. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    NASA Astrophysics Data System (ADS)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  1. The Design and Construction of a Shiplaunched VTOL Unmanned Air Vehicle

    DTIC Science & Technology

    1990-06-01

    Heppenheimer , T. A ., "The Light Stuff: Burt Rutan Transforms Aircraft Design," High Technolonv. pp. 29-35, December 1986. 16. Alexander, J., Foam...AD-A238 053III 1111 II IIII II OII~ NAVAL POSTGRADUATE SCHOOL Monterey, California OTIC J UL 1 1 1991 THESIS THE DESIGN AND CONSTRUCTION OF A ...8217 € (Include Security Classification) THE DESIGN AND CONSTRUCTION OF A SHIPLAUNCHED VTOL UNMANNED AIR VEHICLE 12. PERSONAL AUTHOR(S) Blanchette, Bryan M

  2. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  3. Cooperative remote sensing and actuation using networked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Chao, Haiyang

    This dissertation focuses on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes in the current information-rich world. The target scenarios are environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks, etc. AggieAir, a small and low-cost unmanned aircraft system, is designed based on the remote sensing requirements from environmental monitoring missions. The state estimation problem and the advanced lateral flight controller design problem are further attacked focusing on the small unmanned aerial vehicle (UAV) platform. Then the UAV-based remote sensing problem is focused with further flight test results. Given the measurements from unmanned vehicles, the actuation algorithms are needed for missions like the diffusion control. A consensus-based central Voronoi tessellation (CVT) algorithm is proposed for better control of the diffusion process. Finally, the dissertation conclusion and some new research suggestions are presented.

  4. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  5. The Sea Breeze in South-Iceland: Observations with an unmanned aircraft and numerical simulations

    NASA Astrophysics Data System (ADS)

    Opsanger Jonassen, Marius; Ólafsson, Haraldur; Rasol, Dubravka; Reuder, Joachim

    2010-05-01

    Sea breeze events, 19-20 July 2009, observed during the international field campaign MOSO, at the southcoast of Iceland, have been investigated using high resolution numerical simulations. Thanks to the use of a small unmanned aircraft system (UAS), SUMO, the wind and temperature aloft could be observed at a high resolution in both space and time. Simultaneously with the UAS operations, conventional platforms were used to obtain surface measurements. The observations show a distinct sea breeze circulation with an onset at around noon and a final decay around 19:00 UTC. At the maximum, the sea breeze layer reached a height of appr. 400 m, marked by a capping wind minimum. When compared to the flow aloft, the sea breeze layer was found to exhibit relatively low temperatures and an expected turn from an off-shore to an on-shore flow. Overall, the agreement between the observations and simulations are relatively good. The simulations suggest a horizontal extent of the circulation some 20-30 km off-shore, but only around 5 km on-shore.

  6. Unmanned Aerial Vehicle Non Line of Sight Chemical Detection Final Report

    DTIC Science & Technology

    2016-12-01

    aircraft system that is used to perform point detection of chemical warfare agents and collection of vapor, liquid, and solid samples. A modular payload...Standoff Quadcopter Unmanned aircraft system Modular payload 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Manufacturing Division, modular payloads are being developed to perform point detection and CBRNE sampling. The available UAS is a quadcopter capable of

  7. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology

    PubMed Central

    Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín

    2014-01-01

    Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673

  8. Performance modeling of unmanned aerial vehicles with on-board energy harvesting

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Inman, Daniel J.

    2011-03-01

    The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition

  9. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).

  10. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  11. High-efficient Unmanned Aircraft System Operations for Ecosystem Assessment

    NASA Astrophysics Data System (ADS)

    Xu, H.; Zhang, H.

    2016-02-01

    Diverse national and international agencies support the idea that incorporating Unmanned Aircraft Systems (UAS) into ecosystem assessment will improve the operations efficiency and accuracy. In this paper, a UAS will be designed to monitor the Gulf of Mexico's coastal area ecosystems intelligently and routinely. UAS onboard sensors will capture information that can be utilized to detect and geo-locate areas affected by invasive grasses. Moreover, practical ecosystem will be better assessed by analyzing the collected information. Compared with human-based/satellite-based surveillance, the proposed strategy is more efficient and accurate, and eliminates limitations and risks associated with human factors. State of the art UAS onboard sensors (e.g. high-resolution electro optical camera, night vision camera, thermal sensor etc.) will be used for monitoring coastal ecosystems. Once detected the potential risk in ecosystem, the onboard GPS data will be used to geo-locate and to store the exact coordinates of the affected area. Moreover, the UAS sensors will be used to observe and to record the daily evolution of coastal ecosystems. Further, benefitting from the data collected by the UAS, an intelligent big data processing scheme will be created to assess the ecosystem evolution effectively. Meanwhile, a cost-efficient intelligent autonomous navigation strategy will be implemented into the UAS, in order to guarantee that the UAS can fly over designated areas, and collect significant data in a safe and effective way. Furthermore, the proposed UAS-based ecosystem surveillance and assessment methodologies can be utilized for natural resources conservation. Flying UAS with multiple state of the art sensors will monitor and report the actual state of high importance natural resources frequently. Using the collected data, the ecosystem conservation strategy can be performed effectively and intelligently.

  12. An OEF/OIF study of close combat missions using small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Lifschitz, Gabriel; Tierney, Richard J.; Vitali, Juan A.

    2007-04-01

    The Small Unmanned Aircraft System (SUAS) is a rucksack portable aerial observation vehicle designed to supplement reconnaissance, surveillance and target acquisition tasks of an infantry company. The Raven is an earlier version of the SUAS. Raven is an Urgent Material Release (UMR) acquisition and has been used for the past two years by selected Army units in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF). Army Test and Evaluation Command-led surveys were used to assess the capabilities and limitations of the Raven in OEF/OIF. Results and analyses of the surveys indicate that Raven enhances situational awareness of a small unit in urban areas and in selected close combat missions. Users of the Raven state it is easy to use, although there are major issues with frequency de-confliction, airspace management, short endurance, and sensor performance. The SUAS is a program of record and completed developmental and operational testing in preparation for full rate production. This paper addresses the SUAS effectiveness, suitability, and survivability evaluation strategy based on actual testing of the system. During the Initial Operational Test (IOT), the SUAS was found to be effective with limitations in a set of 21 closed combat missions and two call for fire tests for which it was tested. Low Mean Time Between Operational Mean Failure (MTBOMF) and human factors issues make the system suitable with limitations. Acoustic (audible to the human ear) and electronic vulnerabilities make the system non-survivable in most combat scenarios. The SUAS was found to be useful as an extra asset usable in certain infantry company close combat missions where terrain and visual line of sight give the system an advantage over traditional reconnaissance patrols. Army aviation and infantry units uncover new ways every day to use this portable "eye in the sky", especially when unmanned aerial reconnaissance assets are in premium demand. A discussion on changes in doctrine with the

  13. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2017-01-01

    This presentation covers the primary results of the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Terminal Operations Foundational Human-in-the-Loop (HITL) simulation. The study tasked 16 pilots (half with manned piloting experience, and the other half with unmanned piloting experience) with maintaining "well clear" from other traffic while performing three different types of approaches into the Santa Rosa airport. A detect and avoid (DAA) system was provided to pilots to assist their ability to manage separation. The DAA system used in this test conformed to the criteria defined by RTCA Special Committee 228 (SC-228) in their Phase 1 Minimum Operational Performance Standards (MOPS) for UAS intending to operate in the NAS. The Phase 1 system was not designed to account for terminal operations, focusing instead on en route operations. To account for this, three different alerting and guidance configurations were presently tested in order to determine their effect on pilots operating the system in the terminal area. Results indicated that pilots with the alerting and guidance condition that provided the least amount of assistance (fewer alert levels and guidance types) experienced slightly increased pilot response times and rates of losses of separation. Additional data is presented on the effects of approach type and descriptive data on pilot maneuver preferences and ATC interoperability.

  14. Effects of Hearing Protection Device Attenuation on Unmanned Aerial Vehicle (UAV) Audio Signatures

    DTIC Science & Technology

    2016-03-01

    acoustic signatures of Unmanned Aircraft Systems (UASs). The results could be used to select appropriate HPDs for environments where noise from UASs may be...formed earplugs passively reduce noise by using foam to efficiently absorb sound. Preformed earplugs attenuate by using either level-dependent or non...domain. In this study, a program using these techniques will be created to simulate these HPD ratings and its effects on acoustic signatures of unmanned

  15. Modeling of Air-to-Air Refueling for an Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Spears, Brian Raul

    Air-to-air refueling is important to the military for enabling aircraft to remain in the air for long periods of time, reducing the need for forward bases, and allowing aircraft to stay on mission for longer intervals. Although this has been available for traditional military aircraft for several decades, it has not been implemented for the use of Unmanned Aerial Vehicles (UAV). This thesis uses a panel method, VSAERO, to examine the effects that a large tanker aircraft will have on a small unmanned aerial vehicle during a refueling process. The primary cause of conditions behind the tanker aircraft is the wake generated by the wingtip vortices of the aircraft. The planes used for this analysis were an Airbus A320 as the tanker, and a General Atomic MQ-9 as the receiver. The techniques used were to examine literature on aerial refueling, and analyze the aerodynamic characteristics of the UAV. The most important properties that were examined were the rolling moment, pitching moment, and lift. These characteristics were used to determine the feasibility of the UAV being able to withstand the conditions behind the A320. Through the analysis of the MQ-9's aerodynamic characteristics when in ideal conditions, along with its maximum rolling moment, and those same characteristics when flying behind the tanker, it was determined that the MQ-9 would be able to maintain position behind an A320 in order to complete the aerial refueling process.

  16. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales

    NASA Astrophysics Data System (ADS)

    Tonkin, T. N.; Midgley, N. G.; Graham, D. J.; Labadz, J. C.

    2014-12-01

    Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine-mound complex were captured from a light (< 5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The images were used to produce a DSM (digital surface model) of the moraines. The DSM is in good agreement with 7761 total station survey points providing a total vertical RMSE value of 0.517 m and vertical RMSE values as low as 0.200 m for less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy.

  17. Unmanned aerial systems for photogrammetry and remote sensing: A review

    NASA Astrophysics Data System (ADS)

    Colomina, I.; Molina, P.

    2014-06-01

    We discuss the evolution and state-of-the-art of the use of Unmanned Aerial Systems (UAS) in the field of Photogrammetry and Remote Sensing (PaRS). UAS, Remotely-Piloted Aerial Systems, Unmanned Aerial Vehicles or simply, drones are a hot topic comprising a diverse array of aspects including technology, privacy rights, safety and regulations, and even war and peace. Modern photogrammetry and remote sensing identified the potential of UAS-sourced imagery more than thirty years ago. In the last five years, these two sister disciplines have developed technology and methods that challenge the current aeronautical regulatory framework and their own traditional acquisition and processing methods. Navety and ingenuity have combined off-the-shelf, low-cost equipment with sophisticated computer vision, robotics and geomatic engineering. The results are cm-level resolution and accuracy products that can be generated even with cameras costing a few-hundred euros. In this review article, following a brief historic background and regulatory status analysis, we review the recent unmanned aircraft, sensing, navigation, orientation and general data processing developments for UAS photogrammetry and remote sensing with emphasis on the nano-micro-mini UAS segment.

  18. Sensing Hazards with Operational Unmanned Technology

    NASA Astrophysics Data System (ADS)

    Hood, R. E.

    2016-12-01

    The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.

  19. Evaluation and development of unmanned aircraft (UAV) for UDOT needs.

    DOT National Transportation Integrated Search

    2012-05-01

    This research involved the use of high-resolution aerial photography obtained from Unmanned Aerial Vehicles (UAV) to aid UDOT in monitoring and documenting State Roadway structures and associated issues. Using geo-referenced UAV high resolution aeria...

  20. Optimal Lateral Guidance for Automatic Landing of a Lightweight High Altitude Long Endurance Unmanned Aerial System with Crosswind Rejection

    NASA Astrophysics Data System (ADS)

    Smith, Nathan Allen

    Unmanned aerial systems will be the dominant force in the aviation industry. Among these aircraft the use of high altitude long endurance unmanned aerial systems has increased dramatically. Based on the geometry of these types of aircraft the possible changing weather conditions during long flights poses many problems. These difficulties are compounded by the push towards fully autonomous systems. Large wingspan and, typically, small in-line landing gear make a landing in crosswind exceedingly difficult. This study uses a modified gain scheduling technique for optimizing the landing attitude for a generic vehicle based on geometry and crosswind speed. This is performed by directly utilizing the crosswind estimation to calculate a desired crab and roll angle that gives the lowest risk attitude for landing. An extended Kalman filter is developed that estimates the aircraft states as well as the 3D wind component acting on the aircraft. The aircraft used in this analysis is the DG808S, a large wingspan lightweight electric glider. The aircraft is modelled using Advanced Aircraft Analysis software and a six degree of freedom nonlinear simulation is implemented for testing. The controller used is a nonlinear model predictive controller. The simulations show that the extended Kalman filter is capable of estimating the crosswind and can therefore be used in the full aircraft simulation. Different crosswind settings are used which include both constant crosswind and gust conditions. Crosswind landing capabilities are increased by 35%. Deviation from the desired path in the cruise phase is reduced by up to 68% and time to path convergence is reduced by up to 53%.

  1. Well clear: General aviation and commercial pilots' perception of unmanned aerial vehicles in the national airspace system

    NASA Astrophysics Data System (ADS)

    Ott, Joseph T.

    The purpose of this research was to determine how different pilot types perceived the subjective concept of the Well Clear Boundary (WCB) and to observe if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS) as well as the effects of other variables. Pilots' perceptions of the WCB were collected objectively through simulator recordings and subjectively through questionnaires. Together, these metrics provided quantitative and qualitative data about pilot WCB perception. The objective results of this study showed significant differences in WCB perception between two different pilot types, as well as WCB significant differences when comparing two different intruder types (manned versus unmanned aircraft). These differences were dependent on other manipulated variables, including intruder approach angle, ownship speed, and background traffic levels. Subjectively, there were evident differences in WCB perception across pilot types; general aviation (GA) pilots appeared to trust UAS aircraft slightly more than did the more experienced Airline Transport Pilots (ATPs). Overall, it is concluded that pilots' mental models of the WCB are more easily perceived as time-based boundaries in front of ownship, while being more easily perceived as distance-based boundaries to the rear of ownship.

  2. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  3. Overmanned and Undertrained: Preparing UAS Crewmembers for Unmanned Close Air Support

    DTIC Science & Technology

    2012-03-22

    collection and artillery observation platform to a much more sophisticated mission platform capable of unmanned cargo delivery, laser designation, electronic...VMU Mission Essential Task List ..............................................................................30 iv Table of Contents...Marine Corps ...........................................................................2 VMU Squadrons: Aircraft, Operations, and Missions

  4. Vibration energy harvesting for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Unmanned aerial vehicles (UAVs) are a critical component of many military operations. Over the last few decades, the evolution of UAVs has given rise to increasingly smaller aircraft. Along with the development of smaller UAVs, termed mini UAVs, has come issues involving the endurance of the aircraft. Endurance in mini UAVs is problematic because of the limited size of the fuel systems that can be incorporated into the aircraft. A large portion of the total mass of many electric powered mini UAVs, for example, is the rechargeable battery power source. Energy harvesting is an attractive technology for mini UAVs because it offers the potential to increase their endurance without adding significant mass or the need to increase the size of the fuel system. This paper investigates the possibility of harvesting vibration and solar energy in a mini UAV. Experimentation has been carried out on a remote controlled (RC) glider aircraft with a 1.8 m wing span. This aircraft was chosen to replicate the current electric mini UAVs used by the military today. The RC glider was modified to include two piezoelectric patches placed at the roots of the wings and a cantilevered piezoelectric beam installed in the fuselage to harvest energy from wing vibrations and rigid body motions of the aircraft, as well as two thin film photovoltaic panels attached to the top of the wings to harvest energy from sunlight. Flight testing has been performed and the power output of the piezoelectric and photovoltaic devices has been examined.

  5. Frequency Allocations for Unmanned Aircraft Systems in the National Airspace. Access 5 White Paper to the WRC Advisory Committee

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A critical aspect of the Access 5 program is identifying appropriate spectrum for civil and commercial purposes. However, currently, there is no spectrum allocated for the command/control link between the aircraft control station and the unmanned aircraft. Until such frequency spectrum is allocated and approved, it will be difficult for the UAS community to obtain civil airworthiness certification and operate in the NAS on a routine basis. This document provides a perspective from the UAS community on Agenda Items being considered for the upcoming World Radiocommunication Conference 2007 (WRC 07). Primarily, it supports the proposal to add Aeronautical Mobile (Route) Services (AM(R)S) to existing bands that could be used for UAS Line-of-Sight operations. It also recommends the need to identify spectrum that could be used for an Aeronautical Mobile Satellite (Route) Service (AMS(R)S) that would allow UAS to operate Beyond Line-of-Sight. If spectrum is made available to provide these services, it will then be incumbent upon the UAS community to justify their use of this spectrum as well as the assurance that they will not interfere with other users of this newly allocated spectrum.

  6. Mock Certification Basis for an Unmanned Rotorcraft for Precision Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.; Buelow, Barry; McCormick, G. Frank

    2015-01-01

    This technical report presents the results of a case study using a hazard-based approach to develop preliminary design and performance criteria for an unmanned agricultural rotorcraft requiring airworthiness certification. This case study is one of the first in the public domain to examine design and performance criteria for an unmanned aircraft system (UAS) in tandem with its concept of operations. The case study results are intended to support development of airworthiness standards that could form a minimum safety baseline for midsize unmanned rotorcraft performing precision agricultural spraying operations under beyond visual line-of-sight conditions in a rural environment. This study investigates the applicability of current methods, processes, and standards for assuring airworthiness of conventionally piloted (manned) aircraft to assuring the airworthiness of UAS. The study started with the development of a detailed concept of operations for precision agricultural spraying with an unmanned rotorcraft (pp. 5-18). The concept of operations in conjunction with a specimen unmanned rotorcraft were used to develop an operational context and a list of relevant hazards (p. 22). Minimum design and performance requirements necessary to mitigate the hazards provide the foundation of a proposed (or mock) type certification basis. A type certification basis specifies the applicable standards an applicant must show compliance with to receive regulatory approval. A detailed analysis of the current airworthiness regulations for normal-category rotorcraft (14 Code of Federal Regulations, Part 27) was performed. Each Part 27 regulation was evaluated to determine whether it mitigated one of the relevant hazards for the specimen UAS. Those regulations that did were included in the initial core of the type certification basis (pp. 26-31) as written or with some simple modifications. Those regulations that did not mitigate a recognized hazard were excluded from the certification

  7. Sea Ice Topography Profiling using Laser Altimetry from Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Crocker, Roger Ian

    Arctic sea ice is undergoing a dramatic transition from a perennial ice pack with a high prevalence of old multiyear ice, to a predominantly seasonal ice pack comprised primarily of young first-year and second-year ice. This transition has brought about changes in the sea ice thickness and topography characteristics, which will further affect the evolution and survivability of the ice pack. The varying ice conditions have substantial implications for commercial operations, international affairs, regional and global climate, our ability to model climate dynamics, and the livelihood of Arctic inhabitants. A number of satellite and airborne missions are dedicated to monitoring sea ice, but they are limited by their spatial and temporal resolution and coverage. Given the fast rate of sea ice change and its pervasive implications, enhanced observational capabilities are needed to augment the current strategies. The CU Laser Profilometer and Imaging System (CULPIS) is designed specifically for collecting fine-resolution elevation data and imagery from small unmanned aircraft systems (UAS), and has a great potential to compliment ongoing missions. This altimeter system has been integrated into four different UAS, and has been deployed during Arctic and Antarctic science campaigns. The CULPIS elevation measurement accuracy is shown to be 95±25 cm, and is limited primarily by GPS positioning error (<25 cm), aircraft attitude determination error (<20 cm), and sensor misalignment error (<20 cm). The relative error is considerably smaller over short flight distances, and the measurement precision is shown to be <10 cm over a distance of 200 m. Given its fine precision, the CULPIS is well suited for measuring sea ice topography, and observed ridge height and ridge separation distributions are found to agree with theoretical distributions to within 5%. Simulations demonstrate the inability of course-resolution measurements to accurately represent the theoretical distributions

  8. Pushbroom Hyperspectral Imaging from AN Unmanned Aircraft System (uas) - Geometric Processingworkflow and Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Turner, D.; Lucieer, A.; McCabe, M.; Parkes, S.; Clarke, I.

    2017-08-01

    In this study, we assess two push broom hyperspectral sensors as carried by small (10-15 kg) multi-rotor Unmanned Aircraft Systems (UAS). We used a Headwall Photonics micro-Hyperspec push broom sensor with 324 spectral bands (4-5 nm FWHM) and a Headwall Photonics nano-Hyperspec sensor with 270 spectral bands (6 nm FWHM) both in the VNIR spectral range (400-1000 nm). A gimbal was used to stabilise the sensors in relation to the aircraft flight dynamics, and for the micro-Hyperspec a tightly coupled dual frequency Global Navigation Satellite System (GNSS) receiver, an Inertial Measurement Unit (IMU), and Machine Vision Camera (MVC) were used for attitude and position determination. For the nano-Hyperspec, a navigation grade GNSS system and IMU provided position and attitude data. This study presents the geometric results of one flight over a grass oval on which a dense Ground Control Point (GCP) network was deployed. The aim being to ascertain the geometric accuracy achievable with the system. Using the PARGE software package (ReSe - Remote Sensing Applications) we ortho-rectify the push broom hyperspectral image strips and then quantify the accuracy of the ortho-rectification by using the GCPs as check points. The orientation (roll, pitch, and yaw) of the sensor is measured by the IMU. Alternatively imagery from a MVC running at 15 Hz, with accurate camera position data can be processed with Structure from Motion (SfM) software to obtain an estimated camera orientation. In this study, we look at which of these data sources will yield a flight strip with the highest geometric accuracy.

  9. Development of a flight data acquisition system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Hood, Scott

    Current developments surrounding the use of unmanned aerial vehicles have produced a need for a high quality data acquisition platform developed specifically a research environment. This work was undertaken to produce such a system that is low cost, extensible, and better supports fixed wing research through the inclusion of a custom vane based air data probe capable of measuring airspeed, angle of attack, and angle of sideslip. This was accomplished by starting with the open source Pixhawk system as the core and then modifying the device firmware and adding sensors to suit the needs of current aerospace research at OSU. An overview of each component of the system is presented, as well as a description of various firmware modifications to the stock Pixhawk system. Tests were then performed on all of the major sensors using bench testing, wind tunnel analysis, and flight maneuvers to determine the final performance of each part of the system. This research shows that all of the critical sensors on the data acquisition platform produce data acceptable for flight research. The accelerometer has been shown to have an overall tolerance of +/-0.0545 m/s², with +/-0.223 deg/s for the gyroscopic sensor, +/-1.32 hPa for the barometric sensor, +/-0.318 m/s for the airspeed sensor, +/-1.65 °C for the outside air temperature sensor, and +/-0.00115 V for the analog to digital converter. The stock calibration curve for the airspeed sensor was determined to be correct to within +/-0.5 in H2O through wind tunnel testing, and an experimental step input analysis on the flow direction vanes showed that worst case steady state error and time to damp are acceptable for the system. Power spectral density and spectral coherence analysis of flight data was used to show that the custom air data probe is capable of following the flight dynamics of a given aircraft to within a 10 percent tolerance across a range of frequencies. Finally, general performance of the system was proven using

  10. Incorporating Unmanned Aircraft Systems (UAS) into High School Curricula in Hawaii

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Lukaczyk, T.; Brendan, B.; Tomita, M.; Ralston, T.; Purdy, G.

    2016-12-01

    The availability of low-cost unmanned aircraft systems (UAS) permits their integration in educational programs. We report on experiences and future opportunities for incorporating UAS into High School curricula in Hawaii. We first review existing high school UAS programs and teaching material to highlight curricula options and needs. By working on the privately owned Island of Lana'i, we had permission for extensive UAS operation. Our initial focus of UAS educational outreach was on coastal ecosystems where erosion of overgrazed lands affects coral reefs and traditional coastal Hawaiian fishpond restoration projects which include high school students. We provide results of our classroom approach allowing students to learn to fly small, inexpensive UAS and discuss the different results at different grade levels. In addition to providing basic concepts of flight aeronautics, we reviewed information on safe and legal operation of UAS, as well as data management issues including geo-registration and imaging mosaics. We recommend science projects where UAS can study short-term events (e.g. storm runoff) or can be used for routine environmental monitoring over longer periods. Additionally, by linking students with local drone and drone racing clubs student participation and interest in UAS was extended beyond the classroom in a complementary manner. We propose inclusion of UAS into a future high school curriculum via a program called the Moonshot Laboratory which strives to repurpose traditional education structures toward design thinking, making use of individual and group collaborations to address self-selected projects relevant to local community interests. A Moonshot facility allows students to spend a portion of their week in a technology equipped makerspace, with access to university, business and community mentors, both local and remote. UAS projects are expected to address basic student questions, such as: how can I build a drone to take water samples?; how can I

  11. Unmanned Aircraft Systems Human-in-the-Loop Controller and Pilot Acceptability Study: Collision Avoidance, Self-Separation, and Alerting Times (CASSAT)

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.

    2016-01-01

    The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.

  12. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    USDA-ARS?s Scientific Manuscript database

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  13. Detection of potato beetle damage using remote sensing from small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond; Rondon, Silvia I.

    2017-04-01

    Colorado potato beetle (CPB) adults and larvae devour leaves of potato and other solanaceous crops and weeds, and may quickly develop resistance to pesticides. With early detection of CPB damage, more options are available for precision integrated pest management, which reduces the amount of pesticides applied in a field. Remote sensing with small unmanned aircraft systems (sUAS) has potential for CPB detection because low flight altitudes allow image acquisition at very high spatial resolution. A five-band multispectral sensor and up-looking incident light sensor were mounted on a six-rotor sUAS, which was flown at altitudes of 60 and 30 m in June 2014. Plants went from visibly undamaged to having some damage in just 1 day. Whole-plot normalized difference vegetation index (NDVI) and the number of pixels classified as damaged (0.70≤NDVI≤0.80) were not correlated with visible CPB damage ranked from least to most. Area of CPB damage estimated using object-based image analysis was highly correlated to the visual ranking of damage. Furthermore, plant height calculated using structure-from-motion point clouds was related to CPB damage, but this method required extensive operator intervention for success. Object-based image analysis has potential for early detection based on high spatial resolution sUAS remote sensing.

  14. Dhaksha, the Unmanned Aircraft System in its New Avatar-Automated Aerial Inspection of INDIA'S Tallest Tower

    NASA Astrophysics Data System (ADS)

    Kumar, K. S.; Rasheed, A. Mohamed; Krishna Kumar, R.; Giridharan, M.; Ganesh

    2013-08-01

    DHAKSHA, the unmanned aircraft system (UAS), developed after several years of research by Division of Avionics, Department of Aerospace Engineering, MIT Campus of Anna University has recently proved its capabilities during May 2012 Technology demonstration called UAVforge organised by Defence Research Project Agency, Department of Defence, USA. Team Dhaksha with its most stable design outperformed all the other contestants competing against some of the best engineers from prestigi ous institutions across the globe like Middlesex University from UK, NTU and NUS from Singapore, Tudelft Technical University, Netherlands and other UAV industry participants in the world's toughest UAV challenge. This has opened up an opportunity for Indian UAVs making a presence in the international scenario as well. In furtherance to the above effort at Fort Stewart military base at Georgia,USA, with suitable payloads, the Dhaksha team deployed the UAV in a religious temple festival during November 2012 at Thiruvannamalai District for Tamil Nadu Police to avail the instant aerial imagery services over the crowd of 10 lakhs pilgrims and also about the investigation of the structural strength of the India's tallest structure, the 300 m RCC tower during January 2013. The developed system consists of a custom-built Rotary Wing model with on-board navigation, guidance and control systems (NGC) and ground control station (GCS), for mission planning, remote access, manual overrides and imagery related computations. The mission is to fulfill the competition requirements by using an UAS capable of providing complete solution for the stated problem. In this work the effort to produce multirotor unmanned aerial systems (UAS) for civilian applications at the MIT, Avionics Laboratory is presented

  15. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Geoffrey

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  16. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  17. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  18. Morphing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Gomez, Juan Carlos; Garcia, Ephrahim

    2011-10-01

    Research on aircraft morphing has exploded in recent years. The motivation and driving force behind this has been to find new and novel ways to increase the capabilities of aircraft. Materials advancements have helped to increase possibilities with respect to actuation and, hence, a diversity of concepts and unimagined capabilities. The expanded role of unmanned aerial vehicles (UAVs) has provided an ideal platform for exploring these emergent morphing concepts since at this scale a greater amount of risk can be taken, as well as having more manageable fabrication and cost requirements. This review focuses on presenting the role UAVs have in morphing research by giving an overview of the UAV morphing concepts, designs, and technologies described in the literature. A presentation of quantitative information as well as a discussion of technical issues is given where possible to begin gaining some insight into the overall assessment and performance of these technologies.

  19. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  20. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.

    PubMed

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-08-28

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.

  1. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems

    PubMed Central

    Cooper, Andrew James; Redman, Chelsea Anne; Stoneham, David Mark; Gonzalez, Luis Felipe; Etse, Victor Kwesi

    2015-01-01

    This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement. PMID:26343680

  2. Comparison of sub-scaled to full-scaled aircrafts in simulation environment for air traffic management

    NASA Astrophysics Data System (ADS)

    Elbakary, Mohamed I.; Iftekharuddin, Khan M.; Papelis, Yiannis; Newman, Brett

    2017-05-01

    Air Traffic Management (ATM) concepts are commonly tested in simulation to obtain preliminary results and validate the concepts before adoption. Recently, the researchers found that simulation is not enough because of complexity associated with ATM concepts. In other words, full-scale tests must eventually take place to provide compelling performance evidence before adopting full implementation. Testing using full-scale aircraft produces a high-cost approach that yields high-confidence results but simulation provides a low-risk/low-cost approach with reduced confidence on the results. One possible approach to increase the confidence of the results and simultaneously reduce the risk and the cost is using unmanned sub-scale aircraft in testing new concepts for ATM. This paper presents the simulation results of using unmanned sub-scale aircraft in implementing ATM concepts compared to the full scale aircraft. The results of simulation show that the performance of sub-scale is quite comparable to that of the full-scale which validates use of the sub-scale in testing new ATM concepts. Keywords: Unmanned

  3. Unmanned Aircraft Systems for Monitoring Department of the Interior Lands

    NASA Astrophysics Data System (ADS)

    Hutt, M. E.; Quirk, B.

    2013-12-01

    Unmanned Aircraft Systems (UAS) technology is quickly evolving and will have a significant impact on Earth science research. The U.S. Geological Survey (USGS) is conducting an operational test and evaluation of UAS to see how this technology supports the mission of the Department of the Interior (DOI). Over the last 4 years, the USGS, working with many partners, has been actively conducting proof of concept UAS operations, which are designed to evaluate the potential of UAS technology to support the mandated DOI scientific, resource and land management missions. UAS technology is being made available to monitor environmental conditions, analyze the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management and law enforcement missions. Using small UAS (sUAS), the USGS is able to tailor solutions to meet project requirements by obtaining very high resolution video data, acquiring thermal imagery, detecting chemical plumes, and generating digital terrain models at a fraction of the cost of conventional surveying methods. UAS technology is providing a mechanism to collect timely remote sensing data at a low cost and at low risk over DOI lands that can be difficult to monitor and consequently enhances our ability to provide unbiased scientific information to better enable decision makers to make informed decisions. This presentation describes the UAS technology and infrastructure being employed, the application projects already accomplished, lessons learned and future of UAS within the DOI. We fully expect that by 2020 UAS will emerge as a primary platform for all DOI remote sensing applications. Much like the use of Internet technology, Geographic Information Systems (GIS) and Global Positioning Systems (GPS), UAS have the potential of enabling the DOI to be better stewards of the land.

  4. Unmanned aircraft systems: a new tool for DOT inspections : final report

    DOT National Transportation Integrated Search

    2016-10-31

    The NextGen Air Transportation Program (NGAT) at North Carolina State University (NCSU) collaborated with the NCDOT departments (Location and Surveys, Photogrammetry, Aviation, etc.) to analyze the potential role of small Unmanned Aerial Systems (UAS...

  5. Efficient super-resolution image reconstruction applied to surveillance video captured by small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry

    2008-04-01

    The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.

  6. Update on Piloted and Un-Piloted Aircraft at NASA Dryden

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2007-01-01

    This viewgraph presentation reviews the NASA Dryden Flight Research Center's (DFRC) environment for testing of experimental aircraft. Included are a satellite view of the Dryden locale, and a summary of the capabilities at DFRC. It reviews the capabilites of High Altitude Platform (HAP) testing; Gulfstream III (1.)Unmanned Aerial Vehicle (UAV) synthetic aperture radar (SAR) (2) Precision Trajectory Capability Global Hawk (ACTD); ER-2; Ikhana (Predator B);

  7. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  8. Investigation of Rotor-Airframe Interaction Noise Associated with Small-Scale Rotary-Wing Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Boyd, D. Douglas, Jr.

    2017-01-01

    In this study, hover acoustic measurements are taken on isolated rotor-airframe configurations representative of smallscale, rotary-wing unmanned aircraft systems (UAS). Each rotor-airframe configuration consists of two fixed-pitch blades powered by a brushless motor, with a simplified airframe geometry intended to represent a generic multicopter arm. In addition to acoustic measurements, CFD-based aeroacoustic predictions are implemented on a subset of the experimentally tested rotor-airframe configurations in an effort to better understand the noise content of the rotor-airframe systems. Favorable agreements are obtained between acoustic measurements and predictions, based on both time- and frequency-domain post-processing techniques. Results indicate that close proximity of airframe surfaces result in the generation of considerable tonal acoustic content in the form of harmonics of the rotor blade passage frequency (BPF). Analysis of the acoustic prediction data shows that the presence of the airframe surfaces can generate noise levels either comparable to or greater than the rotor blade surfaces under certain rotor tip clearance conditions. Analysis of the on-surface Ffowcs Williams and Hawkings (FW-H) source terms provide insight as to the predicted physical noise-generating mechanisms on the rotor and airframe surfaces.

  9. Satellite Communications for Unmanned Aircraft C2 Links: C-Band, Ku-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    Unmanned aircraft (UA) that require access to controlled (or non-segregated) airspace require a highly reliable and robust command and control (C2) link, operating over protected aviation spectrum. While operating within radio line-of-sight (LOS) UA can make use of air-to-ground C2 links to terrestrial stations. When operating beyond LOS (BLOS) where a group of networked terrestrial stations does not exist to provide effective BLOS coverage, a satellite communications link is required. Protected aviation spectrum for satellite C2 links has only recently been allocated in bands where operational satellites exist. A previously existing C-Band allocation covers a bands where there are currently no operational satellites. The new allocations, within the Fixed Satellite Service bands at Ku and Ka-Bands will not be finalized until 2023 due to the need for the development of standards and technical decisions on the operation of UA satellite C2 links within these bands. This paper provides an overview of BLOS satellite C2 links, some of the conditions which will need to be met for the operation of such links, and a look at some aspects of spectrum sharing which may constrain these operations.

  10. An Analysis of Human Causal Factors in Unmanned Aerial Vehicle (UAV) Accidents

    DTIC Science & Technology

    2014-12-01

    202 • Drugs/over-the-counter medication/supplements (not prescribed) PP 203 • Nutrition/ diet PP 204 • Inadequate rest (self-imposed) PP 205...2008). A survey of unmanned aircraft systems regulation: Status and future perspectives. Paper presented at 16th Mediterranean Conference on Control

  11. 77 FR 3029 - Twentieth Meeting: RTCA Special Committee 203, Unmanned Aircraft Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Aircraft Systems. The agenda will include the following: February 21, 2012 Welcome, Introductions, and... Breakout Sessions Systems Engineering Workgroup Command & Control Workgroup Sense & Avoid Workgroup Safety...

  12. High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS): Pilot Knowledge, Skills and Abilities

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the initial work accomplished by the ACCESS 5 Human System Integration (HSI) team to identify Unmanned Aircraft System (UAS) Pilot Knowledge, Skill and Ability (KSA), Training and Medical requirements. To derive this information the following tasks were accomplished: a) Mission and Function analyses were performed; b) Applicable FARs and FAA Advisory Circulars (ACs) were reviewed; c) Meetings were conducted with NASA and FAA Human Factors personnel; d) Surveys were completed by ACCESS 5 HSI Working group UA Pilots; e) Coordination meetings were conducted with the ACCESS 5 Policy IPT. The results of these efforts were used to develop a summary of the current qualifications. for an individual to function as a Pilot In Command (PIC) for UAs currently flown by UNITE companies, to develop preliminary Pilot KSAs for each phase of flight, and to delineate preliminary Pilot Training and Medical requirements. These results are to be provided to the Policy IPT to support their development of recommendations for UA Pilot Rating Criteria, training and medical qualifications. It is expected that the initially an instrument rated pilot will be required to serve as the PIC. However, as operational experience is gained, and automation is applied to accomplish various system functions, it is expected that pilot rating criteria could be lessened.

  13. Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    DTIC Science & Technology

    2014-12-26

    projected operational tempos (OPTEMPOs)” [15]. The Oce of the Secretary of Defense (OSD) Unmanned Systems Roadmap [15] goes on to say that the airspace...methods [63]. In an indirect method, the researcher derives the first- order necessary conditions for optimality “via the calculus of variations and...region around the ownship using a variation of a superquadric. From [116], the standard equation for a superellipsoid appears as: ✓ x a1 ◆ 2 ✏ 2

  14. Synthesis of the unmanned aerial vehicle remote control augmentation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczyk, Andrzej, E-mail: A.Tomczyk@prz.edu.pl

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are notmore » suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.« less

  15. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  16. Communications Technology Assessment for the Unmanned Aircraft System (UAS) Control and Non-Payload Communications (CNPC) Link

    NASA Technical Reports Server (NTRS)

    Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the

  17. MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper)

    DTIC Science & Technology

    2013-12-01

    Milestone C ACAT II Block 1 FEB 2008 FEB 2008 FEB 2008 FEB 2008 IOT&E for Block 1 MAY 2008 MAY 2008 MAY 2008 MAY 2008 RAA SEP 2010 JUN 2012 JUN 2012 JUN...milestone change. Memo MQ-9 Reaper December 2013 SAR April 16, 2014 17:17:09 UNCLASSIFIED 9 RAA includes two fixed GCSs, two mobile GCSs...Control Station IOT&E - Initial Operational Test and Evaluation PMAI - Primary Mission Aircraft Inventory PO - Program Office RAA - Required Assets

  18. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Canter, Caleb

    2017-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  19. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Witte, Brandon; Smith, Lorli; Schlagenhauf, Cornelia; Bailey, Sean

    2016-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  20. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  1. Optimizing the Remotely Piloted Aircraft Pilot Career Field

    DTIC Science & Technology

    2011-10-01

    Katana light aircraft trainers, receiving 30 to 38 hours of introductory, night, cross country and solo ...Power Journal 33, no. 2 (Summer 2009): 5-10. 51. Steve Lohr. "Software Progress Beats Moore’s Law." bits.blogs.nytimes.com. March 07, 2011. http...bits.blogs.nytimes.com/2011/03/07/software-progress- beats -moores-law/ 52. US Department of Defense. "United States Air Force Unmanned Aircraft

  2. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment

    NASA Astrophysics Data System (ADS)

    Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing

    2017-04-01

    A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.

  3. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  4. Well Clear: General Aviation and Commercial Pilots' Perceptioin of Unmanned Aerial Vehicles in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Ott, Joseph

    2015-01-01

    This research explored how different pilots perceived the concept of the Well Clear Boundary (WCB) and observed if that boundary changed when dealing with manned versus unmanned aircraft systems (UAS), and the effects of other variables. Pilots' WCB perceptions were collected objectively through simulator recordings and subjectively through questionnaires. Objectively, significant differences were found in WCB perception between two pilot types (general aviation [GA], and Airline Transport Pilots [ATPs]), and significant WCB differences were evident when comparing two intruder types (manned versus unmanned aircraft). Differences were dependent on other manipulated variables (intruder approach angle, ownship speed, and background traffic levels). Subjectively, there were differences in WCB perception across pilot types; GA pilots trusted UAS aircraft higher than the more experienced ATPs. Conclusions indicate pilots' WCB mental models are more easily perceived as time-based boundaries in front of ownship, and more easily perceived as distance-based boundaries to the rear of ownship.

  5. Demonstration of Unmanned Aircraft Systems Use for Traffic Incident Management (UAS-TIM)

    DOT National Transportation Integrated Search

    2017-12-01

    Previous investigations into technologies that can improve incident response, monitoring, and clearance resulted in the potential application of Unmanned Aerial System (UAS) for use in Traffic Incident Management (TIM). An initial investigation of UA...

  6. Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah

    2016-01-01

    In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.

  7. Runway Detection From Map, Video and Aircraft Navigational Data

    DTIC Science & Technology

    2016-03-01

    FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA by Jose R. Espinosa Gloria March 2016 Thesis Advisor: Roberto Cristi Co-Advisor: Oleg...COVERED Master’s thesis 4. TITLE AND SUBTITLE RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA 5. FUNDING NUMBERS 6. AUTHOR...Mexican Navy, unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained from these

  8. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    USGS Publications Warehouse

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  9. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    PubMed Central

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-01-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047

  10. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    NASA Astrophysics Data System (ADS)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-03-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

  11. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  12. A Summary of NASA Research Exploring the Acoustics of Small Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Christian, Andrew; Cabell, Randolph

    2018-01-01

    Proposed uses of small unmanned aerial systems (sUAS) have the potential to expose large portions of communities to a new noise source. In order to understand the potential noise impact of sUAS, NASA initiated acoustics research as one component of the 3-year DELIVER project, with the goal of documenting the feasibility of using existing aircraft design tools and methods on this class of vehicles. This paper summarizes the acoustics research conducted within the DELIVER project. The research described here represents an initial study, and subsequent research building on the findings of this work has been proposed for other NASA projects. The paper summarizes acoustics research in four areas: measurements of noise generated by flyovers of small unmanned aerial vehicles, measurements in controlled test facilities to understand the noise generated by components of these vehicles, computational predictions of component and full vehicle noise, and psychoacoustic tests including auralizations conducted to assess human annoyance to the noise generated by these vehicles.

  13. Integrating the Unmanned Aircraft System into the National Airspace System

    DTIC Science & Technology

    2011-06-18

    Comprehensive Planning and a Results-Oriented Training Strategy are needed to Support Growing Inventories , GAO-10-331. (Washington, DC: Government...integration of manned and unmanned flight is a challenge facing bureaucratic inertia and in need of our government’s emphasis on resolution. This paper...26 Due to lack of funding in 1979, the remaining 60 UAVs in the U.S Air Force inventory were deactivated and put into storage. The following 10

  14. Unmanned Aircraft Systems - Is the Commander Getting What is Needed?

    DTIC Science & Technology

    2011-02-23

    launched strike missions , communications relay operations, and ballistic missile tracking, to name a few.3 The focus on unmanned aviation systems is...with which to execute their mission . The commanders of a mere century ago would be awed by the capabilities of today’s force. Interestingly enough...these systems is so great that there is no branch of the United States military that does not depend upon them to accomplish missions of one

  15. VisNAV 100: a robust, compact imaging sensor for enabling autonomous air-to-air refueling of aircraft and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Katake, Anup; Choi, Heeyoul

    2010-01-01

    To enable autonomous air-to-refueling of manned and unmanned vehicles a robust high speed relative navigation sensor capable of proving high accuracy 3DOF information in diverse operating conditions is required. To help address this problem, StarVision Technologies Inc. has been developing a compact, high update rate (100Hz), wide field-of-view (90deg) direction and range estimation imaging sensor called VisNAV 100. The sensor is fully autonomous requiring no communication from the tanker aircraft and contains high reliability embedded avionics to provide range, azimuth, elevation (3 degrees of freedom solution 3DOF) and closing speed relative to the tanker aircraft. The sensor is capable of providing 3DOF with an error of 1% in range and 0.1deg in azimuth/elevation up to a range of 30m and 1 deg error in direction for ranges up to 200m at 100Hz update rates. In this paper we will discuss the algorithms that were developed in-house to enable robust beacon pattern detection, outlier rejection and 3DOF estimation in adverse conditions and present the results of several outdoor tests. Results from the long range single beacon detection tests will also be discussed.

  16. Homeland Security: Unmanned Aerial Vehicles and Border Surveillance

    DTIC Science & Technology

    2010-07-08

    outfit the Predator B with a synthetic aperture radar (SAR) system17 and a moving target indicator (MTI) radar. Adding SAR and MTI to the Predator B’s...Predator Squadrons,” Inside the Air Force, June 7, 2002. 17 For more information about Synthetic Aperture Radar, see http://www.sandia.gov/radar...contributed to the seizing of more than 22,000 pounds of marijuana and the apprehension of 5,000 illegal immigrants,” others disagree.24 “Unmanned aircraft

  17. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    USDA-ARS?s Scientific Manuscript database

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  18. Evaluating remotely sensed plant count accuracy with differing unmanned aircraft system altitudes, physical canopy separations, and ground covers

    NASA Astrophysics Data System (ADS)

    Leiva, Josue Nahun; Robbins, James; Saraswat, Dharmendra; She, Ying; Ehsani, Reza

    2017-07-01

    This study evaluated the effect of flight altitude and canopy separation of container-grown Fire Chief™ arborvitae (Thuja occidentalis L.) on counting accuracy. Images were taken at 6, 12, and 22 m above the ground using unmanned aircraft systems. Plants were spaced to achieve three canopy separation treatments: 5 cm between canopy edges, canopy edges touching, and 5 cm of canopy edge overlap. Plants were placed on two different ground covers: black fabric and gravel. A counting algorithm was trained using Feature Analyst®. Total counting error, false positives, and unidentified plants were reported for images analyzed. In general, total counting error was smaller when plants were fully separated. The effect of ground cover on counting accuracy varied with the counting algorithm. Total counting error for plants placed on gravel (-8) was larger than for those on a black fabric (-2), however, false positive counts were similar for black fabric (6) and gravel (6). Nevertheless, output images of plants placed on gravel did not show a negative effect due to the ground cover but was impacted by differences in image spatial resolution.

  19. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  20. Neural-network-based navigation and control of unmanned aerial vehicles for detecting unintended emissions

    NASA Astrophysics Data System (ADS)

    Zargarzadeh, H.; Nodland, David; Thotla, V.; Jagannathan, S.; Agarwal, S.

    2012-06-01

    Unmanned Aerial Vehicles (UAVs) are versatile aircraft with many applications, including the potential for use to detect unintended electromagnetic emissions from electronic devices. A particular area of recent interest has been helicopter unmanned aerial vehicles. Because of the nature of these helicopters' dynamics, high-performance controller design for them presents a challenge. This paper introduces an optimal controller design via output feedback control for trajectory tracking of a helicopter UAV using a neural network (NN). The output-feedback control system utilizes the backstepping methodology, employing kinematic, virtual, and dynamic controllers and an observer. Optimal tracking is accomplished with a single NN utilized for cost function approximation. The controller positions the helicopter, which is equipped with an antenna, such that the antenna can detect unintended emissions. The overall closed-loop system stability with the proposed controller is demonstrated by using Lyapunov analysis. Finally, results are provided to demonstrate the effectiveness of the proposed control design for positioning the helicopter for unintended emissions detection.

  1. The use of small unmanned aircraft by the Washington State Department of Transportation

    DOT National Transportation Integrated Search

    2008-06-01

    Small, unmanned aerial vehicles (UAVs) are increasingly affordable, easy to transport and launch, : and can be equipped with cameras that provide information usable for transportation agencies. The : Washington State Department of Transportation cond...

  2. Autonomous aircraft initiative study

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1991-01-01

    The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.

  3. Harmful algal bloom characterization at ultra-high spatial and temporal resolution using small unmanned aircraft systems.

    PubMed

    Van der Merwe, Deon; Price, Kevin P

    2015-03-27

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r(2)-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level.

  4. Adaptive Optimal Control Using Frequency Selective Information of the System Uncertainty With Application to Unmanned Aircraft.

    PubMed

    Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian

    2018-01-01

    A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.

  5. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    PubMed Central

    Van der Merwe, Deon; Price, Kevin P.

    2015-01-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  6. Applicability of Unmanned Aerial Vehicles in Research on Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Algimantas, Česnulevičius; Artūras, Bautrėnas; Linas, Bevainis; Donatas, Ovodas; Kęstutis, Papšys

    2018-02-01

    Surface dynamics and instabilities are characteristic of aeolian formation. The method of surface comparison is regarded as the most appropriate one for evaluation of the intensity of aeolian processes and the amount of transported sand. The data for surface comparison can be collected by topographic survey measurements and using unmanned aerial vehicles. Time cost for relief microform fixation and measurement executing topographic survey are very high. The method of unmanned aircraft aerial photographs fixation also encounters difficulties because there are no stable clear objects and contours that enable to link aerial photographs, to determine the boundaries of captured territory and to ensure the accuracy of surface measurements. Creation of stationary anchor points is irrational due to intense sand accumulation and deflation in different climate seasons. In September 2015 and in April 2016 the combined methodology was applied for evaluation of intensity of aeolian processes in the Curonian Spit. Temporary signs (marks) were installed on the surface, coordinates of the marks were fixed using GPS and then flight of unmanned aircraft was conducted. The fixed coordinates of marks ensure the accuracy of measuring aerial imagery and the ability to calculate the possible corrections. This method was used to track and measure very small (micro-rank) relief forms (5-10 cm height and 10-20 cm length). Using this method morphometric indicators of micro-terraces caused by sand dunes pressure to gytia layer were measured in a non-contact way. An additional advantage of the method is the ability to accurately link the repeated measurements. The comparison of 3D terrain models showed sand deflation and accumulation areas and quantitative changes in the terrain very clearly.

  7. Gust response of commercial jet aircraft including effects of autopilot operation

    NASA Technical Reports Server (NTRS)

    Goldberg, J. H.

    1982-01-01

    A simplified theory of aircraft vertical acceleration gust response based on a model including pitch, vertical displacement and control motions due to autopilot operation is presented. High-order autopilot transfer functions are utilized for improved accuracy in the determination of the overall response characteristics. Four representative commercial jet aircraft were studied over a wide range of operating conditions and comparisons of individual responses are given. It is shown that autopilot operation relative to the controls fixed case causes response attenuation of from 10 percent to approximately 25 percent depending on flight condition and increases in crossing number up to 30 percent, with variations between aircraft of from 5 percent to 10 percent, in general, reflecting the differences in autopilot design. A detailed computer program description and listing of the calculation procedure suitable for the general application of the theory to any airplane autopilot combination is also included.

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Hackenberg, Davis L.

    2016-01-01

    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  9. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  10. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Weber, Daniel; Drücke, Jaqueline; Keleshis, Christos; Pikridas, Michael; Ebert, Martin; Cvetković, Bojan; Nickovic, Slobodan; Marinou, Eleni; Baars, Holger; Ansmann, Albert; Vrekoussis, Mihalis; Mihalopoulos, Nikos; Sciare, Jean; Curtius, Joachim; Bingemer, Heinz G.

    2017-04-01

    During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from -20 to -30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L-1 were measured at -30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.

  11. Decentralized robust nonlinear model predictive controller for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Garcia Garreton, Gonzalo A.

    The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of controls and state variables make the use of the linear control theory inadequate especially in the presence of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive controller is designed to command and control an unmanned aerial system to track complex tight trajectories in the presence of internal and external perturbance. The Flight System developed in this work achieves the above performance by using: 1. A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by moving points; 2. A formulation that embeds the guidance logic and trajectory information in the aircraft model, avoiding cross coupling and control degradation; 3. An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive forces in real-time; and 4. A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement additive perturbations, such as noise and biases. These elements have been integrated and tested in simulation and with previously stored flight test data and shown to be feasible.

  12. An Evaluation of Detect and Avoid (DAA) Displays for Unmanned Aircraft Systems: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.

    2015-01-01

    A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the

  13. Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Harp, James L., Jr.; King, Joseph F.; Schmitz, Paul C.

    1998-01-01

    This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight at greater then 80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime. We then show how the unique nature of the sampling mission, coupled with the economic considerations pursuant to aero engine development, point to the spark ignited engine as the only cost effective solution available. Surprisingly, this solution compares favorably with the turbojet in the flight regime of interest. Finally, some remarks are made about NASA's present state of development, and future plans to flight demonstrate the three stage turbocharged powerplant.

  14. Use of unmanned aerial vehicles for medical product transport.

    PubMed

    Thiels, Cornelius A; Aho, Johnathon M; Zietlow, Scott P; Jenkins, Donald H

    2015-01-01

    Advances in technology and decreasing costs have led to an increased use of unmanned aerial vehicles (UAVs) by the military and civilian sectors. The use of UAVs in commerce is restricted by US Federal Aviation Administration (FAA) regulations, but the FAA is drafting new regulations that are expected to expand commercial applications. Currently, the transportation of medical goods in times of critical need is limited to wheeled motor vehicles and manned aircraft, options that can be costly and slow. This article explores the demand for, feasibility of, and risks associated with the use of UAVs to deliver medical products, including blood derivatives and pharmaceuticals, to hospitals, mass casualty scenes, and offshore vessels in times of critical demand. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  15. Unmanned aircraft missions for rangeland remote sensing applications in the US National Airspace

    USDA-ARS?s Scientific Manuscript database

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  16. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    NASA Technical Reports Server (NTRS)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  17. Design Requirements for Unmanned Rotorcraft Used in Low-Risk Concepts of Operation

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Verstynen, Harry A.

    2016-01-01

    This technical report presents the results of the second of two research studies on design and performance requirements supporting airworthiness certification of midrange unmanned aircraft systems (UAS) intended for commercial use. The two studies focused attention on UAS in the middle of the multidimensional spectrum of UAS; that is, UAS with attributes and capabilities exceeding the criteria to operate under Part 107 of the Federal Aviation Regulations (FARs), but without the design or operational capabilities to comply with the airworthiness standards for commercially-operated manned aircraft. The goal of the two studies was to help address the gap in airworthiness standards for some UAS that fall between the extremes.

  18. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential

  19. Evaluation and use of remotely piloted aircraft systems for operations and research - RxCADRE 2012

    Treesearch

    Thomas J. Zajkowski; Matthew B. Dickinson; J. Kevin Hiers; William Holley; Brett W. Williams; Alexander Paxton; Otto Martinez; Gregory W. Walker

    2016-01-01

    Small remotely piloted aircraft systems (RPAS), also known as unmanned aircraft systems (UAS), are expected to provide important contributions to wildland fire operations and research, but their evaluation and use have been limited. Our objectives were to leverage US Air Force-controlled airspace to (1) deploy RPAS in support of the 2012 Prescribed Fire...

  20. Group 1 Type: Unmanned Aerial Systems (UAS) as a Force Multiplier to the Fire Support Team

    DTIC Science & Technology

    2011-03-03

    2 History ........ : ............................................................. : ...................... 4 The...observer team will effectively put rounds on target with fewer adjustments and better accuracy for first round fire for effect in situations where the...Vision and Strategy 2025 publication,3 We will pursue developments with unmanned aircraft systems (UASs) to widen the force size multiplying

  1. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  2. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  3. Population Census of a Large Common Tern Colony with a Small Unmanned Aircraft

    PubMed Central

    Chabot, Dominique; Craik, Shawn R.; Bird, David M.

    2015-01-01

    Small unmanned aircraft systems (UAS) may be useful for conducting high-precision, low-disturbance waterbird surveys, but limited data exist on their effectiveness. We evaluated the capacity of a small UAS to census a large (>6,000 nests) coastal Common tern (Sterna hirundo) colony of which ground surveys are particularly disruptive and time-consuming. We compared aerial photographic tern counts to ground nest counts in 45 plots (5-m radius) throughout the colony at three intervals over a nine-day period in order to identify sources of variation and establish a coefficient to estimate nest numbers from UAS surveys. We also compared a full colony ground count to full counts from two UAS surveys conducted the following day. Finally, we compared colony disturbance levels over the course of UAS flights to matched control periods. Linear regressions between aerial and ground counts in plots had very strong correlations in all three comparison periods (R 2 = 0.972–0.989, P < 0.001) and regression coefficients ranged from 0.928–0.977 terns/nest. Full colony aerial counts were 93.6% and 94.0%, respectively, of the ground count. Varying visibility of terns with ground cover, weather conditions and image quality, and changing nest attendance rates throughout incubation were likely sources of variation in aerial detection rates. Optimally timed UAS surveys of Common tern colonies following our method should yield population estimates in the 93–96% range of ground counts. Although the terns were initially disturbed by the UAS flying overhead, they rapidly habituated to it. Overall, we found no evidence of sustained disturbance to the colony by the UAS. We encourage colonial waterbird researchers and managers to consider taking advantage of this burgeoning technology. PMID:25874997

  4. Unlocking the potential of small unmanned aircraft systems (sUAS) for Earth observation

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Riddell, K.; Barchyn, T. E.

    2012-12-01

    Small unmanned aircraft systems (sUAS, < 25 kg) are emerging as a viable alternative to conventional remote sensing platforms for Earth observation (EO). sUAS technology affords greater control, lower cost, and flexibility for scientists, and provides new opportunities to match the scale of sUAS data to the scale of the geophysical phenomenon under investigation. Although a mechanism is in place to make sUAS available to researchers and other non-military users through the US Federal Aviation Administration's Modernization and Reform Act of 2012 (FAAMRA), there are many regulatory hurdles before they are fully accepted and integrated into the National Airspace System. In this talk we will provide a brief overview of the regulatory landscape for sUAS, both in the USA and in Canada, where sUAS regulations are more flexible. We critically outline potential advantages and disadvantages of sUAS for EO applications under current and potential regulations. We find advantages: relatively low cost, potentially high temporal resolution, rapidly improving technology, and operational flexibility. We also find disadvantages: limited temporal and spatial extent, limited accuracy assessment and methodological development, and an immature regulatory landscape. From a case study we show an example of the accuracy of a photogrammetrically-derived digital terrain map (DTM) from sUAS imagery. We also compare the sUAS DTM to a LiDAR DTM. Our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR. Overall, we are encouraged about the potential of sUAS for geophysical measurements; however, understanding and compliance with regulations is paramount to ensure that research is conducted legally and responsibly. Because UAS are new outside of military operations, we hope researchers will proceed carefully to ensure this great scientific opportunity remains a long term tool.

  5. Unmanned Aerial Survey of Elephants

    PubMed Central

    Vermeulen, Cédric; Lejeune, Philippe; Lisein, Jonathan; Sawadogo, Prosper; Bouché, Philippe

    2013-01-01

    The use of a UAS (Unmanned Aircraft System) was tested to survey large mammals in the Nazinga Game Ranch in the south of Burkina Faso. The Gatewing ×100™ equipped with a Ricoh GR III camera was used to test animal reaction as the UAS passed, and visibility on the images. No reaction was recorded as the UAS passed at a height of 100 m. Observations, made on a set of more than 7000 images, revealed that only elephants (Loxodonta africana) were easily visible while medium and small sized mammals were not. The easy observation of elephants allows experts to enumerate them on images acquired at a height of 100 m. We, therefore, implemented an aerial strip sample count along transects used for the annual wildlife foot count. A total of 34 elephants were recorded on 4 transects, each overflown twice. The elephant density was estimated at 2.47 elephants/km2 with a coefficient of variation (CV%) of 36.10%. The main drawback of our UAS was its low autonomy (45 min). Increased endurance of small UAS is required to replace manned aircraft survey of large areas (about 1000 km of transect per day vs 40 km for our UAS). The monitoring strategy should be adapted according to the sampling plan. Also, the UAS is as expensive as a second-hand light aircraft. However the logistic and flight implementation are easier, the running costs are lower and its use is safer. Technological evolution will make civil UAS more efficient, allowing them to compete with light aircraft for aerial wildlife surveys. PMID:23405088

  6. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical

  7. Handling Qualities Evaluations of Unmanned Aircraft Systems

    DTIC Science & Technology

    2015-05-04

    attitude at rotation 5° ± 0.5° 5° ± 2° Airspeed Vclimb ± 2 KIAS Vclimb ± 3 KIAS Heading Control Runway Track ± 2° Runway Track ± 5° No observed roll...maintain pitch attitude to maintain a target climb speed ±2 KIAS during the initial climb out. This task is 4 appropriate especially for an aircraft with...then maintain a climb speed after rotation (±2 KIAS ) until 1000 feet (ft) AGL. In this scenario, the pilot would pull the stick back after rotation

  8. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  9. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2013-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center UAS Integration in the NAS project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the ATC and military ATC perspective, of particular interest is how mixed-operations (manned/UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  10. Developing an Adaptable NextGen Interface for the UAS Ground Control Station

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Otto, Neil; Jovic, Srba; Carniol, Ted; Kotegawa, Tatsuya

    2016-01-01

    Presently a significant number of unmanned aircraft are not included in the existing National Airspace System surveillance system. This is due to many reasons including an inability to carry Automatic Dependent Surveillance Broadcast equipment for weight or power consumption deficiencies, legacy equipment usage, and the experimental nature of unmanned aircraft. In addition, pilots on the ground do not have the situation awareness to proximal aircraft pilots in the cockpit have. However, many unmanned aircraft utilize a link between the aircraft and ground control station that includes periodic updates to the aircraft position. Technologies have been developed to provide the existing national surveillance system with the location of the aircraft while at the same time providing the ground pilot a display with aircraft that are in the aircrafts proximity, thus expanding the national surveillance data as well as provide increased pilot situation awareness.

  11. Detection of Vehicle Tracks and Vegetation Damages Caused by use of Snowmobiles in the Longyearbyen Area on Svalbard using Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Storvold, R.; Karlsen, S. R.; Solbø, S. A.; Johansen, B.; Johansen, K.; Høgda, K. A.; Tømmervik, H.; Zmarz, A.; Joly, D.

    2013-12-01

    The study area in the surroundings of Longyearbyen on Svalbard, Arctic Norway, located at 71.2°N and 16°E is characterized by dry Arctic climate with a snow season of more than eight months, annual precipitation of less than 200mm, and a mean July temperature of about 6°C. Longyearbyen is the main settlement on Svalbard, with about 2000 inhabitants. During the last two decades the number of snowmobiles have increased from a few hundred to a number almost equals the number of inhabitants, and snowmobile trips are today the one of the main leisure activities. In addition, thousands of tourist visits every spring, and many of these go on organized snowmobile trips. Due to the often thin snow cover, and use of snowmobile even during the spring snow melt in May and early June, the rapid growth in use of snowmobile has made some damage to the vegetation. Damage on the fragile vegetation caused by the skids and belts of the snowmobile can be observed in most parts of the Adventdalen valley, close to Longyearbyen. The main aim of this study is to explore the feasibility and accuracy of using data from Unmanned Aircraft Systems (UAS) to identify vehicle tracks and damages on vegetation caused by the use of snowmobiles. Use of UAS give the opportunity to carry out research in a manner that minimizes the environmental footprint of the research activities. Small unmanned aircraft, combining both fixed wing multi rotor types allow us to collect image data for vegetation mapping without having any personnel walking into the field disturbing the sensitive High Arctic ecosystems. UAS used here are inexpensive and simple to operate. They are being developed with the goal of providing airborne capabilities for scientists at an affordable cost. The aircraft were instrumented with a normal Canon Powershot S100 RGB compact camera and a modified Canon Powershot SX230 NDVI camera. The fixed wing aircraft was taking pictures from 100 meters altitude with ground resolution of 2.5 cm

  12. Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.

    2014-12-01

    Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons

  13. Lighter-Than-Air (LTA) "AirStation": Unmanned Aircraft System (UAS) Carrier Concept

    NASA Technical Reports Server (NTRS)

    Hochstetler, Ron; Chachad, Girish; Blanken, Matthew; Bosma, John

    2016-01-01

    Proposals for adapting modern airship technologies for military missions have mostly focused on exploiting the airships high flight endurance and low fuel requirement to conduct direct surveillance missions requiring high degrees of persistence over the areas to be observed. While this mission has value, it constrains the airship in two regards. (1) It places all the surveillance sensors, communication systems, and other mission equipment in the airship itself. (2) It requires the airship to be physically in the vicinity of the areas to be directly observed. A more advanced utilization of airship technology would be to add the capability to deploy a separate set of surveillance equipment, thereby enabling indirect and distributed observation operations. This can be undertaken by installing surveillance equipment in a squadron of unmanned aircraft systems (UAS) that can be carried and operated remotely from the airship, and then return to the airship as a base of support. This could be accomplished by deploying 20-30 UASs on an optionally manned (5 person crew) airship. The mission focus of the airship UAS carrier would be for support of distributed intelligence, surveillance and reconnaissance (ISR), close air support (CAS), maritime patrol and interdiction, electronic warfare (EW), persistent area dominance and missile defense. The logic for utilizing an airship carrier over a ground base to deploy UAS will be examined. Whether to be used as a stand-alone platform or in concert with conventional intelligence gathering techniques, the airship UAS carrier can provide the following benefits: a mobile base that will remain accessible despite political fallout which may render a ground base unavailable for use, the psychological impact of a power projection tool that has no geographical limits (imagined in the same way a naval carrier group projects power), cost-saving intelligence gathering over manned alternatives (assumption), and a wider area of influence when

  14. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  15. Linear matrix inequality-based nonlinear adaptive robust control with application to unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Kun, David William

    Unmanned aircraft systems (UASs) are gaining popularity in civil and commercial applications as their lightweight on-board computers become more powerful and affordable, their power storage devices improve, and the Federal Aviation Administration addresses the legal and safety concerns of integrating UASs in the national airspace. Consequently, many researchers are pursuing novel methods to control UASs in order to improve their capabilities, dependability, and safety assurance. The nonlinear control approach is a common choice as it offers several benefits for these highly nonlinear aerospace systems (e.g., the quadrotor). First, the controller design is physically intuitive and is derived from well known dynamic equations. Second, the final control law is valid in a larger region of operation, including far from the equilibrium states. And third, the procedure is largely methodical, requiring less expertise with gain tuning, which can be arduous for a novice engineer. Considering these facts, this thesis proposes a nonlinear controller design method that combines the advantages of adaptive robust control (ARC) with the powerful design tools of linear matrix inequalities (LMI). The ARC-LMI controller is designed with a discontinuous projection-based adaptation law, and guarantees a prescribed transient and steady state tracking performance for uncertain systems in the presence of matched disturbances. The norm of the tracking error is bounded by a known function that depends on the controller design parameters in a known form. Furthermore, the LMI-based part of the controller ensures the stability of the system while overcoming polytopic uncertainties, and minimizes the control effort. This can reduce the number of parameters that require adaptation, and helps to avoid control input saturation. These desirable characteristics make the ARC-LMI control algorithm well suited for the quadrotor UAS, which may have unknown parameters and may encounter external

  16. Development and system identification of a light unmanned aircraft for flying qualities research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, M.E.; Andrisani, D. II

    This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by themore » empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.« less

  17. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  18. Effects of Dynamically Weighting Autonomous Rules in an Unmanned Aircraft System (UAS) Flocking Model

    DTIC Science & Technology

    2014-09-18

    methods of flight plan optimization, and yielded such techniques as: parallel A* (Gudaitis, 1994), Multi-Objective Traveling Salesman algorithms...1 Problem Statement...currently their utilization comes with a price: Problem Statement “Today’s unmanned systems require significant human interaction to operate. As

  19. Weathering the Storm: Unmanned Aircraft Systems in the Maritime, Atmospheric and Polar Environments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.; Sullivan, Donald V.; Chirayath, Ved; Instrella, Ron; Phelps, Geoffrey

    2017-01-01

    Remotely piloted aircraft (RPA) have the potential to revolutionize local to regional data collection for geophysicists as platform and payload size decrease while aircraft capabilities increase. In particular, data from RPAs combine high-resolution imagery available from low flight elevations with comprehensive areal coverage, unattainable from ground investigations and difficult to acquire from manned aircraft due to budgetary and logistical costs. Low flight elevations are particularly important for detecting signals that decay exponentially with distance, such as electromagnetic fields. Onboard data processing coupled with high-bandwidth telemetry open up opportunities for real-time and near real-time data processing, producing more efficient flight plans through the use of payload-directed flight, machine learning and autonomous systems. Such applications not only strive to enhance data collection, but also enable novel sensing modalities and temporal resolution. NASAs Airborne Science Program has been refining the capabilities and applications of RPA in support of satellite calibration and data product validation for several decades. In this paper, we describe current platforms, payloads, and onboard data systems available to the research community. Case studies include Fluid Lensing for littoral zone 3D mapping, structure from motion for terrestrial 3D multispectral imaging, and airborne magnetometry on medium and small RPAs.

  20. Aircraft path planning for optimal imaging using dynamic cost functions

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  1. Natural interaction for unmanned systems

    NASA Astrophysics Data System (ADS)

    Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris

    2015-05-01

    Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.

  2. Trace Gas Quantification with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.

    2017-12-01

    Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.

  3. Operational implications and proposed infrastructure changes for NAS integration of remotely piloted aircraft (RPA)

    DOT National Transportation Integrated Search

    2014-12-01

    The intent of this report is to provide (1) an initial assessment of National Airspace System (NAS) infrastructure affected by continuing development and deployment of unmanned aircraft systems into the NAS, and (2) a description of process challenge...

  4. Ikhana: A NASA Unmanned Aerial System Supporting Long-Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    This viewgraph presentation reviews Ikhana's project goals: (1) Develop an airborne platform to conduct Earth observation and atmospheric sampling science missions both nationally and internationally, (2) develop and demonstrate technologies that improve the capability of UAVs to conduct science collection missions, (3) develop technologies that improve manned and unmanned aircraft systems, and (4) support important national UAV development activities. The criteria that guided the selection of the aircraft are listed. The payload areas on Ikhana are shown and the network that connects the systems are also reviewed. The data recorder is shown. Also the diagram of the Airborne Research Test System (ARTS) is reviewed. The Mobile Ground Control Station and the Mobile Ku SatCom Antenna are also shown and described.

  5. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-01-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.

  6. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  7. Unmanned airship development and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Boschma, James H.

    2001-10-01

    This paper discusses the development of unmanned airships for military use during the past decade, and the current status of the Small Airship Surveillance System, Low Intensity Target Exploitation (SASS LITE) platform. Topics covered will also include various missions planned and conducted, and technological advances expected to be implemented on unmanned airships in the near future.

  8. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  9. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    This paper describes how a 3 stage turbocharged gasoline engine was selected to power NASA's atmospheric science unmanned aircraft now under development. The airplane, whose purpose is to fly sampling instruments through targeted regions of the upper atmosphere at the exact location and time (season, time of day) where the most interesting chemistry is taking place, must have a round trip range exceeding 1000 km, carry a payload of about 500 lb to altitudes exceeding 80 kft over the site, and be able to remain above that altitude for at least 30 minutes before returning to base. This is a subsonic aircraft (the aerodynamic heating and shock associated with supersonic flight could easily destroy the chemical species that are being sampled) and it must be constructed so it will operate out of small airfields at primitive remote sites worldwide, under varying climate and weather conditions. Finally it must be low cost, since less than $50 M is available for its development. These requirements put severe constraints on the aircraft design (for example, wing loading in the vicinity of 10 psf) and have in turn limited the propulsion choices to already-existing hardware, or limited adaptations of existing hardware. The only candidate that could emerge under these circumstances was a propeller driven aircraft powered by spark ignited (SI) gasoline engines, whose intake pressurization is accomplished by multiple stages of turbo-charging and intercooling. Fortunately the turbocharged SI powerplant, owing to its rich automotive heritage and earlier intensive aero powerplant development during WWII, enjoys in addition to its potentially low development costs some subtle physical advantages (arising from its near-stochiometric combustion) that may make it smaller and lighter than either a turbine engine or a diesel for these altitudes. Just as fortunately, the NASA/industry team developing this aircraft includes the same people who built multi-stage turbocharged SI powerplants

  10. NASA and Industry Partners Co-sponsor 2015 Unmanned Aircraft Systems Traffic Management (UTM) Convention

    NASA Image and Video Library

    2015-08-07

    With issues about drones becoming front page news, NASA recently co-sponsored the 2015 Unmanned Aerial Systems Traffic Management Convention. Held at NASA’s Ames Research Center, the event brought together representatives from the public, from industry, academia, government and the international community to shape the future of low-altitude air traffic management.

  11. The New Close Air Support Weapon: Unmanned Combat Aerial Vehicle in 2010 and Beyond.

    DTIC Science & Technology

    1999-06-04

    designing and fielding unmanned aircraft of many types (Reed, 1979, 72). Abruptly halted in 1972, President Richard Nixon suddenly engaged in ddtente...lessons to emerge from the short history of air power is that unity of development and employment is fundamental to air power effectiveness. ( Vallance ... Richard Wilcox. 1996. Strike Star 2025. Air Command and Staff College. Maxwell Air Force Base, Alabama: Air University Press. Cooling, Benjamin Franklin

  12. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  13. Using an Optionally Piloted Aircraft for Airborne Gravity Observations with the NOAA GRAV-D Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Johnson, J. A.; van Westrum, D.; Damiani, T.

    2017-12-01

    The U.S. National Geodetic Survey's (NGS) Gravity for the Redefintion of the American Vertical Datum (GRAV-D) project is collecting airborne gravity data to support a 1 cm geoid. Started in 2008, this project will collect airborne gravity data over the entire U.S. and territories by 2022. As of June 30, 2017, the project was almost 62% complete. With recent technological developments, NGS has been exploring using unmanned aircraft for airborne gravity measurements. This presentation will focus on results from two surveys over the U.S. Appalachian and Rocky Mountains using the Aurora Centaur Optionally Piloted Aircraft and the Micro-g Lacoste Turnkey Airborne Gravimeter System 7 (TAGS7). Collecting high quality data as well as dealing with remote locations has been a challenge for the GRAV-D project and the field of airborne gravity in general. Unmanned aircraft could potentially improve data quality, handle hard to reach locations, and reduce pilot fatigue. The optionally piloted Centaur aircraft is an attractive option because it is not restricted in U.S. airspace and delivers high quality gravity data. Specifically, the Centaur meets U.S. Federal Aviation Administration regulations for Unmanned Aircraft Systems (UAS) by using a safety pilot on board to maintain line of sight and the ability to take control in the event of an emergency. Even though this is a sizeable UAS, most traditional gravimeters are too large and heavy for the platform. With a smaller and lighter design, the TAGS7 was used for its ability to conform to the aircraft's size restrictions, with the added benefit of upgraded performance capabilities. Two surveys were performed with this aircraft and gravimeter, one in April and one in August to September of 2017. Initial results indicate that the high-gain, fast response of the Centaur autopilot (optimized for flights without passengers), coupled with the full-force feedback sensor of the TAGS7, provides superior performance in all conditions, and

  14. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Cunningham, Michael; Samson, Claire; Wood, Alan; Cook, Ian

    2017-12-01

    Unmanned aircraft systems (UASs) have been under rapid development for applications in the mineral exploration industry, mainly for aeromagnetic surveying. They provide improved detection of smaller, deeper and weaker magnetic targets. A traditional system flying an altitude of 100 m above ground level (AGL) can detect a spherical ore body with a radius of 16 m and a magnetic susceptibility of 10-4 buried at a depth of 40 m. A UAS flying at an altitude of 50 or 2 m AGL would require the radius to be 11 or 5 m, respectively. A demonstration survey was performed using the SkyLance rotary-wing UAS instrumented with a cesium vapour magnetometer in Nash Creek, New Brunswick, Canada. The UAS flew over a zinc deposit featuring three magnetic anomalies. It acquired repeatable data that compared well with upward continuation maps of ground magnetic data. Dykes or faults that are dipping eastward at 25° and are approximately 1.5 m wide fit the observed response of the three anomalies captured on the UAS magnetic data.

  15. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring

    PubMed Central

    Müllerová, Jana; Brůna, Josef; Bartaloš, Tomáš; Dvořák, Petr; Vítková, Michaela; Pyšek, Petr

    2017-01-01

    The rapid spread of invasive plants makes their management increasingly difficult. Remote sensing offers a means of fast and efficient monitoring, but still the optimal methodologies remain to be defined. The seasonal dynamics and spectral characteristics of the target invasive species are important factors, since, at certain time of the vegetation season (e.g., at flowering or senescing), plants are often more distinct (or more visible beneath the canopy). Our aim was to establish fast, repeatable and a cost-efficient, computer-assisted method applicable over larger areas, to reduce the costs of extensive field campaigns. To achieve this goal, we examined how the timing of monitoring affects the detection of noxious plant invaders in Central Europe, using two model herbaceous species with markedly different phenological, structural, and spectral characteristics. They are giant hogweed (Heracleum mantegazzianum), a species with very distinct flowering phase, and the less distinct knotweeds (Fallopia japonica, F. sachalinensis, and their hybrid F. × bohemica). The variety of data generated, such as imagery from purposely-designed, unmanned aircraft vehicle (UAV), and VHR satellite, and aerial color orthophotos enabled us to assess the effects of spectral, spatial, and temporal resolution (i.e., the target species' phenological state) for successful recognition. The demands for both spatial and spectral resolution depended largely on the target plant species. In the case that a species was sampled at the most distinct phenological phase, high accuracy was achieved even with lower spectral resolution of our low-cost UAV. This demonstrates that proper timing can to some extent compensate for the lower spectral resolution. The results of our study could serve as a basis for identifying priorities for management, targeted at localities with the greatest risk of invasive species' spread and, once eradicated, to monitor over time any return. The best mapping strategy

  16. Application of Unmanned Aircraft Systems (UAS) for phenotypic mapping of white spruce genotypes along environmental gradients

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Wong, C. Y.; Besik, A.; Earon, E.; Isabel, N.; Ensminger, I.

    2017-12-01

    Rapid climate change is expected to cause a mismatch between locally adapted tree populations and the optimal climatic conditions to which they have adapted. Plant breeding and reforestation programs will increasingly need to rely on high-throughput precision phenotyping tools for the selection of genotypes with increased drought and stress tolerance. In this work, we present the possibilities offered by Unmanned Aircraft Systems (UAS) carrying optical sensors to monitor and assess differences in performance among white spruce genotypes. While high-throughput precision phenotyping using UAS has gained traction in agronomic crop research during the last few years, to our knowledge it is still at its infancy in forestry applications. UAS surveys were performed at different times during the growing season over large white spruce common garden experiments established by the Canadian Forest Service at four different sites, each characterized by 2000 clonally replicated genotypes. Sites are distributed over a latitudinal gradient, in Ontario and Quebec, Canada. The UAS payload consisted of a custom-bands multispectral sensor acquiring radiation at wavelength at which the reflectance spectrum of vegetation is known to capture physiological change under disturbance and stress. Ground based tree-top spectral reflectances and leaf level functional traits were also acquired for validation purposes parallel to UAS surveys. We will discuss the potential and the challenges of using optical sensors on UAS to infer genotypic variation in tree response to stress events and show how spectral data can function as the link between large-scale phenotype and genotype data.

  17. Insect detection and nitrogen management for irrigated potatoes using remote sensing from small unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond; Rondon, Silvia I.; Hamm, Philip B.; Turner, Robert W.; Bruce, Alan E.; Brungardt, Josh J.

    2016-05-01

    Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution. We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center with different platforms and sensors to assess advantages and disadvantages of sUAS for precision farming. In 2013, we conducted an experiment with 4 levels of N fertilizer, and followed the changes in the normalized difference vegetation index (NDVI) over time. In late June, there were no differences in chlorophyll content or leaf area index (LAI) among the 3 higher application rates. Consistent with the field data, only plots with the lowest rate of applied N were distinguished by low NDVI. In early August, N deficiency was determined by NDVI, but it was too late to mitigate losses in potato yield and quality. Populations of the Colorado potato beetle (CPB) may rapidly increase, devouring the shoots, thus early detection and treatment could prevent yield losses. In 2014, we conducted an experiment with 4 levels of CPB infestation. Over one day, damage from CPB in some plots increased from 0 to 19%. A visual ranking of damage was not correlated with the total number of CPB or treatment. Plot-scale vegetation indices were not correlated with damage, although the damaged area determined by object-based feature extraction was highly correlated. Methods based on object-based image analysis of sUAS data have potential for early detection and reduced cost.

  18. Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.

  19. Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion

    NASA Technical Reports Server (NTRS)

    Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.

    1984-01-01

    Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.

  20. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    NASA Technical Reports Server (NTRS)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  1. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  2. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  3. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  4. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    EPA Science Inventory

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  5. Power Spectra and Eddy Dissipation Rate Measured by the Coyote Unmanned Aircraft System in Hurricane Edouard (2014)

    NASA Astrophysics Data System (ADS)

    Kalina, E.; Cione, J.; Bryan, G. H.; Lenschow, D. H.; Fairall, C. W.

    2016-12-01

    Open-ocean measurements of turbulence variables in the tropical cyclone (TC) boundary layer are rare, given the dangers posed by convective downdrafts, high waves, and sea spray to manned hurricane reconnaissance aircraft. The Coyote Unmanned Aircraft System (UAS) represents an opportunity to mitigate the risk to personnel while simultaneously collecting low-altitude measurements of air pressure, temperature, humidity, and wind in TCs. In 2014, the Coyote UAS flew at a height of h = 760 m in Hurricane Edouard for 45 min. The resulting wind velocity measurements were used to estimate the turbulent eddy dissipation rate (ɛ) along the Coyote flight track, using power spectra and the second-order velocity structure function. Power spectra of both the longitudinal (Suu) and transverse wind components (Svv) exhibited well-defined inertial subranges with five-thirds scaling, as expected from Kolmogorov (1941). The ratio Svv:Suu was 4:3, in agreement with theory. Under the moderate wind speeds (15-25 m s-1) sampled by the Coyote, estimates of ɛ from the power spectra and structure function ranged from 2-3.5×10-4 m2 s-3. An idealized TC simulation with Cloud Model version 1 (CM1) and a horizontal grid spacing of dx = 20 m was then used to support the observed estimates of ɛ. Along the mock Coyote flight path, the model domain-averaged value of ɛ was 3.0×10-4 m2 s-3, which is within the range of the observationally-based estimates. This agreement was achieved despite the relatively slow sampling rate (1 Hz) of the Coyote sensors and occasional missing data. Therefore, a 1-Hz sampling rate may be adequate for estimating ɛ, and time series with missing samples may still contain the necessary information to estimate the power spectra and structure functions, and thus ɛ. These findings are motivating subsequent Coyote flights into high-wind regions of TCs to collect turbulence measurements that will be used to evaluate subgrid turbulence schemes for numerical models

  6. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  7. High Assurance Control of Cyber-Physical Systems with Application to Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Kwon, Cheolhyeon

    physical and logical process model of the CPS. Specifically, three main tasks are discussed in this presentation: (i) we first investigate diverse granularity of the interactions inside the CPS and propose feasible cyber attack models to characterize the compromised behavior of the CPS with various measures, from its severity to detectability; (ii) based on this risk information, our approach to securing the CPS addresses both monitoring of and high assurance control design against cyber attacks by developing on-line safety assessment and mitigation algorithms; and (iii) by extending the developed theories and methods from a single CPS to multiple CPSs, we examine the security and safety of multi-CPS network that are strongly dependent on the network topology, cooperation protocols between individual CPSs, etc. The effectiveness of the analytical findings is demonstrated and validated with illustrative examples, especially unmanned aircraft system (UAS) applications.

  8. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    NASA Astrophysics Data System (ADS)

    Bonadies, Stephanie; Lefcourt, Alan; Gadsden, S. Andrew

    2016-05-01

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanical weeding, and crop harvesting. In this paper, unmanned ground vehicles, implemented by researchers or commercial operations, are characterized through a comparison to other vehicles used in agriculture, namely airplanes and UAVs. An overview of different trade-offs of configurations, control schemes, and data collection technologies is provided. Emphasis is given to the use of unmanned ground vehicles in food crops, and includes a discussion of environmental impacts and economics. Factors considered regarding the future trends and potential issues of unmanned ground vehicles include development, management and performance. Also included is a strategy to demonstrate to farmers the safety and profitability of implementing the technology.

  9. Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1986-01-01

    A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.

  10. ARM Unmanned Aerial Systems Implementation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Beat; Ivey, Mark

    Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS formore » the science missions ARM supports.« less

  11. Autonomous search and surveillance with small fixed wing aircraft

    NASA Astrophysics Data System (ADS)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding

  12. Unmanned airships for near earth remote sensing missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochstetler, R.D.

    1996-10-01

    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performancemore » characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.« less

  13. Investigating Traffic Avoidance Maneuver Preferences of Unmanned Aircraft Operators

    DTIC Science & Technology

    2016-06-13

    aircraft in the NAS under instrument flight rules ( IFR ), in radio communications with ATC, and with a traffic display highlighting traffic within 80...Lincoln Laboratory developed uncorrelated encounter model [13] for evaluation of a preliminary pilot model. The UAS was assumed to be on an IFR ...Vol. 59, No. 1, Human Factors and Ergonomics Society, Santa Monica, CA, 2015, pp. 45-49. [10] Rorie, R. C., Fern, L., and Shively R. J., “The impact

  14. Quarantine provisions for unmanned extra-terrestrial missions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document sets forth requirements applicable to unmanned planetary flight programs which are necessary to enable the Associate Administrator for Space Science to fulfill those responsibilities pertaining to planetary quarantine as stated in NPD 8020.7 and NPD 8020.10A. This document is specifically directed to the control of terrestrial microbial contamination associated with unmanned space vehicles intended to encounter, orbit, flyby, or otherwise be in the vicinity of extra-terrestrial solar system bodies. The requirements of this document apply to all unmanned planetary flight programs. This includes solar system exploratory missions to the major planets as well as missions to planet satellites, or to other solar system objects that may be of scientific interest. This document is not applicable to terrestrial (including lunar) missions and manned missions. NASA officials having cognizance of applicable flight programs will invoke these requirements in such directives or contractual instruments as may be necessary to assure their implementation.

  15. Piloted simulation study of a balloon-assisted deployment of an aircraft at high altitude

    NASA Technical Reports Server (NTRS)

    Murray, James; Moes, Timothy; Norlin, Ken; Bauer, Jeffrey; Geenen, Robert; Moulton, Bryan; Hoang, Stephen

    1992-01-01

    A piloted simulation was used to study the feasibility of a balloon assisted deployment of a research aircraft at high altitude. In the simulation study, an unmanned, modified sailplane was carried to 110,000 ft with a high altitude balloon and released in a nose down attitude. A remote pilot controlled the aircraft through a pullout and then executed a zoom climb to a trimmed, 1 g flight condition. A small parachute was used to limit the Mach number during the pullout to avoid adverse transonic effects. The use of small rocket motor was studied for increasing the maximum attainable altitude. Aerodynamic modifications to the basic sailplane included applying supercritical airfoil gloves over the existing wing and tail surfaces. The aerodynamic model of the simulated aircraft was based on low Reynolds number wind tunnel tests and computational techniques, and included large Mach number and Reynolds number effects at high altitude. Parametric variations were performed to study the effects of launch altitude, gross weight, Mach number limit, and parachute size on the maximum attainable stabilized altitude. A test altitude of approx. 95,000 ft was attained, and altitudes in excess of 100,000 ft was attained.

  16. Concept design of a disaster response unmanned aerial vehicle for India

    NASA Astrophysics Data System (ADS)

    Vashi, Y.; Jai, U.; Atluri, R.; Sunjii, M.; Kashyap, Y.; Ashok, V.; Khilari, S.; Jain, K.; Aravind Raj, S.

    2017-12-01

    The Indian sub-continent experiences frequent flooding, earthquakes and landslides. During the times of peril, live surveillance of the disaster zone facilitates the disaster agencies in locating and aiding the affected people. For this reason, development of a micro unmanned aerial vehicle (UAV) can be an optimal solution. This article provides a conceptualization of a UAV model that meets the need of the country. A comparison of different aircraft components and their optimization and sensitivity analyses are presented. In the end, this research produces a preliminary design of UAV that can accomplish surveillance and payload dropping missions in disaster affected areas.

  17. Capability-Based Modeling Methodology: A Fleet-First Approach to Architecture

    DTIC Science & Technology

    2014-02-01

    reconnaissance (ISR) aircraft , or unmanned systems . Accordingly, a mission architecture used to model SAG operations for a given Fleet unit should include all...would use an ISR aircraft to increase fidelity of a targeting solution; another mission thread to show how unmanned systems can augment targeting... unmanned systems . Therefore, an architect can generate, from a comprehensive SAG mission architecture, individual mission threads that model how a SAG

  18. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  19. Exploring Operational Test and Evaluation of Unmanned Aircraft Systems: A Qualitative Case Study

    NASA Astrophysics Data System (ADS)

    Saliceti, Jose A.

    The purpose of this qualitative case study was to explore and identify strategies that may potentially remedy operational test and evaluation procedures used to evaluate Unmanned Aircraft Systems (UAS) technology. The sample for analysis consisted of organizations testing and evaluating UASs (e.g., U.S. Air Force, U.S. Navy, U.S. Army, U.S. Marine Corps, U.S. Coast Guard, and Customs Border Protection). A purposeful sampling technique was used to select 15 subject matter experts in the field of operational test and evaluation of UASs. A questionnaire was provided to participants to construct a descriptive and robust research. Analysis of responses revealed themes related to each research question. Findings revealed operational testers utilized requirements documents to extrapolate measures for testing UAS technology and develop critical operational issues. The requirements documents were (a) developed without the contribution of stakeholders and operational testers, (b) developed with vague or unrealistic measures, and (c) developed without a systematic method to derive requirements from mission tasks. Four approaches are recommended to develop testable operational requirements and assist operational testers: (a) use a mission task analysis tool to derive requirements for mission essential tasks for the system, (b) exercise collaboration among stakeholders and testers to ensure testable operational requirements based on mission tasks, (c) ensure testable measures are used in requirements documents, and (d) create a repository list of critical operational issues by mission areas. The preparation of operational test and evaluation processes for UAS technology is not uniform across testers. The processes in place are not standardized, thus test plan preparation and reporting are different among participants. A standard method to prepare and report UAS technology should be used when preparing and reporting on UAS technology. Using a systematic process, such as mission

  20. Unmanned spacecraft for research

    NASA Technical Reports Server (NTRS)

    Graves, C. D.

    1972-01-01

    The applications of unmanned spacecraft for research purposes are discussed. Specific applications of the Communication and Navigation satellites and the Earth Observations satellites are described. Diagrams of communications on world-wide basis using synchronous satellites are developed. Photographs of earth resources and geology obtained from space vehicles are included.

  1. Evolution of Unmanned Aerial Warfare: A Historical Look at Remote Airpower - A Case Study in Innovation

    DTIC Science & Technology

    2016-06-10

    The starting point—and primary research question—pertains to assessing how the U.S. Air Force and predecessors used unmanned aircraft in major...that starts with the historical perspective, then discusses the development of UASs during major conflicts, and finally UASs in the 1990s, Iraq, and...the blame for starting the war and pay reparations to the amount of 132 billion gold marks, or $33 billion. On 28 June 1919, a compromised peace was

  2. Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2018-03-01

    Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.

  3. Autonomous vertical autorotation for unmanned helicopters

    NASA Astrophysics Data System (ADS)

    Dalamagkidis, Konstantinos

    Small Unmanned Aircraft Systems (UAS) are considered the stepping stone for the integration of civil unmanned vehicles in the National Airspace System (NAS) because of their low cost and risk. Such systems are aimed at a variety of applications including search and rescue, surveillance, communications, traffic monitoring and inspection of buildings, power lines and bridges. Amidst these systems, small helicopters play an important role because of their capability to hold a position, to maneuver in tight spaces and to take off and land from virtually anywhere. Nevertheless civil adoption of such systems is minimal, mostly because of regulatory problems that in turn are due to safety concerns. This dissertation examines the risk to safety imposed by UAS in general and small helicopters in particular, focusing on accidents resulting in a ground impact. To improve the performance of small helicopters in this area, the use of autonomous autorotation is proposed. This research goes beyond previous work in the area of autonomous autorotation by developing an on-line, model-based, real-time controller that is capable of handling constraints and different cost functions. The approach selected is based on a non-linear model-predictive controller, that is augmented by a neural network to improve the speed of the non-linear optimization. The immediate benefit of this controller is that a class of failures that would otherwise result in an uncontrolled crash and possible injuries or fatalities can now be accommodated. Furthermore besides simply landing the helicopter, the controller is also capable of minimizing the risk of serious injury to people in the area. This is accomplished by minimizing the kinetic energy during the last phase of the descent. The presented research is designed to benefit the entire UAS community as well as the public, by allowing for safer UAS operations, which in turn also allow faster and less expensive integration of UAS in the NAS.

  4. Unmanned Underwater Vehicle (UUV) Information Study

    DTIC Science & Technology

    2014-11-28

    Maritime Unmanned System NATO North Atlantic Treaty Organization xi The use or disclosure of the information on this sheet is subject to the... Unmanned Aerial System UDA Underwater Domain Awareness UNISIPS Unified Sonar Image Processing System USV Unmanned Surface Vehicle UUV Unmanned Underwater...data distribution to ashore systems , such as the delay, its impact and the benefits to the overall MDA and required metadata for efficient search and

  5. Simulation-Based Acceptance Testing for Unmanned Ground Vehicles

    DTIC Science & Technology

    2011-05-12

    Ground Robotic Reliability Center (GRRC) at the University of Michigan in 2010, the focus of his research has been on unmanned ground vehicles...Jong Lee is a former student of the University of Michigan’s Ground Robotics Reliability Center (GRRC). He received his Bachelor’s and Master’s degree...methods to improve reliability of Unmanned Ground Vehicle (UGV) systems. His primary research interests include robotic systems and control

  6. Unmanned Aerial Vehicles

    DTIC Science & Technology

    1994-05-31

    Project , which is part of the trol, Communications and Intelligence In response to congressional...direction in Program Executive Office, Cruise Mis- (C31), the working group includes repre- FY88 to consolidate the management of siles Project and Unmanned...34* Support test and evaluation of ated with the draw down of the Pioneer Invest selectively in safety potential UAV payloads system as it is replaced by the

  7. Manned Versus Unmanned Risk and Complexity Considerations for Future Midsized X-Planes

    NASA Technical Reports Server (NTRS)

    Lechniak, Jason A.; Melton, John E.

    2017-01-01

    The objective of this work was to identify and estimate complexity and risks associated with the development and testing of new low-cost medium-scale X-plane aircraft primarily focused on air transport operations. Piloting modes that were evaluated for this task were manned, remotely piloted, and unmanned flight research programs. This analysis was conducted early in the data collection period for X-plane concept vehicles before preliminary designs were complete. Over 50 different aircraft and system topics were used to evaluate the three piloting control modes. Expert group evaluations from a diverse set of pilots, engineers, and other experts at Aeronautics Research Mission Directorate centers within the National Aeronautics and Space Administration provided qualitative reasoning on the many issues surrounding the decisions regarding piloting modes. The group evaluations were numerically rated to evaluate each topic quantitatively and were used to provide independent criteria for vehicle complexity and risk. An Edwards Air Force Base instruction document was identified that emerged as a source of the effects found in our qualitative and quantitative data. The study showed that a manned aircraft was the best choice to align with test activities for transport aircraft flight research from a low-complexity and low-risk perspective. The study concluded that a manned aircraft option would minimize the risk and complexity to improve flight-test efficiency and bound the cost of the flight-test portion of the program. Several key findings and discriminators between the three modes are discussed in detail.

  8. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  9. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  10. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  11. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  12. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly

    2010-01-01

    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  13. State estimation for autopilot control of small unmanned aerial vehicles in windy conditions

    NASA Astrophysics Data System (ADS)

    Poorman, David Paul

    The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non

  14. High-performance two-axis gimbal system for free space laser communications onboard unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Locke, Michael; Czarnomski, Mariusz; Qadir, Ashraf; Setness, Brock; Baer, Nicolai; Meyer, Jennifer; Semke, William H.

    2011-03-01

    A custom designed and manufactured gimbal with a wide field-of-view and fast response time is developed. This enhanced custom design is a 24 volt system with integrated motor controllers and drivers which offers a full 180o fieldof- view in both azimuth and elevation; this provides a more continuous tracking capability as well as increased velocities of up to 479° per second. The addition of active high-frequency vibration control, to complement the passive vibration isolation system, is also in development. The ultimate goal of this research is to achieve affordable, reliable, and secure air-to-air laser communications between two separate remotely piloted aircraft. As a proof-of-concept, the practical implementation of an air-to-ground laserbased video communications payload system flown by a small Unmanned Aerial Vehicle (UAV) will be demonstrated. A numerical tracking algorithm has been written, tested, and used to aim the airborne laser transmitter at a stationary ground-based receiver with known GPS coordinates; however, further refinement of the tracking capabilities is dependent on an improved gimbal design for precision pointing of the airborne laser transmitter. The current gimbal pointing system is a two-axis, commercial-off-the-shelf component, which is limited in both range and velocity. The current design is capable of 360o of pan and 78o of tilt at a velocity of 60o per second. The control algorithm used for aiming the gimbal is executed on a PC-104 format embedded computer onboard the payload to accurately track a stationary ground-based receiver. This algorithm autonomously calculates a line-of-sight vector in real-time by using the UAV autopilot's Differential Global Positioning System (DGPS) which provides latitude, longitude, and altitude and Inertial Measurement Unit (IMU) which provides the roll, pitch, and yaw data, along with the known Global Positioning System (GPS) location of the ground-based photodiode array receiver.

  15. Intelligent unmanned vehicle systems suitable for individual or cooperative missions

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew O.; McKay, Mark D.; Wadsworth, Derek C.

    2007-04-01

    The Department of Energy's Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for over fifteen years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high-resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicles during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  16. Medium Altitude Endurance Unmanned Air Vehicle

    NASA Astrophysics Data System (ADS)

    Ernst, Larry L.

    1994-10-01

    The medium altitude endurance unmanned air vehicle (MAE UAV) program (formerly the tactical endurance TE UAV) is a new effort initiated by the Department of Defense to develop a ground launched UAV that can fly out 500 miles, remain on station for 24 hours, and return. It will transmit high resolution optical, infrared, and synthetic aperture radar (SAR) images of well-defended target areas through satellite links. It will provide near-real-time, releasable, low cost/low risk surveillance, targeting and damage assessment complementary to that of satellites and manned aircraft. The paper describes specific objectives of the MAE UAV program (deliverables and schedule) and the program's unique position as one of several programs to streamline the acquisition process under the cognizance of the newly established Airborne Reconnaissance Office. I discuss the system requirements and operational concept and describe the technical capabilities and characteristics of the major subsystems (airframe, propulsion, navigation, sensors, communication links, ground station, etc.) in some detail.

  17. The First Government Sanctioned Delivery of Medical Supplies by Remotely Controlled Unmanned Aerial System (UAS)

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jones, Frank; Thorson, Taylor; Grube, Richard; Mellanson, Cecil; Joyce, Lee; Coggin, John; Kennedy, Jack

    2016-01-01

    The first government sanctioned delivery of medical supplies by UAS occurred at Wise, Virginia, on July 17, 2015. The "Let's Fly Wisely" event was a demonstration of the humanitarian use of UAS to facilitate delivery of medical supplies to remote or otherwise difficult-to-reach areas. The event was the result of coordinated efforts by a partnership which included the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), Virginia Polytechnic Institute, the Mid-Atlantic Aviation Partnership (MAAP), Flirtey Corporation, Lonesome Pine Airport, Remote Area Medical (RAM), Health Wagon, SEESPAN Aerial Interactive, Rx Partnership, and Wise County, Virginia. The historic event occurred during the annual Remote Area Medical clinic at the Wise County Fairgrounds. The medical supplies in small packages were delivered to the Wise County Fairgrounds from the Lonesome Pine Airport by UAS operated by Firtey. A larger supply of medical supplies were delivered to the Lonesome Pine Airport from the Tazewell County Airport by NASA Langley's SR22 UAS Surrogate Research aircraft. The UAS Surrogate aircraft was remotely controlled for most of the flight by a UAS Ground Control Station located at the Lonesome Pine Airport. The medical supplies were delivered from the UAS Surrogate to Flirtey for final delivery by Hex Multi-Rotor UAS in smaller packages and multiple trips to the fairgrounds. A Certificate of Authorization (COA) issued by the Federal Aviation Administration (FAA) designated the site as an authorized UAS test site. The paper will present additional details of the historic delivery of pharmaceuticals by UAS during the "Let's Fly Wisely" event. The paper will also provide details of NASA's SR22 UAS Surrogate Research aircraft. The UAS Surrogate was designed to investigate the procedures, aircraft sensors and other systems that may be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace

  18. Design, fabrication & performance analysis of an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Salam, M. A.; Afsar, M. R.; Huda, M. N.; Mahmud, T.

    2016-07-01

    An Unmanned Aerial Vehicle was designed, analyzed and fabricated to meet design requirements and perform the entire mission for an international aircraft design competition. The goal was to have a balanced design possessing, good demonstrated flight handling qualities, practical and affordable manufacturing requirements while providing a high vehicle performance. The UAV had to complete total three missions named ferry flight (1st mission), maximum load mission (2nd mission) and emergency medical mission (3rd mission). The requirement of ferry flight mission was to fly as many as laps as possible within 4 minutes. The maximum load mission consists of flying 3 laps while carrying two wooden blocks which simulate cargo. The requirement of emergency medical mission was complete 3 laps as soon as possible while carrying two attendances and two patients. A careful analysis revealed lowest rated aircraft cost (RAC) as the primary design objective. So, the challenge was to build an aircraft with minimum RAC that can fly fast, fly with maximum payload, and fly fast with all the possible configurations. The aircraft design was reached by first generating numerous design concepts capable of completing the mission requirements. In conceptual design phase, Figure of Merit (FOM) analysis was carried out to select initial aircraft configuration, propulsion, empennage and landing gear. After completion of the conceptual design, preliminary design was carried out. The preliminary design iterations had a low wing loading, high lift coefficient, and a high thrust to weight ratio. To make the aircraft capable of Rough Field Taxi; springs were added in the landing gears for absorbing shock. An airfoil shaped fuselage was designed to allowed sufficient space for payload and generate less drag to make the aircraft fly fast. The final design was a high wing monoplane with conventional tail, single tractor propulsion system and a tail dragger landing gear. Payload was stored in

  19. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  20. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    NASA Astrophysics Data System (ADS)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  1. The Development of Instrumentation and Methods for Measurement of Air-Sea Interaction and Coastal Processes from Manned and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Reineman, Benjamin D.

    I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc

  2. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2017-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability

  3. Medium and High Altitude Unmanned Aircraft System Acquisition: An Efficiency Study of Magnitude and Capability

    DTIC Science & Technology

    2009-06-12

    these past efforts, DOD recognized the incredible potential that medium and high altitude UAS held for all uniformed services. A pilotless aircraft...from aircraft, ships, missiles, automobiles and related military support equipment. 30 RDT&E: Research, Development, Test and Evaluation pay for

  4. Arctic Oil Spill Mapping and Response Using Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Cunningham, K. W.

    2011-12-01

    The University of Alaska Fairbanks works extensively with unmanned aerial systems and various sensor payloads used in mapping. Recent projects with Royal Dutch Shell and British Petroleum have demonstrated that unmanned aerial systems, including fixed and rotary winged platforms, can provide quick response to oil spill mapping in a variety of flight conditions, including those not well suited for manned aerial systems. We describe this collaborative research between the University and oil companies exploring and developing oil resources in Alaska and the Arctic.

  5. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  6. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    NASA Astrophysics Data System (ADS)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  7. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  8. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Ro, Kapseong

    2006-05-01

    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  9. Analysis of Unmanned Systems in Military Logistics

    DTIC Science & Technology

    2016-12-01

    opportunities to employ unmanned systems to support logistic operations. 14. SUBJECT TERMS unmanned systems, robotics , UAVs, UGVs, USVs, UUVs, military...Industrial Robots at Warehouses / Distribution Centers .............................................................................. 17 2. Unmanned...Autonomous Robot Gun Turret. Source: Blain (2010)................................................... 33 Figure 4. Robot Sentries for Base Patrol

  10. Unmanned Systems Roadmap 2007-2032

    DOT National Transportation Integrated Search

    2007-01-01

    Today's military has seen an evolution in technology that is creating an entirely new capability to project power through the use of unmanned systems while reducing the risk to human life. The contributions of unmanned systems continue to increase. A...

  11. Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng; Lu, Xinghua

    2018-05-01

    The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.

  12. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    NASA Technical Reports Server (NTRS)

    Kinnison, Douglas E.; Wuebbles, Donald J.

    1994-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O3, NO(x), Cl(x), HCl, N2O5, ClONO2 are calculated.

  13. Use of Unmanned Aircraft System (UAS) in Response to the 2014 Eruption of Ontake Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Mori, T.; Hashimoto, T.; Terada, A.; Shinohara, H.; Kazahaya, R.; Yoshimoto, M.; Tanaka, R.

    2015-12-01

    On Sept. 27, 2014, a phreatic eruption occurred at Ontake volcano (3067 m a.s.l.), central Japan. The eruption caused an unprecedented volcanic disaster in the last 70 years in Japan. Search and rescue operations started soon after the eruption until they were suspended due to snowfall in late October. Considering the potential hazards of further explosive events and the severe winter condition, an approach to the summit area after late October was very difficult. To reveal the condition of the volcanic activity and foresee the trend, we considered it important to carry out volcanic gas surveys for the dense plumes in the vicinity of the vents using an unmanned aircraft system (UAS). For the surveys at Ontake volcano, the UAS was expected to fly about 8 km roundtrip distance at an altitude of over 3000 m. A multicopter with 8 rotors was adopted and we targeted four types of plume monitoring using the UAS; in-plume monitoring of multiple gas concentrations, SO2 flux measurement with UV spectroscopy, thermography of the vents, and in-plume particle sampling. In order to meet the 1 kg payload of the multicopter, some of the instruments were slimmed down.The UAS campaigns at Ontake volcano were carried out on Nov. 20-21, 2014 and on Jun. 2, 2015 from the safety distance of 3-3.5 km away from the crater. With the UAS surveys, we revealed that the SO2/H2S ratios of volcanic gas were closer to the hydrothermal origin instead of direct magma degassing. The second survey also pointed out that the SO2 emission decreased down below 10 ton/day by June 2015, by taking an advantage of flying the vicinity of the vents before the plume was diluted. Our surveys showed decreasing activity of the volcano, together with the advantages of using UAS in volcano monitoring for inaccessible conditions.

  14. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    NASA Astrophysics Data System (ADS)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  15. Characterizing tree canopy temperature heterogeneity using an unmanned aircraft-borne thermal imager

    NASA Astrophysics Data System (ADS)

    Messinger, M.; Powell, R.; Silman, M.; Wright, M.; Nicholson, W.

    2013-12-01

    Leaf temperature (Tleaf) is an important control on many physiological processes such as photosynthesis and respiration, is a key variable for characterizing canopy energy fluxes, and is a valuable metric for identifying plant water stress or disease. Traditional methods of Tleaf measurement involve either the use of thermocouples, a time and labor-intensive method that samples sparsely in space, or the use of air temperature (Tair) as a proxy measure, which can introduce inaccuracies due to near constant canopy-atmosphere energy flux. Thermal infrared (TIR) imagery provides an efficient means of collecting Tleaf for large areas. Existing satellite and aircraft-based TIR imagery is, however, limited by low spatial and/or temporal resolution, while crane-mounted camera systems have strictly limited spatial extents. Unmanned aerial systems (UAS) offer new opportunities to acquire high spatial and temporal resolution imagery on demand. Here, we demonstrate the feasibility of collecting tree canopy Tleaf data using a small multirotor UAS fitted with a high spatial resolution TIR imager. The goals of this pilot study were to a) characterize basic patterns of within crown Tleaf for 4 study species and b) identify trends in Tleaf between species with varying leaf morphologies and canopy structures. TIR imagery was acquired for individual tree crowns of 4 species common to the North Carolina Piedmont ecoregion (Quercus phellos, Pinus strobus, Liriodendron tulipifera, Magnolia grandiflora) in an urban park environment. Due to significantly above-average summer precipitation, we assumed that none of the sampled trees was limited by soil water availability. We flew the TIR imaging system over 3-4 individuals of each of the 4 target species on 3 separate days. Imagery of all individuals was collected within the same 2-hour period in the afternoon on all days. There was low wind and partly cloudy skies during imaging. Tair, relative humidity, and wind speed were recorded at

  16. Monitoring of coalbed water retention ponds in the Powder River Basin using Google Earth images and an Unmanned Aircraft System

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2016-12-01

    To extract methane from unminable seams of coal in the Powder River Basin of Montana and Wyoming, coalbed methane (CBM) water has to be pumped and kept in retention ponds rather than discharged to the vadose zone to mix with the ground water. The water areal coverage of these ponds changes due to evaporation and repetitive refilling. The water quality also changes due to growing of microalgae (unicellular or filamentous including green algae and diatoms), evaporation, and refilling. To estimate the water coverage changes and monitor water quality becomes important for monitoring the CBM water retention ponds to provide timely management plan for the newly pumped CBM water. Conventional methods such as various water indices based on multi-spectral satellite data such as Landsat because of the small pond size ( 100mx100m scale) and low spatial resolution ( 30m scale) of the satellite data. In this study we will present new methods to estimate water coverage and water quality changes using Google Earth images and images collected from an unmanned aircraft system (UAS) (Phantom 2 plus). Because these images have only visible bands (red, green, and blue bands), the conventional water index methods that involve near-infrared bands do not work. We design a new method just based on the visible bands to automatically extract water pixels and the intensity of the water pixel as a proxy for water quality after a series of image processing such as georeferencing, resampling, filtering, etc. Differential GPS positions along the water edges were collected the same day as the images collected from the UAS. Area of the water area was calculated from the GPS positions and used for the validation of the method. Because of the very high resolution ( 10-30 cm scale), the water areal coverage and water quality distribution can be accurately estimated. Since the UAS can be flied any time, water area and quality information can be collected timely.

  17. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  18. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.

    PubMed

    Abrahamsen, Håkon B

    2015-06-10

    Major incidents are complex, dynamic and bewildering task environments characterised by simultaneous, rapidly changing events, uncertainty and ill-structured problems. Efficient management, communication, decision-making and allocation of scarce medical resources at the chaotic scene of a major incident is challenging and often relies on sparse information and data. Communication and information sharing is primarily voice-to-voice through phone or radio on specified radio frequencies. Visual cues are abundant and difficult to communicate between teams and team members that are not co-located. The aim was to assess the concept and feasibility of using a remotely piloted aircraft (RPA) system to support remote sensing in simulated major incident exercises. We carried out an experimental, pilot feasibility study. A custom-made, remotely controlled, multirotor unmanned aerial vehicle with vertical take-off and landing was equipped with digital colour- and thermal imaging cameras, a laser beam, a mechanical gripper arm and an avalanche transceiver. We collected data in five simulated exercises: 1) mass casualty traffic accident, 2) mountain rescue, 3) avalanche with buried victims, 4) fisherman through thin ice and 5) search for casualties in the dark. The unmanned aerial vehicle was remotely controlled, with high precision, in close proximity to air space obstacles at very low levels without compromising work on the ground. Payload capacity and tolerance to wind and turbulence were limited. Aerial video, shot from different altitudes, and remote aerial avalanche beacon search were streamed wirelessly in real time to a monitor at a ground base. Electromagnetic interference disturbed signal reception in the ground monitor. A small remotely piloted aircraft can be used as an effective tool carrier, although limited by its payload capacity, wind speed and flight endurance. Remote sensing using already existing remotely piloted aircraft technology in pre

  19. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  20. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  1. A survey of unmanned ground vehicles with applications to agricultural and environmental sensing

    USDA-ARS?s Scientific Manuscript database

    Unmanned ground vehicles have been utilized in the last few decades in an effort to increase the efficiency of agriculture, in particular, by reducing labor needs. Unmanned vehicles have been used for a variety of purposes including: soil sampling, irrigation management, precision spraying, mechanic...

  2. Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise

    NASA Technical Reports Server (NTRS)

    Christian, Andrew; Cabell, Randolph

    2017-01-01

    For the past several years, researchers at NASA Langley have been engaged in a series of projects to study the degree to which existing facilities and capabilities, originally created for work on full-scale aircraft, are extensible to smaller scales --those of the small unmanned aerial systems (sUAS, also UAVs and, colloquially, `drones') that have been showing up in the nation's airspace of late. This paper follows an e ort that has led to an initial human{subject psychoacoustic test regarding the annoyance generated by sUAS noise. This e ort spans three phases: 1. The collection of the sounds through field recordings. 2. The formulation and execution of a psychoacoustic test using those recordings. 3. The initial analysis of the data from that test. The data suggests a lack of parity between the noise of the recorded sUAS and that of a set of road vehicles that were also recorded and included in the test, as measured by a set of contemporary noise metrics. Future work, including the possibility of further human subject testing, is discussed in light of this suggestion.

  3. Photogrammetric mapping using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Graça, N.; Mitishita, E.; Gonçalves, J.

    2014-11-01

    Nowadays Unmanned Aerial Vehicle (UAV) technology has attracted attention for aerial photogrammetric mapping. The low cost and the feasibility to automatic flight along commanded waypoints can be considered as the main advantages of this technology in photogrammetric applications. Using GNSS/INS technologies the images are taken at the planned position of the exposure station and the exterior orientation parameters (position Xo, Yo, Zo and attitude ω, φ, χ) of images can be direct determined. However, common UAVs (off-the-shelf) do not replace the traditional aircraft platform. Overall, the main shortcomings are related to: difficulties to obtain the authorization to perform the flight in urban and rural areas, platform stability, safety flight, stability of the image block configuration, high number of the images and inaccuracies of the direct determination of the exterior orientation parameters of the images. In this paper are shown the obtained results from the project photogrammetric mapping using aerial images from the SIMEPAR UAV system. The PIPER J3 UAV Hydro aircraft was used. It has a micro pilot MP2128g. The system is fully integrated with 3-axis gyros/accelerometers, GPS, pressure altimeter, pressure airspeed sensors. A Sony Cyber-shot DSC-W300 was calibrated and used to get the image block. The flight height was close to 400 m, resulting GSD near to 0.10 m. The state of the art of the used technology, methodologies and the obtained results are shown and discussed. Finally advantages/shortcomings found in the study and main conclusions are presented

  4. Documentation of Sensory Information in the Operation of Unmanned Aircraft Systems

    DTIC Science & Technology

    2008-10-01

    spercepton.s.a. msmatch.between.vsual.and.vestbular.or.proproceptve. stmul.(Reed,.1977) . Advantages and disadvantages of sensory Modes G...and that are approved for IFR operations, a third attitude instrument must be provided that: (i) Is powered from a source independent of the...indicator, if the aircraft has a retractable landing gear. … B-17 (d) Instrument flight rules. For IFR flight, the following instruments and equipment

  5. Reducing environmental damage through the use of unmanned aerial vehicles as the best available technology

    NASA Astrophysics Data System (ADS)

    Fedulova, E. A.; Akulov, A. O.; Rada, A. O.; Alabina, T. A.; Savina, Ju Ju

    2018-01-01

    The article examines the possibilities of using unmanned aerial vehicles as the best available technologies in the field of agriculture and mining. The object of the study is the use of unmanned aerial vehicles as the best available technology. The main areas of application of this technology are identified: agro technical operations, aerial photography of mining operations. The technology of unmanned aerial vehicles is compared with the technologies of ground agricultural machinery. The research methodology includes an expert evaluation of the unmanned aerial vehicle technology belonging to the class of the best available technologies by the criteria: the level of environmental impact, resource saving, the use of low-waste, non-waste processes, the existence of at least two objects, economic efficiency. Expert evaluations were processed using the apparatus of fuzzy sets, which make it possible to construct membership functions. This allowed us to prove that the technology of unmanned aerial vehicles belongs to a fuzzy set of the best available technologies. The results of the research show that the use of unmanned aerial vehicles provides a saving of resources, especially non-renewable combustible minerals, reduces emissions and discharges of pollutants into the atmosphere, and also reduces soil erosion. Unmanned aerial vehicles should be included in the national directories of the best available technologies for the mining industry and agriculture.

  6. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

    NASA Astrophysics Data System (ADS)

    Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina

    2014-10-01

    Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

  7. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  8. Abnormal/Emergency Situations. Impact of Unmanned Aircraft Systems Emergency and Abnormal Events on the National Airspace System

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.

  9. Noise reduction of a tilt-rotor aircraft including effects on weight and performance

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.; Kohler, G.

    1973-01-01

    Various methods for far-field noise reduction of a tilt-rotor acoustic signature and the performance and weight tradeoffs which result from modification of the noise sources are considered in this report. In order to provide a realistic approach for the investigation, the Boeing tilt-rotor flight research aircraft (Model 222), was selected as the baseline. This aircraft has undergone considerable engineering development. Its rotor has been manufactured and tested in the Ames full-scale wind tunnel. The study reflects the current state-of-the-art of aircraft design for far-field acoustic signature reduction and is not based solely on an engineering feasibility aircraft. This report supplements a previous study investigating reduction of noise signature through the management of the terminal flight trajectory.

  10. Human Systems Integration: Unmanned Aircraft Control Station Certification Plan Guidance

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document provides guidance to the FAA on important human factors considerations that can be used to support the certification of a UAS Aircraft Control Station (ACS). This document provides a synopsis of the human factors analysis, design and test activities to be performed to provide a basis for FAA certification. The data from these analyses, design activities, and tests, along with data from certification/qualification tests of other key components should be used to establish the ACS certification basis. It is expected that this information will be useful to manufacturers in developing the ACS Certification Plan,, and in supporting the design of their ACS.

  11. Comparison of unmanned aircraft systems (UAS) to LiDAR for streambank erosion measurement at the site-specific and river network scales

    NASA Astrophysics Data System (ADS)

    Hamshaw, S. D.; Dewoolkar, M. M.; Rizzo, D.; ONeil-Dunne, J.; Frolik, J.

    2016-12-01

    Measurement of rates and extent of streambank erosion along river corridors is an important component of many catchment studies and necessary for engineering projects such as river restoration, hazard assessment, and total maximum daily load (TMDL) development. A variety of methods have been developed to quantify streambank erosion, including bank pins, ground surveys, photogrammetry, LiDAR, and analytical models. However, these methods are not only resource intensive, but many are feasible and appropriate only for site-specific studies and not practical for erosion estimates at larger scales. Recent advancements in unmanned aircraft systems (UAS) and photogrammetry software provide capabilities for more rapid and economical quantification of streambank erosion and deposition at multiple scales (from site-specific to river network). At the site-specific scale, the capability of UAS to quantify streambank erosion was compared to terrestrial laser scanning (TLS) and RTK-GPS ground survey and assessed at seven streambank monitoring sites in central Vermont. Across all sites, the UAS-derived bank topography had mean errors of 0.21 m compared to TLS and GPS data. Highest accuracies were achieved in early spring conditions where mean errors approached 10 cm. The cross sectional area of bank erosion at a typical, vegetated streambank site was found to be reliably calculated within 10% of actual for erosion areas greater than 3.5 m2. At the river network-level scale, 20 km of river corridor along the New Haven, Winooski, and Mad Rivers was flown on multiple dates with UAS and used to generate digital elevation models (DEMs) that were then compared for change detection analysis. Airborne LiDAR data collected prior to UAS surveys was also compared to UAS data to determine multi-year rates of bank erosion. UAS-based photogrammetry for generation of fine scale topographic data shows promise for the monitoring of streambank erosion both at the individual site scale and river

  12. Unmanned Aerial Technologies for Observations at Active Volcanoes: Advances and Prospects

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M.; Makel, D.; Schwandner, F. M.; Buongiorno, M. F.; Elston, J. S.

    2017-12-01

    Modern application of unmanned aerial systems' (UASs) technology allow us to conduct in situ measurements in volcanic plumes and drifting volcanic clouds that were impossible to make in the past. Thus, we are now able to explore proximal airspace near and within eruption columns and or other active vents, at very high and at very low altitudes—risk to human investigators is vastly reduced (although not eliminated). We are now on the cusp of being able to make in situ measurements and conduct sampling at altitudes of 5000-6000 meters relatively routinely. We also are developing heat tolerant electronics and sensors that will deployed on, around, and over active lava lakes and lava flows at terrestrial volcanoes, but with a view toward developing planetary applications, for instance on the surface of Venus. We report on our 2012-present systematic UAS-based observations of light gases (e.g., SO2 CO2, H2S) at Turrialba Volcano in Costa Rica, at Italian volcanic sites (e.g., Isole Vulcano; La Solfatara), and most recently at Kilauea Volcano, Hawaii in collaboration with USGS and NPS colleagues. Other deployments for Fall 2017 and Winter 2018 are in planning stages for the Salton Sea Basin and Costa Rica, which will include an airborne miniature mass spectrometer onboard several different types of UAVs. In addition, under development is the first purpose-built-for-volcanology small unmanned aircraft. We discuss strategies for acquiring airborne data from proximal ash/gas plumes during restless periods and during eruptions, from distal drifting ash/gas clouds from eruptions, and from diffuse emissions (e.g., CO2) at very low altitudes, utilizing UASs (e.g., fixed wing, multi-rotor, aerostat), especially regarding inputs for source flux reverse models. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  13. Development of a Geospatial Data-Sharing Method for Unmanned Vehicles Based on the Joint Architecture for Unmanned Systems (JAUS)

    DTIC Science & Technology

    2005-08-01

    the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was

  14. Army PM UAS Spectrum Update

    DTIC Science & Technology

    2012-07-01

    Small Unmanned Aircraft Systems vs. Air Combat Telemetry Systems SUAS - 2 Watts vs. ACTS 100 Watts... SUAS - 25 km normal radius vs. ACTS 200 km normal radius Primary Concerns: Operational Small Unmanned Aircraft Systems ...Std Z39-18 UNCLASSIFIED UNCLASSIFIED Army Unmanned Aircraft Systems 2 Provides the small unit the

  15. Research on Aircraft Target Detection Algorithm Based on Improved Radial Gradient Transformation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. M.; Gao, X. M.; Jiang, D. N.; Zhang, Y. Q.

    2018-04-01

    Aiming at the problem that the target may have different orientation in the unmanned aerial vehicle (UAV) image, the target detection algorithm based on the rotation invariant feature is studied, and this paper proposes a method of RIFF (Rotation-Invariant Fast Features) based on look up table and polar coordinate acceleration to be used for aircraft target detection. The experiment shows that the detection performance of this method is basically equal to the RIFF, and the operation efficiency is greatly improved.

  16. Intelligent autonomy for unmanned naval systems

    NASA Astrophysics Data System (ADS)

    Steinberg, Marc

    2006-05-01

    This paper provides an overview of the development and demonstration of intelligent autonomy technologies for control of heterogeneous unmanned naval air and sea vehicles and describes some of the current limitations of such technologies. The focus is on modular technologies that support highly automated retasking and fully autonomous dynamic replanning for up to ten heterogeneous unmanned systems based on high-level mission objectives, priorities, constraints, and Rules-of-Engagement. A key aspect of the demonstrations is incorporating frequent naval operator evaluations in order to gain better understanding of the integrated man/machine system and its tactical utility. These evaluations help ensure that the automation can provide information to the user in a meaningful way and that the user has a sufficient level of control and situation awareness to task the system as needed to complete complex mission tasks. Another important aspect of the program is examination of the interactions of higher-level autonomy algorithms with other relevant components that would be needed within the decision-making and control loops. Examples of these are vision and other sensor processing algorithms, sensor fusion, obstacle avoidance, and other lower level vehicle autonomous navigation, guidance, and control functions. Initial experiments have been completed using medium and high-fidelity vehicle simulations in a virtual warfare environment and inexpensive surrogate vehicles in flight and in-water demonstrations. Simulation experiments included integration of multi-vehicle task allocation, dynamic replanning under constraints, lower level autonomous vehicle control, automatic assessment of the impact of contingencies on plans, management of situation awareness data, operator alert management, and a mixed-initiative operator interface. In-water demonstrations of a maritime situation awareness capability were completed in both a river and a harbor environment using unmanned surface

  17. Early Synthetic Prototyping: Exploring Designs and Concepts Within Games

    DTIC Science & Technology

    2014-12-01

    UAS unmanned aircraft system UGV unmanned ground vehicle USD(AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics... unmanned aircraft system (UAS) realm for the wingman concept? The players were familiar with the Marine Corps’ unmanned tactical autonomous control and...UTACCS Unmanned Tactical Autonomous Control and Collaboration System VBIED vehicle borne improvised explosive device VBS2/3 Virtual Battlespace

  18. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Whitehead, Ken; Brown, Owen W.; Barchyn, Thomas E.; Moorman, Brian J.; LeClair, Adam; Riddell, Kevin; Hamilton, Tayler

    2013-07-01

    Small unmanned aircraft systems (sUAS) are a relatively new type of aerial platform for acquiring high-resolution remote sensing measurements of Earth surface processes and landforms. However, despite growing application there has been little quantitative assessment of sUAS performance. Here we present results from a field experiment designed to evaluate the accuracy of a photogrammetrically-derived digital terrain model (DTM) developed from imagery acquired with a low-cost digital camera onboard an sUAS. We also show the utility of the high-resolution (0.1 m) sUAS imagery for resolving small-scale biogeomorphic features. The experiment was conducted in an area with active and stabilized aeolian landforms in the southern Canadian Prairies. Images were acquired with a Hawkeye RQ-84Z Areohawk fixed-wing sUAS. A total of 280 images were acquired along 14 flight lines, covering an area of 1.95 km2. The survey was completed in 4.5 h, including GPS surveying, sUAS setup and flight time. Standard image processing and photogrammetric techniques were used to produce a 1 m resolution DTM and a 0.1 m resolution orthorectified image mosaic. The latter revealed previously un-mapped bioturbation features. The vertical accuracy of the DTM was evaluated with 99 Real-Time Kinematic GPS points, while 20 of these points were used to quantify horizontal accuracy. The horizontal root mean squared error (RMSE) of the orthoimage was 0.18 m, while the vertical RMSE of the DTM was 0.29 m, which is equivalent to the RMSE of a bare earth LiDAR DTM for the same site. The combined error from both datasets was used to define a threshold of the minimum elevation difference that could be reliably attributed to erosion or deposition in the seven years separating the sUAS and LiDAR datasets. Overall, our results suggest that sUAS-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

  19. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  20. Remote operation of the Black Knight unmanned ground combat vehicle

    NASA Astrophysics Data System (ADS)

    Valois, Jean-Sebastien; Herman, Herman; Bares, John; Rice, David P.

    2008-04-01

    The Black Knight is a 12-ton, C-130 deployable Unmanned Ground Combat Vehicle (UGCV). It was developed to demonstrate how unmanned vehicles can be integrated into a mechanized military force to increase combat capability while protecting Soldiers in a full spectrum of battlefield scenarios. The Black Knight is used in military operational tests that allow Soldiers to develop the necessary techniques, tactics, and procedures to operate a large unmanned vehicle within a mechanized military force. It can be safely controlled by Soldiers from inside a manned fighting vehicle, such as the Bradley Fighting Vehicle. Black Knight control modes include path tracking, guarded teleoperation, and fully autonomous movement. Its state-of-the-art Autonomous Navigation Module (ANM) includes terrain-mapping sensors for route planning, terrain classification, and obstacle avoidance. In guarded teleoperation mode, the ANM data, together with automotive dials and gages, are used to generate video overlays that assist the operator for both day and night driving performance. Remote operation of various sensors also allows Soldiers to perform effective target location and tracking. This document covers Black Knight's system architecture and includes implementation overviews of the various operation modes. We conclude with lessons learned and development goals for the Black Knight UGCV.

  1. Sense and Avoid Safety Analysis for Remotely Operated Unmanned Aircraft in the National Airspace System. Version 5

    NASA Technical Reports Server (NTRS)

    Carreno, Victor

    2006-01-01

    This document describes a method to demonstrate that a UAS, operating in the NAS, can avoid collisions with an equivalent level of safety compared to a manned aircraft. The method is based on the calculation of a collision probability for a UAS , the calculation of a collision probability for a base line manned aircraft, and the calculation of a risk ratio given by: Risk Ratio = P(collision_UAS)/P(collision_manned). A UAS will achieve an equivalent level of safety for collision risk if the Risk Ratio is less than or equal to one. Calculation of the probability of collision for UAS and manned aircraft is accomplished through event/fault trees.

  2. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  3. An adaptable, low cost test-bed for unmanned vehicle systems research

    NASA Astrophysics Data System (ADS)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  4. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  5. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, usingmore » two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.« less

  6. An economic assessment of STOL aircraft potential including terminal area environmental considerations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.; Sokolsky, S.

    1973-01-01

    An economic assessment of short takeoff aircraft for short haul air transportation applications is presented. The economic viability and environmental compatibility of short takeoff aircraft service in high density areas were evaluated. The subjects discussed are: (1) aircraft configurations and performance, (2) airfield and terminal requirements, and (3) direct and indirect operating costs.

  7. Micro-unmanned aerodynamic vehicle

    DOEpatents

    Reuel, Nigel [Rio Rancho, NM; Lionberger, Troy A [Ann Arbor, MI; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM; Baker, Michael S [Albuquerque, NM

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  8. Review of U.S. Army Unmanned Aerial Systems Accident Reports: Analysis of Human Error Contributions

    DTIC Science & Technology

    2018-03-20

    USAARL Report No. 2018-08 Review of U.S. Army Unmanned Aerial Systems Accident Reports: Analysis of Human Error Contributions By Kathryn A...3 Statistical Analysis Approach ..............................................................................................3 Results...1 Introduction The success of unmanned aerial systems (UAS) operations relies upon a variety of factors, including, but not limited to

  9. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  10. Assessing the Impact of Operational Constraints on the Near-Term Unmanned Aircraft System Traffic Management Supported Market

    NASA Technical Reports Server (NTRS)

    Vascik, Parker D.; Jung, Jaewoo

    2016-01-01

    An economic impact market analysis was conducted for 16 leading sectors of commercial Unmanned Aerial System (UAS) applications predicted to be enabled by 2020 through the NASA UAS Traffic Management (UTM) program. Subject matter experts from seven industries were interviewed to validate concept of operations (ConOps) and market adoption assumptions for each sector. The market analysis was used to estimate direct economic impacts for each sector including serviceable addressable market, capital investment, revenue recovery potential, and operations cost savings. The resultant economic picture distinguishes the agricultural, pipeline and railroad inspection, construction, and maritime sectors of the nascent commercial UAS industry as providing the highest potential economic value in the United States. Sensitivity studies characterized the variability of select UAS sectors economic value to key regulatory or UTM ConOps requirements such as weight, altitude, and flight over populated area constraints. Takeaways from the analysis inform the validation of UTM requirements, technologies and timetables from a commercial market need and value viewpoint. This work concluded in August 2015 and reflects the state of the UAS industry and market projections at that time.

  11. Send In The Drones! Are Remotely Piloted Aircraft Changing America’s Threshold For Turning To Violence

    DTIC Science & Technology

    2011-12-01

    sides attempted to deliver explosive-laden unmanned balloons to the enemy. The Japanese revived this technique during World War II, when Japanese forces...attempted to send similar balloons across the Atlantic to cause destruction in the United States. 3 As aircraft technology developed, so did the...taken hostage following a failed hijacking attempt. The objective was to free the American captive and it was a success. 55 2005-2011, Pakistan

  12. Implementation of AN Unmanned Aerial Vehicle System for Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Mah, S. B.; Cryderman, C. S.

    2015-08-01

    Unmanned Aerial Vehicles (UAVs), digital cameras, powerful personal computers, and software have made it possible for geomatics professionals to capture aerial photographs and generate digital terrain models and orthophotographs without using full scale aircraft or hiring mapping professionals. This has been made possible by the availability of miniaturized computers and sensors, and software which has been driven, in part, by the demand for this technology in consumer items such as smartphones. The other force that is in play is the increasing number of Do-It-Yourself (DIY) people who are building UAVs as a hobby or for professional use. Building a UAV system for mapping is an alternative to purchasing a turnkey system. This paper describes factors to be considered when building a UAV mapping system, the choices made, and the test results of a project using this completed system.

  13. World commercial aircraft accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  14. Cloud-based distributed control of unmanned systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Kim B.; Powell, Darren N.; Yetman, Charles; August, Michael; Alderson, Susan L.; Raney, Christopher J.

    2015-05-01

    Enabling warfighters to efficiently and safely execute dangerous missions, unmanned systems have been an increasingly valuable component in modern warfare. The evolving use of unmanned systems leads to vast amounts of data collected from sensors placed on the remote vehicles. As a result, many command and control (C2) systems have been developed to provide the necessary tools to perform one of the following functions: controlling the unmanned vehicle or analyzing and processing the sensory data from unmanned vehicles. These C2 systems are often disparate from one another, limiting the ability to optimally distribute data among different users. The Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to address this technology gap through the UxV to the Cloud via Widgets project. The overarching intent of this three year effort is to provide three major capabilities: 1) unmanned vehicle control using an open service oriented architecture; 2) data distribution utilizing cloud technologies; 3) a collection of web-based tools enabling analysts to better view and process data. This paper focuses on how the UxV to the Cloud via Widgets system is designed and implemented by leveraging the following technologies: Data Distribution Service (DDS), Accumulo, Hadoop, and Ozone Widget Framework (OWF).

  15. Recent Observational Efforts Using the DOE ARM Observatory at Oliktok Point, Alaska

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Shupe, M.; McComiskey, A. C.; Creamean, J.; Williams, C. R.; Matrosov, S. Y.; Solomon, A.; Turner, D. D.; Norgren, M.; Maahn, M.; Lawrence, D.; Argrow, B. M.; Palo, S. E.; Weibel, D.; Curry, N.; Nichols, T.; D'Amore, P.; Finamore, W.; Ivey, M.; Bendure, A.; Schmid, B.; Biraud, S.

    2016-12-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program has deployed it's third mobile facility (AMF-3) to Oliktok Point, Alaska for an extended measurement campaign. This facility includes a variety of instruments to measure clouds, aerosols, surface meteorology, and surface energy exchange (including radiation). Additionally, this site features two areas of controlled airspace in which additional measurements can be made using manned- and unmanned aircraft and tethered balloons. Over the past two years, several field campaigns have taken place to make measurements complimentary to those collected by the AMF-3. These include several unmanned aircraft and tethered balloon campaigns (Coordinated Observations of the Lower Arctic Atmosphere, COALA; Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems, ERASMUS; Inaugural Campaigns for ARM Research using Unmanned Systems, ICARUS), as well as a manned aircraft campaign during the summer of 2015 (ARM Carbon Measurement Experiment, ACME-5). In addition to these field campaigns, DOE has formed a site science team to conduct research using AMF-3 measurements. In this presentation, we will provide an overview of these measurement campaigns. Additionally, we will provide an overview of scientific results from these campaigns and from AMF-3 research that aid to inform numerical modeling efforts.

  16. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    NASA Astrophysics Data System (ADS)

    Gabor, Oliviu Sugar

    To increase the aerodynamic efficiency of aircraft, in order to reduce the fuel consumption, a novel morphing wing concept has been developed. It consists in replacing a part of the wing upper and lower surfaces with a flexible skin whose shape can be modified using an actuation system placed inside the wing structure. Numerical studies in two and three dimensions were performed in order to determine the gains the morphing system achieves for the case of an Unmanned Aerial System and for a morphing technology demonstrator based on the wing tip of a transport aircraft. To obtain the optimal wing skin shapes in function of the flight condition, different global optimization algorithms were implemented, such as the Genetic Algorithm and the Artificial Bee Colony Algorithm. To reduce calculation times, a hybrid method was created by coupling the population-based algorithm with a fast, gradient-based local search method. Validations were performed with commercial state-of-the-art optimization tools and demonstrated the efficiency of the proposed methods. For accurately determining the aerodynamic characteristics of the morphing wing, two new methods were developed, a nonlinear lifting line method and a nonlinear vortex lattice method. Both use strip analysis of the span-wise wing section to account for the airfoil shape modifications induced by the flexible skin, and can provide accurate results for the wing drag coefficient. The methods do not require the generation of a complex mesh around the wing and are suitable for coupling with optimization algorithms due to the computational time several orders of magnitude smaller than traditional three-dimensional Computational Fluid Dynamics methods. Two-dimensional and three-dimensional optimizations of the Unmanned Aerial System wing equipped with the morphing skin were performed, with the objective of improving its performances for an extended range of flight conditions. The chordwise positions of the internal actuators

  17. Farfield structure of an aircraft trailing vortex, including effects of mass injection

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Marchman, J. F., III

    1972-01-01

    Wind tunnel tests to predict the aircraft wake turbulence due to the tip trailing vortex are discussed. A yawhead pressure probe was used in a subsonic wind tunnel to obtain detailed mean flow measurements at stations up to 30 chordlengths downstream in an aircraft trailing vortex. Mass injection at the wingtip was shown to hasten the decay of the trailing vortex. A theoretical method is presented to show the effect which the circulation distribution on the wing has on the structure of the outer portion of the vortex.

  18. Focusing the Eyes Over America: Regulating and Training for the Ethical Domestic Use of Remote Piloted Aircraft (RPA)

    DTIC Science & Technology

    2011-02-01

    that can be taken to mitigate this problem. A review of existing regulations applicable to multiple government agencies will be conducted. This...of civil liberties, but by virtue of the fact the FAA controls when and where RPA can fly, their regulations have an impact on the protection or...Administration, Interim Operational Approval Guidance 08-01. Unmanned Aircraft Systems Operations in the U . S. National Airspace System, 13 March 2008, 5

  19. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    PubMed

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  20. Unmanned aerial vehicle applications for highway transportation : initial stage reference search.

    DOT National Transportation Integrated Search

    2013-11-01

    Identification of research (2006present) focusing on autonomous micro unmanned aerial vehicles (UAVs) for transportation applications, including the examination of other industries that may also utilize micro UAVs.

  1. Ice nucleating particles over the Eastern Mediterranean measured at ground and by unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Drücke, Jaqueline; Keleshis, Christos; Pikridas, Michael; Ebert, Martin; Cvetkovic, Bojan; Nickovic, Slobodan; Baars, Holger; Marinou, Eleni; Vrekoussis, Mihalis; Sciare, Jean; Mihalopoulos, Nikos; Curtius, Joachim; Bingemer, Heinz G.

    2017-04-01

    During the intensive INUIT-BACCHUS-ACTRIS field campaign focusing on aerosols, clouds and ice nucleation in the Eastern Mediterranean in April 2016, we have measured the abundance of ice nucleating particles (INP) in the lower troposphere both with unmanned aircraft systems (UAS) as well as from the ground. Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UAS and were analyzed immediately after collection on site in the ice nucleus counter FRIDGE for INP active at -20˚ C to -30˚ C in the deposition/condensation mode (INPD). Immersion freezing INP (INPI) were sampled on membrane filters and were analysed in aqueous extracts by the drop freezing method on the cold stage of FRIDGE. Ground samples were collected at the Cyprus Atmospheric Observatory (CAO) in Agia Marina Xyliatou (Latitude; 35˚ 2' 8" N; Longitude: 33˚ 3' 26" E; Altitude: 532 m a.s.l.). During the one-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers altitude. Here we present INP data from 42 individual flights, together with OPC aerosol number concentrations, backscatter and depolarization retrievals from the Polly-XT Raman Lidar, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INP with the particulate mass (PM), the Lidar retrievals and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INP std.l-1 were measured at -30˚ C. The INPD concentration in elevated plumes was on average a factor of 10 higher than at ground level. The INPI concentration at ground also agreed with PM levels and exceeded the ground-based INPD concentration by more than one order of magnitude. Since desert dust is transported

  2. Shaping future Naval warfare with unmanned systems, the impact across the fleet, and joint considerations

    NASA Astrophysics Data System (ADS)

    Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.

    2004-09-01

    This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.

  3. Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft

    DTIC Science & Technology

    2017-06-01

    International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing

  4. Delegation control of multiple unmanned systems

    NASA Astrophysics Data System (ADS)

    Flaherty, Susan R.; Shively, Robert J.

    2010-04-01

    Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies1,2. Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS.

  5. Operator selection for unmanned aerial systems: comparing video game players and pilots.

    PubMed

    McKinley, R Andy; McIntire, Lindsey K; Funke, Margaret A

    2011-06-01

    Popular unmanned aerial system (UAS) platforms such as the MQ-1 Predator and MQ-9 Reaper have experienced accelerated operations tempos that have outpaced current operator training regimens, leading to a shortage of qualified UAS operators. To find a surrogate to replace pilots of manned aircraft as UAS operators, this study evaluated video game players (VGPs), pilots, and a control group on a set of UAS operation relevant cognitive tasks. There were 30 participants who volunteered for this study and were divided into 3 groups: experienced pilots (P), experienced VGPs, and a control group (C). Each was trained on eight cognitive performance tasks relevant to unmanned flight tasks. The results indicated that pilots significantly outperform the VGP and control groups on multi-attribute cognitive tasks (Tank mean: VGP = 465 +/- 1.046 vs. P = 203 +/- 0.237 vs. C = 351 +/- 0.601). However, the VGPs outperformed pilots on cognitive tests related to visually acquiring, identifying, and tracking targets (final score: VGP = 594.28 +/- 8.708 vs. P = 563.33 +/- 8.787 vs. C = 568.21 +/- 8.224). Likewise, both VGPs and pilots performed similarly on the UAS landing task, but outperformed the control group (glide slope: VGP = 40.982 +/- 3.244 vs. P = 30.461 +/- 2.251 vs. C = 57.060 +/- 4.407). Cognitive skills learned in video game play may transfer to novel environments and improve performance in UAS tasks over individuals with no video game experience.

  6. CRUSER News. Issue 30, Aug 2013

    DTIC Science & Technology

    2013-08-01

    Versatile Low Cost Tactical SUAS by Dr. Richard Guiler, Physical Sciences Inc. • Small Unmanned Aircraft System ( SUAS )/Unattended Ground Sensor...NPS faculty JIFX 13-4 was held last week and included several different planned experiments in the unmanned systems /robot- ics thread. One of the many... planned experiments for the unmanned systems / robotics thread. • Tactical Operations for Multiple Swarm UAVs by Dr Timothy Chung, NPS • ងlb

  7. The Unmanned Combat Aircraft (UCAV): The Point of View of an Aircraft Manufacturer (Les Avions de Combat Non Habites (UCAV) Le point de vue d’un avionneur)

    DTIC Science & Technology

    2000-04-01

    Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704...92552 St Cloud Cedex FRANCE 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSORING/MONITORING AGENCY REPORT NUMBER EOARD PSC 802 Box 14...distribution is unlimited. A ABSTRACT (Maximum 200 words) There is an increasing interest to develop an unmanned plane. It is possible to consider innovator

  8. Unmanned Systems Integrated Roadmap FY2011-2036

    DTIC Science & Technology

    2011-10-01

    neuroscience , and cognition science may lead to the implementation of some of the most critical functionalities of heterogeneous, sensor net...Roadmap FY2011-2036 69 7.4.5.4 Encryption Unmanned systems incorporation of data encryption includes National Security Agency ( NSA ) Type 1 (for...see DODI 4660). Numerous other policies and initiatives are under development within the NSA to significantly streamline the certification processes

  9. Prediction of jump phenomena in rotationally-coupled maneuvers of aircraft, including nonlinear aerodynamic effects

    NASA Technical Reports Server (NTRS)

    Young, J. W.; Schy, A. A.; Johnson, K. G.

    1977-01-01

    An analytical method has been developed for predicting critical control inputs for which nonlinear rotational coupling may cause sudden jumps in aircraft response. The analysis includes the effect of aerodynamics which are nonlinear in angle of attack. The method involves the simultaneous solution of two polynomials in roll rate, whose coefficients are functions of angle of attack and the control inputs. Results obtained using this procedure are compared with calculated time histories to verify the validity of the method for predicting jump-like instabilities.

  10. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  11. System identification of a small low-cost unmanned aerial vehicle using flight data from low-cost sensors

    NASA Astrophysics Data System (ADS)

    Hoffer, Nathan Von

    Remote sensing has traditionally been done with satellites and manned aircraft. While. these methods can yield useful scientificc data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) provide greater possibilities for personal scientic research than traditional remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model for controller development, robust flight characteristics, and fault tolerance. One method of developing a model is system identification (system ID). In this thesis system ID of a small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors, data collection, data consistency checking, and data processing are described. Batch least squares (BLS) and BLS with EFOL are used to identify aerodynamic coecoefficients of the UAV. Results of these two methods with flight data are discussed.

  12. An economic assessment of STOL aircraft potential including terminal area environmental considerations, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.; Sokolsky, S.

    1974-01-01

    The results of an economic and environmental study of short haul airline systems using short takeoff and landing (STOL) aircraft are presented. The STOL system characteristics were optimized for maximum patronage at a specified return on investment, while maintaining noise impact compatibility with the terminal area. Supporting studies of aircraft air pollution and hub airport congestion relief were also performed. The STOL concept specified for this study was an Augmentor Wing turbofan aircraft having a field length capability of 2,000 ft. and an effective perceived noise level of 95 EPNdB at 500 ft. sideline distance. An economic and environmental assessment of the defined STOL system and a summary of the methodology, STOL system characteristics and arena characteristics are provided.

  13. The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.; hide

    2017-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.

  14. Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Bole, Brian M.; Vazquez, Sixto L.; Celaya, Jose R.; Strom, Thomas H.; Hill, Boyd L.; Smalling, Kyle M.; Quach, Cuong C.

    2015-01-01

    This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.

  15. Remotely Piloted Aircraft Systems (RPAS) for high resolution topography and monitoring: civil protection purposes on hydrogeological contexts

    NASA Astrophysics Data System (ADS)

    Bertacchini, Eleonora; Castagnetti, Cristina; Corsini, Alessandro; De Cono, Stefano

    2014-10-01

    The proposed work concerns the analysis of Remotely Piloted Aircraft Systems (RPAS), also known as drones, UAV (Unmanned Aerial Vehicle) or UAS (Unmanned Aerial System), on hydrogeological contexts for civil protection purposes, underlying the advantages of using a flexible and relatively low cost system. The capabilities of photogrammetric RPAS multi-sensors platform were examined in term of mapping, creation of orthophotos, 3D models generation, data integration into a 3D GIS (Geographic Information System) and validation through independent techniques such as GNSS (Global Navigation Satellite System). The RPAS used (multirotor OktoXL, of the Mikrokopter) was equipped with a GPS (Global Positioning System) receiver, digital cameras for photos and videos, an inertial navigation system, a radio device for communication and telemetry, etc. This innovative way of viewing and understanding the environment showed huge potentialities for the study of the territory, and due to its characteristics could be well integrated with aircraft surveys. However, such characteristics seem to give priority to local applications for rigorous and accurate analysis, while it remains a means of expeditious investigation for more extended areas. According to civil protection purposes, the experimentation was carried out by simulating operational protocols, for example for inspection, surveillance, monitoring, land mapping, georeferencing methods (with or without Ground Control Points - GCP) based on high resolution topography (2D and 3D information).

  16. Identification of Human Factors in Unmanned Aviation Via Pilot Incident Reports

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Cardoza, Colleen; Null, Cynthia

    2015-01-01

    There is a need for incident data relevant to the operation of civilian unmanned aircraft systems (UAS) in the National Air Space (NAS). Currently, very limited incident and accident data are available from military sources, and the tightly-restricted civilian UAS industry has produced very few incident reports that could shed light on design issues relevant to human factors. An exploratory study is being conducted to examine the feasibility of collecting voluntary critical incident reports from UAS pilots, and using the information to identify areas where human factors guidelines will be of assistance. Experienced UAS pilots are participating in small focus groups in which they are prompted to describe critical incidents that either reveal a system flaw, or highlight a case where the human operator contributed to system resilience or mission success. The de-identified incidents are being analyzed to identify contributing factors, with a focus on design issues that either hindered or assisted the pilot in dealing with the incident. Preliminary findings will be described.

  17. Test Platforms for Model-Based Flight Research

    NASA Astrophysics Data System (ADS)

    Dorobantu, Andrei

    Demonstrating the reliability of flight control algorithms is critical to integrating unmanned aircraft systems into the civilian airspace. For many potential applications, design and certification of these algorithms will rely heavily on mathematical models of the aircraft dynamics. Therefore, the aerospace community must develop flight test platforms to support the advancement of model-based techniques. The University of Minnesota has developed a test platform dedicated to model-based flight research for unmanned aircraft systems. This thesis provides an overview of the test platform and its research activities in the areas of system identification, model validation, and closed-loop control for small unmanned aircraft.

  18. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    PubMed Central

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  19. Integrated flight path planning system and flight control system for unmanned helicopters.

    PubMed

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  20. The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator aircraft during its maiden flight. The flight marks another milestone for the UCAV program, and verified the aircraft's flight control software

    NASA Image and Video Library

    2002-11-21

    The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.