Sample records for aircraft measurements show

  1. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  2. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  3. Aircraft wake RCS measurement

    NASA Astrophysics Data System (ADS)

    Gilson, William H.

    1994-07-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  4. Spatial Heterodyne Observation of Water (SHOW) from a high altitude aircraft

    NASA Astrophysics Data System (ADS)

    Bourassa, A. E.; Langille, J.; Solheim, B.; Degenstein, D. A.; Letros, D.; Lloyd, N. D.; Loewen, P.

    2017-12-01

    The Spatial Heterodyne Observations of Water instrument (SHOW) is limb-sounding satellite prototype that is being developed in collaboration between the University of Saskatchewan, York University, the Canadian Space Agency and ABB. The SHOW instrument combines a field-widened SHS with an imaging system to observe limb-scattered sunlight in a vibrational band of water (1363 nm - 1366 nm). Currently, the instrument has been optimized for deployment on NASA's ER-2 aircraft. Flying at an altitude of 70, 000 ft the ER-2 configuration and SHOW viewing geometry provides high spatial resolution (< 500 m) limb-measurements of water vapor in the Upper troposphere and lower stratosphere region. During an observation campaign from July 15 - July 22, the SHOW instrument performed 10 hours of observations from the ER-2. This paper describes the SHOW measurement technique and presents the preliminary analysis and results from these flights. These observations are used to validate the SHOW measurement technique and demonstrate the sampling capabilities of the instrument.

  5. Measurement of In-Flight Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

    1995-01-01

    Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

  6. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  7. Aircraft Wake Vortex Core Size Measurements

    DOT National Transportation Integrated Search

    2003-06-23

    We have examined data from three aircraft field tests designed, in part, to measure the size of the vortex cores generated by the aircraft. The field tests were performed between 1990 and 1997 at Idaho Falls, ID, Wallops Island, : VA, and John F. Ken...

  8. Measurements and analysis of aircraft airframe noise

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Lasagna, P. L.; White, K. C.

    1975-01-01

    Flyover measurements of the airframe noise of AeroCommander, JetStar, CV-990, and B-747 aircraft are presented. Data are shown for both cruise and landing configurations. Correlations between airframe noise and aircraft parameters are developed and presented. The landing approach airframe noise for the test aircraft was approximately 10 EPNdB below present FAA certification requirements.

  9. Analysis of wind profile measurements from an instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Paige, Terry S.; Murphy, Patrick J.

    1990-01-01

    The results of an experimental program to determine the capability of measuring wind profiles on support of STS operations with an instrumented aircraft are discussed. These results are a compilation of the flight experiments and the statistical data comparing the quality of the aircraft measurements with quasi-simultaneous and quasi-spatial overlapping Jimsphere measurements. An instrumented aircraft was chosen as a potential alternative to the Jimsphere/radar system for expediting the wind profile calculation by virtue of the ability of an aircraft to traverse the altitudes of interest in roughly 10 minutes. The two aircraft which participated in the study were F-104 and ER-2.

  10. Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721

    NASA Astrophysics Data System (ADS)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.

  11. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  12. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  13. Remote measurement of pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.

    1976-01-01

    This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.

  14. Guide to measurement of winds with instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

    1991-01-01

    Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

  15. Small Aircraft RF Interference Path Loss Measurements

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to more meaningful interference risk assessment.

  16. Vibrations measured in the passenger cabins of two jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mixson, J. S.; Scholl, H. F.

    1975-01-01

    Accelerations in the lateral and vertical directions were measured at two locations on the floor of a three-jet-engine aircraft and at two locations on the floor of a two-jet-engine aircraft during a total of 13 flights, each of which included taxiing, takeoff, ascent, cruise, descent, and landing. Accelerations over the frequency range 0 to 25 Hz were recorded continuously on magnetic tape and were synchronized with the VGH recorders in the aircraft so that vibratory accelerations could be correlated with the operating conditions of the aircraft. From the results it was indicated that the methodology used in segmenting the data, which were obtained in a continuous and repetitive manner, contributes to establishing baseline data representative of the flight characteristics of aircraft. Significant differences among flight conductions were found to occur. The lateral accelerations were approximately 15 percent of the vertical accelerations during flight but as much as 50 to 100 percent of the vertical accelerations during ground operations. The variation between the responses of the two aircraft was not statistically significant. The results also showed that more than 90 percent of the vibratory energy measured during flight occurred in the 0- to 3.0-Hz frequency range. Generally, the vibration amplitudes were normally distributed.

  17. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  18. Research on the aircraft level measurement by laser tracker

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Tang, Wuzhong; Cao, Chun

    2014-09-01

    The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.

  19. Measurements of the dose due to cosmic rays in aircraft

    NASA Astrophysics Data System (ADS)

    Vuković, B.; Lisjak, I.; Radolić, V.; Vekić, B.; Planinić, J.

    2006-06-01

    When the primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The cosmic radiation dose aboard A320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured with the Alpha Guard radon detector. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed by the flights Zagreb-Paris-Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the TLD dosimeter registered the total dose of 75 μSv and the average dose rate was 2.7 μSv/h. In the same month, February 2005, a traveling to Japan (24 h flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h.

  20. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  1. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  2. Aircraft noise measurement instrumentation and techniques

    DOT National Transportation Integrated Search

    1996-08-01

    This letter report describes aircraft noise measurement instrumentation to : be used in the field. It includes guidance on good field-measurement : practice, general rules-of-thumb, as well as references to appropriate : national and international st...

  3. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  4. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  5. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  6. Optical measurements of degradation in aircraft boundary layers

    NASA Technical Reports Server (NTRS)

    Kelsall, D.

    1980-01-01

    Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.

  7. Dynamic imaging and RCS measurements of aircraft

    NASA Astrophysics Data System (ADS)

    Jain, Atul; Patel, Indu

    1995-01-01

    Results on radar cross section (RCS) measurements and inverse synthetic aperture radar images of a Mooney 231 aircraft using a ground-to-air measurement system (GTAMS) and a KC-135 airplane using an airborne radar are presented. The Mooney 231 flew in a controlled path in both clockwise and counterclockwise orbits, and successively with the gear down, flaps in the take-off position and with the speed brakes up. The data indicates that RCS pattern measurements from both ground-based and airborne radar of flying aircraft are useful and that the inverse synthetic aperture radar (ISAR) images obtained are valuable for signature diagnostics.

  8. Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

    2002-01-01

    Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

  9. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  10. Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    2002-01-01

    An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that is in the presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.

  11. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  12. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  13. Greenhouse gas measurements from aircraft during CARVE

    NASA Astrophysics Data System (ADS)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  14. Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Looking ever so much like an alien spacecraft, the Altus II remotely piloted aircraft shows off some of the instruments and camera lenses mounted in its nose for a lightning study over Florida flown during the summer of 2002. The Altus Cumulus Electrification Study (ACES), led by Dr. Richard Blakeslee of NASA Marshall Space Flight center, focused on the collection of electrical, magnetic and optical measurements of thunderstorms. Data collected will help scientists understand the development and life cycles of thunderstorms, which in turn may allow meteorologists to more accurately predict when destructive storms may hit. The Altus II, built by General Atomics Aeronautical Systems, Inc., is one of several remotely operated aircraft developed and matured under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The program focused on developing airframe, propulsion, control system and communications technologies to allow unmanned aerial vehicles (UAVs) to operate at very high altitudes for long durations while carrying a variety of sensors, cameras or other instruments for science experiments, surveillance or telecommunications relay missions.

  15. A method for measuring aircraft height and velocity using dual television cameras

    NASA Technical Reports Server (NTRS)

    Young, W. R.

    1977-01-01

    A unique electronic optical technique, consisting of two closed circuit television cameras and timing electronics, was devised to measure an aircraft's horizontal velocity and height above ground without the need for airborne cooperative devices. The system is intended to be used where the aircraft has a predictable flight path and a height of less than 660 meters (2,000 feet) at or near the end of an air terminal runway, but is suitable for greater aircraft altitudes whenever the aircraft remains visible. Two television cameras, pointed at zenith, are placed in line with the expected path of travel of the aircraft. Velocity is determined by measuring the time it takes the aircraft to travel the measured distance between cameras. Height is determined by correlating this speed with the time required to cross the field of view of either camera. Preliminary tests with a breadboard version of the system and a small model aircraft indicate the technique is feasible.

  16. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  17. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  18. Real-time measurements of jet aircraft engine exhaust.

    PubMed

    Rogers, Fred; Arnott, Pat; Zielinska, Barbara; Sagebiel, John; Kelly, Kerry E; Wagner, David; Lighty, JoAnn S; Sarofim, Adel F

    2005-05-01

    Particulate-phase exhaust properties from two different types of ground-based jet aircraft engines--high-thrust and turboshaft--were studied with real-time instruments on a portable pallet and additional time-integrated sampling devices. The real-time instruments successfully characterized rapidly changing particulate mass, light absorption, and polycyclic aromatic hydrocarbon (PAH) content. The integrated measurements included particulate-size distributions, PAH, and carbon concentrations for an entire test run (i.e., "run-integrated" measurements). In all cases, the particle-size distributions showed single modes peaking at 20-40nm diameter. Measurements of exhaust from high-thrust F404 engines showed relatively low-light absorption compared with exhaust from a turboshaft engine. Particulate-phase PAH measurements generally varied in phase with both net particulate mass and with light-absorbing particulate concentrations. Unexplained response behavior sometimes occurred with the real-time PAH analyzer, although on average the real-time and integrated PAH methods agreed within the same order of magnitude found in earlier investigations.

  19. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  20. Aircraft measurements and analysis of severe storms: 1975 field experiment

    NASA Technical Reports Server (NTRS)

    Sinclair, P. C.

    1976-01-01

    Three aircraft and instrumentation systems were acquired in support of the severe storm surveillance program. The data results indicate that the original concept of a highly mobile research aircraft capability for obtaining detailed measurements of wind, temperature, dew point, etc., near and within specifically designated severe storms is entirely feasible and has been demonstrated for the first time by this program. This program is unique in that it is designed to be highly mobile in order to move to and/or with the developing storm systems to obtain the necessary measurements. Previous programs have all been fixed to a particular location and therefore have had to wait for the storms to come within their network. The present research is designed around a highly mobile aircraft measurements group in order to maximize the storm cases during the field measurements program.

  1. Aircraft measurements and analysis of severe storms: 1976 field experiment

    NASA Technical Reports Server (NTRS)

    Sinclair, P. C.

    1982-01-01

    Severe storm aircraft measurements are documented, as well as the instrumentation and operational features of aircraft mobility capabilities. The measurements and data analyses indicate that the concept of a highly mobile research aircraft capability for obtaining detailed measurements of wind, temperature, moisture, spherics, etc., near and within severe storm systems, forecast 48 hours in advance in a 1000 nm operating radius, is feasible, and was successfully demonstrated. The measurements and analyses reveal several severe storm features and insights with respect to storm air flow circulations and inflow-outflow orientation. Precipitation downdraft air is recirculated back into the updraft core below the scud cloud in both back and front feeder type storms. In a back feeder type storm, the downdraft outflow air ahead of the storm is also recirculated back into the updraft region near cloud base.

  2. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Saeki, T.; Yoshida, Y.; Yokota, T.; Sweeney, C.; Tans, P. P.; Biraud, S. C.; Machida, T.; Pittman, J. V.; Kort, E. A.; Tanaka, T.; Kawakami, S.; Sawa, Y.; Tsuboi, K.; Matsueda, H.

    2014-09-01

    Column-averaged dry-air mole fractions of methane (XCH4), retrieved from Greenhouse gases Observing SATellite (GOSAT) short-wavelength infrared (SWIR) spectra, were validated by using aircraft measurement data from the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. In the calculation of XCH4 from aircraft measurements (aircraft-based XCH4), other satellite data were used for the CH4 profiles above the tropopause. We proposed a data-screening scheme for aircraft-based XCH4 for reliable validation of GOSAT XCH4. Further, we examined the impact of GOSAT SWIR column averaging kernels (CAK) on the aircraft-based XCH4 calculation and found that the difference between aircraft-based XCH4 with and without the application of the GOSAT CAK was less than ±9 ppb at maximum, with an average difference of -0.5 ppb. We compared GOSAT XCH4 Ver. 02.00 data retrieved within ±2° or ±5° latitude-longitude boxes centered at each aircraft measurement site with aircraft-based XCH4 measured on a GOSAT overpass day. In general, GOSAT XCH4 was in good agreement with aircraft-based XCH4. However, over land, the GOSAT data showed a positive bias of 1.5 ppb (2.0 ppb) with a standard deviation of 14.9 ppb (16.0 ppb) within the ±2° (±5°) boxes, and over ocean, the average bias was 4.1 ppb (6.5 ppb) with a standard deviation of 9.4 ppb (8.8 ppb) within the ±2° (±5°) boxes. In addition, we obtained similar results when we used an aircraft-based XCH4 time series obtained by curve fitting with temporal interpolation for comparison with GOSAT data.

  3. A Low LET Radiation Spectrometer for Measuring Particle Doses in Space and Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Brucker, G. J.; Dachev, T. P.; Day, John H. (Technical Monitor)

    2002-01-01

    This paper presents experimental data that demonstrates the feasibility of fabricating a miniature nuclear particle dosimeter for monitoring doses in aircraft and satellites. The basic instrument is a Low Linear-Energy-Transfer (LET) Radiation Spectrometer (LoLRS) that is designed to measure the energy deposited by particles with low LET values. The heart of the instrument is a Silicon-Lithium Drifted Diode (SLDD). Test results show that the LoLRS can be used to monitor the radiation threat to personnel in flights of space- and aircraft and also to generate a comprehensive data base from aviation and satellite measurements that can contribute to the formulation of more accurate environmental radiation models for dose predictions with reduced uncertainty factors.

  4. Measurement and analysis of aircraft and vehicle LRCS in outfield test

    NASA Astrophysics Data System (ADS)

    Cao, Chang-Qing; Zeng, Xiao-dong; Fan, Zhao-jin; Feng, Zhe-jun; Lai, Zhi

    2015-04-01

    The measurement of aircraft and vehicle Laser Radar Cross Section (LRCS) is of crucial importance for the detection system evaluation and the characteristic research of the laser scattering. A brief introduction of the measuring theory of the laser scattering from the full-scale aircraft and vehicle targets is presented in this paper. By analyzing the measuring condition in outfield test, the laser systems and test steps are designed for full-scale aircraft and vehicle LRCS and verified by the experiment in laboratory. The processing data error 7% below is obtained of the laser radar cross section by using Gaussian compensation and elimination of sky background for original test data. The study of measurement and analysis proves that the proposed method is effective and correct to get laser radar cross section data in outfield test. The objectives of this study were: (1) to develop structural concepts for different LRCS fuselage configurations constructed of conventional materials; (2) to compare these findings with those of aircrafts or vehicles; (3) to assess the application of advanced materials for each configuration; (4) to conduct an analytical investigation of the aerodynamic loads, vertical drag and mission performance of different LRCS configurations; and (5) to compare these findings with those of the aircrafts or vehicles.

  5. ESCOMPTE experiment: intercomparison of four aircraft dynamical, thermodynamical, radiation and chemical measurements

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Corsmeier, U.; Kalthoff, N.; Kottmeier, C.; Lothon, M.; Wieser, A.; Hofherr, T.; Perros, P.

    2005-03-01

    Among seven airplanes involved in the Experience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emission (ESCOMPTE) experiment in 2001, four measured classical meteorological parameters, radiation fluxes, trace gases and turbulence (for three among four): the Dornier 128 from the Institut für Meteorologie und Klimaforschung, the Fokker 27 ARAT from the Institut National des Sciences de l'Univers, the Merlin 4 and Piper Aztec 23 from Météo France. This paper presents the results of intercomparison flights between three pairs of aircraft. The results are very similar for mean parameters except for the horizontal wind measurements provided by the Merlin that showed a problem that is probably linked to the measurement of the aircraft velocity. Further investigation is required to know whether corrections are possible or not for these wind measurements. Turbulence is studied along two legs over a flat and homogeneous area: in spite of the heterogeneity of the measured functions (one leg is close to the top of the boundary layer), the comparison is rather good. The relative accuracy of the data provided to the data base is given. It easily allows to use the huge amount of aircraft data collected during the experiment with very few restrictions. We underline some points where efforts should be borne for future experiments: wind coupling between Inertial Navigation System data and Global Positioning System (GPS) data, CO and NO x measurements.

  6. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  7. Assessing the shielding of engine noise by the wings for current aircraft using model predictions and measurements.

    PubMed

    Vieira, Ana; Snellen, Mirjam; Simons, Dick G

    2018-01-01

    Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

  8. Dimensional measuring techniques in the automotive and aircraft industry

    NASA Astrophysics Data System (ADS)

    Muench, K. H.; Baertlein, Hugh

    1994-03-01

    Optical tooling methods used in industry are rapidly being replaced by new electronic sensor techniques. The impact of new measuring technologies on the production process has caused major changes on the industrial shop floor as well as within industrial measurement systems. The paper deals with one particular industrial measuring system, the manual theodolite measuring system (TMS), within the aircraft and automobile industry. With TMS, setup, data capture, and data analysis are flexible enough to suit industry's demands regarding speed, accuracy, and mobility. Examples show the efficiency and the wide range of TMS applications. In cooperation with industry, the Video Theodolite System was developed. Its origin, functions, capabilities, and future plans are briefly described. With the VTS a major step has been realized in direction to vision systems for industrial applications.

  9. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  10. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-05-01

    Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  11. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2017-01-01

    This report addresses position corrections made to airspeed and aerodynamic flow angle measurements on fixed-wing aircraft. These corrections remove the effects of angular rates, which contribute to the measurements when the sensors are installed away from the aircraft center of mass. Simplified corrections, which are routinely used in practice and assume small flow angles and angular rates, are reviewed. The exact, nonlinear corrections are then derived. The simplified corrections are sufficient in most situations; however, accuracy diminishes for smaller aircraft that incur higher angular rates, and for flight at high air flow angles. This is demonstrated using both flight test data and a nonlinear flight dynamics simulation of a subscale transport aircraft in a variety of low-speed, subsonic flight conditions.

  12. PIV Measurements of Chevrons on F400 Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Frate, Franco

    2010-01-01

    Previous talks at this meeting have covered our collaborative work on high-energy jets such as present in tactical aircraft (those with supersonic plumes). The emphasis of this work is improving our understanding of flow physics and our prediction tools. In this presentation we will discuss recent flow diagnostics acquired using Particle Image Velocimetry (PIV) made on an underexpanded shocked jet plume from a tactical aircraft nozzle. In this presentation we show cross-sectional and streamwise cuts of both mean and turbulent velocities of an F404 engine nozzle with various chevron designs applied. The impact of chevron penetration, length, and width are documented. The impact of the parameters is generally nonlinear in measures considered here, a surprising result given the relatively smooth behavior of the noise to variations in these chevron parameters.

  13. Validation of XCO2 derived from SWIR of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H.; Sweeney, C.; Tans, P. P.; Andrews, A. E.; Patra, P. K.

    2011-12-01

    Column-averaged mixing ratios of carbon dioxide (XCO2) are retrieved from the Short-Wavelength InfraRed (SWIR) spectrum of Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). They are compared with the aircraft data measured by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, National Oceanic and Atmospheric Administration (NOAA), and National Institute for Environmental Studies (NIES). Because limited aircraft measurement was conducted within a few hours of the GOSAT overpass time, we prepared temporally interpolated aircraft-based XCO2 data by fitting with the function that contains yearly trend and annual/semiannual sinusoidal variations to compare with GOSAT XCO2. As for the GOSAT XCO2 data, those retrieved within ±2 degrees or ±5 degrees latitude/longitude box centered at each observation site were used. In order to compare the aircraft data with the satellite data, the GOSAT column averaging kernels (CAK) should be taken into account to calculate the aircraft-based XCO2. However, it is hard to apply GOSAT CAK with temporally interpolated aircraft data. Therefore, we evaluated the GOSAT CAK impact on the aircraft-based XCO2 calculation by using CONTRAIL data over Narita (35.8N, 140.4E) where the maximum temporally match-upped data are available. The difference in the aircraft-based XCO2 with and without GOSAT CAK is lower by approximately 0.3 ppm. Here, we made a comparison between GOSAT XCO2 and aircraft-based XCO2 without GOSAT CAK. Although GOSAT data are underestimated by approximately 7-9 ppm for comparison in every site, there is a good correlation between both datasets in some sites, such as high-latitude regions of North America, Europe, Siberia, and ocean regions. A direct comparison between GOSAT and aircraft XCO2 at all observation sites shows that GOSAT SWIR XCO2 is biased low by about 8 ppm.

  14. Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1987-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.

  15. Large-scale variability in marine stratocumulus clouds defined from simultaneous aircraft and satellite measurements

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Barlow, Roy W.

    1990-01-01

    Satellite images often show significant variations in the structure of marine stratocumulus clouds on scales ranging from 10 to 1000 km. This is illustrated where a GOES West satellite image shows a well-defined variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft measurements were made with the UK C-130 and the NCAR Electra on this day as part of the FIRE Marine Stratocumulus Intensive Field Observations (IFO). The mean, turbulent, and the microphysical structure of the clouds sampled in these two areas are compared an an attempt is made to explain the differences in cloud structure. In an attempt to identify any systematic differences between the measurements made with the two aircraft, data were analyzed that were collected on 14 July 1987 with the C-130 and the Electra flying in close formation at an altitude of 250 m. The microphysical and turbulence data are being compared in an attempt to explain the differences in the cloud liquid water content obtained with the two aircraft and the differences in cloud structure shown by the GOES image. In addition, data are being analyzed for three other days during the experiment when coordinated downstream flights were made with the Electra and the C-130.

  16. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  17. Measuring subjective response to aircraft noise: the effects of survey context.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2013-01-01

    In applied research, noise annoyance is often used as indicator of subjective reaction to aircraft noise in residential areas. The present study aims to show that the meaning which respondents attach to the concept of aircraft noise annoyance is partly a function of survey context. To this purpose a survey is conducted among residents living near Schiphol Airport, the largest airport in the Netherlands. In line with the formulated hypotheses it is shown that different sets of preceding questionnaire items influence the response distribution of aircraft noise annoyance as well as the correlational patterns between aircraft noise annoyance and other relevant scales.

  18. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; hide

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  19. Using In Situ Eddy Covariance Flux Measurements from a Low Flying Aircraft in the Arctic to Measure Regional Methane Fluxes.

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Healy, C. E.; Dumas, E. J.; Kochendorfer, J.; Munster, J. B.; Wilkerson, J.; Baker, B.; Anderson, J. G.

    2016-12-01

    The Arctic terrestrial and subsea permafrost region contains approximately 30% of the global carbon stock and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that flew over the North Slope of Alaska during August of 2013. The system combines a small methane instrument based on Integrated Cavity Output Spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. Surface fluxes are grouped by ecotope using a map based on LandSat 30 meter resolution data. We find that wet sedge areas dominate the methane fluxes during the first part of August, with methane emissions from the Sagavanirktok river being the second highest. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of two or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emission spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  20. Measurement of high altitude air quality using aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  1. Measurement of high-altitude air quality using aircraft.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  2. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  3. Analysis of Aircraft Clusters to Measure Sector-Independent Airspace Congestion

    NASA Technical Reports Server (NTRS)

    Bilimoria, Karl D.; Lee, Hilda Q.

    2005-01-01

    The Distributed Air/Ground Traffic Management (DAG-TM) concept of operations* permits appropriately equipped aircraft to conduct Free Maneuvering operations. These independent aircraft have the freedom to optimize their trajectories in real time according to user preferences; however, they also take on the responsibility to separate themselves from other aircraft while conforming to any local Traffic Flow Management (TFM) constraints imposed by the air traffic service provider (ATSP). Examples of local-TFM constraints include temporal constraints such as a required time of arrival (RTA), as well as spatial constraints such as regions of convective weather, special use airspace, and congested airspace. Under current operations, congested airspace typically refers to a sector(s) that cannot accept additional aircraft due to controller workload limitations; hence Dynamic Density (a metric that is indicative of controller workload) can be used to quantify airspace congestion. However, for Free Maneuvering operations under DAG-TM, an additional metric is needed to quantify the airspace congestion problem from the perspective of independent aircraft. Such a metric would enable the ATSP to prevent independent aircraft from entering any local areas of congestion in which the flight deck based systems and procedures may not be able to ensure separation. This new metric, called Gaggle Density, offers the ATSP a mode of control to regulate normal operations and to ensure safety and stability during rare-normal or off-normal situations (e.g., system failures). It may be difficult to certify Free Maneuvering systems for unrestricted operations, but it may be easier to certify systems and procedures for specified levels of Gaggle Density that could be monitored by the ATSP, and maintained through relatively minor flow-rate (RTA type) restrictions. Since flight deck based separation assurance is airspace independent, the challenge is to measure congestion independent of sector

  4. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  5. Measures of pilot performance during V/TOL aircraft landings on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1977-01-01

    Simulation experiments to determine the feasibility of landing V/TOL aircraft on ships at sea were studied. The motion and attitude of the aircraft relative to the landing platform was known at the instant of touchdown. The success of these experiments depended on the ability of the experimenter to measure the pilot's performance during the landing maneuver. To facilitate these measurements, the equations describing the motion of the aircraft and its attitude relative to the landing platform are presented in a form which is suitable for simulation purposes.

  6. Measuring the turbulent wind vector with a weight-shift Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Neidl, F.; Butterbach-Bahl, K.; Schmid, H. P.; Beyrich, F.; Zheng, X. H.; Foken, T.

    2009-09-01

    step of the calibration we employ a Markov Chain Monte Carlo based Bayesian optimization. Recording the posterior parameter distribution this optimizing procedure allows an integrated assessment of WV uncertainty as induced by the instrumental setup. To test whether the airborne measured WV is in agreement with ground based measurements we additionally performed flights at tall tower sites equipped with ultrasonic anemometers as well as a Sodar facility. The impact of the in-flight correction on the WV components is found to be in the order of 1 ms-1 in the horizontal and 0.1 ms-1 in the vertical. From racetrack comparisons we obtain a maximum final wind error of 0.9 ms-1 for horizontal and 0.2 ms-1 for vertical WV components before RVM correction. At that the vertical WV measurement is found to be independent from TAS. Ground truth comparisons show mean horizontal and vertical wind deviations of 0.2 ms-1, 0.1 ms-1 respectively for 10 minute averages. Deviations are independent of aircraft heading, sideslip angle respectively. From these findings we conclude that a thoroughly setup microlight aircraft is capable of measuring the WV components with an accuracy sufficient for EC applications.

  7. An investigation of errors and data processing techniques for an RF multilateration system. [position and velocity measurements of vertical takeoff aircraft during landing

    NASA Technical Reports Server (NTRS)

    Britt, C. L., Jr.

    1975-01-01

    The development of an RF Multilateration system to provide accurate position and velocity measurements during the approach and landing phase of Vertical Takeoff Aircraft operation is discussed. The system uses an angle-modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements and the coordinate and coordinate rate information is transmitted by an integral data link to the aircraft. Data processing techniques are analyzed to show advantages and disadvantages. Error analyses are provided to permit a comparison of the various techniques.

  8. TEPC measurements in commercial aircraft.

    PubMed

    Taylor, G C; Bentley, R D; Horwood, N A; Hunter, R; Iles, R H; Jones, J B L; Powell, D; Thomas, D J

    2004-01-01

    The collaborative project involving the Mullard Space Science Laboratory (MSSL), Virgin Atlantic Airways (VAA), the UK Civil Aviation Authority (CAA) and the UK National Physical Laboratory (NPL) has been performing tissue-equivalent proportional counter measurements of cosmic ray doses in commercial aircraft since January 2000. In that time data have been recorded on over 700 flights, including over 150 flights with Air New Zealand (ANZ). This substantial set of data from the southern hemisphere is an ideal complement to the London-based measurements performed primarily on VAA flights. Although some ANZ data remains to be analysed, dose information from 111 flights has been compared with the CARI and EPCARD computer codes. Overall, the agreement between the measurements and EPCARD was excellent (within 1% for the total ambient dose equivalent), and the difference in the total effective doses predicted by EPCARD and CARI was <5%.

  9. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An experimental technique is used to measure the structural power flow through an aircraft fuselage with the excitation near the wing attachment location. Because of the large number of measurements required to analyze the whole of an aircraft fuselage, it is necessary that a balance be achieved between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, the structural intensity vectors at locations distributed throughout the fuselage are measured. To minimize the errors associated with using a four transducers technique the measurement positions are selected away from bulkheads and stiffeners. Because four separate transducers are used, with each transducer having its own drive and conditioning amplifiers, phase errors are introduced in the measurements that can be much greater than the phase differences associated with the measurements. To minimize these phase errors two sets of measurements are taken for each position with the orientation of the transducers rotated by 180 deg and an average taken between the two sets of measurements. Results are presented and discussed.

  10. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  11. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  12. Pilot Workload Measurement and Experience on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1978-01-01

    Aircraft parameters and physiological parameters most indicative of crew workload were investigated. Recommendations were used to form the basis for a continuing study in which variations of the interval between heart beats are used as a measure of nonphysical workload. Preliminary results are presented and current efforts in further defining this physiological measure are outlined.

  13. The IAGOS Information System: From the aircraft measurements to the users.

    NASA Astrophysics Data System (ADS)

    Boulanger, Damien; Thouret, Valérie; Cammas, Jean-Pierre; Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Brenninkmeijer, Carl A. M.

    2013-04-01

    IAGOS (In-service Aircraft for a Global Observing System, http://www.iagos.org) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of atmospheric chemical composition throughout the troposphere and in the UTLS. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation industry. IAGOS consists of two complementary building blocks proving a unique global observation system: IAGOS-CORE deploys newly developed instrumentation for regular in-situ measurements of atmospheric chemical species both reactive and greenhouse gases (O3, CO, NOx, NOy, H2O, CO2, CH4), aerosols and cloud particles. In IAGOS-CARIBIC a cargo container is deployed monthly as a flying laboratory aboard one aircraft. Involved airlines ensure global operation of the network. Today, 5 aircraft are flying with the MOZAIC (3) or IAGOS-CORE (2) instrumentation namely 3 aircraft from Lufthansa, 1 from Air Namibia, and 1 from China Airlines Taiwan. A main improvement and new aspect of the IAGOS-CORE instrumentation compared to MOZAIC is to deliver the raw data in near real time (i.e. as soon as the aircraft lands data are transmitted). After a first and quick validation of the O3 and CO measurements, preliminary data are made available in the central database for both the MACC project (Monitoring Atmospheric Composition and Climate) and scientific research groups. In addition to recorded measurements, the database also contains added-value products such as meteorological information (tropopause height, air mass backtrajectories) and lagrangian model outputs (FLEXPART). Data access is handled by open

  14. Predicting Visibility of Aircraft

    PubMed Central

    Watson, Andrew; Ramirez, Cesar V.; Salud, Ellen

    2009-01-01

    Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO). In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration. PMID:19462007

  15. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  16. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO

  17. Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T.; Machida, T.; Sawa, Y.; Matsueda, H.; Sweeney, C.; Tans, P. P.; Andrews, A. E.; Biraud, S. C.; Tanaka, T.; Kawakami, S.; Patra, P. K.

    2013-10-01

    Column-averaged dry air mole fractions of carbon dioxide (XCO2) retrieved from Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed (SWIR) observations were validated with aircraft measurements by the Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) project, the National Oceanic and Atmospheric Administration (NOAA), the US Department of Energy (DOE), the National Institute for Environmental Studies (NIES), the HIAPER Pole-to-Pole Observations (HIPPO) program, and the GOSAT validation aircraft observation campaign over Japan. To calculate XCO2 based on aircraft measurements (aircraft-based XCO2), tower measurements and model outputs were used for additional information near the surface and above the tropopause, respectively. Before validation, we investigated the impacts of GOSAT SWIR column averaging kernels (CAKs) and the shape of a priori profiles on the aircraft-based XCO2 calculation. The differences between aircraft-based XCO2 with and without the application of GOSAT CAK were evaluated to be less than ±0.4 ppm at most, and less than ±0.1 ppm on average. Therefore, we concluded that the GOSAT CAK produces only a minor effect on the aircraft-based XCO2 calculation in terms of the overall uncertainty of GOSAT XCO2. We compared GOSAT data retrieved within ±2 or ±5° latitude/longitude boxes centered at each aircraft measurement site to aircraft-based data measured on a GOSAT overpass day. The results indicated that GOSAT XCO2 over land regions agreed with aircraft-based XCO2, except that the former is biased by -0.68 ppm (-0.99 ppm) with a standard deviation of 2.56 ppm (2.51 ppm), whereas the averages of the differences between the GOSAT XCO2 over ocean and the aircraft-based XCO2 were -1.82 ppm (-2.27 ppm) with a standard deviation of 1.04 ppm (1.79 ppm) for ±2° (±5°) boxes.

  18. Wind shear detection using measurement of aircraft total energy change

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1976-01-01

    Encounters with wind shears are of concern and have caused major accidents, particularly during landing approaches. Changes in the longitudinal component of the wind affect the aircraft by changing its kinetic energy with respect to the air. It is shown that an instrument which will measure and display the rate of change of total energy of the aircraft with respect to the air will give a leading indication of wind shear problems. The concept is outlined and some instrumentation and display considerations are discussed.

  19. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  20. Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.; Bradford, Deborah G.

    1999-01-01

    This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of

  1. Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew

    2016-04-01

    We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.

  2. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  3. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  4. Compatibility check of measured aircraft responses using kinematic equations and extended Kalman filter

    NASA Technical Reports Server (NTRS)

    Klein, V.; Schiess, J. R.

    1977-01-01

    An extended Kalman filter smoother and a fixed point smoother were used for estimation of the state variables in the six degree of freedom kinematic equations relating measured aircraft responses and for estimation of unknown constant bias and scale factor errors in measured data. The computing algorithm includes an analysis of residuals which can improve the filter performance and provide estimates of measurement noise characteristics for some aircraft output variables. The technique developed was demonstrated using simulated and real flight test data. Improved accuracy of measured data was obtained when the data were corrected for estimated bias errors.

  5. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  6. Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony

    1997-01-01

    NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.

  7. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    NASA Astrophysics Data System (ADS)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  8. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  9. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  10. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less

  11. Factors affecting measured aircraft sound levels in the vicinity of start-of-takeoff roll

    NASA Astrophysics Data System (ADS)

    Richard, Horonjeff; Fleming, Gregg G.; Rickley, Edward J.; Connor, Thomas L.

    This paper presents the findings of a recently conducted measurement and analysis program of jet transport aircraft sound levels in the vicinity of the star-of-takeoff roll. The purpose of the program was two-fold: (1) to evaluate the computational accuracy of the Federal Aviation Administration's Integrated Noise Model (INM) in the vicinity of start-of-takeoff roll with a recently updated database (INM 3.10), and (2) to provide guidance for future model improvements. Focusing on the second of these two goals, this paper examines several factors affecting Sound Exposure Levels (SELs) in the hemicircular area behind the aircraft brake release point at the start-of-takeoff. In addition to the aircraft type itself, these factors included the geometric relationship of the measurement site to the runway, the wind velocity (speed and direction), aircraft grow weight, and start-of-roll mode (static or rolling start).

  12. Long-term Airborne Black Carbon Measurements on a Lufthansa Passenger Aircraft

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Su, H.; Ditas, J.; Scharffe, D.; Wang, S.; Zhang, Y.; McMeeking, G. R.; Brenninkmeijer, C. A. M.; Poeschl, U.

    2015-12-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO2 the strongest component of current global warming. Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free troposphere, and in the UTLS (upper troposphere and lower stratosphere). In August 2014, a single particle soot photometer (SP2) was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 and carries out systematic observations of trace gas and aerosol sampling and on-line analyses, as well as DOAS remote sensing system at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The integration of a SP2 offers the possibility for the first long-term measurement of global distribution of black carbon. Up to date the SP2 measurements have been analyzed for 392 flights hours over four continents (Fig. 1). The first measurements show promising results of black carbon including periods when background concentrations in the UTLS were encountered. Beside a general distribution of number and mass of black carbon particles, peak events were detected with up to 20 times higher concentrations compared to the background. Moreover, high concentration plumes have been observed continuously over a range of 10,000 km. Interestingly, our results show also a generally lower amount of black carbon mass in the tropics compared to the mid latitude northern hemisphere.

  13. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Charlock, Thomas; Wielicki, Bruce; Kahn, Ralph; Martins, J. Vanderlei; Gatebe, Charles; Hobbs, Peter V.; Purgold, G. Carl; Redemann, Jens; Remer, Lorraine

    2004-01-01

    NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS

  14. Triple Oxygen Isotope Measurement of Nitrate to Analyze Impact of Aircraft Emissions

    NASA Astrophysics Data System (ADS)

    Chan, Sharleen

    With 4.9% of total anthropogenic radiative forcing attributed to aircraft emissions, jet engines combust copious amounts of fuel producing gases including: NOx (NO + NO2), SOx, VOC's and fine particles [IPCC (1999), IPCC (2007), Lee et al., 2009]. The tropospheric non-linear relationships between NOx, OH and O3 contribute uncertainties in the ozone budget amplified by poor understanding of the NOx cycle. In a polluted urban environment, interaction of gases and particles produce various new compounds that are difficult to measure with analytical tools available today [Thiemens, 2006]. Using oxygen triple isotopic measurement of NO3 to investigate gas to particle formation and chemical transformation in the ambient atmosphere, this study presents data obtained from aerosols sampled at NASA's Dryden Aircraft Operations Facility (DAOF) in Palmdale, CA during January and February, 2009 and Los Angeles International Airport (LAX) during Fall 2009, Winter 2010, and Spring 2010. The aerosols collected from jet aircraft exhaust in Palmdale exhibit an oxygen isotope anomaly (Delta17O =delta 17O -0.52 delta18O) increase with photochemical age of particles (-0.22 to 26.41‰) while NO3 concentration decreases from 53.76 - 5.35ppm with a radial distance from the jet dependency. Bulk aerosol samples from LAX exhibit seasonal variation with Delta17 O and NO3 concentration peaking in winter suggesting multiple sources and increased fossil fuel burning. Using oxygen triple isotopes of NO3, we are able to distinguish primary and secondary nitrate by aircraft emissions allowing new insight into a portion of the global nitrogen cycle. This represents a new and potentially important means to uniquely identify aircraft emissions on the basis of the unique isotopic composition of jet aircraft emissions.

  15. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-05-01

    Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane

  16. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under

  17. Computer Aided Deflection Measurement of an Aircraft Wing.

    DTIC Science & Technology

    1987-09-01

    force the wing to oscillate at a given frequency and compare the output characteristics to the inputs. This second method allows for more extensive tests...34 ’ .:. ... :.: ..-. ’ . .... ? .? ’ * .". . . ".. . % .. " . ,-..,...-.. . " compare the resulting output oscillations to the input forces. This would...the wing’s performance when new and provide a measuring point against which future tests can be compared after the aircraft has been in service. While

  18. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    NASA Astrophysics Data System (ADS)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes

  19. Aircraft measurement of ozone turbulent flux in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Affre, Ch.; Carrara, A.; Lefebre, F.; Druilhet, A.; Fontan, J.; Lopez, A.

    In May 1995, the "Chimie-Creil 95" experiment was undertaken in the north of France. The field data are first used to validate the methodology for airborne measurement of ozone flux. A certain number of methodological problems due to the location of the fast ozone sensor inside the airplane are, furthermore discussed. The paper describes the instrumentation of the ARAT (Avion de Recherche Atmosphérique et de Télédétection), an atmospheric research and remote-sensing aircraft used to perform the airborne measurements, the area flown over, the meteorological conditions and boundary layer stability conditions. These aircraft measurements are then used to determine ozone deposition velocity and values are proposed for aerodynamic, bulk transfer coefficients (ozone and momentum). The paper also establishes the relationship between the normalised standard deviation and stability parameters ( z/ L) for ozone, temperature, humidity and vertical velocity. The laws obtained are then presented.

  20. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements

    DOE PAGES

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen; ...

    2017-06-05

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. In our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in themore » western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ~1/3 of the total emissions detected midday by the aircraft and ~2/3 of the west–east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. And while the aircraft approach is valid, quantitative, and independent, this study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.« less

  1. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements.

    PubMed

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen; Pickering, Cody; Mielke-Maday, Ingrid; Dlugokencky, Edward J; Tans, Pieter P; Vaughn, Tim; Bell, Clay; Zimmerle, Daniel; Wolter, Sonja; King, Clark W; White, Allen B; Coleman, Timothy; Bianco, Laura; Schnell, Russell C

    2017-06-20

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. Our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in the western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ∼1/3 of the total emissions detected midday by the aircraft and ∼2/3 of the west-east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. While the aircraft approach is valid, quantitative, and independent, our study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.

  2. Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwietzke, Stefan; Pétron, Gabrielle; Conley, Stephen

    Divergence in recent oil and gas related methane emission estimates between aircraft studies (basin total for a midday window) and emissions inventories (annualized regional and national statistics) indicate the need for better understanding the experimental design, including temporal and spatial alignment and interpretation of results. In our aircraft-based methane emission estimates in a major U.S. shale gas basin resolved from west to east show (i) similar spatial distributions for 2 days, (ii) strong spatial correlations with reported NG production (R 2 = 0.75) and active gas well pad count (R 2 = 0.81), and (iii) 2× higher emissions in themore » western half (normalized by gas production) despite relatively homogeneous dry gas and well characteristics. Operator reported hourly activity data show that midday episodic emissions from manual liquid unloadings (a routine operation in this basin and elsewhere) could explain ~1/3 of the total emissions detected midday by the aircraft and ~2/3 of the west–east difference in emissions. The 22% emission difference between both days further emphasizes that episodic sources can substantially impact midday methane emissions and that aircraft may detect daily peak emissions rather than daily averages that are generally employed in emissions inventories. And while the aircraft approach is valid, quantitative, and independent, this study sheds new light on the interpretation of previous basin scale aircraft studies, and provides an improved mechanistic understanding of oil and gas related methane emissions.« less

  3. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  4. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  5. Aircraft mass budgeting to measure CO2 emissions of Rome, Italy.

    PubMed

    Gioli, Beniamino; Carfora, Maria F; Magliulo, Vincenzo; Metallo, Maria C; Poli, Attilio A; Toscano, Piero; Miglietta, Franco

    2014-04-01

    Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.

  6. Measuring human performance on NASA's microgravity aircraft

    NASA Technical Reports Server (NTRS)

    Morris, Randy B.; Whitmore, Mihriban

    1993-01-01

    Measuring human performance in a microgravity environment will aid in identifying the design requirements, human capabilities, safety, and productivity of future astronauts. The preliminary understanding of the microgravity effects on human performance can be achieved through evaluations conducted onboard NASA's KC-135 aircraft. These evaluations can be performed in relation to hardware performance, human-hardware interface, and hardware integration. Measuring human performance in the KC-135 simulated environment will contribute to the efforts of optimizing the human-machine interfaces for future and existing space vehicles. However, there are limitations, such as limited number of qualified subjects, unexpected hardware problems, and miscellaneous plane movements which must be taken into consideration. Examples for these evaluations, the results, and their implications are discussed in the paper.

  7. Three-Dimensional Measurement Applied in Design Eye Point of Aircraft Cockpits.

    PubMed

    Wang, Yanyan; Guo, Xiaochao; Liu, Qingfeng; Xiao, Huajun; Bai, Yu

    2018-04-01

    Inappropriate design eye point (DEP) will lead to nonstandard sitting postures, including nonneutral head positions and other uncomfortable sitting postures, which are high risk factors for neck pain in fighter pilots exposed to high G forces. Therefore, application of a 3D measurement method to collect data regarding eye position while in the cruising sitting posture in the aircraft cockpit to guide the design eye point has been proposed. A total of 304 male fixed wing aircraft pilots were divided into two groups. Subgroup A (N = 48) were studied to define the cruising posture during flight. Subgroup B (N = 256) were studied with Romer 3D measurement equipment to locate the cruising eye position of the pilots in a simulated cockpit. The 3D data were compared to DEP data in the current standard cockpit. According to 3D measurement, the vertical distance from the cruising eye point to the neutral seat reference point was 759 mm, which is 36 mm lower than that of the Chinese standard DEP and also lower than the U.S. military standard. The horizontal distance was 131 mm, which is 24 mm shorter than that of the Chinese standard. The current DEP data cannot fulfill the needs of fighter pilots and should be amended according to the results of the 3D measurement so that pilots can acquire the optimal cruising posture in flight. This new method has the value of practical application to investigate cockpit ergonomics and the measurement data can guide DEP design.Wang Y, Guo X, Liu Q, Xiao H, Bai Y. Three-dimensional measurement applied in design eye point of aircraft cockpits. Aerosp Med Hum Perform. 2018; 89(4):371-376.

  8. Structureborne noise measurements on a small twin-engine aircraft

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Martini, K. F.

    1988-01-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  9. Structureborne noise measurements on a small twin-engine aircraft

    NASA Astrophysics Data System (ADS)

    Cole, J. E., III; Martini, K. F.

    1988-06-01

    Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.

  10. Power Measurement Errors on a Utility Aircraft

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2002-01-01

    Extensive flight test data obtained from two recent performance tests of a UH 60A aircraft are reviewed. A power difference is calculated from the power balance equation and is used to examine power measurement errors. It is shown that the baseline measurement errors are highly non-Gaussian in their frequency distribution and are therefore influenced by additional, unquantified variables. Linear regression is used to examine the influence of other variables and it is shown that a substantial portion of the variance depends upon measurements of atmospheric parameters. Correcting for temperature dependence, although reducing the variance in the measurement errors, still leaves unquantified effects. Examination of the power difference over individual test runs indicates significant errors from drift, although it is unclear how these may be corrected. In an idealized case, where the drift is correctable, it is shown that the power measurement errors are significantly reduced and the error distribution is Gaussian. A new flight test program is recommended that will quantify the thermal environment for all torque measurements on the UH 60. Subsequently, the torque measurement systems will be recalibrated based on the measured thermal environment and a new power measurement assessment performed.

  11. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2013-03-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. Flights typically last 8 h and cover a large area, traveling from Kodiak up to Barrow, Alaska, with altitude profiles near the coast and in the interior. NOAA instrumentation on each flight includes a flask sampling system, a continuous cavity ring-down spectroscopy (CRDS) carbon dioxide (CO2)/methane (CH4)/carbon monoxide (CO)/water vapor (H2O) analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction and present an assessment of analyzer performance over a three-year period. Overall analytical uncertainty of CRDS measurements in 2011 is estimated to be 0.15 ppm, 1.4 ppb, and 5 ppb for CO2, CH4, and CO, respectively, considering short-term precision, calibration uncertainties, and water vapor correction uncertainty. The stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 4 ppb for CO2, CH4, and CO, respectively, based on differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. We conclude that the uncertainty reported for our measurements would not be significantly affected if the measurements were made without in

  12. Application of laser velocimetry to aircraft wake-vortex measurements

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Orloff, K. L.

    1977-01-01

    The theory and use of a laser velocimeter that makes simultaneous measurements of vertical and longitudinal velocities while rapidly scanning a flow field laterally are described, and its direct application to trailing wake-vortex research is discussed. Pertinent measurements of aircraft wake-vortex velocity distributions obtained in a wind tunnel and water towing tank are presented. The utility of the velocimeter to quantitatively assess differences in wake velocity distributions due to wake dissipating devices and span loading changes on the wake-generating model is also demonstrated.

  13. Aircraft electric field measurements: Calibration and ambient field retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.

    1994-01-01

    An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.

  14. Operation Hardtack. Project 2.8. Fallout Measurements by Aircraft and Rocket Sampling,

    DTIC Science & Technology

    1985-09-01

    EXTRICTED WVE O OPERATION HARDTACK-PROJECT 2.8 Fallout Measurements by Aircraft and Rocket Sampling S. L. Whitcher L R. Bunney R. R. Soule U.S. Naval...Aircraft and Rocket Sampling , Extracted Version 12. PERSONAL AUTHOR(S) Whitcher, S.L.; Bunney, L.R.; Soule , R.R.; and daRoza, R.A. 13a. TYPE OF REPORT 13b...ROCKET SAMPLING S. L. Whitcher L.R. Bunney Rt. R. Soule , Project Officer U.S. Nav2l Radiological Defense Laboratory San Francisco 24, California R.A

  15. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  16. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  17. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements

    NASA Astrophysics Data System (ADS)

    Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu; Schuck, Tanja J.; Brenninkmeijer, Carl A. M.; Imasu, Ryoichi; Satoh, Masaki

    2012-06-01

    Because very few measurements of atmospheric carbon dioxide (CO2) are available in the tropics, estimates of surface CO2 fluxes in tropical regions are beset with considerable uncertainties. To improve estimates of tropical terrestrial fluxes, atmospheric CO2 inversion was performed using passenger aircraft based measurements of the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project in addition to the surface measurement data set of GLOBALVIEW-CO2. Regional monthly fluxes at the earth's surface were estimated using the Bayesian synthesis approach focusing on the period 2006-2008 using the Nonhydrostatic Icosahedral Atmospheric Model-based Transport Model (NICAM-TM). By adding the aircraft to the surface data, the posterior flux errors were greatly reduced; specifically, error reductions of up to 64% were found for tropical Asia regions. This strong impact is closely related to efficient vertical transport in the tropics. The optimized surface fluxes using the CONTRAIL data were evaluated by comparing the simulated atmospheric CO2 distributions with independent aircraft measurements of the Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container (CARIBIC) project. The inversion with the CONTRAIL data yields the global carbon sequestration rates of 2.22 ± 0.28 Pg C yr-1 for the terrestrial biosphere and 2.24 ± 0.27 Pg C yr-1 for the oceans (the both are adjusted by riverine input of CO2). For the first time the CONTRAIL CO2 measurements were used in an inversion system to identify the areas of greatest impact in terms of reducing flux uncertainties.

  18. Summary of aircraft results for 1978 southeastern Virginia urban plume measurement study of ozone, nitrogen oxides, and methane

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; Sebacher, D. I.

    1980-01-01

    Ozone production was determined from aircraft and surface in situ measurements, as well as from an airborne laser absorption spectrometer. Three aircraft and approximately 10 surface stations provided air-quality data. Extensive meteorological, mixing-layer-height, and ozone-precursor data were also measured. Approximately 50 hrs (9 flight days) of data from the aircraft equipped to monitor ozone, nitrogen oxides, dewpoint temperature, and temperature are presented. In addition, each experiment conducted is discussed.

  19. Space weather effects measured in atmospheric radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  20. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  1. A Comprehensive Program for Measurement of Military Aircraft Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicatemore » that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.« less

  2. Measuring Wildfires From Aircraft And Satellites

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Meyers, J. S.

    1991-01-01

    Aircraft and satellite systems yield wide-area views, providing total coverage of affected areas. System developed for use aboard aircraft includes digital scanner that records data in 12 channels. Transmits data to ground station for immediate use in fighting fires. Enables researchers to estimate gaseous and particulate emissions from fires. Provides information on temperatures of flame fronts and soils, intensities and rate of spread of fires, characteristics of fuels and smoke plumes, energy-release rates, and concentrations and movements of trace gases. Data relates to heating and cooling of soils, loss of nutrients, and effects on atmospheric, terrestrial, and aquatic systems.

  3. Detectability of high power aircraft

    NASA Astrophysics Data System (ADS)

    Dettmar, Klaus Uwe; Kruse, Juergen; Loebert, Gerhard

    1992-05-01

    In addition to the measures aiming at improving the probability of survival for an aircraft, including aircraft performance, flight profile selection, efficient electronic warfare equipment, and self protection weapons, it is shown that an efficient measure consists of reducing aircraft signature (radar, infrared, acoustic, visual) in connection with the use of signature avionics. The American 'stealth' aircrafts are described as examples.

  4. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    NASA Astrophysics Data System (ADS)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms-1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  5. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  6. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  7. A solid state converter for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1972-01-01

    The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.

  8. An aircraft measurement technique for formaldehyde and soluble carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Lee, Yin-Nan; Zhou, Xianliang; Leaitch, W. Richard; Banic, Catharine M.

    1996-12-01

    An aircraft technique was developed for measuring ambient concentrations of formaldehyde and a number of soluble carbonyl compounds, including glycolaldehyde, glyoxal, methylglyoxal, glyoxylic acid, and pyruvic acid. Sampling was achieved by liquid scrubbing using a glass coil scrubber in conjunction with an autosampler which collected 5-min integrated liquid samples in septum-sealed vials. Analysis was performed on the ground after flight using high-performance liquid chromatography following derivatization of the carbonyl analytes with 2,4-dinitrophenylhydrazine; the limit of detection was 0.01 to 0.02 parts per billion by volume (ppbv) in the gas phase. Although lacking a real-time capability, this technique offers the advantage of simultaneously measuring six carbonyl compounds, savings in space and power on the aircraft, and a dependable ground-based analysis. This technique was deployed on the Canadian National Research Council DHC-6 Twin Otter during the 1993 summer intensive of the North Atlantic Regional Experiment. The data obtained on August 28, 1993, during a pollutant transport episode are presented as an example of the performance and capability of this technique.

  9. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  10. Aircraft-Based Measurements of Point Source Methane Emissions in the Barnett Shale Basin.

    PubMed

    Lavoie, Tegan N; Shepson, Paul B; Cambaliza, Maria O L; Stirm, Brian H; Karion, Anna; Sweeney, Colm; Yacovitch, Tara I; Herndon, Scott C; Lan, Xin; Lyon, David

    2015-07-07

    We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing plants, one compressor station, and three landfills during five flights conducted in October 2013. Results are compared to other aircraft- and surface-based measurements of the same facilities, and to estimates based on a national study of gathering and processing facilities emissions and 2013 annual average emissions reported to the U.S. EPA Greenhouse Gas Reporting Program (GHGRP). For the eight sources, CH4 emission measurements from the aircraft-based mass balance approach were a factor of 3.2-5.8 greater than the GHGRP-based estimates. Summed emissions totaled 7022 ± 2000 kg hr(-1), roughly 9% of the entire basin-wide CH4 emissions estimated from regional mass balance flights during the campaign. Emission measurements from five natural gas management facilities were 1.2-4.6 times larger than emissions based on the national study. Results from this study were used to represent "super-emitters" in a newly formulated Barnett Shale Inventory, demonstrating the importance of targeted sampling of "super-emitters" that may be missed by random sampling of a subset of the total.

  11. High-Altitude Aircraft-Based Electric-Field Measurements above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX- 3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements will be shown. Our new mills have an internal 16-bit A/D, with a resolution of 0.25 V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  12. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  13. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1982-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  14. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  15. Imposing strong constraints on tropical terrestrial CO2 fluxes using passenger aircraft based measurements

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Machida, T.; Sawa, Y.; Matsueda, H.; Schuck, T. J.; Brenninkmeijer, C. A.; Imasu, R.; Satoh, M.

    2011-12-01

    Better understanding of the global and regional carbon budget is needed to perform a reliable prediction of future climate with an earth system model. However, the reliability of CO2 source/sink estimation by inverse modeling, which is one of the promising methods to estimate regional carbon budget, is limited because of sparse observational data coverage. Very few observational data are available in tropics. Therefore, especially the reconstruction of tropical terrestrial fluxes has considerable uncertainties. In this study, regional CO2 fluxes for 2006-2008 are estimated by inverse modeling using the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) in addition to the surface measurement dataset of GLOBALVIEW-CO2. CONTRAIL is a recently established CO2 measurement network using in-situ measurement instruments on board commercial aircraft. Five CONTRAIL aircraft travel back and forth between Japan and many areas: Europe, North America, Southeast Asia, South Asia, and Australia. The Bayesian synthesis approach is used to estimate monthly fluxes for 42 regions using NICAM-TM simulations with existing CO2 flux datasets and monthly mean observational data. It is demonstrated that the aircraft data have great impact on estimated tropical terrestrial fluxes. By adding the aircraft data to the surface data, the analyzed uncertainty of tropical fluxes has been reduced by 15 % and more than 30 % uncertainty reduction rate is found in Southeast and South Asia. Specifically, for annual net CO2 fluxes, nearly neutral fluxes of Indonesia, which is estimated using the surface dataset alone, turn to positive fluxes, i.e. carbon sources. In Indonesia, a remarkable carbon release during the severe drought period of October-December in 2006 is estimated, which suggests that biosphere respiration or biomass burning was larger than the prior fluxes. Comparison of the optimized atmospheric CO2 with independent aircraft measurements of CARIBIC tends to validate

  16. Lightning induced currents in aircraft wiring using low level injection techniques

    NASA Technical Reports Server (NTRS)

    Stevens, E. G.; Jordan, D. T.

    1991-01-01

    Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.

  17. Modeling of aircraft exhaust emissions and infrared spectra for remote measurement of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Beier, K.; Schreier, F.

    1994-10-01

    Infrared (IR) molecular spectroscopy is proposed to perform remote measurements of NOx concentrations in the exhaust plume and wake of aircraft. The computer model NIRATAM is applied to simulate the physical and chemical properties of the exhaust plume and to generate low resolution IR spectra and synthetical thermal images of the aircraft in its natural surroundings. High-resolution IR spectra of the plume, including atmospheric absorption and emission, are simulated using the molecular line-by-line radiation model FASCODE2. Simulated IR spectra of a Boeing 747-400 at cruising altitude for different axial and radial positions in the jet region of the exhaust plume are presented. A number of spectral lines of NO can be identified that can be discriminated from lines of other exhaust gases and the natural atmospheric background in the region around 5.2 µm. These lines can be used to determine NO concentration profiles in the plume. The possibility of measuring nitrogen dioxide NO2 is also discussed briefly, although measurements turn out to be substantially less likely than those of NO. This feasibility study compiles fundamental data for the optical and radiometric design of an airborne Fourier transform spectrometer and the preparation of in-flight measurements for monitoring of aircraft pollutants

  18. Accurate aircraft wind measurements using the global positioning system (GPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobosy, R.J.; Crawford, T.L., McMillen, R.T., Dumas, E.J.

    1996-11-01

    High accuracy measurements of the spatial distribution of wind speed are required in the study of turbulent exchange between the atmosphere and the earth. The use of a differential global positioning system (GPS) to determine the sensor velocity vector component of wind speed is discussed in this paper. The results of noise and rocking testing are summarized, and fluxes obtained from the GPS-based methods are compared to those measured from systems on towers and airplanes. The GPS-based methods provided usable measurements that compared well with tower and aircraft data at a significantly lower cost. 21 refs., 1 fig., 2 tabs.

  19. Directional acoustic measurements by laser Doppler velocimeters. [for jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) were used as velocity microphones to measure sound pressure level in the range of 90-130 db, spectral components, and two-point cross correlation functions for acoustic noise source identification. Close agreement between LDV and microphone data is observed. It was concluded that directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet aircraft noise.

  20. Aircraft measurements of pollution species near Bermuda and the east coast of the United States during CASE-WATOX. Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunter, R.L.; Boatman, J.F.

    1989-10-01

    Chemical, meteorological, and aerosol measurements were made with the NOAA King Air C-90 aircraft during July 1988 near Bermuda and the east coast of the U.S. The study extended the 1985 and 1986 Western Atlantic Ocean Experiment (WATOX) and initiated coordinated aircraft and ship measurements, following the design of the Coordinated Air Sea Experiment (CASE), in which flights were planned to be made in the vicinity of the NOAA ship Mt. Mitchell. The report lists the objectives of the CASE-WATOX program; the instrumentation used, and the data obtained with the aircraft; a general outline of ship and aircraft coordination andmore » instrumentation; and the aircraft data processing, quality and availability.« less

  1. High-Altitude Aircraft-Based Electric-Field Measurements Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Blakeslee, R. J.; Bailey, J. C.; Stewart, M. F.; Blair, A. K.

    1999-01-01

    We have developed a new set of eight electric field mills that were flown on a NASA ER-2 high-altitude aircraft. During the Third Convection And Moisture EXperiment (CAMEX-3; Fall, 1998), measurements of electric field, storm dynamics, and ice microphysics were made over several hurricanes. Concurrently, the TExas-FLorida UNderflights (TEFLUN) program was being conducted to make the same measurements over Gulf Coast thunderstorms. Sample measurements are shown: typical flight altitude is 20km. Our new mills have an internal 16-bit A/D, with a resolution of 0.25V/m per bit at high gain, with a noise level less than the least significant bit. A second, lower gain channel gives us the ability to measure fields as high as 150 kV/m.

  2. Measurement of aircraft wakes at 250-meter altitude with a 10.6-micron CW laser Doppler velocimeter

    DOT National Transportation Integrated Search

    1978-01-01

    The use of a CW laser Doppler velocimeter (LDV) to study aircraft wake vortices began in 1969 (Ref. 1). This early development of the techniques culminated in measurements on wakes of landing aircraft at the John F. Kennedy International Airport in 1...

  3. Miniature chemical ionization mass spectrometer for light aircraft measurements of tropospheric ammonia

    NASA Astrophysics Data System (ADS)

    Silver, J. A.; Bomse, D. S.; Massick, S. M.; Zondlo, M. A.

    2003-12-01

    Tropospheric ammonia plays important roles in the nucleation, growth, composition, and chemistry of aerosol particles. Unfortunately, high frequency and sensitive measurements of gas phase ammonia are lacking in most airborne-based field campaigns. Chemical ionization mass spectrometers (CIMS) have shown great promise for ammonia measurements, but CIMS instruments typically consume large amounts of power, are highly labor intensive, and are very heavy for most airborne platforms. These characteristics of CIMS instruments severely limit their potential deployment on smaller and lighter aircraft, despite the strong desire for ammonia measurements in atmospheric chemistry field campaigns. To this end, a CIMS ammonia instrument for light aircraft is being developed using a double-focusing, miniature mass spectrometer. The size of the mass spectrometer, comparable to a small apple, allows for higher operating pressures (0.1 mTorr) and lower pumping requirements. Power usage, including pumps and electronics, is estimated to be around 300 W, and the overall instrument including pumps, electronics, and permeation cells is expected to be about the size of a small monitor. The ion source uses americium-241 to generate protonated water ions which proton transfer to form ammonium ions. The ion source is made with commercially available ion optics to minimize machining costs. Mass spectra over its working range (~ 5-120 amu) are well represented by Gaussian shaped peaks. By examining the peak widths as a function of mass location, the resolution of the instrument was determined experimentally to be around 110 (m/delta m). The sensitivity, selectivity, power requirements, size, and performance characteristics of the miniature mass spectrometer will be described along with the possibilities for CIMS measurements on light aircraft.

  4. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  5. A measuring stand for a ducted fan aircraft propulsion unit

    NASA Astrophysics Data System (ADS)

    Hlaváček, David

    2014-03-01

    The UL-39 ultra-light aircraft which is being developed by the Department of Aerospace Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, is equipped with an unconventional ducted fan propulsion unit. The unit consists of an axial fan driven by a piston engine and placed inside a duct ended with a nozzle. This article describes the arrangement of a modernised measuring stand for this highly specific propulsion unit which will be able to measure the fan pressure ratio and velocity field in front of and behind the fan and its characteristic curve.

  6. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  7. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  8. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  9. NO and NOy in the upper troposphere: Nine years of CARIBIC measurements onboard a passenger aircraft

    NASA Astrophysics Data System (ADS)

    Stratmann, G.; Ziereis, H.; Stock, P.; Brenninkmeijer, C. A. M.; Zahn, A.; Rauthe-Schöch, A.; Velthoven, P. V.; Schlager, H.; Volz-Thomas, A.

    2016-05-01

    Nitrogen oxide (NO and NOy) measurements were performed onboard an in-service aircraft within the framework of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). A total of 330 flights were completed from May 2005 through April 2013 between Frankfurt/Germany and destination airports in Canada, the USA, Brazil, Venezuela, Chile, Argentina, Colombia, South Africa, China, South Korea, Japan, India, Thailand, and the Philippines. Different regions show differing NO and NOy mixing ratios. In the mid-latitudes, observed NOy and NO generally shows clear seasonal cycles in the upper troposphere with a maximum in summer and a minimum in winter. Mean NOy mixing ratios vary between 1.36 nmol/mol in summer and 0.27 nmol/mol in winter. Mean NO mixing ratios range between 0.05 nmol/mol and 0.22 nmol/mol. Regions south of 40°N show no consistent seasonal dependence. Based on CO observations, low, median and high CO air masses were defined. According to this classification, more data was obtained in high CO air masses in the regions south of 40°N compared to the midlatitudes. This indicates that boundary layer emissions are more important in these regions. In general, NOy mixing ratios are highest when measured in high CO air masses. This dataset is one of the most comprehensive NO and NOy dataset available today for the upper troposphere and is therefore highly suitable for the validation of atmosphere-chemistry-models.

  10. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  11. A pilot study of human response to general aviation aircraft noise

    NASA Technical Reports Server (NTRS)

    Stearns, J.; Brown, R.; Neiswander, P.

    1983-01-01

    A pilot study, conducted to evaluate procedures for measuring the noise impact and community response to general aviation aircraft around Torrance Municipal Airport, a typical large GA airport, employed Torrance Airport's computer-based aircraft noise monitoring system, which includes nine permanent monitor stations surrounding the airport. Some 18 residences near these monitor stations were equipped with digital noise level recorders to measure indoor noise levels. Residents were instructed to fill out annoyance diaries for periods of 5-6 days, logging the time of each annoying aircraft overflight noise event and judging its degree of annoyance on a seven-point scale. Among the noise metrics studied, the differential between outdoor maximum A-weighted noise level of the aircraft and the outdoor background level showed the best correlation with annoyance; this correlation was clearly seen at only high noise levels, And was only slightly better than that using outdoor aircraft noise level alone. The results indicate that, on a national basis, a telephone survey coupled with outdoor noise measurements would provide an efficient and practical means of assessing the noise impact of general aviation aircraft.

  12. Near-field commercial aircraft contribution to nitrogen oxides by engine, aircraft type, and airline by individual plume sampling.

    PubMed

    Carslaw, David C; Ropkins, Karl; Laxen, Duncan; Moorcroft, Stephen; Marner, Ben; Williams, Martin L

    2008-03-15

    Nitrogen oxides (NOx) concentrations were measured in individual plumes from aircraft departing on the northern runway at Heathrow Airport in west London. Over a period of four weeks 5618 individual plumes were sampled by a chemiluminescence monitor located 180 m from the runway. Results were processed and matched with detailed aircraft movement and aircraft engine data using chromatographic techniques. Peak concentrations associated with 29 commonly used engines were calculated and found to have a good relationship with N0x emissions taken from the International Civil Aviation Organization (ICAO) databank. However, it is found that engines with higher reported NOx emissions result in proportionately lower NOx concentrations than engines with lower emissions. We show that it is likely that aircraft operational factors such as takeoff weight and aircraftthrust setting have a measurable and important effect on concentrations of N0x. For example, NOx concentrations can differ by up to 41% for aircraft using the same airframe and engine type, while those due to the same engine type in different airframes can differ by 28%. These differences are as great as, if not greater than, the reported differences in NOx emissions between different engine manufacturers for engines used on the same airframe.

  13. RETRACTED ARTICLE: Validation of mean and turbulent parameters measured from the aircraft in the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kwon, Byung Hyuk; Lee, Gyuwon

    2010-11-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale) experiment, which took place between 04 Oct. and 17 Nov. 1993, was conducted over the oceanic Azores current located in the Azores basin. The SST (Sea Surface Temperature) field was characterized in the SEMAPHORE area (31°-38°N; 21°-28°W) by a large meander with a SST gradient of about 1°C per 100 km. In order to study the evolution of the MABL (Marine Atmospheric Boundary Layer) over the ocean, the mean and the turbulent data were evaluated by the measurement with two aircraft and a ship in different meteorological conditions. Three cases of low pressure and three cases of high pressure are mainly presented here. For the six cases, the satellite images (NOAA) did not show any relation between the SST field and the cloud cover. At each flight level, the decrease of the SST with the altitude due to the divergence of the infrared radiation flux from the ocean is 0.25°C per 100 m. For the comparison between the two aircraft, the mean thermodynamic and dynamic parameters show a good agreement except for the temperature. The dispersion of the sensible heat flux is larger than that of the latent heat flux due to the weak sensible heat flux over the ocean both in the intercomparison between two aircraft and in the comparison between the aircraft and the ship.

  14. Propulsion controlled aircraft computer

    NASA Technical Reports Server (NTRS)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  15. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-12-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. The sole measurement site at Cape Rama does not constrain CO2 fluxes during the summer monsoon season. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and ACTM transport model simulations. The applicability of the model's transport parameterization is confirmed using multi-tracer (SF6, CH4, N2O) simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr-1 for the years 2007 and 2008, primarily during the summer monsoon season when the water limitation for this tropical ecosystem is relaxed. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude by the CONTRAIL program over Asia aboard Japan Airlines passenger aircraft (Patra et al., 2011). Major challenges remain the verification of the inverse model flux seasonality and annual totals by bottom-up estimations using field measurements and terrestrial ecosystem models.

  16. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  17. A compact, fast UV photometer for measurement of ozone from research aircraft

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2012-09-01

    In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60-cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at <200 hPa, 1 Hz at 200-500 hPa, and 0.5 Hz at ≥ 500 hPa), high accuracy (3% excluding operation in the 300-450 hPa range, where the accuracy may be degraded to about 5%), and excellent precision (1.1 × 1010 O3 molecules cm-3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 hPa) that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  18. Inferring Small Scale Dynamics from Aircraft Measurements of Tracers

    NASA Technical Reports Server (NTRS)

    Sparling, L. C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The millions of ER-2 and DC-8 aircraft measurements of long-lived tracers in the Upper Troposphere/Lower Stratosphere (UT/LS) hold enormous potential as a source of statistical information about subgrid scale dynamics. Extracting this information however can be extremely difficult because the measurements are made along a 1-D transect through fields that are highly anisotropic in all three dimensions. Some of the challenges and limitations posed by both the instrumentation and platform are illustrated within the context of the problem of using the data to obtain an estimate of the dissipation scale. This presentation will also include some tutorial remarks about the conditional and two-point statistics used in the analysis.

  19. Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1985-01-01

    This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.

  20. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  1. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE PAGES

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...

    2017-10-30

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  2. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses.

    PubMed

    Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R

    2017-10-01

    A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.

  3. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  4. Numerical and flight measured interior noise characteristics of a twin-engine turboprop general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Marulo, F.; Lecce, L.; de Rosa, S.; D'Amato, C. A.; Verde, G.

    The paper presents the flight test results of an interior noise measurement campaign on a twin-engine turboprop general aviation aircraft conducted for assessing the real values inside such aircraft and for approaching the problem of its noise reduction. Simultaneously a numerical study has been performed in order to correlate the experimental and the theoretical values, trying to come out with some guidelines for possible improvements without increasing excessively the costs of such study.

  5. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-03-01

    Terrestrial CO2 flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the BEPS model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced. CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements have improved the inversion results.

  6. Aircraft operations classification system : technical summary.

    DOT National Transportation Integrated Search

    1999-07-01

    In this project, we consider the development and deployment of systems for measuring aircraft activity at airports. This would include determining the type of aircraft and the type of aircraft activity. The type of aircraft is a basic type such as he...

  7. The MOYA aircraft campaign: First measurements of methane, ethane and C-13 isotopes from West African biomass burning and other regional sources using the UK FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Lee, James; Hopkins, James; Young, Stuart; Bauguitte, Stéphane; Gallagher, Martin; Fisher, Rebecca; Lowry, David; Nisbet, Euan

    2017-04-01

    Global methane concentrations continue to rise due to an imbalance between sources and sinks. There remains little consensus on the relative components of the manifold source types and their geographical origin. The Global Methane Budget and Yearly Assessments (MOYA) project is tasked with better characterising the global methane budget through an augmented global measurement and modelling programme. As part of MOYA, the UK's Facility for Airborne Atmospheric Measurement (FAAM), will fly four campaigns based out of West Africa and Ascension Island in the period 2017-2019, to focus on the important role of tropical sources. The first of these, to be conducted in late February 2017, will focus on the biomass burning season in West Africa. This paper will present the plan for future FAAM MOYA campaigns and report on our first aircraft data gathered in the West African region. The new addition of an interband cascade laser spectrometer to the FAAM aircraft, flown in this campaign for the first time, promises to provide the first real-time, continuous, and simultaneous, airborne measurements of methane, ethane and methane C-13 isotopologues. Together, these measurements, when interpreted in combination with other trace gases and aerosol measured on the aircraft, will serve as case studies to inform modelling of regional and global fluxes through their isotopic fingerprints.

  8. Aircraft measurements of NO and NOy at 12 km over the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Koike, M.; Kondo, Y.; Makino, Y.; Sugimura, Y.

    1994-01-01

    Measurements of nitric oxide (NO) and total reactive nitrogen (NOy) at altitudes about 12 km were made from two aircraft missions over the central and western Pacific Ocean at latitudes between 65 deg N and 65 deg S during the International Strato-Tropospheric Air Chemistry (INSTAC) program. NO measurements were performed during the first mission in late February and early march 1990, while NOy measurements were performed during the second mission in October 1990. Lowest NO and NOy mixing ratios in the upper troposphere were observed near the equator to be about 30 to approximately 70pptv and 150 to approximately 220pptv, respectively. NOy mixing ratios in the upper troposphere were higher in the northern middle latitude than in the southern middle latitude; 300 to approximately 900pptv in 30 deg N to approximately 50 deg N and 250 to approximately 400pptv around 25 deg S and 50 deg S possibly due to the transport of the polluted air from the boundary layer and the emissions from the commercial aircraft in the northern middle latitudes. Near the equator up to 40 deg S, the NO values showed very high variability and reached between 200 and 2000 pptv. NOy(pptv)/ozone(ppbv) ratios in the upper troposphere were between about 3 and 20 and these values seem to be higher in the lower latitude except for the polluted air in the northern middle latitude. These NOy/ozone ratios in the equatorial upper troposphere are higher than those in the lower stratosphere observed by others. These features of NO and NOy in the equatorial upper troposphere suggest that NOx is produced possibly by the lightning.

  9. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U.

    2011-05-01

    Measurements of gaseous nitrogen and sulfur oxide emissions in young aircraft exhaust plumes give insight into chemical oxidation processes inside aircraft engines. Particularly, the OH-induced formation of nitrous acid (HONO) from nitrogen oxide (NO) and sulfuric acid (H2SO4) from sulfur dioxide (SO2) inside the turbine which is highly uncertain, need detailed analysis to address the climate impact of aviation. We report on airborne in situ measurements at cruise altitudes of HONO, NO, NOy, and SO2 in 9 wakes of 8 different types of modern jet airliners, including for the first time also an A380. Measurements of HONO and SO2 were made with an ITCIMS (Ion Trap Chemical Ionization Mass Spectrometer) using a new ion-reaction scheme involving SF5- reagent ions. The measured molar ratios HONO/NO and HONO/NOy with averages of 0.038 ± 0.010 and 0.027 ± 0.005 were found to decrease systematically with increasing NOx emission-index (EI NOx). We calculate an average EI HONO of 0.31 ± 0.12 g NO2 kg-1. Using reliable measurements of HONO and NOy, which are less adhesive than H2SO4 to the inlet walls, we derive the OH-induced conversion fraction of fuel sulfur to sulfuric acid $\\varepsilon$ with an average of 2.2 ± 0.5 %. $\\varepsilon$ also tends to decrease with increasing EI NOx, consistent with earlier model simulations. The lowest HONO/NO, HONO/NOy and $\\varepsilon$ was observed for the largest passenger aircraft A380.

  10. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-02-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr-1 (1Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.

  11. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-05-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual amplitude of carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37 ± 0.20 Pg C yr-1 (1 Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.

  12. Gas- and particle-phase chemical composition measurements onboard the G-1 research aircraft during the GoAmazon campaign.

    NASA Astrophysics Data System (ADS)

    Shilling, J.; Pekour, M. S.; Fortner, E.; Hubbe, J. M.; Longo, K.; Martin, S. T.; Mei, F.; Springston, S. R.; Tomlinson, J. M.; Wang, J.

    2014-12-01

    The Green Ocean Amazon (GoAmazon) campaign conducted from January 2014 - December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the DOE G-1 research aircraft was deployed from February 17th - March 25th 2014 and September 6th - October 5th 2014 to investigate aerosol and cloud properties aloft. An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were part of the G-1 research aircraft payload and were used to investigate aerosol gas- and particle-phase chemical composition. Here we present preliminary analysis of the aerosol and gas phase chemical composition. PTR-MS measurements show that isoprene and its oxidation products are the dominant VOCs during research flights. HR-AMS measurements reveal that the particle phase is dominated by organic material with smaller concentrations of sulfate and nitrate observed. Organic particle concentrations are enhanced when encountering the urban plume from Manaus. During the wet season, we observe increased concentrations of organic particle when passing through low-altitude clouds. PMF analysis of the organic mass spectra shows that the chemical composition of the particles observed in-cloud is distinctly different from particles observed outside clouds. We will also compare measurements made during the wet and dry seasons.

  13. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  14. Measurement and computer simulation of antennas on ships and aircraft for results of operational reliability

    NASA Astrophysics Data System (ADS)

    Kubina, Stanley J.

    1989-09-01

    The review of the status of computational electromagnetics by Miller and the exposition by Burke of the developments in one of the more important computer codes in the application of the electric field integral equation method, the Numerical Electromagnetic Code (NEC), coupled with Molinet's summary of progress in techniques based on the Geometrical Theory of Diffraction (GTD), provide a clear perspective on the maturity of the modern discipline of computational electromagnetics and its potential. Audone's exposition of the application to the computation of Radar Scattering Cross-section (RCS) is an indication of the breadth of practical applications and his exploitation of modern near-field measurement techniques reminds one of progress in the measurement discipline which is essential to the validation or calibration of computational modeling methodology when applied to complex structures such as aircraft and ships. The latter monograph also presents some comparison results with computational models. Some of the results presented for scale model and flight measurements show some serious disagreements in the lobe structure which would require some detailed examination. This also applies to the radiation patterns obtained by flight measurement compared with those obtained using wire-grid models and integral equation modeling methods. In the examples which follow, an attempt is made to match measurements results completely over the entire 2 to 30 MHz HF range for antennas on a large patrol aircraft. The problem of validating computer models of HF antennas on a helicopter and using computer models to generate radiation pattern information which cannot be obtained by measurements are discussed. The use of NEC computer models to analyze top-side ship configurations where measurement results are not available and only self-validation measures are available or at best comparisons with an alternate GTD computer modeling technique is also discussed.

  15. New capability for ozone dial profiling measurements in the troposphere and lower stratosphere from aircraft

    NASA Astrophysics Data System (ADS)

    Hair, Johnathan; Hostetler, Chris; Cook, Anthony; Harper, David; Notari, Anthony; Fenn, Marta; Newchurch, Mike; Wang, Lihua; Kuang, Shi; Knepp, Travis; Burton, Sharon; Ferrare, Richard; Butler, Carolyn; Collins, Jim; Nehrir, Amin

    2018-04-01

    Recently, we successfully demonstrated a new compact and robust ozone DIAL lidar for smaller aircraft such as the NASA B200 and the ER-2 high-altitude aircraft. This is the first NASA airborne lidar to incorporate advanced solid-state lasers to produce the required power at the required ultraviolet wavelengths, and is compact and robust enough to operate nearly autonomously on the high-altitude ER-2 aircraft. This technology development resulted in the first new NASA airborne ozone DIAL instrument in more than 15 years. The combined ozone, aerosol, and clouds measurements provide valuable information on the chemistry, radiation, and dynamics of the atmosphere. In particular, from the ER-2 it offers a unique capability to study the upper troposphere and lower stratosphere.

  16. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1999-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  17. The LIULIN-3M Radiometer for Measuring Particle Doses in Space and on Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Tomov, B. T.; Dimitrov, P. G.; Brucker, G. J.; Obenschain, Art (Technical Monitor)

    2002-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  18. Measurements of Long-Lived Trace Gases from Commercial Aircraft Platforms: Development of Instrumentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.

  19. A Game-Theoretic Measure of Presence for Assessing Aircraft Carrier Options.

    DTIC Science & Technology

    1982-10-01

    AD-A121 599 A GAME -THEORETIC MEASURE 0F PRESENCE FOR ASSESSIN NO ANALYSES ALEXANDRIA VA PROGRAM ANALYR PRE P S IE O ESE UNCLASSIFED JH GPOTTE ET...1. REPORT MNUM 1 L GOVT ACCESRIM IM. REINT5 CPAALOG NUOGG 14. TITLE Cid ubMsj S. TYPE OF REPORT & PERIOD COVERED A Game -Theoretic Measure of...NOTES C Is. KEY wOrS (0mM. 0a No" f .a..eaup meM RSEI’ p eek ... l6t Game theory, Zero-sum games , Col Blotto games , aircraft carriers, alternative

  20. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  1. The Use of In-service Passenger Aircraft for Measuring Atmospheric Composition on a Global Scale : the European Research Infrastructure IAGOS

    NASA Astrophysics Data System (ADS)

    Blot, R.; Nedelec, P.; Petetin, H.; Thouret, V.; Cohen, Y.

    2017-12-01

    The In-Service Aircraft for a Global Observing System (IAGOS; http://www.iagos.org) is an European Research Infrastructure that provides cost-effective global atmospheric composition measurements at high resolution using commercial passenger aircraft. It is the continuation of the MOZAIC (1994-2014) and the CARIBIC (since 1997) programs that has provided a unique scientific database using 6 aircraft operated by European airlines over two decades. Thanks to growing interests of several international Airlines to contribute to the academic climate research, the IAGOS aircraft fleet (started in 2011), with the IAGOS-CORE basic instrumentation, has expanded to 9 Airbus A340/A330 aircraft up to now. Here, we present this IAGOS-CORE instrumentation that continuously sample carbon monoxide, ozone, water vapor and cloud droplets. We focus on carbon monoxide and ozone measurements which are performed by optimized, but well known, methods such as UV absorption and IR correlation. We describe the data processing/validation and the data quality control. With already more than 20 and 15 years of continuous ozone and carbon monoxide measurements, respectively, the IAGOS/MOZAIC data are particularly suitable for climatologies and trends. Also, since commercial aircraft are daily operated, the near-real time IAGOS-CORE data are also used to observe pollution plumes and to validate air-quality models as well as satellite products.

  2. Carbon balance of China constrained by CONTRAIL aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Wang, H. M.; Chen, J. M.; Machida, T.; Zhou, L. X.; Ju, W. M.; Matsueda, H.; Sawa, Y.

    2014-09-01

    Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002-2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2-12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.

  3. Comparative evaluation of twenty pilot workload assessment measure using a psychomotor task in a moving base aircraft simulator

    NASA Technical Reports Server (NTRS)

    Connor, S. A.; Wierwille, W. W.

    1983-01-01

    A comparison of the sensitivity and intrusion of twenty pilot workload assessment techniques was conducted using a psychomotor loading task in a three degree of freedom moving base aircraft simulator. The twenty techniques included opinion measures, spare mental capacity measures, physiological measures, eye behavior measures, and primary task performance measures. The primary task was an instrument landing system (ILS) approach and landing. All measures were recorded between the outer marker and the middle marker on the approach. Three levels (low, medium, and high) of psychomotor load were obtained by the combined manipulation of windgust disturbance level and simulated aircraft pitch stability. Six instrument rated pilots participated in four seasons lasting approximately three hours each.

  4. Use of Collocated KWAJEX Satellite, Aircraft, and Ground Measurements for Understanding Ambiguities in TRMM Radiometer Rain Profile Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven

    2002-01-01

    Coordinated ground, aircraft, and satellite observations are analyzed from the 1999 TRMM Kwajalein Atoll field experiment (KWAJEX) to better understand the relationships between cloud microphysical processes and microwave radiation intensities in the context of physical evaluation of the Level 2 TRMM radiometer rain profile algorithm and uncertainties with its assumed microphysics-radiation relationships. This talk focuses on the results of a multi-dataset analysis based on measurements from KWAJEX surface, air, and satellite platforms to test the hypothesis that uncertainties in the passive microwave radiometer algorithm (TMI 2a12 in the nomenclature of TRMM) are systematically coupled and correlated with the magnitudes of deviation of the assumed 3-dimensional microphysical properties from observed microphysical properties. Re-stated, this study focuses on identifying the weaknesses in the operational TRMM 2a12 radiometer algorithm based on observed microphysics and radiation data in terms of over-simplifications used in its theoretical microphysical underpinnings. The analysis makes use of a common transform coordinate system derived from the measuring capabilities of the aircraft radiometer used to survey the experimental study area, i.e., the 4-channel AMPR radiometer flown on the NASA DC-8 aircraft. Normalized emission and scattering indices derived from radiometer brightness temperatures at the four measuring frequencies enable a 2-dimensional coordinate system that facilities compositing of Kwajalein S-band ground radar reflectivities, ARMAR Ku-band aircraft radar reflectivities, TMI spacecraft radiometer brightness temperatures, PR Ku-band spacecraft radar reflectivities, bulk microphysical parameters derived from the aircraft-mounted cloud microphysics laser probes (including liquid/ice water contents, effective liquid/ice hydrometeor radii, and effective liquid/ice hydrometeor variances), and rainrates derived from any of the individual ground, aircraft

  5. Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft

    NASA Technical Reports Server (NTRS)

    Situ, Wen; DeYoung, Russel J.

    1998-01-01

    Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.

  6. Turboprop aircraft performance response to various environmental conditions

    NASA Astrophysics Data System (ADS)

    Ashenden, Russell Allen

    1997-10-01

    This study evaluated aircraft and airfoil performance response to various environmental conditions. These conditions included clear air, warm rain, ice only, mixed phase and supercooled drops encountered during 19 separate flights. Supercooled droplets consisting of cloud, drizzle and rain sizes were the main focus of this study. Aircraft response was quantified by rates of change in aircraft rate-of-climb capability, lift and drag coefficients and lift over drag ratio. Airfoil degradation due to simulated ice shapes and drizzle ice roughness was measured in a wind tunnel for comparison. The aircraft performance parameters were compared to environmental hydrometeor parameters quantifying the environmental conditions. Results show that encounters with supercooled drizzle drops, or SCDD, resulted in maximum rates of performance degradation. These high rates of degradation forced the pilot to take evasive action within 5 minutes of entering these hazardous conditions. Encounters with supercooled cloud and rain sized drops resulted in minor to low rates of performance degradation whereas encounters with supercooled drops in low ice particle concentrations resulted in only minor rates of degradation. In addition, aircraft response to high ice particle concentrations and low liquid water, following an SCDD encounter, resulted in rapid performance recovery. The airfoil evaluations show similar results where the drizzle drop ice shape and simulated drizzle ice roughness resulted in the highest performance degradation. These evaluations also show that the most sensitive surface location is on the suction side between 6 and at least 11% of airfoil chord. Ice contaminations in this area are beyond the protective de-icing boots of most aircraft and lead to severe degradations in lift and drag characteristics. The results presented herein show a strong relationship between aircraft response and environmental parameters utilizing the larger drops in the hydrometeor distribution

  7. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  8. Soft-Ground Aircraft Arresting Systems.

    DTIC Science & Technology

    1987-08-01

    19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a

  9. Validation of Cloud Optical Parameters from Passive Remote Sensing in the Arctic by using the Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2017-12-01

    Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.

  10. Analysis and calculation of lightning-induced voltages in aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1974-01-01

    Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.

  11. Microphysical and Optical Properties of Saharan Dust Measured during the ICE-D Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Ryder, Claire; Marenco, Franco; Brooke, Jennifer; Cotton, Richard; Taylor, Jonathan

    2017-04-01

    During August 2015, the UK FAAM BAe146 research aircraft was stationed in Cape Verde off the coast of West Africa. Measurements of Saharan dust, and ice and liquid water clouds, were taken for the ICE-D (Ice in Clouds Experiment - Dust) project - a multidisciplinary project aimed at further understanding aerosol-cloud interactions. Six flights formed part of a sub-project, AER-D, solely focussing on measurements of Saharan dust within the African dust plume. Dust loadings observed during these flights varied (aerosol optical depths of 0.2 to 1.3), as did the vertical structure of the dust, the size distributions and the optical properties. The BAe146 was fully equipped to measure size distributions covering aerosol accumulation, coarse and giant modes. Initial results of size distribution and optical properties of dust from the AER-D flights will be presented, showing that a substantial coarse mode was present, in agreement with previous airborne measurements. Optical properties of dust relating to the measured size distributions will also be presented.

  12. Automation of an RCS (Radar Cross Section) measurement system and its application to investigate the electromagnetic scattering from scale model aircraft canopies

    NASA Astrophysics Data System (ADS)

    Owens, Scott A.

    1989-12-01

    The purpose of this study was twofold, the first objective was to complete the development of AFIT's Far-Field Radar Range with a fully automated measurement process. The second objective was to use the facility to investigate the scattering of metallic versus transparent aircraft canopies relative to the scattering of the total aircraft. The approach for the investigation was: (1) to measure scale model aircraft to determine the effect of the RCS of the canopy/cockpit area on the RCS of the total aircraft; and (2) to design and measure a test body which would isolate the canopy/cockpit area from the rest of the aircraft. The result of the work on the first task is a software package called AFIT RCS Measurement Software (ARMS). The successful performance of the far-field range was validated by very favorable comparisons with the Wright Research and Development Center's anechoic chamber. The scale model measurements suggest at most a 5 dB difference between the scattering from the two extreme cases. The test body, however, clearly demonstrated differences up to 20 dB at certain frequencies. This study documents the upper and lower bounds of the subject measurements in an indoor measurement range. The Air Force has expressed interest in steering the investigation to examine materials and/or canopy construction.

  13. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  14. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  15. Review of subjective measures of human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Mayes, W. H.

    1976-01-01

    The development of aircraft noise rating scales and indexes is reviewed up to the present time. Single event scales, multiple event indexes, and their interrelation with each other, are considered. Research requirements for further refinement and development of aircraft noise rating quantification factors are discussed.

  16. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  17. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  18. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units.

    PubMed

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-12-11

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  19. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    PubMed Central

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-01-01

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter. PMID:27973429

  20. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    NASA Astrophysics Data System (ADS)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  1. Measurement of aircraft xenon strobe light characteristics

    DOT National Transportation Integrated Search

    1976-08-01

    This report provides data on the characteristics of aircraft xenon strobe lights related to their potential for use as the cooperative element in Optical IR (Infrared) Airborne Proximity Warning Indicator (APWI) systems. It includes a description of ...

  2. Aircraft measurements of microwave emission from Arctic Sea ice

    USGS Publications Warehouse

    Wilheit, T.; Nordberg, W.; Blinn, J.; Campbell, W.; Edgerton, A.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at the 0.811-cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice. ?? 1971.

  3. Aircraft measurements of microwave emission from Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.; Blinn, J.; Campbell, W. J.; Edgerton, A. T.; Nordberg, W.

    1971-01-01

    Measurements of the microwave emission from Arctic Sea ice were made with aircraft at 8 wavelengths ranging from 0.510 cm to 2.81 cm. The expected contrast in emissivities between ice and water was observed at all wavelengths. Distributions of sea ice and open water were mapped from altitudes up to 11 km in the presence of dense cloud cover. Different forms of ice also exhibited strong contrasts in emissivity. Emissivity differences of up to 0.2 were observed between two types of ice at 0.811 cm wavelength. The higher emissivity ice type is tentatively identified as having been formed more recently than the lower emissivity ice.

  4. The Influence of Aircraft Speed Variations on Sensible Heat-Flux Measurements by Different Airborne Systems

    NASA Astrophysics Data System (ADS)

    Martin, Sabrina; Bange, Jens

    2014-01-01

    Crawford et al. (Boundary-Layer Meteorol 66:237-245, 1993) showed that the time average is inappropriate for airborne eddy-covariance flux calculations. The aircraft's ground speed through a turbulent field is not constant. One reason can be a correlation with vertical air motion, so that some types of structures are sampled more densely than others. To avoid this, the time-sampled data are adjusted for the varying ground speed so that the modified estimates are equivalent to spatially-sampled data. A comparison of sensible heat-flux calculations using temporal and spatial averaging methods is presented and discussed. Data of the airborne measurement systems , Helipod and Dornier 128-6 are used for the analysis. These systems vary in size, weight and aerodynamic characteristics, since the is a small unmanned aerial vehicle (UAV), the Helipod a helicopter-borne turbulence probe and the Dornier 128-6 a manned research aircraft. The systematic bias anticipated in covariance computations due to speed variations was neither found when averaging over Dornier, Helipod nor UAV flight legs. However, the random differences between spatial and temporal averaging fluxes were found to be up to 30 % on the individual flight legs.

  5. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  6. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust.

    PubMed Central

    Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D

    2000-01-01

    We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as

  7. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  8. Effects of aircraft cabin noise on passenger comfort.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Rolny, Vinzent

    2012-01-01

    The effects of cabin noise on subjective comfort assessments were systematically investigated in order to reveal optimisation potentials for an improved passenger noise acceptance. Two aircraft simulation studies were conducted. An acoustic laboratory test facility provided with loudspeaker systems for realistic sound presentations and an aircraft cabin simulator (Dornier Do 728) with a high degree of ecological validity were used. Subjects were exposed to nine different noise patterns (three noise levels ranging from 66 to 78 dB(A) combined with three different frequency spectra). Regression analysis demonstrated a significant increase of passengers' acceptance with lower noise levels and significant effects of different frequency spectra determined by seat position in the aircraft cabin (front, middle, rear). Acoustic cabin design should therefore consider measures beyond noise level reduction altering noise characteristics to improve passengers' comfort and well-being in the aircraft cabin. To improve passenger comfort in the aircraft with respect to cabin noise, passengers' reactions to specific noise conditions were systematically investigated. Two laboratory studies showed significant dose-response relationships between sound pressure level and subjective comfort ratings which differed due to the noise at specific seat positions in the aircraft.

  9. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1991-01-01

    An experimental technique is used to measure structural intensity through an aircraft fuselage with an excitation load applied near one of the wing attachment locations. The fuselage is a relatively large structure, requiring a large number of measurement locations to analyze the whole of the structure. For the measurement of structural intensity, multiple point measurements are necessary at every location of interest. A tradeoff is therefore required between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, structural intensity vectors are measured at locations distributed throughout the fuselage. To minimize the errors associated with using the four transducer technique, the measurement locations are selected to be away from bulkheads and stiffeners. Furthermore, to eliminate phase errors between the four transducer measurements, two sets of data are collected for each position, with the orientation of the platform with the four transducers rotated by 180 degrees and an average taken between the two sets of data. The results of these measurements together with a discussion of the suitability of the approach for measuring structural intensity on a real structure are presented.

  11. Progress in aircraft design since 1903

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Significant developments in aviation history are documented to show the advancements in aircraft design which have taken place since 1903. Each aircraft is identified according to the manufacturer, powerplant, dimensions, normal weight, and typical performance. A narrative summary of the major accomplishments of the aircraft is provided. Photographs of each aircraft are included.

  12. Aircraft in situ and remote sensing measurements of emissions from Etna volcano, Sicily

    NASA Astrophysics Data System (ADS)

    Vogel, A.; Weber, K.; Fischer, C.; Prata, A. J.; Durant, A. J.

    2012-04-01

    Volcanoes emit particles (silicates and sulphate aerosol) and gases (e.g., water and sulphur dioxide) which influence the radiative balance of the atmosphere. The rate at which sulphur dioxide oxidises to sulphate aerosol is poorly constrained and measurements of downwind abundance are required to quantify the rate at which this process occurs. During July and November 2011, a series of measurements were performed in emissions from Etna Volcano, Sicily, using the University of Applied Sciences (Dusseldorf) research aircraft. Both in situ and remote sensing instrumentation was simultaneously deployed to quantify the down-wind characteristics of gases and particles in the plume emitted by the volcano. In situ particle characteristics were measured using a Grimm 1.109 optical particle counter (microparticles 0.25-32 microns) and Grimm 1320 diffusion electrometer (nanoparticles 25-300 nanometers). Column abundance of sulphur dioxide was measured using a vertically-pointing differential optical absorption spectrometer (DOAS). These measurements were compared to horizontal pathlength-integrated measurements of sulphur dioxide from the Airborne Volcanic Imaging Object Detector (AVOID). Down-wind plume dispersion was discriminated through a series of aircraft transects below and through the volcanic plume. The emissions contained large amounts of nanoparticles relative to microparticles, which reflects gas-phase nucleation of sulphate aerosol. The AVOID system discriminated horizontal layering of volcanic aerosol at altitudes of up to 12,000 ft from a detection range of >50 km. Plume boundaries were discriminated using a combination of the in situ and DOAS measurements in order to compare to the pathlength-integrated measurements from AVOID.

  13. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  14. Directly measured cabin pressure conditions during Boeing 747-400 commercial aircraft flights.

    PubMed

    Kelly, Paul T; Seccombe, Leigh M; Rogers, Peter G; Peters, Matthew J

    2007-07-01

    In the low pressure environment of commercial aircraft, hypoxaemia may be common and accentuated in patients with lung or heart disease. Regulations specify a cabin pressure not lower than 750 hPa but it is not known whether this standard is met. This knowledge is important in determining the hazards of commercial flight for patients and the validity of current flight simulation tests. Using a wrist-watch recording altimeter, cabin pressure was recorded at 60 s intervals on 45 flights in Boeing 747-400 aircraft with three airlines. A log was kept of aircraft altitude using the in-flight display. Change in cabin pressure during flight, relationship between aircraft altitude and cabin pressure and proportion of flight time with cabin pressure approaching the minimum specified by regulation were determined. Flight duration averaged 10 h. Average cabin pressure during flight was 846 hPa. There was a linear fall in cabin pressure as the aircraft cruising altitude increased. At 10,300 m (34,000 ft) cabin pressure was 843 hPa and changed 8 hPa for every 300 m (1000 ft) change in aircraft altitude (r(2) = 0.993; P < 0.001). Lowest cabin pressure was 792 hPa at 12 200 m (40,000 ft) but during only 2% of flight time was cabin pressure less than 800 hPa. Cabin pressure is determined only by the engineering of the aircraft and its altitude and in the present study was always higher than required by regulation. Current fitness-to-fly evaluations simulate cabin conditions that passengers will not experience on these aircraft. There may be increased risks to patients should new or older aircraft operate nearer to the present minimum standard.

  15. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  16. Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation Fuel Experiment.

    PubMed

    Lee, Ben H; Santoni, Gregory W; Wood, Ezra C; Herndon, Scott C; Miake-Lye, Richard C; Zahniser, Mark S; Wofsy, Steven C; Munger, J William

    2011-09-15

    The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, California, quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-2C1 engines using both traditional and synthetic fuels. This study examines the emissions of nitrous acid (HONO) and nitrogen oxides (NO(x) = NO + NO(2)) measured 145 m behind the grounded aircraft. The fuel-based emission index (EI) for HONO increases approximately 6-fold from idle to takeoff conditions but plateaus between 65 and 100% of maximum rated engine thrust, while the EI for NO(x) increases continuously. At high engine power, NO(x) EI is greater when combusting traditional (JP-8) rather than Fischer-Tropsch fuels, while HONO exhibits the opposite trend. Additionally, hydrogen peroxide (H(2)O(2)) was identified in exhaust plumes emitted only during engine idle. Chemical reactions responsible for emissions and comparison to previous measurement studies are discussed.

  17. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  18. Calibration of 3-D wind measurements on a single engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  19. Calibration of 3-D wind measurements on a single-engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  20. Methane eddy covariance flux measurements from a low flying aircraft: Bridging the scale gap between local and regional emissions estimates

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.

    2017-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.

  1. Noise measurements for a twin-engine commercial jet aircraft during 3 deg approaches and level flyovers

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Shanks, R. E.; Mueller, A. W.

    1976-01-01

    Noise measurements have been made with a twin-engine commercial jet aircraft making 3 deg approaches and level flyovers. The flight-test data showed that, in the standard 3 deg approach configuration with 40 deg flaps, effective perceived noise level (EPNL) had a value of 109.5 effective perceived noise decibels (EPNdB). This result was in agreement with unpublished data obtained with the same type of aircraft during noise certification tests; the 3 deg approaches made with 30 deg flaps and slightly reduced thrust reduced the EPNL value by 1 EPNdB. Extended center-line noise determined during the 3 deg approaches with 40 deg flaps showed that the maximum reference A-weighted sound pressure level (LA,max)ref varied from 100.0 A-weighted decibels 2.01 km (108 n. mi.) from the threshold to 87.4 db(A) at 6.12 km (3.30 n. mi.) from the threshold. These test values were about 3 db(A) higher than estimates used for comparison. The test data along the extended center line during approaches with 30 deg flaps were 1 db(A) lower than those for approaches with 40 deg flaps. Flight-test data correlating (LA,max)ref with thrust at altitudes of 122 m (400 ft) and 610 m (2000 ft) were in agreement with reference data used for comparison.

  2. INVESTIGATION OF THE INFLUENCE OF THE POSITION INSIDE A SMALL AIRCRAFT ON THE COSMIC-RADIATION-INDUCED DOSE.

    PubMed

    Prado, A C M; Pazianotto, M T; Gonçalez, O L; Dos Santos, L R; Caldeira, A D; Pereira, H H C; Hubert, G; Federico, C A

    2017-11-01

    This article report the measurements on-board a small aircraft at the same altitude and around the same geographic coordinates. The measurements of Ambient Dose Equivalent Rate (H*(10)) were performed in several positions inside the aircraft, close and far from the pilot location and the discrimination between neutron and non-neutron components. The results show that the neutrons are attenuated close to fuel depots and the non-neutron component appears to have the opposite behavior inside the aircraft. These experimental results are also confronted with results from Monte Carlo simulation, obtained with the MCNPX code, using a simplified model of the Learjet-type aircraft and a modeling of the standard atmosphere, which reproduces the real energy and angular distribution of the particles. The Monte Carlo simulation agreed with the experimental measurements and shows that the total H*(10) presents small variation (around 1%) between the positions inside aircraft, although the neutron spectra present significant variations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Examining the Relationship Between Passenger Airline Aircraft Maintenance Outsourcing and Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Monaghan, Kari L.

    The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include

  4. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under

  5. Combining tracer flux ratio methodology with low-flying aircraft measurements to estimate dairy farm CH4 emissions

    NASA Astrophysics Data System (ADS)

    Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.

    2017-12-01

    Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.

  6. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  7. A study of extractive and remote-sensing sampling and measurement of emissions from military aircraft engines

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Dawn; Corporan, Edwin

    2010-12-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (PM) that plays an important role in air quality, human health, visibility, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for engine and fuel certification remains challenging, as no agency-certified method is available. In this paper we summarize the results of three recent field studies devoted to investigate the consistency and applicability of "extractive" and "optical remote-sensing" (ORS) technologies in the sampling and measurement of gaseous and PM emitted by a number of military aircraft engines. Three classes of military engines were investigated; these include T56, TF33, and T700 & T701C types of engines, which consume 70-80% of the military aviation fuel each year. JP-8 and Fischer-Tropsch (FT)-derived paraffinic fuels were used to study the effect of fuels. It was found that non-volatile particles in the engine emissions were in the 20 nm range for the low power condition of new helicopter engines to 80 nm for the high power condition of legacy engines. Elemental analysis indicated little metals were present on particles, while most of the materials on the exhaust particles were carbon and sulfate based. Alkanes, carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, formaldehyde, ethylene, acetylene and propylene were detected. The last five species were most noticeable only under low engine power. The emission indices calculated based on the ORS data deviate significantly from those based on the extractive data. Nevertheless, the ORS techniques were useful in the sense that it provided non-intrusive real-time detection of species in the exhaust plume, which warrants further development. The results obtained in this program help validate sampling methodology and measurement techniques used for non-volatile PM aircraft emissions as described in the SAE AIR6037 (2009).

  8. Total ozone derived from UV spectrophotometer measurements on the NASA CV-990 aircraft for the fall 1976 latitude survey flights

    NASA Technical Reports Server (NTRS)

    Hanser, F. A.

    1977-01-01

    An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).

  9. Effects of aircraft overflights on wilderness recreationists.

    PubMed

    Fidell, S; Silvati, L; Howe, R; Pearsons, K S; Tabachnick, B; Knopf, R C; Gramann, J; Buchanan, T

    1996-11-01

    On-site and telephone opinion surveys were conducted to assess outdoor recreationists' annoyance with aircraft overflights of wilderness areas. Although current technology for measuring noise exposure does not yet permit accurate and cost-effective estimates of dosage-response relationships in outdoor recreational settings, it was nonetheless possible to construct a rough relationship between estimated aircraft noise exposure and annoyance from the data of the on-site study. In the second survey, telephone interviews were administered to another sample of outdoor recreationists within 2 weeks of their return from visits to 12 wilderness areas. The prevalence of aircraft noise-induced annoyance (in any degree) among respondents in all wilderness areas ranged from 5% to 32%. The prevalence of a consequential degree of aircraft noise-induced annoyance among respondents was less than 5% in all wilderness areas combined. Noise-induced annoyance proved to be a more direct measure of the effects of aircraft overflights on recreationists than more global measures such as visit satisfaction or intent to revisit.

  10. A STUDY OF EXTRACTIVE AND REMOTE-SENSING SAMPLING AND MEASUREMENT OF EMISSIONS FROM MILITARY AIRCRAFT ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.

    2010-01-01

    Aircraft emissions contribute to the increased atmospheric burden of particulate matter (e.g., black carbon and secondary organic compounds) that plays a role in air quality, contrail formation and climate change. Sampling and measurement of modern aircraft emissions at the engine exhaust plane (EEP) for to engine and fuel certification remains a daunting task, no agency-certified method is available for the task. In this paper we summarize the results of a recent study that was devoted to investigate both extractive and optical remote-sensing (ORS) technologies in sampling and measurement of gaseous and particulate matter (PM) emitted by a number of militarymore » aircraft engines operated with JP-8 and a Fischer-Tropsch (FT) fuel at various engine conditions. These engines include cargo, bomber, and helicopter types of military aircraft that consumes 70-80% of the military aviation fuel each year. The emission indices of selected pollutants are discussed as these data may be of interest for atmospheric modeling and for design of air quality control strategies around the airports and military bases. It was found that non-volatile particles in the engine emissions were all in the ultrafine range. The mean diameter of particles increased as the engine power increased; the mode diameters were in the 20nm range for the low power condition of a new helicopter engine to 80nm for the high power condition of a newly maintained bomber engine. Elemental analysis indicated little metals were present on particles in the exhaust, while most of the materials on the exhaust particles were based on carbon and sulfate. Carbon monoxide, carbon dioxide, nitrogen oxide, sulfur dioxide, formaldehyde, ethylene, acetylene, propylene, and alkanes were detected using both technologies. The last five species (in the air toxics category) were most noticeable only under the low engine power. The emission indices calculated based on the ORS data were however observed to differ significantly

  11. Analysis of aircraft microwave measurements of the ocean surface

    NASA Technical Reports Server (NTRS)

    Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.

    1973-01-01

    A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.

  12. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    DTIC Science & Technology

    1976-04-01

    U.S. DEPARTMENT OF CRY11ERCE Natioal Techaical Infnaitm Soice AD-A026 838 AGARD FLIGHT TEST INSTRUMENTATION SERIES VOLUME 7. STRAIN GUAGE...MEASUREMENTS ON AIRCRAFT ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PREPARED FOR.I NORTH ATLANTIC TREATY ORGANIZATION APRIL 1976 • • ,. h VI -i• d...INFORMATION DOCUMENT PROCESSING WORKSHEET ,5.RVICE USCOMM-DC 41420.P7I AGARD-AG-160 Volume 7 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE

  13. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  14. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission

  15. Particle and gaseous emissions from commercial aircraft at each stage of the landing and takeoff cycle.

    PubMed

    Mazaheri, M; Johnson, G R; Morawska, L

    2009-01-15

    A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2 and NOx, were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependent on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16 x 10(15)-5.42 x 10(16) kg(-1), 0.03-0.72 g.kg(-1), and 3.25-37.94 g.kg(-1), respectively, for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4-100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) (Environmental Protection, Annex 16, Vol. II, Aircraft Engine Emissions, 2nd ed.; ICAO--International Civil Aviation Organization: Montreal, 1993).

  16. The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.; hide

    2017-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.

  17. Correction of Doppler Rada Data for Aircraft Motion Using Surface Measurements and Recursive Least-Squares Estimation

    NASA Technical Reports Server (NTRS)

    Durden, S.; Haddad, Z.

    1998-01-01

    Observations of Doppler velocity of hydrometeors form airborne Doppler weather radars normally contains a component due to the aircraft motion. Accurate hydrometeor velocity measurements thus require correction by subtracting this velocity from the observed velocity.

  18. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    NASA Astrophysics Data System (ADS)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  19. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  20. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  1. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  2. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  3. Preliminary measurement of the airframe noise from an F-106B delta wing aircraft at low flyover speeds. [establishment of lower limit for noise level of supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    To establish a realistic lower limit for the noise level of advanced supersonic transport aircraft will require knowledge concerning the amount of noise generated by the airframe itself as it moves through the air. The airframe noise level of an F-106B aircraft was determined and was compared to that predicted from an existing empirical relationship. The data were obtained from flyover and static tests conducted to determine the background noise level of the F-106B aircraft. Preliminary results indicate that the spectrum associated with airframe noise was broadband and peaked at a frequency of about 570 hertz. An existing empirical method successfully predicted the frequency where the spectrum peaked. However, the predicted OASPL value of 105 db was considerably greater than the measures value of 83 db.

  4. Turboprop aircraft against terrorism: a SWOT analysis of turboprop aircraft in CAS operations

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Akkas, Ali; Aslan, Yavuz

    2012-06-01

    Today, the threat perception is changing. Not only for countries but also for defence organisations like NATO, new threat perception is pointing terrorism. Many countries' air forces become responsible of fighting against terorism or Counter-Insurgency (COIN) Operations. Different from conventional warfare, alternative weapon or weapon systems are required for such operatioins. In counter-terrorism operations modern fighter jets are used as well as helicopters, subsonic jets, Unmanned Aircraft Systems (UAS), turboprop aircraft, baloons and similar platforms. Succes and efficiency of the use of these platforms can be determined by evaluating the conditions, the threats and the area together. Obviously, each platform has advantages and disadvantages for different cases. In this research, examples of turboprop aircraft usage against terrorism and with a more general approach, turboprop aircraft for Close Air Support (CAS) missions from all around the world are reviewed. In this effort, a closer look is taken at the countries using turboprop aircraft in CAS missions while observing the fields these aircraft are used in, type of operations, specifications of the aircraft, cost and the maintenance factors. Thus, an idea about the convenience of using these aircraft in such operations can be obtained. A SWOT analysis of turboprop aircraft in CAS operations is performed. This study shows that turboprop aircraft are suitable to be used in counter-terrorism and COIN operations in low threat environment and is cost benefical compared to jets.

  5. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  6. Aircraft measurements of aerosol properties during GoAmazon - G1 and HALO inter-comparison

    NASA Astrophysics Data System (ADS)

    Mei, F.; Cecchini, M. A.; Wang, J.; Tomlinson, J. M.; Comstock, J. M.; Hubbe, J. M.; Pekour, M. S.; Machado, L.; Wendisch, M.; Longo, K.; Martin, S. T.; Schmid, B.; Weinzierl, B.; Krüger, M. L.; Zöger, M.

    2015-12-01

    Currently, the indirect effects of atmospheric aerosols remain the most uncertain components in forcing of climate change over the industrial period (IPCC, 2013). This large uncertainty is partially a result of our incomplete understanding of the ability of particles to form cloud droplets under atmospherically relevant supersaturations. One objective of the US Department of Energy (DOE) Green Ocean Amazon Project (GoAmazon2014/5) is to understand the influence of the emission from Manaus, a tropical megacity, on aerosol size, concentration, and chemical composition, and their impact on cloud condensation nuclei (CCN) spectrum. The GoAmazon2014/5 study was an international campaign with the collaboration efforts from US, Brazil and Germany. During the intensive operation period, in the dry season (Sep. 1st - Oct. 10th, 2014), aerosol concentration, size distributions, and CCN spectra, both under pristine conditions and inside the Manaus plume, were characterized in-situ from the DOE Gulfstream-1 (G-1) research aircraft and German HALO aircraft during 4 coordinated flights on Sep. 9th, Sep. 16th, Sep 21st and Oct. 1st, 2014. During those four flights, aerosol number concentrations and CCN concentrations at two supersaturations (0.25% and 0.5%) were measured by condensation particle counters (CPCs) and a DMT dual column CCN counter onboard both G-1 and HALO. Aerosol size distribution was also measured by a Fast Integrated Mobility Spectrometer (FIMS) aboard the G-1 and is compared with the size distribution from Ultra High Sensitivity Aerosol Spectrometer - Airborne (UHSAS-A, DMT), which were deployed both on the G-1 and the HALO. Good agreement between the aerosol properties measured from the two aircraft has been achieved. The vertical profiles of aerosol size distribution and CCN spectrum will be discussed.

  7. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  8. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  9. Soil runway friction evaluation in support of USAF C-17 transport aircraft operations

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.

  10. Aircraft active microwave measurements for estimating soil moisture

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Chang, A.; Schmugge, T. J.

    1981-01-01

    Both active and passive microwave sensors are sensitive to variations in near-surface soil moisture. The principal advantage of active microwave systems for soil moisture applications is that high spatial resolution can be retained even at satellite attitudes. The considered investigation is concerned with the use of active microwave scatterometers for estimating near-surface soil moisture. Microwave scatterometer data were obtained during a series of three aircraft flights over a group of Oklahoma research watersheds during May 1978. Data were obtained for the C, L, and P bands at angles of incidence between 5 and 50 degrees. The best results were obtained using C band data at incidence angles of 10 and 15 degrees and soil moisture depth of 0 to 15 cm. These results were in excellent agreement with the conclusions of the truck-mounted scatterometer measurement program reported by Ulaby et al. (1978, 1979).

  11. Fault Detection of Aircraft System with Random Forest Algorithm and Similarity Measure

    PubMed Central

    Park, Wookje; Jung, Sikhang

    2014-01-01

    Research on fault detection algorithm was developed with the similarity measure and random forest algorithm. The organized algorithm was applied to unmanned aircraft vehicle (UAV) that was readied by us. Similarity measure was designed by the help of distance information, and its usefulness was also verified by proof. Fault decision was carried out by calculation of weighted similarity measure. Twelve available coefficients among healthy and faulty status data group were used to determine the decision. Similarity measure weighting was done and obtained through random forest algorithm (RFA); RF provides data priority. In order to get a fast response of decision, a limited number of coefficients was also considered. Relation of detection rate and amount of feature data were analyzed and illustrated. By repeated trial of similarity calculation, useful data amount was obtained. PMID:25057508

  12. Feasibility of a nuclear gauge for fuel quantity measurement aboard aircraft

    NASA Technical Reports Server (NTRS)

    Signh, J. J.; Mall, G. H.; Sprinkle, D. R.; Chegini, H.

    1986-01-01

    Capacitance fuel gauges have served as the basis for fuel quantity indicating systems in aircraft for several decades. However, there have been persistent reports by the airlines that these gauges often give faulty indications due to microbial growth and other contaminants in the fuel tanks. This report describes the results of a feasibility study of using gamma ray attenuation as the basis for measuring fuel quantity in the tanks. Studies with a weak Am-241 59.5-keV radiation source indicate that it is possible to continuously monitor the fuel quantity in the tanks to an accuracy of better than 1 percent. These measurements also indicate that there are easily measurable differences in the physical properties and resultant attenuation characteristics of JP-4, JP-5, and Jet A fuels. The experimental results, along with a suggested source-detector geometrical configuration are described.

  13. 14 CFR 141.39 - Aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... training and solo flights: (1) Is a civil aircraft of the United States; (2) Is certificated with a... show that each aircraft used by the school for flight training and solo flights: (1) Is either a civil...

  14. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  15. Radiometric gains of satellite sensors of reflected solar radiation - Results from NASA ER-2 aircraft measurements

    NASA Technical Reports Server (NTRS)

    Abel, Peter; Galimore, Reginald; Cooper, John

    1992-01-01

    A method for using congruent aircraft-satellite observations to calibrate a satellite sensor is presented. A calibrated spectroradiometer at an altitude of 19 km above White Sands, NM, is oriented to view White Sands at the satellite overpass time along the same view vector as the satellite sensor. Collected data are transformed into corresponding estimates of sensor band radiance at the satellite (derived from the aircraft measurements), and average count (from the sensor measurements). These are both averaged across the footprint of the spectroradiometer. Results are presented for the evolution of NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) (Bands 1 and 2) gain between November 1988 and October 1990, and for GOES-6 and GOES-7 VISSR/VAS visible bands during the same period. Estimates of uncertainty in the results are presented, as well as ideas for their reduction in future flights.

  16. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.

    PubMed

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E

    2004-11-15

    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  17. Ground-Based Measurements of the Wake Vortex Characteristics of a B-747 Aircraft in Various Configurations

    DOT National Transportation Integrated Search

    1978-12-01

    A Boeing 747 aircraft flew 54 passes at low altitude over ground based sensors. Vortex velocities were measured by a laser Doppler velocimeter, an array of monostatic acoustic sounders, and an array of propeller anemometers. Flow visualization of the...

  18. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.

  19. Total column CO2 measurements at Darwin, Australia - site description and calibration against in situ aircraft profiles

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.

    2010-03-01

    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.

  20. Total column CO2 measurements at Darwin, Australia - site description and calibration against in situ aircraft profiles

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.

    2010-07-01

    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.

  1. Dichlorvos vapour disinsection of aircraft

    PubMed Central

    Jensen, Jens A.; Flury, Vincent P.; Schoof, Herbert F.

    1965-01-01

    The authors describe the testing of an automatic aircraft disinsection system permanently installed on a commercial DC-6B passenger aircraft. An air-compressor forces ambient cabin air, partially saturated with dichlorvos vapour at a set concentration, through the cabin, cockpit and baggage compartments of the aircraft for 30 minutes. Insecticide concentrations and insect mortality were observed in post-overhaul check flights, and insect mortality and passenger reactions were observed on scheduled flights between Miami, Florida, and Nassau, Bahamas. The results showed satisfactory biological efficiency. The passengers were unaware of the disinsection process and showed no signs of discomfort. ImagesFIG. 1FIG. 2FIG. 3 PMID:14310904

  2. Aircraft Operations Classification System

    NASA Technical Reports Server (NTRS)

    Harlow, Charles; Zhu, Weihong

    2001-01-01

    Accurate data is important in the aviation planning process. In this project we consider systems for measuring aircraft activity at airports. This would include determining the type of aircraft such as jet, helicopter, single engine, and multiengine propeller. Some of the issues involved in deploying technologies for monitoring aircraft operations are cost, reliability, and accuracy. In addition, the system must be field portable and acceptable at airports. A comparison of technologies was conducted and it was decided that an aircraft monitoring system should be based upon acoustic technology. A multimedia relational database was established for the study. The information contained in the database consists of airport information, runway information, acoustic records, photographic records, a description of the event (takeoff, landing), aircraft type, and environmental information. We extracted features from the time signal and the frequency content of the signal. A multi-layer feed-forward neural network was chosen as the classifier. Training and testing results were obtained. We were able to obtain classification results of over 90 percent for training and testing for takeoff events.

  3. Nitrogen oxides and ozone in the tropopause region of the Northern Hemisphere: Measurements from commercial aircraft in 1995/1996 and 1997

    NASA Astrophysics Data System (ADS)

    Brunner, Dominik; Staehelin, Johannes; Jeker, Dominique; Wernli, Heini; Schumann, Ulrich

    2001-11-01

    Measurements of nitrogen oxides (NO and NO2) and ozone (O3) were performed from a Swissair B-747 passenger aircraft in two extended time periods (May 1995 to May 1996, August to November 1997) in the framework of the Swiss NOXAR and the European POLINAT 2 project. The measurements were obtained on a total of 623 flights between Europe and destinations in the United States and the Far East. NO2 measurements were obtained only after December 1995 and were less precise than the NO measurements. Therefore daytime NO2 values were derived from measured NO and O3 concentrations assuming photostationary equilibrium. The completed NOx data set (measured NO, measured NO2 during night, and calculated NO2 during day) includes a complete annual cycle and is the most extensive and representative data set currently available for the upper troposphere (UT) and the lower stratosphere (LS) covering a significant proportion of the northern hemisphere between 15°N and 65°N. NOx concentrations in midlatitudes (30°-60°N) showed a marked seasonal variation both in the UT and the LS with a maximum in summer (median/mean values of 159/264 pptv in UT, 199/237 pptv in LS) and a minimum in winter (51/99 pptv in UT, 67/91 pptv in LS). Mean NOx concentrations were generally much higher than the respective median values, in particular in the UT, which reflects the important contribution from comparatively few very high concentrations observed in large-scale convection/lightning and small-scale aircraft plumes. Seasonal mean NOx concentrations in the UT were up to 3-4 times higher over continental regions than over the North Atlantic during summer. Lightning production of NO and convective vertical transport from the polluted boundary layer thus appear to have dominated the upper tropospheric NOx budget over these continental regions, particularly during summer. Ozone concentrations at aircraft cruising levels typically varied by an order of magnitude due to the strong vertical gradient in

  4. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  5. Turboprop Cargo Aircraft Systems study, phase 1

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, F. R., Jr.

    1980-01-01

    The effects of advanced propellers (propfan) on aircraft direct operating costs, fuel consumption, and noiseprints were determined. A comparison of three aircraft selected from the results with competitive turbofan aircraft shows that advanced turboprop aircraft offer these potential benefits, relative to advanced turbofan aircraft: 21 percent fuel saving, 26 percent higher fuel efficiency, 15 percent lower DOCs, and 25 percent shorter field lengths. Fuel consumption for the turboprop is nearly 40 percent less than for current commercial turbofan aircraft. Aircraft with both types of propulsion satisfy current federal noise regulations. Advanced turboprop aircraft have smaller noiseprints at 90 EPNdB than advanced turbofan aircraft, but large noiseprints at 70 and 80 EPNdB levels, which are usually suggested as quietness goals. Accelerated development of advanced turboprops is strongly recommended to permit early attainment of the potential fuel saving. Several areas of work are identified which may produce quieter turboprop aircraft.

  6. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; hide

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y) H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of [N2O] show good agreement, as do measured correlations of [O3], [NO(y)], [H2O], and [CH4] with [N2O]. Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of [NO(y)] determined by detection of individual species by ATMOS and the total [NO(y)] measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric [CO] observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  7. Multibody aircraft study, volume 2

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. G.

    1981-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  8. Multibody aircraft study, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Craven, E. P.; Farmer, B. T.; Honrath, J. F.; Stephens, R. E.; Bronson, C. E., Jr.; Meyer, R. T.; Hogue, J. H.

    1982-01-01

    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing.

  9. Small Aircraft RF Interference Path Loss

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Szatkowski, George N.; Mielnik, John J.; Salud, Maria Theresa P.

    2007-01-01

    Interference to aircraft radio receivers is an increasing concern as more portable electronic devices are allowed onboard. Interference signals are attenuated as they propagate from inside the cabin to aircraft radio antennas mounted on the outside of the aircraft. The attenuation level is referred to as the interference path loss (IPL) value. Significant published IPL data exists for transport and regional category airplanes. This report fills a void by providing data for small business/corporate and general aviation aircraft. In this effort, IPL measurements are performed on ten small aircraft of different designs and manufacturers. Multiple radio systems are addressed. Along with the typical worst-case coupling values, statistical distributions are also reported that could lead to better interference risk assessment.

  10. Development of an aircraft operation classification system for Louisiana's airports.

    DOT National Transportation Integrated Search

    2003-06-01

    In this project the development and deployment of systems measuring aircraft activity at airports is considered. This includes determining the type of aircraft and the type of aircraft activity. The type of aircraft is basic such as helicopter, singl...

  11. Measurements of pressures on the wing of an aircraft model during steady rotation

    NASA Technical Reports Server (NTRS)

    Martin, Colin A.; Gage, Peter J.; Hultberg, Randy S.; Bowman, James S., Jr.

    1990-01-01

    An investigation has been conducted in the Spin Tunnel Facility at the NASA Langley Research Center to measure the pressures on the wing surfaces of a model of a Basic Training Aircraft during steady rotation. The tests were made to determine the nature of the wing pressure distribution during rotations typical of spin entry and steady spin. Comparisons are made between the forces and moments obtained from integrating the pressure field with those measured directly during rotary balance force tests. The results are also compared with estimates determined from a simple numerical model of the wing aerodynamic forces.

  12. Evaluation of a Wake Vortex Upset Model Based on Simultaneous Measurements of Wake Velocities and Probe-Aircraft Accelerations

    NASA Technical Reports Server (NTRS)

    Short, B. J.; Jacobsen, R. A.

    1979-01-01

    Simultaneous measurements were made of the upset responses experienced and the wake velocities encountered by an instrumented Learjet probe aircraft behind a Boeing 747 vortex-generating aircraft. The vortex-induced angular accelerations experienced could be predicted within 30% by a mathematical upset response model when the characteristics of the wake were well represented by the vortex model. The vortex model used in the present study adequately represented the wake flow field when the vortices dissipated symmetrically and only one vortex pair existed in the wake.

  13. Hydrogen Storage for Aircraft Applications Overview

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  14. Energy Index For Aircraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R. (Inventor); Lynch, Robert E. (Inventor); Lawrence, Robert E. (Inventor); Amidan, Brett G. (Inventor); Ferryman, Thomas A. (Inventor); Drew, Douglas A. (Inventor); Ainsworth, Robert J. (Inventor); Prothero, Gary L. (Inventor); Romanowski, Tomothy P. (Inventor); Bloch, Laurent (Inventor)

    2006-01-01

    Method and system for analyzing, separately or in combination, kinetic energy and potential energy and/or their time derivatives, measured or estimated or computed, for an aircraft in approach phase or in takeoff phase, to determine if the aircraft is or will be put in an anomalous configuration in order to join a stable approach path or takeoff path. A 3 reference value of kinetic energy andor potential energy (or time derivatives thereof) is provided, and a comparison index .for the estimated energy and reference energy is computed and compared with a normal range of index values for a corresponding aircraft maneuver. If the computed energy index lies outside the normal index range, this phase of the aircraft is identified as anomalous, non-normal or potentially unstable.

  15. Physiological consequences of rapid or prolonged aircraft decompression: evaluation using a human respiratory model.

    PubMed

    Wolf, Matthew

    2014-04-01

    Aircraft passengers and crew may be subjected to rapid or prolonged decompression to high cabin altitude when an aircraft develops a hole in the fuselage. The accepted measure of neurological damage due to the hypobaric hypoxia produced is the subjective 'time of useful consciousness' (TUC) measure, which is appropriate for pilots and crew who perform their given tasks, however, TUC is measured under conditions different than the decompression scenarios that passengers undergo in today's aircraft. Ernsting proposed that prolonged exposure to alveolar O2 pressures less than 30 mmHg (P30) causes neurological damage. The current study proposes that a critical value of arterial O2 saturation of 70% (S70) can be used in place of P30 and that this physiological measure is more suited for determination of hypobaric hypoxia in passengers. The study shows the equivalence of model-predicted P30 and S70 values in the Ernsting-decompression scenarios. The model is also used to predict values of these physiological measures in actual aircraft-decompression scenarios. The model can be used by others to quantitatively predict the degree of hypobaric hypoxia for virtually any kind of decompression scenario, including those where supplemental O2 is used. Use of this tool avoids the prohibitive costs of human-subject testing for new aircraft and the potential danger inherent in such tests.

  16. Balloon-borne and aircraft infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    1984-01-01

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  17. Progress Towards the Remote Sensing of Aircraft Icing Hazards

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick

    2009-01-01

    NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.

  18. In-flight and simulated aircraft fuel temperature measurements

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1990-01-01

    Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

  19. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  20. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  1. En route noise of two turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dobrzynski, Werner

    1990-01-01

    In order to weigh en route noise emissions originating from future propfan powered aircraft, a data base of emission levels from conventional turboprop aircraft is needed. For this reason flyover noise measurements on two twin-engine turboprop aircraft were conducted at flight heights between 17,000 and 21,000 ft. Acoustic data are presented together with propeller operational parameters and environmental meteorological data. Narrowband spectral analyses demonstrate the characteristic features of the measured propeller noise signatures: Noise spectra are dominated by the propeller rotational noise fundamental frequency and pronounced noise beats occur as a consequence of different rotational speeds of the propellers.

  2. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  3. Aural detection of small propeller-driven aircraft

    DOT National Transportation Integrated Search

    1987-10-31

    The Federal Aviation Administration (FAA) has conducted numerous flight tests of small propeller-driven aircraft in support of developing aircraft noise regulations. Those test typically measured ground-level noise resulting from high power/high RPM ...

  4. Event-based measurement of boundary-layer winds and topographic effects with a small unmanned aircraft system (sUas)

    NASA Astrophysics Data System (ADS)

    Riddell, K.; Hugenholtz, C.

    2012-12-01

    Numerical models are invaluable tools for developing and testing hypotheses about interactions and feedbacks between wind and topography. However, field-based measurements are equally important for building and enhancing confidence in model output. Several field methods are available, including conventional approaches using tall masts equipped with an array of anemometers, as well as weather balloons, but few methods are able to match the level of detail available in model simulations of topographically-modified windflow. Here we propose an alternative method that may enhance numerical models. The method involves a small unmanned aircraft system (sUas) equipped with a meteorological sensor payload. The sUas is a two blade helicopter that weighs 5.5 kg, and has a length of 1.32 m. We designed a simple measurement and control system using an Arduino micro-controller, which acquired measurements at pre-defined coordinates autonomously. The entire survey was pre-configured and uploaded to the aircraft, effectively avoiding the need for manual aircraft operation and data collection. We collected raw measurements at each waypoint, yielding a point cloud of windspeed data. During test flights the sUas was able to maintain a stable position (± 0.6 m vertical and horizontal) in wind speeds up to 50 km/h. We used the raw data to map the wind speed-up ratio relative to a reference anemometer. Although it would be preferable to acquire continuous measurements at each waypoint, the sUas method only provides a snapshot of wind at each location. However, despite this limitation, the sUas does fill a void in terms of spatial measurements within the boundary layer. It may be possible to enhance this method in the future through deployment of sUas swarms that measure wind concurrently at many locations. Furthermore, other sensors can be deployed on sUas for measuring aeolian processes such as dust.

  5. In-situ NO and NO2 profiles measured onboard passenger aircraft over Frankfurt airport in Germany

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Houben, Norbert; Blomel, Torben; Tappertzhofen, Marlon; Volz-Thomas, Andreas; Petzold, Andreas

    2017-04-01

    NOx (sum of NO and NO2) play a central role in atmospheric chemistry related to ozone and oxidation capacity (OH and NO3 radicals). The most important sources of NOx in the upper troposphere are lightning, and transport from the boundary layer (combustion processes, from biomass burning, agriculture, and industry/transport/aircraft emissions). In-situ measurements of NOx from the upper troposphere and lower stratosphere (UTLS) down to the surface are rare, but important for understanding the local photochemistry and for the assessment of the impact of aviation on the budgets of greenhouse gases such as ozone. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) operates a global-scale monitoring system for atmospheric temperature, trace gases, aerosols and clouds at high spatial resolution by passenger aircraft. The IAGOS NOx instrument is designed for the autonomous measurement of nitrogen oxides over serval months. The measurement principle is based on the well-established chemiluminescence technique, using one channel with sequential measurements of NO and NOx every 50 s. Here, we present vertical profiles of nitrogen oxides from the UTLS down to the surface for day and night time conditions obtained over 12 months in 2015 and 2016. The analysis focuses mainly on Europe, the region with the largest amount of profiles. Other regions (North America, South America and East Asia) will also be discussed. Typically, NO and NO2 varies in the low ppt range in the UT, slightly increasing towards the pressure altitude of 200 hPa. Down to the surface, the values of NO and of NO2 increase up to several ppb. These profiles combined with in-situ water vapor and cloud parameters will be valuable for validation of model and of satellite data in the future.

  6. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  7. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO 2 with HIPPO and SGP aircraft profile measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.

    2012-01-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases.more » We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.« less

  8. Calibration of strain-gage installations in aircraft structures for the measurement of flight loads

    NASA Technical Reports Server (NTRS)

    Skopinski, T H; Aiken, William S , Jr; Huston, Wilber B

    1954-01-01

    A general method has been developed for calibrating strain-gage installations in aircraft structures, which permits the measurement in flight of the shear or lift, the bending moment, and the torque or pitching moment on the principal lifting or control surfaces. Although the stress in structural members may not be a simple function of the three loads of interest, a straightforward procedure is given for numerically combining the outputs of several bridges in such a way that the loads may be obtained. Extensions of the basic procedure by means of electrical combination of the strain-gage bridges are described which permit compromises between strain-gage installation time, availability of recording instruments, and data reduction time. The basic principles of strain-gage calibration procedures are illustrated by reference to the data for two aircraft structures of typical construction, one a straight and the other a swept horizontal stabilizer.

  9. Aircraft measurement over the Gulf of Tonkin capturing aloft transport of biomass burning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyang; Xu, Jun; Bi, Fang; Zhang, Zhongzhi; Chen, Yunbo; He, Youjiang; Han, Feng; Zhi, Guorui; Liu, Shijie; Meng, Fan

    2018-06-01

    A suite of aircraft measurements was conducted over the Gulf of Tonkin, located downwind to the east of Mainland Southeast Asia (MSE), between March 23rd and April 6th, 2015. To the best of our knowledge, this campaign of 11 flights (totaling 34.4 h) was the first in-flight measurement over the region. Measurements of sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, black carbon and the particulate scattering coefficient were recorded at approximately 1 500 m (low level) and 3 000 m (high level). Significantly higher measurements of black carbon, carbon monoxide and ozone in the high level on March 23rd and April 5th and 6th were directly related to biomass burning in the MSE and were comparable to severe pollution events at the surface. Similarly, relatively low pollutant concentrations were observed at both altitudes between March 23rd and April 5th. A combined analysis of the measurements with meteorology and satellite data verified that the plumes captured at 3 000 m were attributed to transport in the high altitude originating from biomass burning in northern MSE. Furthermore, each plume captured by the measurements in the high level corresponded to heavy regional air pollution caused by biomass burning in northern MSE. In addition, relatively low levels of the measured pollutants corresponded to relatively light pollution levels in MSE and its adjacent areas. Taken together, these results indicated that aircraft measurements were accurate in characterizing the variation in transport and pollutant levels. During the most active season of biomass burning in MSE, pollutant emissions and their regional impact could vary on an episodic basis. Nonetheless, such concentrated emissions from biomass burning is likely to lead to particularly high atmospheric-loading of pollutants at a regional level and, depending on weather conditions, has the potential of being transported over considerably longer distances. Further investigation of the short-term impacts of

  10. Results from tests, with van-mounted sensor, of magnetic leader cable for aircraft guidance during roll-out and turnoff

    NASA Technical Reports Server (NTRS)

    Young, J. C.; Bundick, W. T.; Irwin, S. H.

    1983-01-01

    Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft.

  11. Roll plane analysis of on-aircraft antennas

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Marhefka, R. J.; Byu, C. L.

    1974-01-01

    Roll plane radiation patterns of on-aircraft antennas are analyzed using high frequency solutions. Aircraft-antenna pattern performance in which the aircraft is modelled in its most basic form is presented. The fuselage is assumed to be a perfectly conducting elliptic cylinder with the antennas mounted near the top or bottom. The wings are simulated by arbitrarily many sided flat plates and the engines by circular cylinders. The patterns in each case are verified by measured results taken on simple models as well as scale models of actual aircraft.

  12. Determining the direction of causality between psychological factors and aircraft noise annoyance.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2010-01-01

    In this paper, an attempt is made to establish the direction of causality between a range of psychological factors and aircraft noise annoyance. For this purpose, a panel model was estimated within a structural equation modeling approach. Data were gathered from two surveys conducted in April 2006 and April 2008, respectively, among the same residents living within the 45 Level day-evening-night contour of Amsterdam Airport Schiphol, the largest airport in the Netherlands (n=250). A surprising result is that none of the paths from the psychological factors to aircraft noise annoyance were found to be significant. Yet 2 effects were significant the other way around: (1) from 'aircraft noise annoyance' to 'concern about the negative health effects of noise' and (2) from 'aircraft noise annoyance' to 'belief that noise can be prevented.' Hence aircraft noise annoyance measured at time 1 contained information that can effectively explain changes in these 2 variables at time 2, while controlling for their previous values. Secondary results show that (1) aircraft noise annoyance is very stable through time and (2) that changes in aircraft noise annoyance and the identified psychological factors are correlated.

  13. A vector autopilot system. [aircraft attitude determination with three-axis magnetometer

    NASA Technical Reports Server (NTRS)

    Pietila, R.; Dunn, W. R., Jr.

    1976-01-01

    Current technology has evolved low cost, highly reliable solid state vector magnetometers with excellent angular resolution. This paper discusses the role of a three-axis magnetometer as a new instrument for aircraft attitude determination. Using flight data acquired by an instrumented aircraft, attitude is calculated using the earth's magnetic field vector and compared to measured attitudes. The magnetic field alone is not adequate to resolve all attitude variations and the need for a second reference angle or vector is discussed. A system combining the functions of heading determination and attitude measurement is presented to show that both functions can be implemented with essentially the same component count required to measure heading alone. It is concluded that with the correlation achieved in calculated and measured attitude there is a potential application of vector magnetometry in attitude measurement systems.

  14. Absorption of Solar Radiation by the Cloudy Atmosphere: Further Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.

    1998-01-01

    We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.

  15. Measurement of OH, H2SO4, MSA, and HNO3 Aboard the P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, F. L.

    2003-01-01

    This paper addresses the measurement of OH, H2SO4, MSA, and HNO3 aboard the P-3B aircraft under the following headings: 1) Performance Report; 2) Highlights of OH, H2SO4, and MSA Measurements Made Aboard the NASA P-3B During TRACE-P; 3) Development and characteristics of an airborne-based instrument used to measure nitric acid during the NASA TRACE-P field experiment.

  16. Changes in the mean hearing threshold levels in military aircraft maintenance conscripts.

    PubMed

    Park, Won-Ju; Moon, Jai-Dong

    2016-11-01

    Aircraft maintenance crews are constantly exposed to severe aircraft noise. The purpose of this study was to verify whether noise from aircraft adversely affects the hearing threshold levels (HTLs) of aircraft maintenance conscripts during their 2 years of mandatory military service. This study included 3,000 male aircraft maintenance conscripts who work in the military runway area. We measured and analyzed HTLs at 2-4 kHz. The duration of exposure to noise increased with an increase in rank; however, HTLs showed a tendency to decrease. We attributed such contradicting results to the learning effect and adaptation to military service. However, we suspected that sudden deafness in 6 conscripts (0.2%) was due to loud noise in the runway area during military service. The effectiveness of the hearing conservation program for short-term military service personnel could be increased by focusing on preventing sudden deafness and preenlistment baseline audiogram tests.

  17. Energy dissipation in a rolling aircraft tire

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1988-01-01

    The project is extending an existing finite element tire model to calculate the energy dissipation in a free-rolling aircraft tire and temperature buildup in the tire carcass. The model will provide a means of calculating the influence of tire design on the distribution of tire temperature. Current focus is on energy loss measurements of aircraft tire material. The feasibility of taking test specimens directly from the tire carcass for measurements of viscoelastic properties was demonstrated. The interaction of temperature and frequency effects on material loss properties was studied. The tire model was extended to calculate the cyclic energy change in a tire during rolling under load. Input data representing the 40 by 14 aircraft tire whose material loss properties were measured are being used.

  18. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  19. USE OF REMPI-TOFMS FOR REAL-TIME MEASUREMENT OF TRACE AROMATICS DURING OPERATION OF AIRCRAFT GROUND EQUIPMENT

    EPA Science Inventory

    Emissions of aromatic air toxics from aircraft ground equipment were measured with a resonance enhanced multiphoton ionization—time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. T...

  20. Absorption of Solar Radiation by Clouds: Interpretations of Satellite, Surface, and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.

    1996-01-01

    To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.

  1. Aircraft-Induced Hole Punch and Canal Clouds

    NASA Astrophysics Data System (ADS)

    Heymsfield, A. J.; Kennedy, P.; Massie, S. T.; Schmitt, C. G.; Wang, Z.; Haimov, S.; Rangno, A.

    2009-12-01

    The production of holes and channels in altocumulus clouds by two commercial turboprop aircraft is documented for the first time. An unprecedented data set combining in situ measurements from microphysical probes with remote sensing measurements from cloud radar and lidar, all operating from the NSF/NCAR C130 aircraft, as well as ground-based NOAA and CSU radars, is used to describe the radar/lidar properties of a hole punch cloud and channel and the ensuing ice microphysical properties and structure of the ice column that subsequently developed. Ice particle production by commercial turboprop aircraft climbing through clouds much warmer than the regions where contrails are produced has the potential to modify significantly the cloud microphysical properties and effectively seed them under some conditions. Jet aircraft may also be producing hole punch clouds when flying through altocumulus with supercooled droplets at heights lower than their normal cruise altitudes where contrails can form. Commercial aircraft therefore can generate ice and affect the clouds at temperatures as much as 30°C warmer than the -40°C contrail formation threshold temperature.

  2. Noise measurements taken at LAX during operational evaluation of two-segment approaches in a 727-200 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, C. S.; Glass, R. E.

    1973-01-01

    A series of seven noise measurements were made each day over a period of fifteen days. The first and last flights each day were made by a specially instrumented 727-200 aircraft being used to evaluate the operational effectiveness of two-segment noise abatement approaches in scheduled service. Noise measurements were made to determine the noise reduction benefits of the two-segment approaches.

  3. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-01-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  4. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    NASA Astrophysics Data System (ADS)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-12-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  5. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  6. The atmospheric effects of stratospheric aircraft: A third program report

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)

    1993-01-01

    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.

  7. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  8. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  9. Experimental Findings from Aircraft Measurements in the Residual Layer

    NASA Astrophysics Data System (ADS)

    Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.

    2016-12-01

    The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.

  10. Handbook of aircraft noise metrics

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Pearsons, K. S.

    1981-01-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  11. Handbook of aircraft noise metrics

    NASA Astrophysics Data System (ADS)

    Bennett, R. L.; Pearsons, K. S.

    1981-03-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  12. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  13. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  14. Measurements made aloft by a twin-engine aircraft to support the SCOS97-NARSTO study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.A.; Blumenthal, D.L.

    1999-05-01

    During the summer of 1997, the Southern California Ozone Study (SCOS97) was conducted to update aerometric and emissions databases and model applications for ozone episodes in southern California and to quantify the contributions of interbasin transport to exceedances of the ozone standards in neighboring air basins. One of six SCOS97 sampling aircraft was a Piper Aztec. The Aztec performed northern-boundary measurements of aloft air quality and meteorology in the southern Mojave Desert and northern Los Angeles basin. The aircraft also served as a backup for another SCOS97 aircraft that performed flights in the western part of the study domain. Themore » Aztec data were reviewed to identify the occurrence and types of ozone layers aloft and to estimate the initial and boundary conditions in the Desert on the first day of Intensive Operational Periods (IOPs). Ozone carryover aloft was seen on all mornings in vertical spiral measurements in the Basin. Detached layers above the boundary layer were seen on about 20% of Basin morning and afternoon spirals. Offshore elevated ozone layers of up to 184 ppb were seen below 500 m. The morning ozone concentrations in the Desert ranged from 40 to 70 ppb and the Noy concentrations ranged from 2 to 4 ppb, indicating relatively clean, but not pristine boundary conditions.« less

  15. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  16. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  17. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  18. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  19. Industrial point source CO2 emission strength estimation with aircraft measurements and dispersion modelling.

    PubMed

    Carotenuto, Federico; Gualtieri, Giovanni; Miglietta, Franco; Riccio, Angelo; Toscano, Piero; Wohlfahrt, Georg; Gioli, Beniamino

    2018-02-22

    CO 2 remains the greenhouse gas that contributes most to anthropogenic global warming, and the evaluation of its emissions is of major interest to both research and regulatory purposes. Emission inventories generally provide quite reliable estimates of CO 2 emissions. However, because of intrinsic uncertainties associated with these estimates, it is of great importance to validate emission inventories against independent estimates. This paper describes an integrated approach combining aircraft measurements and a puff dispersion modelling framework by considering a CO 2 industrial point source, located in Biganos, France. CO 2 density measurements were obtained by applying the mass balance method, while CO 2 emission estimates were derived by implementing the CALMET/CALPUFF model chain. For the latter, three meteorological initializations were used: (i) WRF-modelled outputs initialized by ECMWF reanalyses; (ii) WRF-modelled outputs initialized by CFSR reanalyses and (iii) local in situ observations. Governmental inventorial data were used as reference for all applications. The strengths and weaknesses of the different approaches and how they affect emission estimation uncertainty were investigated. The mass balance based on aircraft measurements was quite succesful in capturing the point source emission strength (at worst with a 16% bias), while the accuracy of the dispersion modelling, markedly when using ECMWF initialization through the WRF model, was only slightly lower (estimation with an 18% bias). The analysis will help in highlighting some methodological best practices that can be used as guidelines for future experiments.

  20. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere.

    PubMed

    Beck, P; Latocha, M; Dorman, L; Pelliccioni, M; Rollet, S

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircrafts have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at).

  1. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  2. Investigation of the relationship between aircraft noise and community annoyance in China.

    PubMed

    Guoqing, Di; Xiaoyi, Liu; Xiang, Shi; Zhengguang, Li; Qili, Lin

    2012-01-01

    A survey of community annoyance induced by aircraft noise exposure was carried out around Hangzhou Xiaoshan International Airport. To investigate the relationship curves between aircraft noise and the percentage of "highly annoyed" persons in China and also to get annoyance threshold of aircraft noise in China. Noise annoyance induced by aircraft noise exposure was assessed by 764 local residents around the airport using the International Commission on Biological Effect of Noise (ICBEN) scale. The status quo of aircraft noise pollution was measured by setting up 39 monitoring points. The interpolation was used to estimate the weighted effective continuous perceived noise levels (LWECPN) in different areas around the airport, and the graph of equal noise level contour was drawn. The membership function was used to calculate the annoyance threshold of aircraft noise. Data were analyzed using SPSS 16.0 and Origin 8.0. The results showed that if LWECPN was 64.3 dB (Ldn was 51.4 dB), then 15% respondents were highly annoyed. If LWECPN was 68.1 dB (Ldn was 55.0 dB), then 25% respondents were highly annoyed. The annoyance threshold of aircraft noise (LWECPN) was 73.7 dB, while the annoyance threshold of a single flight incident instantaneous noise level (LAmax) was 72.9 dB. People around the airport had felt annoyed before the aircraft noise LWECPN reached the standard limit.

  3. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  4. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    PubMed

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  5. A study of the cost-effective markets for new technology agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.; Clyne, F.

    1979-01-01

    A previously developed data base was used to estimate the regional and total U.S. cost-effective markets for a new technology agricultural aircraft as incorporating features which could result from NASA-sponsored aerial applications research. The results show that the long-term market penetration of a new technology aircraft would be near 3,000 aircraft. This market penetration would be attained in approximately 20 years. Annual sales would be about 200 aircraft after 5 to 6 years of introduction. The net present value of cost savings benefit which this aircraft would yield (measured on an infinite horizon basis) would be about $35 million counted at a 10 percent discount rate and $120 million at a 5 percent discount rate. At both discount rates the present value of cost savings exceeds the present value of research and development (R&D) costs estimated for the development of the technology base needed for the proposed aircraft. These results are quite conservative as they have been derived neglecting future growth in the agricultural aviation industry, which has been averaging about 12 percent per year over the past several years.

  6. Aircraft Boundary-layer Measurements in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Melville, W. K.

    2005-11-01

    Airborne flux, meteorological, and wave measurements were made from the NSF/NCAR EC130Q aircraft in the Gulf of Tehuantepec under strong boundary-layer gap winds up to 25 m/sec at 33 m height. Statistics of flux estimates were obtained from multiple 33-m tracks flown under reasonably stationary and homogeneous conditions. Flux divergence was obtained from stack patterns flown at various distances from shore. Tracks flown at 33 m between the stacks provided the pressure gradient and advection terms in the momentum balance. Near shore, flux divergence was important and approximately balanced by the pressure gradient and advective terms; off-shore (400 km), divergence was small and again approximately in balance with the other two terms. Data from dropsondes and the Scanning Aerosol Backscatter LIDAR (SABL) revealed that the internal boundary layer initially thins off-shore as the gap wind field spreads horizontally, and then thickens due to turbulent mixing and possible hydraulic effects. Supported by NSF Division of Ocean Sciences.

  7. Instrumentation for measurement of aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1975-01-01

    A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.

  8. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China.

    PubMed

    Yang, Xiaoyang; Wang, Xinhua; Yang, Wen; Xu, Jun; Ren, Lihong; He, Youjiang; Liu, Bing; Bai, Zhipeng; Meng, Fan; Hu, Min

    2016-09-01

    In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.

  9. New methods and results for quantification of lightning-aircraft electrodynamics

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.; Lee, Larry D.; Perala, Rodney A.; Rudolph, Terence H.

    1987-01-01

    The NASA F-106 collected data on the rates of change of electromagnetic parameters on the aircraft surface during over 700 direct lightning strikes while penetrating thunderstorms at altitudes from 15,000 t0 40,000 ft (4,570 to 12,190 m). These in situ measurements provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircraft appropriate for determining indirect lightning effects on aircraft. These data are used to update previous lightning criteria and standards developed over the years from ground-based measurements. The proposed standards will be the first which reflect actual aircraft responses measured at flight altitudes. Nonparametric maximum likelihood estimates of the distribution of the peak electromagnetic rates of change for consideration in the new standards are obtained based on peak recorder data for multiple-strike flights. The linear and nonlinear modeling techniques developed provide means to interpret and understand the direct-strike electromagnetic data acquired on the F-106. The reasonable results obtained with the models, compared with measured responses, provide increased confidence that the models may be credibly applied to other aircraft.

  10. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  11. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  12. Use of REMPI-TOFMS for real-time measurement of trace aromatics during operation of aircraft ground equipment

    NASA Astrophysics Data System (ADS)

    Gullett, Brian; Touati, Abderrahmane; Oudejans, Lukas

    Emissions of aromatic air toxics from aircraft ground equipment (AGE) were measured with a resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. This instrument was capable of characterizing turbine emissions and the effect of varying load operations on pollutant production. REMPI-TOFMS is capable of high selectivity and low detection limits (part per trillion to part per billion) in real time (1 s resolution). Hazardous air pollutants and criteria pollutants were measured during startups and idle and full load operations. Measurements of compounds such as benzene, toluene, ethylbenzene, xylenes, styrene, and polycyclic aromatic hydrocarbons compared well with standard methods. Startup emissions from the AGE data showed persistent concentrations of pollutants, unlike those from a diesel generator, where a sharp spike in emissions rapidly declined to steady state levels. The time-resolved responses of air toxics concentrations varied significantly by source, complicating efforts to minimize these emissions with common operating prescriptions. The time-resolved measurements showed that pollutant concentrations decline (up to 5×) in a species-specific manner over the course of multiple hours of operation, complicating determination of accurate and precise emission factors via standard extractive sampling. Correlations of air toxic concentrations with more commonly measured pollutants such as CO or PM were poor due to the relatively greater changes in the measured toxics' concentrations.

  13. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  14. Measurement and prediction of propeller flow field on the PTA aircraft at speeds of up to Mach 0.85. [Propfan Test Assessment

    NASA Technical Reports Server (NTRS)

    Aljabri, Abdullah S.

    1988-01-01

    High speed subsonic transports powered by advanced propellers provide significant fuel savings compared to turbofan powered transports. Unfortunately, however, propfans must operate in aircraft-induced nonuniform flow fields which can lead to high blade cyclic stresses, vibration and noise. To optimize the design and installation of these advanced propellers, therefore, detailed knowledge of the complex flow field is required. As part of the NASA Propfan Test Assessment (PTA) program, a 1/9 scale semispan model of the Gulfstream II propfan test-bed aircraft was tested in the NASA-Lewis 8 x 6 supersonic wind tunnel to obtain propeller flow field data. Detailed radial and azimuthal surveys were made to obtain the total pressure in the flow and the three components of velocity. Data was acquired for Mach numbers ranging from 0.6 to 0.85. Analytical predictions were also made using a subsonic panel method, QUADPAN. Comparison of wind-tunnel measurements and analytical predictions show good agreement throughout the Mach range.

  15. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  16. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  17. Cruise noise of an advanced counterrotation turboprop measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1988-01-01

    Acoustic test results are presented for a full-scale counterrotation demonstrator engine installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Sideline acoustic data were acquired from a Learjet chase aircraft instrumented with noise and wing-tip flush mount microphones. Data are presented for a 47.2-m sideline at several engine operating conditions and flight Mach numbers of 0.50 and 0.72.

  18. Advances in Pulsed Lidar Measurements of CO2 Column Concentrations from Aircraft and for Space

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Allan, G. R.; Hasselbrack, W. E.; Riris, H.; Numata, K.; Mao, J.; Sun, X.

    2016-12-01

    We have demonstrated an improved pulsed, multiple-wavelength integrated path differential absorption lidar for measuring the tropospheric CO2 concentrations. The lidar measures the range resolved shape of the 1572.33 nm CO2 absorption line to scattering surfaces, including the ground and the tops of clouds. Airborne measurements have used both 30 and 15 fixed wavelength samples distributed across the line. Analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the CO2 absorption line shape and the column average CO2 concentrations by using radiative transfer calculations, the aircraft altitude and range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations from in-situ sensors. In recent campaigns the lidar used a step-locked laser diode source, and a new HgCdTe APD detector in the receiver. During August and September 2014 the ASCENDS campaign flew over the California Central Valley, a coastal redwood forest, desert areas, and above growing crops in Iowa. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over variable topography and through thin clouds and aerosols. The retrievals clearly show the decrease in CO2 concentration over growing cropland. Airborne lidar measurements of horizontal gradients of CO2 concentrations across Nevada, Colorado and Nebraska showed good agreement with those from a model of CO2 flux and transport (PCTM). In several flights the agreement of the lidar with the column average concentration was < 1ppm, with standard deviation of 0.9 ppm. Two additional flights were made in February 2016 using a larger laser spot size and an optimized receiver. These improved the sensitivity x3, and the retrievals show 0.7 ppm precision over the desert in 1 second averaging time. A summary of these results will be presented, along with on-going developments for a space version.

  19. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  20. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  1. 14 CFR 47.37 - Aircraft last previously registered in a foreign country.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION Certificates of Aircraft Registration § 47.37 Aircraft last... Matters Specific to Aircraft Equipment (the Cape Town Treaty), the foreign registration has ended or is... registration has ended or is invalid, and showing the official's name and title and describing the aircraft by...

  2. State Estimation for Landing Maneuver on High Performance Aircraft

    NASA Astrophysics Data System (ADS)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  3. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  4. Comparison of Satellite and Aircraft Measurements of Cloud Microphysical Properties in Icing Conditions During ATREC/AIRS-II

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.

    2004-01-01

    Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.

  5. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  6. RCS of ships and aircraft at HF frequencies

    NASA Astrophysics Data System (ADS)

    Trueman, C. W.; Kubina, S. J.; Mishra, S. R.; Larose, C.

    Coastal radar operating at high frequency (HF) has the potential of monitoring iceberg movement and ship and aircraft traffic over a wide area of ocean. The HF radar cross-section of an aircraft-like scatterer of simple geometry is investigated. At these frequencies, the aircraft size is comparable to the wavelength. The aircraft radar cross-section (RCS) is obtained both by computation and by direct measurement. It is demonstrated that at low frequencies in the HF range, the dorsal fin is the dominant scatterer, but at high HF the fuselage can scatter more strongly than the dorsal fin. Aircraft often carry wire antennas for HF communication, and it is shown that such wires can dramatically alter the RCS of the aircraft near the resonant frequencies of the wire. The RCS of a ship modelled as a parallelepiped with mast is 20-30 decibels larger than that of an aircraft, and is dominated at low HF by the contribution of the mast.

  7. Infrared thermographic diagnostic aid to aircraft maintenance

    NASA Astrophysics Data System (ADS)

    Delo, Michael; Delo, Steve

    2007-04-01

    Thermographic data can be used as a supplement to aircraft maintenance operations in both back shop and flight line situations. Aircraft systems such as electrical, propulsion, environmental, pitot static and hydraulic/pneumatic fluid, can be inspected using a thermal infrared (IR) imager. Aircraft systems utilize electro-hydraulic, electro-mechanical, and electro-pneumatic mechanisms, which, if accessible, can be diagnosed for faults using infrared technology. Since thermographs are images of heat, rather than light, the measurement principle is based on the fact that any physical object (radiating energy at infrared wavelengths within the IR portion of the electro-magnetic spectrum), can be imaged with infrared imaging equipment. All aircraft systems being tested with infrared are required to be energized for troubleshooting, so that valuable baseline data from fully operational aircraft can be collected, archived and referenced for future comparisons.

  8. A micro-machined gyroscope for rotating aircraft.

    PubMed

    Yan, Qingwen; Zhang, Fuxue; Zhang, Wei

    2012-01-01

    In this paper we present recent work on the design, fabrication by silicon micromachining, and packaging of a new gyroscope for stabilizing the autopilot of rotating aircraft. It operates based on oscillation of the silicon pendulum between two torsion girders for detecting the Coriolis force. The oscillation of the pendulum is initiated by the rolling and deflecting motion of the rotating carrier. Therefore, the frequency and amplitude of the oscillation are proportional to the rolling frequency and deflecting angular rate of the rotating carrier, and are measured by the sensing electrodes. A modulated pulse with constant amplitude and unequal width is obtained by a linearizing process of the gyroscope output signal and used to control the deflection of the rotating aircraft. Experimental results show that the gyroscope has a resolution of 0.008 °/s and a bias of 56.18 °/h.

  9. Passenger Transmitters as A Possible Cause of Aircraft Fuel Ignition

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Dudley, Kenneth L.; Scearce, Stephen A.; Hatfield, Michael O.; Richardson, Robert E.

    2006-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from transmitting Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. A survey of RF emissions from typical intentional transmitting PEDs was first performed. Aircraft measurements of RF coupling to the fuel tank and its wiring were also performed to determine the PEDs induced power on the wiring, and the re-radiated power within the fuel tank. Laboratory simulations were conducted to determine the required RF power level for an arcing/sparking event. Data analysis shows large positive safety margins, even with simulated faults on the wiring.

  10. Farfield structure of an aircraft trailing vortex, including effects of mass injection

    NASA Technical Reports Server (NTRS)

    Mason, W. H.; Marchman, J. F., III

    1972-01-01

    Wind tunnel tests to predict the aircraft wake turbulence due to the tip trailing vortex are discussed. A yawhead pressure probe was used in a subsonic wind tunnel to obtain detailed mean flow measurements at stations up to 30 chordlengths downstream in an aircraft trailing vortex. Mass injection at the wingtip was shown to hasten the decay of the trailing vortex. A theoretical method is presented to show the effect which the circulation distribution on the wing has on the structure of the outer portion of the vortex.

  11. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  12. Baseline monitoring using aircraft laser ranging. [spaceborne laser simulation and aircraft laser tracking

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Hoge, F. E.; Martin, C. F.

    1982-01-01

    The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.

  13. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  14. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  15. Equations for determining aircraft motions for accident data

    NASA Technical Reports Server (NTRS)

    Bach, R. E., Jr.; Wingrove, R. C.

    1980-01-01

    Procedures for determining a comprehensive accident scenario from a limited data set are reported. The analysis techniques accept and process data from either an Air Traffic Control radar tracking system or a foil flight data recorder. Local meteorological information at the time of the accident and aircraft performance data are also utilized. Equations for the desired aircraft motions and forces are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made is that aircraft side force and side-slip angle are negligible. An estimation procedure is outlined for use with each data source. For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least squares smoothing is provided.

  16. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  17. Simulation of the Impact of New Aircraft- and Satellite-based Ocean Surface Wind Measurements on Estimates of Hurricane Intensity

    NASA Technical Reports Server (NTRS)

    Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy; hide

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.

  18. Aircraft NOx and O3 measurements during wintertime temperature inversions in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Womack, C.; Fibiger, D. L.; McDuffie, E. E.; Franchin, A.; Goldberger, L.; Moravek, A.; Middlebrook, A. M.; Thornton, J. A.; Murphy, J. G.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    The topography of northern Utah results in several multi-day persistent cold-air pools (PCAPs) each winter, during which a temperature inversion prevents the mix-out of anthropogenic emissions. Pollutant levels rise over the course of several days, resulting in particulate matter (PM2.5) levels exceeding the US National Ambient Air Quality Standard of 35 µg/m3, often reaching 60-70 µg/m3 or higher. However, there is significant variability within individual valleys, whose emissions are predominately urban (as in Salt Lake City Valley), agricultural (as in Cache Valley), or a combination of the two. The Utah Winter Fine Particulate Matter Study (UWFPS 2017) was a ground- and aircraft-based field campaign that took place in Jan-Feb 2017 with the aim of better characterizing the complex chemistry involved in the buildup of PM2.5. On board the NOAA Twin Otter aircraft was a cavity ringdown instrument for measuring nitrogen oxides and ozone, an I- CIMS for gas phase oxidized reactive nitrogen, an AMS that measured particulate phase nitrate, and a mid-infrared absorption instrument for NH3. We report vertical and horizontal distributions of NOx, NOy, and O3, and their variation with meteorological conditions and time of day, in the urban and rural valleys of northern Utah.

  19. Air quality and ocular discomfort aboard commercial aircraft.

    PubMed

    Backman, H; Haghighat, F

    2000-10-01

    Aircraft cabin air quality has been a subject of recent public health interest. Aircraft environments are designed according to standards to ensure the comfort and well-being of the occupants. The upper and lower limits of humidity set by ASHRAE standards are based on the maintenance of acceptable thermal conditions established solely on comfort considerations, including thermal sensation, skin wetness, skin dryness, dry eyes and ocular discomfort. The purpose of this study is to investigate the influence of air (carbon dioxide level, relative humidity, and temperature) aboard commercial aircraft on ocular discomfort and dry eye of aircraft personnel and passengers. Measurements of indoor air quality were performed in 15 different aircraft at different times and altitudes. Forty-two measurements of carbon dioxide, temperature, and humidity were performed with portable air samplers every 5 minutes. Passenger loads did not exceed 137 passengers. Thermal comfort rarely met ASHRAE standards. Low humidity levels and high carbon dioxide levels were found on the Airbus 320. The DC-9 had the highest humidity level and the Boeing-767 had the lowest carbon dioxide level. Air quality was poorest on the Airbus 320 aircraft. This poor level of air quality may cause intolerance to contact lenses, dry eyes, and may be a health hazard to both passengers and crew members. Improved ventilation and aircraft cabin micro-environments need to be made for the health and comfort of the occupants.

  20. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of

  1. Line of sight pointing technology for laser communication system between aircrafts

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Liu, Yunqing; Song, Yansong

    2017-12-01

    In space optical communications, it is important to obtain the most efficient performance of line of sight (LOS) pointing system. The errors of position (latitude, longitude, and altitude), attitude angles (pitch, yaw, and roll), and installation angle among a different coordinates system are usually ineluctable when assembling and running an aircraft optical communication terminal. These errors would lead to pointing errors and make it difficult for the LOS system to point to its terminal to establish a communication link. The LOS pointing technology of an aircraft optical communication system has been researched using a transformation matrix between the coordinate systems of two aircraft terminals. A method of LOS calibration has been proposed to reduce the pointing error. In a flight test, a successful 144-km link was established between two aircrafts. The position and attitude angles of the aircraft have been obtained to calculate the pointing angle in azimuth and elevation provided by using a double-antenna GPS/INS system. The size of the field of uncertainty (FOU) and the pointing accuracy are analyzed based on error theory, and it has been also measured using an observation camera installed next to the optical LOS. Our results show that the FOU of aircraft optical communications is 10 mrad without a filter, which is the foundation to acquisition strategy and scanning time.

  2. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  3. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  4. NASA and Canadian Snowbirds Aircrafts

    NASA Image and Video Library

    2018-05-09

    Several types of aircraft are on the tarmac at the Shuttle Landing Facility (SLF) at NASA's Kennedy Space in Florida. From left, are two Canadian Forces Snowbird CF-18 jets, a NASA Huey helicopter, and two NASA T-38 trainer aircraft. The Canadian Forces Snowbirds performed aerial maneuvers over Kennedy and Cape Canaveral Air Force Station during a practice flight on May 9, 2018, between their scheduled air shows.

  5. Noise Levels and Data Analyses for Small Prop-Driven Aircraft

    DTIC Science & Technology

    1983-08-01

    assumption is that the acoustical emission characteristics of the test aircraft remain constant over the 3000 feet between sites. 7.1 Intensity metric...assumed that acoustical emission characteristics of the aircraft are nominally the same as the aircraft passes over the two measurement locations. As...associated with the emission of AIM. Table 12-2 lists the aircraft tested, number of samples, and the mean and standard deviation of the acoustical angle. The

  6. Noise measurements obtained during engineering evaluation of two-segment approaches in a 727-200 aircraft

    NASA Technical Reports Server (NTRS)

    Tanner, C. S.; Glass, R. E.

    1974-01-01

    A series of noise measurements were made during engineering evaluation tests of two-segment approaches in a 727-200 aircraft equipped with acoustically treated nacelles. A two-segment approach having a 6-degree upper glide slope angle intercepting the Instrument Landing System (ILS) 2.9-degree glide slope at an altitude of 690 feet gave a 5-EPNdB decrease in measured noise at distances greater than 3 nautical miles from the runway threshold when compared with a normal ILS approach. Several of the noise measurements were taken under adverse weather conditions which were outside the specified limits of FAR Part 36. This may introduce uncertainties into the data from several approaches.

  7. Visual display angles of conventional and a remotely piloted aircraft.

    PubMed

    Kamine, Tovy Haber; Bendrick, Gregg A

    2009-04-01

    Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.

  8. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  9. Aircraft measurements of trace gases between Japan and Singapore in October of 1993, 1996, and 1997

    NASA Astrophysics Data System (ADS)

    Matsueda, Hidekazu; Inoue, Hisayuki Y.

    Carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mixing ratios were measured in discrete air samples from aircraft between Japan and Singapore in October. The mixing ratios of all trace gases at 9-12 km were enhanced over the South China Sea in 1997 compared with those in 1993 and 1996. Vertical distributions of all trace gases over Singapore in 1997 also showed largely elevated mixing ratios at all altitudes. These distributions indicate a wide outflow of trace gases from intense biomass burning in the southeast Asia regions in the very strong El Niño year. The enhanced trace gases showed a strong linear correlation between CH4 and CO, and between CO and CO2, with the regression slopes of 0.051 (ΔCH4 ppb/ΔCOppb) and 0.089 (ΔCOppb/ΔCO2ppb). The emission ratios are characteristic of fires with relatively lower combustion efficiency from the tropical rain forest and peat lands in Kalimantan and Sumatra of Indonesia.

  10. Response of geese to aircraft disturbances

    USGS Publications Warehouse

    Ward, David; Stehn, Robert A.; Derksen, Dirk V.

    2000-01-01

    Low-flying aircraft can affect behavior, physiology, and distribution of wildlife (Manci et al., 1988), and over time, may impact a population by reducing survival and reproductive performance. Thus, it is important to identify the particular aspects of overflights that affect animals so that management strategies can be developed to minimize adverse effects.Waterfowl are particularly sensitive to low-flying aircraft (Manci et al., 1988) and respond at all stages of their annual cycle, including breeding (Gollop et al., 1974a; Laing, 1991), molting (Derksen et al., 1979; Mosbech and Glahder, 1991), migration (Jones and Jones, 1966; Belanger and Bedard, 1989), and wintering (Owens, 1977; Kramer et al., 1979; Henry, 1980). Waterfowl response can be quite variable both within and among species (Fleming et al., 1996). For example, response can vary with age, sex, and body condition of individual, habitat type and quality, and previous exposure to aircraft (Dahlgren and Korshgen, 1992). However, the most important factors influencing a response are aircraft type (Davis and Wiseley, 1974; Jensen, 1990), noise (Mosbech and Glahder, 1991; Temple, 1993), and proximity to the birds, as measured in altitude and lateral distance (Derksen et al., 1979; Belanger and Bedard, 1989; Ward et al., 1994). Wildlife managers can reduce impacts on a population by controlling or modifying these factors.In an experimental study conducted at Izembek Lagoon in southwestern Alaska in 1985-1988 (Ward and Stehn, 1989), we conducted planned aircraft overflights with control of aircraft type, noise, altitude, and lateral distance to flocks (hereafter called lateral distance) to measure behavioral response of fall-staging Pacific brant (Branta bernicla nigricans) and Canada geese (B. canadensis taverneri) to fixed- and rotary-wing aircraft. These data were then used to develop predictive models of the relationship between aircraft type, noise, altitude, and lateral distance and the response of

  11. Effective density measurements of fresh particulate matter emitted by an aircraft engine

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Durdina, Lukas; Mensah, Amewu; Brem, Benjamin; Corbin, Joel; Rindlisbacher, Theo; Wang, Jing; Lohmann, Ulrike; Sierau, Berko

    2014-05-01

    organic aerosols. The soot masses/densities were determined using a DMA-CPMA system as described in the following. The freshly generated soot particles were first charge equilibrated to account for multiple charging and selected according to their mobility size (dm) by a DMA. The monodisperse flow then entered the CPMA which measured the corresponding mass. A condensation particle counter counted the particle number concentration. The effective density (ρeff) can be derived using the fractal relationship between mass and dm and the definition of the effective density. Additionally, we investigated four different laboratory-generated soot types at ETHZ. In detail, a Combustion Aerosol Standard burner ((1) fuel-rich and (2) fuel-lean), a (3) PALAS GFG aerosol generator and (4) carbon black (Cabot Regal Black) from an atomizer, were used. The corresponding results are compared to the aircraft engine exhaust measurements. Results The size, mass, effective density distributions, and the corresponding mobility based fractal dimensions (Dfm) from fresh soot particles emitted by a common aircraft engine and from four laboratory generated soot types were analysed. Dfm is used to describe aggregate particles. It relates the number of primary particles to dm. In general, the effective density decreases with increasing mobility diameter and depends on engine thrust.

  12. Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor.

    PubMed

    Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira

    2018-05-15

    The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  14. A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport and Halogenated Gases

    NASA Technical Reports Server (NTRS)

    Chang, A. Y.; Salawitch, R. J.; Michelsen, H. A.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Rinsland, C. P.; Loewenstein, M.; Podolske, J. R.; Proffitt, M. H.; hide

    1996-01-01

    We compare volume mixing ratio profiles of N2O, O3, NO(y), H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of (N2O) show good agreement, as do measured correlations of (O3), (NO(y)), (H2O), and (CH4) with (N2O). Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of (NO(y)) determined by detection of individual species by ATMOS and the total (NOy) measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric (CO) observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

  15. Life cycle cost analysis of aging aircraft airframe maintenance

    NASA Astrophysics Data System (ADS)

    Sperry, Kenneth Robert

    Scope and method of study. The purpose of this study was to examine the relationship between an aircraft's age and its annual airframe maintenance costs. Common life cycle costing methodology has previously not recognized the existence of this cost growth potential, and has therefor not determined the magnitude nor significance of this cost element. This study analyzed twenty-five years of DOT Form 41-airframe maintenance cost data for the Boeing 727, 737, 747 and McDonnell Douglas DC9 and DC-10 aircraft. Statistical analysis included regression analysis, Pearson's r, and t-tests to test the null hypothesis. Findings and conclusion. Airframe maintenance cost growth was confirmed to be increasing after an aircraft's age exceeded its designed service objective of approximately twenty-years. Annual airframe maintenance cost growth increases were measured ranging from 3.5% annually for a DC-9, to approximately 9% annually for a DC-10 aircraft. Average measured coefficient of determination between age and airframe maintenance, exceeded .80, confirming a strong relationship between cost: and age. The statistical significance of the difference between airframe costs sampled in 1985, compared to airframe costs sampled in 1998 was confirmed by t-tests performed on each subject aircraft group. Future cost forecasts involving aging aircraft subjects must address cost growth due to aging when attempting to model an aircraft's economic service life.

  16. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  17. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  18. Aircraft Measurements of Aerosol Phase Matrix Elements by the Polarized Imaging Nephelometer (Invited)

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.; Espinosa, R.; Dubovik, O.; Beyersdorf, A. J.; Ziemba, L. D.; Hair, J. W.

    2013-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage, the assumed phase matrices must be validated by measurements. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County (UMBC) we developed a new technique to directly measure the aerosol phase function (P11), the degree of linear polarization of the scattered light (-P12/P11), and the volume scattering coefficient (SCAT). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph), shown in Figure 1 (a). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project and the January and February deployment of the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (Discover-AQ) mission. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178° (in some cases stray light limited the scattering angle range to 3° to 176°). Data for P11, P12, and SCAT were taken every 12 seconds, example datasets from DEVOTE of P11 times SCAT are shown on Figure 1 (b). The talk will highlight results from the three field deployments and will show microphysical retrievals from the scattering data. The size distribution and the average complex refractive index of the ambient aerosol ensemble can be retrieved from the data by an algorithm similar to that of AERONET, as illustrated in Figure 1 (c). Particle sphericity can potentially be

  19. World commercial aircraft accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.

    1993-01-01

    This report is a compilation of all accidents world-wide involving aircraft in commercial service which resulted in the loss of the airframe or one or more fatality, or both. This information has been gathered in order to present a complete inventory of commercial aircraft accidents. Events involving military action, sabotage, terrorist bombings, hijackings, suicides, and industrial ground accidents are included within this list. Included are: accidents involving world commercial jet aircraft, world commercial turboprop aircraft, world commercial pistonprop aircraft with four or more engines and world commercial pistonprop aircraft with two or three engines from 1946 to 1992. Each accidentmore » is presented with information in the following categories: date of the accident, airline and its flight numbers, type of flight, type of aircraft, aircraft registration number, construction number/manufacturers serial number, aircraft damage, accident flight phase, accident location, number of fatalities, number of occupants, cause, remarks, or description (brief) of the accident, and finally references used. The sixth chapter presents a summary of the world commercial aircraft accidents by major aircraft class (e.g. jet, turboprop, and pistonprop) and by flight phase. The seventh chapter presents several special studies including a list of world commercial aircraft accidents for all aircraft types with 100 or more fatalities in order of decreasing number of fatalities, a list of collision accidents involving commercial aircrafts, and a list of world commercial aircraft accidents for all aircraft types involving military action, sabotage, terrorist bombings, and hijackings.« less

  20. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  1. Lidar investigation of wake vortices generated by a landing aircraft

    NASA Astrophysics Data System (ADS)

    Smalikho, Igor N.; Banakh, Viktor A.; Falits, Andrey V.

    2017-11-01

    The results of measurements of parameters of aircraft wake vortices by a Stream Line coherent Doppler lidar during the three-day experiment on the airfield of Tolmachevo Airport are presented. We have analyzed spatial dynamics and evolution of the wake vortices generated by aircrafts of various types: from the Airbus A319 passenger aircraft to the heavy Boeing B747-8 cargo aircraft entering the landing at Tolmachevo Airport. It is shown that the Stream Line lidar may well be used to obtain reliable information about the presence and intensity of aircraft wake vortices in the vicinity of the runway.

  2. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  3. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  4. A 3D imaging system for the non-intrusive in-flight measurement of the deformation of an aircraft propeller and a helicopter rotor

    NASA Astrophysics Data System (ADS)

    Stasicki, Bolesław; Boden, Fritz; Ludwikowski, Krzysztof

    2017-02-01

    The non-intrusive in-flight deformation measurement and the resulting local pitch of an aircraft propeller or helicopter rotor blade is a demanding task. The idea of an imaging system integrated and rotating with the air-craft propeller has already been presented at the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been designed, constructed and tested in the laboratory as well as in-flight on the Cobra VUT100 of Evektor Aerotechnik, Kunovice (CZ). The major aim of the EU FP7 project AIM2 ("Advanced In-flight Measurement techniques 2" - contract No. 266107) was to ascertain the feasibility of this technique under extreme conditions - vibration and large centrifugal forces - to real flight testing. Based on the gained experience a new rotating system for the application on helicopter rotors has recently been constructed and tested on the whirl tower of Airbus Helicopters, Donauwoerth (D). In this paper the principle of the applied Image Pattern Correlation Technique (IPCT), a specialized type of Digital Image Correlation (DIC), is outlined and the construction of both rotating 3D image acquisition systems dedicated to the in-flight deformation measurement of the aircraft propeller and helicopter rotor are described. Furthermore, the results of the ground and in-flight tests of these systems will be shown and discussed. The obtained results will be helpful for manufacturers in the design of their future aircrafts.

  5. First gaseous Sulfur (VI) measurements in the simulated internal flow of an aircraft gas turbine engine during project PartEmis

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Arnold, F.; Wilson, C.

    2004-01-01

    Gaseous S(VI) (SO3 + H2SO4) has been measured by chemical ionization mass spectrometry (CIMS) in the simulated internal flow of an aircraft gas turbine in a test rig at ground level during the PartEmis 2002 campaign. Building on S(VI) and calculated total sulfur ST the abundance ratio ɛ = S(VI)/ST was determined. The measurements to be reported here were made at two sampling points, for two engine test conditions representative of old and modern aircraft cruise and for a fuel sulfur content FSC = 1270 ppm. For both cruise conditions the measured ɛ increased with increasing exhaust age from the high pressure to the low pressure stage. For each pressure stage ɛ was higher in the modern cruise condition. The maximum ɛ (2.3 +/- 1.2%) was obtained for modern cruise and the low pressure stage. Our present data suggest that modern engines have a somewhat higher conversion efficiencies than old engines.

  6. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  7. Preliminary design of a long-endurance Mars aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1990-01-01

    The preliminary design requirements of a long endurance aircraft capable of flight within the Martian environment was determined. Both radioisotope/heat engine and PV solar array power production systems were considered. Various cases for each power system were analyzed in order to determine the necessary size, weight and power requirements of the aircraft. The analysis method used was an adaptation of the method developed by Youngblood and Talay of NASA-Langley used to design a high altitude earth based aircraft. The analysis is set up to design an aircraft which, for the given conditions, has a minimum wingspan and maximum endurance parameter. The results showed that, for a first approximation, a long endurance aircraft is feasible within the Martian environment. The size and weight of the most efficient solar aircraft were comparable to the radioisotope powered one.

  8. Study of dynamics of X-14B VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Loscutoff, W. V.; Mitchiner, J. L.; Roesener, R. A.; Seevers, J. A.

    1973-01-01

    Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined.

  9. Sports aviation accidents: fatality and aircraft specificity.

    PubMed

    de Voogt, Alexander J; van Doorn, Robert R A

    2010-11-01

    Sports aviation is a special category of general aviation characterized by diverse aircraft types and a predominantly recreational flight operation. A general comparison of aircraft accidents within sports aviation is missing, but should guide future research. A comparison of accidents in sports aviation was made using 2118 records from the National Transportation Safety Board for the period 1982-2007. In addition, the available denominator data from the Federal Aviation Administration were used to interpret the data. The highest number of accidents was found with gliders (N = 991), but the highest relative number of fatal accidents came from ultra-light (45%) and gyroplane operations (40%), which are homebuilt more often than other aircraft types. The most common cause of accident in sports aviation was in-flight planning and decision-making (N = 200, 9.4%). The most frequent occurrences were hard landings and undershoots, of which the numbers differ significantly from one aircraft type to the other. Homebuilt aircraft are at particular risk in sports aviation. Although denominator data remain problematic for motorized sports aviation, these aircraft show a high proportion of homebuilt aircraft and, more importantly, a higher relative number of fatal accidents.

  10. Video Altimeter and Obstruction Detector for an Aircraft

    NASA Technical Reports Server (NTRS)

    Delgado, Frank J.; Abernathy, Michael F.; White, Janis; Dolson, William R.

    2013-01-01

    Video-based altimetric and obstruction detection systems for aircraft have been partially developed. The hardware of a system of this type includes a downward-looking video camera, a video digitizer, a Global Positioning System receiver or other means of measuring the aircraft velocity relative to the ground, a gyroscope based or other attitude-determination subsystem, and a computer running altimetric and/or obstruction-detection software. From the digitized video data, the altimetric software computes the pixel velocity in an appropriate part of the video image and the corresponding angular relative motion of the ground within the field of view of the camera. Then by use of trigonometric relationships among the aircraft velocity, the attitude of the camera, the angular relative motion, and the altitude, the software computes the altitude. The obstruction-detection software performs somewhat similar calculations as part of a larger task in which it uses the pixel velocity data from the entire video image to compute a depth map, which can be correlated with a terrain map, showing locations of potential obstructions. The depth map can be used as real-time hazard display and/or to update an obstruction database.

  11. Prediction of aircraft sideline noise attenuation

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1978-01-01

    A computational study is made using the recommended ground effect theory by Pao, Wenzel, and Oncley. It is shown that this theory adequately predicts the measured ground attenuation data by Parkin and Scholes, which is the only available large data set. It is also shown, however, that the ground effect theory does not predict the measured lateral attenuations from actual aircraft flyovers. There remain one or more important lateral effects on aircraft noise, such as sideline shielding of sources, which must be incorporated in the prediction methods. Experiments at low elevation angles (0 deg to 10 deg) and low-to-intermediate frequencies are recommended to further validate the ground effect theory.

  12. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  13. Price Determination of General Aviation, Helicopter, and Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Anderson, Joseph L.

    1978-01-01

    The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.

  14. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  15. Raptors and aircraft

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.; Johnson, T.H.; Glinski, Richard L.; Pendleton, Beth Giron; Moss, Mary Beth; LeFranc, Maurice N.=; Millsap, Brian A.; Hoffman, Stephen W.

    1988-01-01

    Less than 5% of all bird strikes of aircraft are by raptor species, but damage to airframe structure or jet engine dysfunction are likely consequences. Beneficial aircraft-raptor interactions include the use of raptor species to frighten unwanted birds from airport areas and the use of aircraft to census raptor species. Many interactions, however, modify the raptor?s immediate behavior and some may decrease reproduction of sensitive species. Raptors may respond to aircraft stimuli by exhibiting alarm, increased heart rate, flushing or fleeing and occasionally by directly attacking intruding aircraft. To date, most studies reveal that raptor responses to aircraft are brief and do not limit reproduction; however, additional study is needed.

  16. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  17. Measurement of OH, H2SO4, MSA, NH3 and DMSO Aboard the NASA P-3B Aircraft

    NASA Technical Reports Server (NTRS)

    Eisele, Fred

    2001-01-01

    This project involved the installation of a downsized multichannel mass spectrometer instrument on the NASA P-3B aircraft and its subsequent use on the PEM-Tropics B mission. The new instrument performed well, measuring a number of difficult-to-measure compounds and providing much new photochemical and sulfur data as well as possibly uncovering a new nighttime DMSO source. The details of this effort are discussed.

  18. Imaging and quantitative measurement of corrosion in painted automotive and aircraft structures

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, Xun; Feng, Z. J.; Jin, Huijia; Sui, Hua; Ouyang, Zhong; Han, Xiaoyan; Favro, L. D.; Thomas, R. L.; Bomback, J. L.

    2000-05-01

    Some of the authors have shown that it is possible to image and make rapid, quantitative measurements of metal thickness loss due to corrosion on the rear surface of a single layer structure, with an accuracy better than one percent. These measurements are complicated by the presence of thick and/or uneven layers of paint on either the front surface, the back surface, or both. We will discuss progress in overcoming these complications. Examples from both automotive and aircraft structures will be presented.—This material is based in part upon work performed at the FAA Center for Aviation Systems Reliability operated at Iowa State University and supported by the Federal Aviation Administration Technical Center, Atlantic City, New Jersey, under Grant number 95-G-025, and is also supported in part by the Institute for Manufacturing Research, Wayne State University, and by Ford Motor Company. Supported by a Grant from Ford Motor Company.

  19. NOISECHECK Procedures for Measuring Noise Exposure from Aircraft Operations

    DTIC Science & Technology

    1980-11-01

    in § afterburner , 8 min € MIL PVR, 8 min 6 80« rpm, and 20 min « idle). Aircraft Maintenance and Runup Log Procedure 1. Log every maintenance...OoMirtnat OltUnct »it« Profilt & SEL utt Eq. l Stipolt- « tnt I Fro» lorkihttt 7 NOISEFILE Sa ♦ 4 SEL Sltnt OltUnct WtSEFlLE SEL Mrtrift

  20. Application of advanced high speed turboprop technology to future civil short-haul transport aircraft design

    NASA Technical Reports Server (NTRS)

    Conlon, J. A.; Bowles, J. V.

    1978-01-01

    With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.

  1. FEATURE A. CONCRETE ANTIAIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A. CONCRETE ANTI-AIRCRAFT GUN POSITION, SHOWING CORAL RUBBLE BERM, VIEW FACING SOUTHEAST. - Naval Air Station Barbers Point, Battery-Anti-Aircraft Gun Position, South of Point Cruz Road & west of Coral Sea Road, Ewa, Honolulu County, HI

  2. Effects on sleep of noise from two proposed STOL aircraft

    NASA Technical Reports Server (NTRS)

    Lukas, J. S.; Peeler, D. J.; Davis, J. E.

    1975-01-01

    Responses, both overt behavior and those measured by electroencephalograph, to noise by eight male subjects were studied for sixteen consecutive nights. Test stimuli were: (1) The simulated sideline noise of a short takeoff and landing aircraft with blown flaps; (2) the simulated sideline noise of a STOL aircraft of turbofan design; (3) the simulated takeoff noise of the blown flap STOL aircraft; and (4) a four second burst of simulated pink noise. Responses to each noise were tested at three noise intensities selected to represent levels expected indoors from operational aircraft. The results indicate that the blown flap STOL aircraft noise resulted in 8 to 10 percent fewer sleep disturbance responses than did the turbofan STOL aircraft when noises of comparable intensities from similar maneuvers were used.

  3. Problems inherent in using aircraft for radio oceanography studies

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1977-01-01

    Some of the disadvantages relating to altitude stability and proximity to the ocean are described for radio oceanography studies using aircraft. The random oscillatory motion introduced by the autopilot in maintaining aircraft altitude requires a more sophisticated range tracker for a radar altimeter than would be required in a satellite application. One-dimensional simulations of the sea surface (long-crested waves) are performed using both the JONSWAP spectrum and the Pierson-Moskowitz spectrum. The results of the simulation indicate that care must be taken in trying to experimentally verify instrument measurement accuracy. Because of the relatively few wavelengths examined from an aircraft due to proximity to the ocean and low velocity compared to a satellite, the random variation in the sea surface parameters being measured can far exceed an instrument's ability to measure them.

  4. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  5. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    PubMed

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Airport take-off noise assessment aimed at identify responsible aircraft classes.

    PubMed

    Sanchez-Perez, Luis A; Sanchez-Fernandez, Luis P; Shaout, Adnan; Suarez-Guerra, Sergio

    2016-01-15

    Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The role of nonlinear effects in the propagation of noise from high-power jet aircraft.

    PubMed

    Gee, Kent L; Sparrow, Victor W; James, Michael M; Downing, J Micah; Hobbs, Christopher M; Gabrielson, Thomas B; Atchley, Anthony A

    2008-06-01

    To address the question of the role of nonlinear effects in the propagation of noise radiated by high-power jet aircraft, extensive measurements were made of the F-22A Raptor during static engine run-ups. Data were acquired at low-, intermediate-, and high-thrust engine settings with microphones located 23-305 m from the aircraft along several angles. Comparisons between the results of a generalized-Burgers-equation-based nonlinear propagation model and the measurements yield favorable agreement, whereas application of a linear propagation model results in spectral predictions that are much too low at high frequencies. The results and analysis show that significant nonlinear propagation effects occur for even intermediate-thrust engine conditions and at angles well away from the peak radiation angle. This suggests that these effects are likely to be common in the propagation of noise radiated by high-power aircraft.

  8. Development of a Corrosion Sensor for AN Aircraft Vehicle Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Price, D. C.; Edwards, G. C.; Batten, A. B.; Kolmeder, J.; Muster, T. H.; Corrigan, P.; Cole, I. S.

    2010-02-01

    A Rayleigh-wave-based sensor has been developed to measure corrosion damage in aircraft. This sensor forms an important part of a corrosion monitoring system being developed for a major aircraft manufacturer. This system measures the corrosion rate at the location of its sensors, and through a model predicts the corrosion rates in nearby places on an aircraft into which no sensors can be placed. In order to calibrate this model, which yields corrosion rates rather than the accumulated effect, an absolute measure of the damage is required. In this paper the development of a surface wave sensor capable of measuring accumulated damage will be described in detail. This sensor allows the system to measure material loss due to corrosion regardless of the possible loss of historical corrosion rate data, and can provide, at any stage, a benchmark for the predictive model that would allow a good estimate of the accumulated corrosion damage in similar locations on an aircraft. This system may obviate the need for costly inspection of difficult-to-access places in aircraft, where presently the only way to check for corrosion is by periodic dismantling and reassembly.

  9. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  10. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    PubMed

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  11. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  12. The 1981 direct strike lightning data. [utilizing the F-106 aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.

    1982-01-01

    Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.

  13. Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013

    NASA Astrophysics Data System (ADS)

    Warneke, Carsten; Trainer, Michael; de Gouw, Joost A.; Parrish, David D.; Fahey, David W.; Ravishankara, A. R.; Middlebrook, Ann M.; Brock, Charles A.; Roberts, James M.; Brown, Steven S.; Neuman, Jonathan A.; Lerner, Brian M.; Lack, Daniel; Law, Daniel; Hübler, Gerhard; Pollack, Iliana; Sjostedt, Steven; Ryerson, Thomas B.; Gilman, Jessica B.; Liao, Jin; Holloway, John; Peischl, Jeff; Nowak, John B.; Aikin, Kenneth C.; Min, Kyung-Eun; Washenfelder, Rebecca A.; Graus, Martin G.; Richardson, Mathew; Markovic, Milos Z.; Wagner, Nick L.; Welti, André; Veres, Patrick R.; Edwards, Peter; Schwarz, Joshua P.; Gordon, Timothy; Dube, William P.; McKeen, Stuart A.; Brioude, Jerome; Ahmadov, Ravan; Bougiatioti, Aikaterini; Lin, Jack J.; Nenes, Athanasios; Wolfe, Glenn M.; Hanisco, Thomas F.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Keutsch, Frank N.; Kaiser, Jennifer; Mao, Jingqiu; Hatch, Courtney D.

    2016-07-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  14. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    PubMed Central

    Warneke, C.; Trainer, M.; de Gouw, J.A.; Parrish, D.D.; Fahey, D.W.; Ravishankara, A.R.; Middlebrook, A.M.; Brock, C.A.; Roberts, J.M.; Brown, S.S.; Neuman, J.A.; Lerner, B.M.; Lack, D.; Law, D.; Hübler, G.; Pollack, I.; Sjostedt, S.; Ryerson, T.B.; Gilman, J.B.; Liao, J.; Holloway, J.; Peischl, J.; Nowak, J.B.; Aikin, K.; Min, K.-E.; Washenfelder, R.A.; Graus, M.G.; Richardson, M.; Markovic, M.Z.; Wagner, N.L.; Welti, A.; Veres, P.R.; Edwards, P.; Schwarz, J.P.; Gordon, T.; Dube, W.P.; McKeen, S.; Brioude, J.; Ahmadov, R.; Bougiatioti, A.; Lin, J.J.; Nenes, A.; Wolfe, G.M.; Hanisco, T.F.; Lee, B.H.; Lopez-Hilfiker, F.D.; Thornton, J.A.; Keutsch, F.N.; Kaiser, J.; Mao, J.; Hatch, C.

    2018-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions. PMID:29619117

  15. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    NASA Technical Reports Server (NTRS)

    Warneke, C.; Trainer, M.; de Gouw, J. A.; Parrish, D. D.; Fahey, D. W.; Ravishankara, A. R.; Middlebrook, A. M.; Brock, C. A.; Roberts, J. M.; Brown, S. S.; hide

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  16. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.

    PubMed

    Warneke, C; Trainer, M; de Gouw, J A; Parrish, D D; Fahey, D W; Ravishankara, A R; Middlebrook, A M; Brock, C A; Roberts, J M; Brown, S S; Neuman, J A; Lerner, B M; Lack, D; Law, D; Hübler, G; Pollack, I; Sjostedt, S; Ryerson, T B; Gilman, J B; Liao, J; Holloway, J; Peischl, J; Nowak, J B; Aikin, K; Min, K-E; Washenfelder, R A; Graus, M G; Richardson, M; Markovic, M Z; Wagner, N L; Welti, A; Veres, P R; Edwards, P; Schwarz, J P; Gordon, T; Dube, W P; McKeen, S; Brioude, J; Ahmadov, R; Bougiatioti, A; Lin, J J; Nenes, A; Wolfe, G M; Hanisco, T F; Lee, B H; Lopez-Hilfiker, F D; Thornton, J A; Keutsch, F N; Kaiser, J; Mao, J; Hatch, C

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO 2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  17. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  18. Improving Aircraft Refueling Procedures at Naval Air Station Oceana

    DTIC Science & Technology

    2012-06-01

    Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation to...Station (NAS) Oceana, VA, using aircraft waiting time for fuel as a measure of performance. We develop a computer-assisted discrete-event simulation...server queue, with general interarrival and service time distributions gpm Gallons per minute JDK Java development kit M/M/1 Single-server queue

  19. Techno-economic requirements for composite aircraft components

    NASA Technical Reports Server (NTRS)

    Palmer, Ray

    1993-01-01

    The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.

  20. Atmospheric methane over Siberia: measurements from the 2014 YAK-AEROSIB aircraft campaign

    NASA Astrophysics Data System (ADS)

    Paris, Jean-Daniel; Pisso, Ignacio; Ancellet, Gérard; Law, Kathy; Arshinov, Mikhail Yu.; Belan, Boris D.; Nédélec, Philippe; Myhre, Cathrine Lund

    2017-04-01

    The YAK-AEROSIB program collects high-precision in-situ measurements of the vertical distribution of CO2, CH4, CO, O3, black carbon and ultrafine particles distribution in the Siberian troposphere, as well as other parameters including aerosol lidar profiles, on a pan-Siberian aircraft transect. Recent efforts aim at better understanding the respective role of CH4 emission processes in driving its large scale atmospheric variability over the region. The October 2014 YAK-AEROSIB/MOCA campaign from Novosibirsk to Salekhard and over the Kara sea and the Yamal peninsula sampled air masses affected by local, regional and remote pollution. We analyse the contribution of local anthropogenic sources to measured CH4 enhancements, in relation to atmospheric mixing and transport conditions. Our analysis also attempts to detect CH4 signal from sources of methane in the Siberian shelf and the Arctic ocean during low level flight legs over the Kara sea using the airborne measurements and a Lagrangian model coupled to potential CH4 hydrate and geological sources. The measured CH4 concentrations do not contradict a potential source upstream of our measurements, but the interpretation is challenging due to a very low CH4 signal. The challenging question of the methane budget and its evolution in Siberia leads to a need for new approaches. A new generation of airborne measurements, more flexible, is now needed.

  1. The Role of Aircraft Motion in Airborne Gravity Data Quality

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Damiani, T.; Weil, C.; Preaux, S. A.

    2015-12-01

    Many factors contribute to the quality of airborne gravity data measured with LaCoste and Romberg-type sensors, such as the Micro-g LaCoste Turnkey Airborne Gravity System used by the National Geodetic Survey's GRAV-D (Gravity for the Redefinition of the American Vertical Datum) Project. For example, it is well documented that turbulence is a big factor in the overall noise level of the measurement. Turbulence is best controlled by avoidance; thus flights in the GRAV-D Project are only undertaken when the predicted wind speeds at flight level are ≤ 40 kts. Tail winds are known to be particularly problematic. The GRAV-D survey operates on a number of aircraft in a variety of wind conditions and geographic locations, and an obvious conclusion from our work to date is that the aircraft itself plays an enormous role in the quality of the airborne gravity measurement. We have identified a number of features of the various aircraft which can be determined to play a role: the autopilot, the size and speed of the aircraft, inherent motion characteristics of the airframe, tip tanks and other modifications to the airframe to reduce motion, to name the most important. This study evaluates the motion of a number of the GRAV-D aircraft and looks at the correlation between this motion and the noise characteristics of the gravity data. The GRAV-D Project spans 7 years and 42 surveys, so we have a significant body of data for this evaluation. Throughout the project, the sensor suite has included an inertial measurement unit (IMU), first the Applanix POSAv, and then later the Honeywell MicroIRS IMU as a part of a NovAtel SPAN GPS/IMU system. We compare the noise characteristics of the data with measures of aircraft motion (via pitch, roll, and yaw captured by the IMU) using a variety of statistical tools. It is expected that this comparison will support the conclusion that certain aircraft tend to work well with this type of gravity sensor while others tend to be problematic in

  2. Live Aircraft Encounter Visualization at FutureFlight Central

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John

    2018-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.

  3. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  4. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  5. Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire

    NASA Technical Reports Server (NTRS)

    Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.

    1997-01-01

    Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.

  6. Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions

    NASA Technical Reports Server (NTRS)

    Studebaker, Karen; Abrego, Anita

    1994-01-01

    The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.

  7. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  8. Flight directors for STOl aircraft

    NASA Technical Reports Server (NTRS)

    Rabin, U. H.

    1983-01-01

    Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

  9. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  10. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  11. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  12. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  13. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  14. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  15. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engines, and propellers. 21.6 Section 21.6 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  16. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  17. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  18. Test results of smart aircraft fastener for KC-135 structural integrity

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  19. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  20. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  1. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  2. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  3. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  4. 12. Interior view of battle staff compartment showing the general's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of battle staff compartment showing the general's chair. View toward front of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  5. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  6. Development of a new photocatalytic oxidation air filter for aircraft cabin.

    PubMed

    Ginestet, A; Pugnet, D; Rowley, J; Bull, K; Yeomans, H

    2005-10-01

    A new photocatalytic oxidation air filter (PCO unit) has been designed for aircraft cabin applications. The PCO unit is designed as a regenerable VOC removal system in order to improve the quality of the recirculated air entering the aircraft cabin. The PCO was designed to be a modular unit, with four UV lamps sandwiched between two interchangeable titanium dioxide coated panels. Performances of the PCO unit has been measured in a single pass mode test rig in order to show the ability of the unit to decrease the amount of VOCs (toluene, ethanol, and acetone) entering it (VOCs are fed separately), and in a multipass mode test rig in order to measure the ability of the unit to clean the air of an experimental room polluted with the same VOCs (fed separately). Triangular cell panels have been chosen instead of the wire mesh panels because they have higher efficiency. The efficiency of the PCO unit depends on the type of VOCs that challenges it, toluene being the most difficult one to oxidise. The efficiency of the PCO unit decreases when the air flow rate increases. The multipass mode test results show that the VOCs are oxidized but additional testing time would be necessary in order to show if they can be fully oxidized. The intermediate reaction products are mainly acetaldehyde and formaldehyde whose amount depends on the challenge VOC. The intermediate reaction products are also oxidized and additional testing time would be necessary in order to show if they can be fully oxidized. The development of this new photocatalytic air filter is still going on. The VOC/odor removing adsorbers are available for only a small proportion of aircraft currently in service. The photocatalytic oxidation (PCO) technique has appeared to be a promising solution to odors problems met in aircraft. This article reports the test results of a new photocatalytic oxidation air filter (PCO unit) designed for aircraft cabin applications. The overall efficiency of the PCO unit is function of

  7. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  8. The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 2: Comparisons with global atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Prather, Michael J. (Editor); Remsberg, Ellis E. (Editor)

    1993-01-01

    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.

  9. Improving and Assessing Aircraft-based Greenhouse Gas Emission Rate Measurements at Indianapolis as part of the INFLUX project.

    NASA Astrophysics Data System (ADS)

    Heimburger, A. M. F.; Shepson, P. B.; Stirm, B. H.; Susdorf, C.; Cambaliza, M. O. L.

    2015-12-01

    Since the Copenhagen accord in 2009, several countries have affirmed their commitment to reduce their greenhouse gas emissions. The United States and Canada committed to reduce their emissions by 17% below 2005 levels, by 2020, Europe by 14% and China by ~40%. To achieve such targets, coherent and effective strategies in mitigating atmospheric carbon emissions must be implemented in the next decades. Whether such goals are actually achieved, they require that reductions are "measurable", "reportable", and "verifiable". Management of greenhouse gas emissions must focus on urban environments since ~74% of CO2 emissions worldwide will be from cities, while measurement approaches are highly uncertain (~50% to >100%). The Indianapolis Flux Experiment (INFLUX) was established to develop, assess and improve top-down and bottom-up quantifications of urban greenhouse gas emissions. Based on an aircraft mass balance approach, we performed a series of experiments focused on the improvement of CO2, CH4 and CO emission rates quantification from Indianapolis, our final objective being to drastically improve the method overall uncertainty from the previous estimate of 50%. In November-December 2014, we conducted nine methodologically identical mass balance experiments in a short period of time (24 days, one downwind distance) for assumed constant total emission rate conditions, as a means to obtain an improved standard deviation of the mean determination. By averaging the individual emission rate determinations, we were able to obtain a method precision of 17% and 16% for CO2 and CO, respectively, at the 95%C.L. CH4 emission rates are highly variable day to day, leading to precision of 60%. Our results show that repetitive sampling can enable improvement in precision of the aircraft top-down methods through averaging.

  10. Unmanned aircraft systems

    USDA-ARS?s Scientific Manuscript database

    Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...

  11. Influence of flaps and engines on aircraft wake vortices

    DOT National Transportation Integrated Search

    1974-09-01

    Although pervious investigations have shown that the nature of aircraft wake vortices depends on the aircraft type and flap configuration, the causes for these differences have not been clearly identified. In this Note we show that observed differenc...

  12. Cruise noise of an advanced single-rotation propeller measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Ranaudo, Richard J.

    1989-01-01

    Results are reported from flight measurements of the noise from a full-scale SR-7L advanced single-rotation turbofan model mounted on the wing of the NASA Lewis Propfan Test Assessment (PTA) aircraft (a modified Gulfstream II). Data obtained on the PTA with an outboard microphone boom and by the NASA Lewis acoustically instrumented Learjet flying along several sidelines relative to the PTA are presented in tables and graphs and briefly discussed. It is found that the PTA-boom and Learjet sound levels are in good agreement at Mach 0.69 and altitude 20,000 ft, but the Learjet values are significantly lower than the boom levels at Mach 0.79 and altitude 36,000 ft.

  13. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  14. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  15. Test of prototype liquid-water-content meter for aircraft use

    NASA Technical Reports Server (NTRS)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  16. Documentation of the space station/aircraft acoustic apparatus

    NASA Technical Reports Server (NTRS)

    Clevenson, Sherman A.

    1987-01-01

    This paper documents the design and construction of the Space Station/Aircraft Acoustic Apparatus (SS/AAA). Its capabilities both as a space station acoustic simulator and as an aircraft acoustic simulator are described. Also indicated are the considerations which ultimately resulted in man-rating the SS/AAA. In addition, the results of noise surveys and reverberation time and absorption coefficient measurements are included.

  17. 77 FR 13522 - Safety Zone; Baltimore Air Show, Patapsco River, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Register. Background and Purpose The U.S. Navy History & Heritage Command, Office of Commemorations, is... public event will consist of military and civilian aircraft performing low-flying, high-speed precision... Harbor. In addition to the air show dates, military and civilian aircraft performing in the air show will...

  18. The actinic UV-radiation budget during the ESCOMPTE campaign 2001: results of airborne measurements with the microlight research aircraft D-MIFU

    NASA Astrophysics Data System (ADS)

    Junkermann, Wolfgang

    2005-03-01

    During the ESCOMPTE campaign 2001, the vertical distribution of ultraviolet actinic radiation was investigated with concurrent measurements of ozone, aerosol size distributions, and scattering coefficients using a microlight aircraft as airborne platform. Three-dimensional (3D) measurements were performed on a regional scale in the area between Avignon, Aix-en-Provence, and Marseille up to an altitude of 4000 m a.s.l. The results show a pronounced dependence of the vertical actinic flux distribution on aerosol load and stratification while horizontally no significant variability was observed. Furthermore, investigations under cloudy conditions and in the vicinity of cumulus clouds were performed allowing comparisons with one-dimensional and recently published three-dimensional model results. Cloud effects of scattered convective clouds were often found to be masked by aerosols and the aerosol content was generally the dominating factor controlling radiation transfer.

  19. Aircraft requirements for low/medium density markets

    NASA Technical Reports Server (NTRS)

    Ausrotas, R.; Dodge, S.; Faulkner, H.; Glendinning, I.; Hays, A.; Simpson, R.; Swan, W.; Taneja, N.; Vittek, J.

    1973-01-01

    A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics.

  20. Application of Hybrid Laminar Flow Control to Global Range Military Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.

    1988-01-01

    A study was conducted to evaluate the application of hybrid laminar flow control (HLFC) to global range military transport aircraft. The global mission included the capability to transport 132,500 pounds of payload 6500 nautical miles, land and deliver the payload and without refueling return 6500 nautical miles to a friendly airbase. The preliminary design studies show significant performance benefits obtained for the HLFC aircraft as compared to counterpart turbulent flow aircraft. The study results at M=0.77 show that the largest benefits of HLFC are obtained with a high wing with engines on the wing configuration. As compared with the turbulent flow baseline aircraft, the high wing HLFC aircraft shows 17 percent reduction in fuel burned, 19.2 percent increase in lift-to-drag ratio, an insignificant increase in operating weight, and a 7.4 percent reduction in gross weight.

  1. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  2. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise level. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significnatly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  3. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    extrapolated to represent the expected noise levels at different noise monitoring locations of practical interest. With the emergence of more powerful fighter aircraft, supersonic jet noise reduction devices are being intensely researched. Small-scale measurements are a crucial step in evaluating the potential of noise reduction concepts at an early stage in the design process. With this in mind, the present thesis provides an acoustic assessment methodology for small-scale military-style nozzles with chevrons. Comparisons are made between the present measurements and those made by NASA at moderate-scale. The effect of chevrons on supersonic jets was investigated, highlighting the crucial role of the jet operating conditions on the effects of chevrons on the jet flow and the subsequent acoustic benefits. A small-scale heat simulated jet is investigated in the over-expanded condition and shows no substantial noise reduction from the chevrons. This is contrary to moderate-scale measurements. The discrepancy is attributed to a Reynolds number low enough to sustain an annular laminar boundary layer in the nozzle that separates in the over-expanded flow condition. These results are important in assessing the limitations of small-scale measurements in this particular jet noise reduction method. Lastly, to successfully present the results from the acoustic measurements of small-scale jets with high quality, a newly developed PSU free-field response was empirically derived to match the specific orientation and grid cap geometry of the microphones. Application to measured data gives encouraging results validating the capability of the method to produce superior accuracy in measurements even at the highest response frequencies of the microphones.

  4. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  5. Rapid Automated Aircraft Simulation Model Updating from Flight Data

    NASA Technical Reports Server (NTRS)

    Brian, Geoff; Morelli, Eugene A.

    2011-01-01

    Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

  6. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  7. Detection of respiratory viruses on air filters from aircraft.

    PubMed

    Korves, T M; Johnson, D; Jones, B W; Watson, J; Wolk, D M; Hwang, G M

    2011-09-01

    To evaluate the feasibility of identifying viruses from aircraft cabin air, we evaluated whether respiratory viruses trapped by commercial aircraft air filters can be extracted and detected using a multiplex PCR, bead-based assay. The ResPlex II assay was first tested for its ability to detect inactivated viruses applied to new filter material; all 18 applications of virus at a high concentration were detected. The ResPlex II assay was then used to test for 18 respiratory viruses on 48 used air filter samples from commercial aircraft. Three samples tested positive for viruses, and three viruses were detected: rhinovirus, influenza A and influenza B. For 33 of 48 samples, internal PCR controls performed suboptimally, suggesting sample matrix effect. In some cases, influenza and rhinovirus RNA can be detected on aircraft air filters, even more than 10 days after the filters were removed from aircraft. With protocol modifications to overcome PCR inhibition, air filter sampling and the ResPlex II assay could be used to characterize viruses in aircraft cabin air. Information about viruses in aircraft could support public health measures to reduce disease transmission within aircraft and between cities. © The MITRE corporation. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  9. Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations.

  10. Models and techniques for evaluating the effectiveness of aircraft computing systems

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.

    1982-01-01

    Models, measures, and techniques for evaluating the effectiveness of aircraft computing systems were developed. By "effectiveness" in this context we mean the extent to which the user, i.e., a commercial air carrier, may expect to benefit from the computational tasks accomplished by a computing system in the environment of an advanced commercial aircraft. Thus, the concept of effectiveness involves aspects of system performance, reliability, and worth (value, benefit) which are appropriately integrated in the process of evaluating system effectiveness. Specifically, the primary objectives are: the development of system models that provide a basis for the formulation and evaluation of aircraft computer system effectiveness, the formulation of quantitative measures of system effectiveness, and the development of analytic and simulation techniques for evaluating the effectiveness of a proposed or existing aircraft computer.

  11. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine.

    PubMed

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-11-11

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.

  12. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine

    PubMed Central

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-01-01

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture. PMID:27845709

  13. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  14. Acoustic Characterization of a Multi-Rotor Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Feight, Jordan; Gaeta, Richard; Jacob, Jamey

    2017-11-01

    In this study, the noise produced by a small multi-rotor rotary wing aircraft, or drone, is measured and characterized. The aircraft is tested in different configurations and environments to investigate specific parameters and how they affect the acoustic signature of the system. The parameters include rotor RPM, the number of rotors, distance and angle of microphone array from the noise source, and the ambient environment. The testing environments include an anechoic chamber for an idealized setting and both indoor and outdoor settings to represent real world conditions. PIV measurements are conducted to link the downwash and vortical flow structures from the rotors with the noise generation. The significant factors that arise from this study are the operational state of the aircraft and the microphone location (or the directivity of the noise source). The directivity in the rotor plane was shown to be omni-directional, regardless of the varying parameters. The tonal noise dominates the low to mid frequencies while the broadband noise dominates the higher frequencies. The fundamental characteristics of the acoustic signature appear to be invariant to the number of rotors. Flight maneuvers of the aircraft also significantly impact the tonal content in the acoustic signature.

  15. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  16. Spectrometry of linear energy transfer and dosimetry measurements onboard spacecrafts and aircrafts

    NASA Astrophysics Data System (ADS)

    Spurný, F.; Ploc, O.; Jadrníčková, I.

    2009-01-01

    There are only a few methods of dosimetry which can estimate the contribution of different particles to onboard spacecraft and/or aircraft exposure. This contribution describes an attempt to estimate the contribution of different components to the exposure level using MDU-Liulin energy deposition spectrometer and thermoluminescent detectors (TLD’s), in combination with a spectrometer of linear energy transfer (LET) based on track etch detectors. This equipment was exposed onboard: the International Space Station for a long period and two shorter shuttle missions and a commercial subsonic aircraft for several long-term monitoring periods from 2001 to 2006. The data obtained are analyzed from several points of view and the obtained results are presented, analyzed, and discussed.

  17. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  18. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  19. Escorting commercial aircraft to reduce the MANPAD threat

    NASA Astrophysics Data System (ADS)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  20. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  1. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  2. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  3. The effect of the duration of jet aircraft flyover sounds on judged annoyance. [noise predictions and noise measurements of jet aircrafts and human reactions to the noise intensity

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.

    1979-01-01

    The effect of the duration of jet aircraft flyover sounds on humans and the annoyance factor are examined. A nine point numerical category scaling technique is utilized for the study. Changes in the spectral characteristics of aircraft sounds caused by atmospheric attenuation are discussed. The effect of Doppler shifts using aircraft noises with minimal pure tone content is reported. The spectral content of sounds independent of duration and Doppler shift are examined by analysis of variance.

  4. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  5. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  6. Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Rosenlof, Karen H.; Thornberry, Troy

    2018-01-01

    Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions.

  7. A plume capture technique for the remote characterization of aircraft engine emissions.

    PubMed

    Johnson, G R; Mazaheri, M; Ristovski, Z D; Morawska, L

    2008-07-01

    A technique for capturing and analyzing plumes from unmodified aircraft or other combustion sources under real world conditions is described and applied to the task of characterizing plumes from commercial aircraft during the taxiing phase of the Landing/Take-Off (LTO) cycle. The method utilizes a Plume Capture and Analysis System (PCAS) mounted in a four-wheel drive vehicle which is positioned in the airfield 60 to 180 m downwind of aircraft operations. The approach offers low test turnaround times with the ability to complete careful measurements of particle and gaseous emission factors and sequentially scanned particle size distributions without distortion due to plume concentration fluctuations. These measurements can be performed for individual aircraft movements at five minute intervals. A Plume Capture Device (PCD) collected samples of the naturally diluted plume in a 200 L conductive membrane conforming to a defined shape. Samples from over 60 aircraft movements were collected and analyzed in situ for particulate and gaseous concentrations and for particle size distribution using a Scanning Particle Mobility Sizer (SMPS). Emission factors are derived for particle number, NO(x), and PM2.5 for a widely used commercial aircraft type, Boeing 737 airframes with predominantly CFM56 class engines, during taxiing. The practical advantages of the PCAS include the capacity to perform well targeted and controlled emission factor and size distribution measurements using instrumentation with varying response times within an airport facility, in close proximity to aircraft during their normal operations.

  8. General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2006-01-01

    We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).

  9. Propeller aircraft interior noise model utilization study and validation

    NASA Technical Reports Server (NTRS)

    Pope, L. D.

    1984-01-01

    Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.

  10. Simulation of the Impact of New Aircraft-and Satellite-based Ocean Surface Wind Measurements on Wind Analyses and Numerical Forecasts

    NASA Technical Reports Server (NTRS)

    Miller, TImothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric; Gamache, John; Amarin, Ruba; El-Nimri, Salem; hide

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.

  11. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-12-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.

  12. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-04-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free-troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. The models consistently underestimated the north-tropics mean gradient of CO2 both in the free-troposphere and marine boundary layer during boreal summer. This result suggests that the north-tropics contrast of annual mean net non-fossil CO2 flux should be greater than 2.7 Pg C yr-1 for 2007.

  13. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  14. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  15. Using satellites to improve civilian aircraft surveillance coverage

    NASA Technical Reports Server (NTRS)

    Mcgraw, K.

    1984-01-01

    Surveillance of aircraft is presently accomplished through the use of terrestrial based secondary radar sensors, which are capable of interrogating transponders aboard aircraft. Transponder responses provide the basis for determining radial distance by measuring round-trip signal time while antenna angular position is used to determine azimuthal position. These interrogating radar beams are line-of-sight and thus have their coverage obscured by mountains and tall buildings. The addition of more radar sites is rendered unfeasible by the lack of easy access to the required additional site locations. A possible solution to this problem is to deploy satellites that interrogate transponder-equipped aircraft from a position that provides an unobstructed view.

  16. Why aircraft disinsection?

    PubMed

    Gratz, N G; Steffen, R; Cocksedge, W

    2000-01-01

    A serious problem is posed by the inadvertent transport of live mosquitoes aboard aircraft arriving from tropical countries where vector-borne diseases are endemic. Surveys at international airports have found many instances of live insects, particularly mosquitoes, aboard aircraft arriving from countries where malaria and arboviruses are endemic. In some instances mosquito species have been established in countries in which they have not previously been reported. A serious consequence of the transport of infected mosquitoes aboard aircraft has been the numerous cases of "airport malaria" reported from Europe, North America and elsewhere. There is an important on-going need for the disinsection of aircraft coming from airports in tropical disease endemic areas into nonendemic areas. The methods and materials available for use in aircraft disinsection and the WHO recommendations for their use are described.

  17. Aircraft Survivability: UAVs and Manned Aircraft - Increasing Effectiveness and Survivability, Fall 2002

    DTIC Science & Technology

    2002-01-01

    techniques that interface with the composite structure to attach opaque armor(s) to compos- ite aircraft structure. Over a period of four years...2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Aircraft Survivability: UAVs and Manned Aircraft ...survivability concepts to UAV program offices and airframe manufacturers. 11 Aircraft Fire Protection Techniques—Application to UAVs by Ms. Ginger Bennett

  18. Aircraft disinsection.

    PubMed

    Rayman, Russell B

    2006-07-01

    Aircraft disinsection has been an international practice since the 1920s, the purpose of which is to protect public health, the environment, agriculture, and livestock by the eradication of disease vectors. Although most nations of the world have discontinued this practice, about 20 continue with this requirement. Aircraft disinsection is sanctioned by international law with the World Health Organization (WHO) publishing general procedural guidelines in the International Health Regulations (IHR). There are currently four acceptable procedures: blocks away, top of descent, on arrival, and residual. A 2% pyrethrum solution, a naturally occurring substance found in the chrysanthemum flower, or several synthetic pyrethroids, are the recommended agents because they are extremely effective insecticides which pose minimal health risks. Although the use of insecticides for aircraft disinsection is controversial, national policies compelling this requirement must be respected. This paper will explore the background of aircraft disinsection, the procedures, the types of agents, and the toxicity. If aircraft disinsection is regulatory policy, it should be done in accordance with WHO procedures. Residual application is probably the most efficacious method. The use of air curtains or plastic strips should be explored as an alternative to the use of chemicals.

  19. First SNPP Cal/Val Campaign: Satellite and Aircraft Sounding Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Tian, Jialin; Smith, William L.; Wu, Wan; Kizer, Susan; Goldberg, Mitch; Liu, Q.

    2015-01-01

    Satellite ultraspectral infrared sensors provide key data records essential for weather forecasting and climate change science. The Suomi National Polar-orbiting Partnership (SNPP) satellite Environmental Data Record (EDR) is retrieved from calibrated ultraspectral radiance so called Sensor Data Record (SDR). It is critical to understand the accuracy of retrieved EDRs, which mainly depends on SDR accuracy (e.g., instrument random noise and absolute accuracy), an ill-posed retrieval system, and radiative transfer model errors. There are few approaches to validate EDR products, e.g., some common methods are to rely on radiosonde measurements, ground-based measurements, and dedicated aircraft campaign providing in-situ measurements of atmosphere and/or employing similar ultraspectral interferometer sounders. Ultraspectral interferometer sounder aboard aircraft measures SDR to retrieve EDR, which is often used to validate satellite measurements of SDR and EDR. The SNPP Calibration/Validation Campaign was conducted during May 2013. The NASA high-altitude aircraft ER-2 that carried ultraspectral interferometer sounders such as the NASA Atmospheric Sounder Testbed-Interferometer (NAST-I) flew under the SNPP satellite that carries the Cross-track Infrared Sounder (CrIS). Here we inter-compare the EDRs produced with different retrieval algorithms from SDRs measured by the sensors from satellite and aircraft. The available dropsonde and radiosonde measurements together with the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis were also used to draw the conclusion from this experiment.

  20. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.