Sample records for aircraft radiation exposure

  1. Radiation protection aspects of the cosmic radiation exposure of aircraft crew.

    PubMed

    Bartlett, D T

    2004-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.

  2. Management of cosmic radiation exposure for aircraft crew in Japan.

    PubMed

    Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito

    2011-07-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.

  3. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.

    PubMed

    Bottollier-Depois, J F; Beck, P; Bennett, B; Bennett, L; Bütikofer, R; Clairand, I; Desorgher, L; Dyer, C; Felsberger, E; Flückiger, E; Hands, A; Kindl, P; Latocha, M; Lewis, B; Leuthold, G; Maczka, T; Mares, V; McCall, M J; O'Brien, K; Rollet, S; Rühm, W; Wissmann, F

    2009-10-01

    The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than +/-20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purposes.

  4. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  5. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere.

    PubMed

    Beck, P; Latocha, M; Dorman, L; Pelliccioni, M; Rollet, S

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircrafts have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at).

  6. Aircraft Radiation Shield Experiments--Preflight Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Singleterry, Robert C., Jr.; Shinn, Judy L.; Wilson, John W.; Maiden, Donald L.; Thibeault, Sheila A.; Badavi, Francis F.; Conroy, Thomas; Braby, Leslie

    1999-01-01

    In the past, measurements onboard a research Boeing 57F (RB57-F) aircraft have demonstrated that the neutron environment within the aircraft structure is greater than that in the local external environment. Recent studies onboard Boeing 737 commercial flights have demonstrated cabin variations in radiation exposure up to 30 percent. These prior results were the basis of the present study to quantify the potential effects of aircraft construction materials on the internal exposures of the crew and passengers. The present study constitutes preflight measurements using an unmoderated Cf-252 fission neutron source to quantify the effects of three current and potential aircraft materials (aluminum, titanium, and graphite-epoxy composite) on the fast neutron flux. Conclusions about the effectiveness of the three selected materials for radiation shielding must wait until testing in the atmosphere is complete; however, it is clear that for shielding low-energy neutrons, the composite material is an improved shielding material over aluminum or titanium.

  7. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  8. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  9. Monitoring cosmic radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.

    2002-03-01

    The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.

  10. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  11. Cosmic radiation exposure during air travel.

    DOT National Transportation Integrated Search

    1980-03-01

    In 1967 the FAA appointed an advisory committee on radiation biology aspects of SST flight. Some of the committee members were subsequently appointed to a working group to study radiation exposure during air travel in conventional jet aircraft. : Pre...

  12. Childhood cancer and occupational radiation exposure in parents.

    PubMed

    Hicks, N; Zack, M; Caldwell, G G; Fernbach, D J; Falletta, J M

    1984-04-15

    To test the hypothesis that a parent's job exposure to radiation affects his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR) = infinity, one-sided 95% lower limit = 1.5; P = 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR = 2.73; P = 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.

  13. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  14. Space weather effects measured in atmospheric radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  15. Overview of Radiation Environments and Human Exposures

    NASA Technical Reports Server (NTRS)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  16. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders. © The International Society for Prosthetics and Orthotics.

  17. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  18. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  19. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  20. Brominated flame retardant exposure of aircraft personnel.

    PubMed

    Strid, Anna; Smedje, Greta; Athanassiadis, Ioannis; Lindgren, Torsten; Lundgren, Håkan; Jakobsson, Kristina; Bergman, Åke

    2014-12-01

    The use of brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in aircraft is the result of high fire safety demands. Personnel working in or with aircraft might therefore be exposed to several BFRs. Previous studies have reported PBDE exposure in flight attendants and in passengers. One other group that may be subjected to significant BFR exposure via inhalation, are the aircraft maintenance workers. Personnel exposure both during flights and maintenance of aircraft, are investigated in the present study. Several BFRs were present in air and dust sampled during both the exposure scenarios; PBDEs, hexabromocyclododecane (HBCDD), decabromodiphenyl ethane (DBDPE) and 1,2-bis (2,4,6-tribromophenoxy) ethane. PBDEs were also analyzed in serum from pilots/cabin crew, maintenance workers and from a control group of individuals without any occupational aircraft exposure. Significantly higher concentrations of PBDEs were found in maintenance workers compared to pilots/cabin crew and control subjects with median total PBDE concentrations of 19, 6.8 and 6.6 pmol g(-1) lipids, respectively. Pilots and cabin crew had similar concentrations of most PBDEs as the control group, except for BDE-153 and BDE-154 which were significantly higher. Results indicate higher concentrations among some of the pilots compared to the cabin crew. It is however, evident that the cabin personnel have lower BFR exposures compared to maintenance workers that are exposed to such a degree that their blood levels are significantly different from the control group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Community sensitivity to changes in aircraft noise exposure

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Teffeteller, S.; Pearsons, K.

    1981-01-01

    Interviews were conducted in the vicinity of Burbank Airport during a four month period during which a counterbalanced series of changes in aircraft noise exposure occurred due to runway repairs. Another interview was undertaken approximately one year after completion of the initial runway repairs. Noise measurements were made in conjunction with administration of a brief questionnaire to a near exhaustive sample of residents in four airport neighborhoods. The magnitude and direction of change of annoyance with aircraft noise exposure corresponded closely to the actual changes in physical exposure. Estimates were made of time constants for the rate of change of attitudes toward aircraft noise.

  2. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  3. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  4. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  5. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  6. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project.

    PubMed

    Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A

    2006-01-01

    Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.

  7. Saliva Cortisol and Exposure to Aircraft Noise in Six European Countries

    PubMed Central

    Selander, Jenny; Bluhm, Gösta; Theorell, Töres; Pershagen, Göran; Babisch, Wolfgang; Seiffert, Ingeburg; Houthuijs, Danny; Breugelmans, Oscar; Vigna-Taglianti, Federica; Antoniotti, Maria Chiara; Velonakis, Emmanuel; Davou, Elli; Dudley, Marie-Louise; Järup, Lars

    2009-01-01

    Background Several studies show an association between exposure to aircraft or road traffic noise and cardiovascular effects, which may be mediated by a noise-induced release of stress hormones. Objective Our objective was to assess saliva cortisol concentration in relation to exposure to aircraft noise. Method A multicenter cross-sectional study, HYENA (Hypertension and Exposure to Noise near Airports), comprising 4,861 persons was carried out in six European countries. In a subgroup of 439 study participants, selected to enhance the contrast in exposure to aircraft noise, saliva cortisol was assessed three times (morning, lunch, and evening) during 1 day. Results We observed an elevation of 6.07 nmol/L [95% confidence interval (CI), 2.32–9.81 nmol/L] in morning saliva cortisol level in women exposed to aircraft noise at an average 24-hr sound level (LAeq,24h) > 60 dB, compared with women exposed to LAeq,24h ≤ 50 dB, corresponding to an increase of 34%. Employment status appeared to modify the response. We found no association between noise exposure and saliva cortisol levels in men. Conclusions Our results suggest that exposure to aircraft noise increases morning saliva cortisol levels in women, which could be of relevance for noise-related cardiovascular effects. PMID:20049122

  8. Environmental Exposure Effects on Composite Materials for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1981-01-01

    This period's activities were highlighted by continued long term and accelerated lab exposure testing, and by completion of all fabrication tasks on the optional material systems, AS1/3501-6 and Kevlar 49/F161-188. Initial baseline testing was performed on the two optional material systems. Long term exposure specimens were returned from three of the four ground rack sites and from two of the three aircraft locations. Test data from specimens returned from Dryden after 2 years exposure do not indicate continuing trends of strength reduction from the 1 year data. Test data from specimens returned from the Wellington, new Zealand ground rack and on Air New Zealand aircraft after 1 year exposure show strength changes fairly typical of other locations.

  9. Effects of aircraft noise exposure on saliva cortisol near airports in France.

    PubMed

    Lefèvre, Marie; Carlier, Marie-Christine; Champelovier, Patricia; Lambert, Jacques; Laumon, Bernard; Evrard, Anne-Sophie

    2017-08-01

    Saliva cortisol is a possible marker of noise-induced stress and could then mediate the relation observed between exposure to aircraft or road traffic noise and cardiovascular diseases. However, the association between transportation noise and cortisol levels is still unclear. The objective of the study was to investigate the variability of saliva cortisol concentration as an indicator of disturbed hypothalamus-pituitary-adrenal (HPA) axis regulation in relation to long-term aircraft noise exposure. Saliva samples were taken when awakening and before going to bed for 1244 participants older than 18 years of age. Information about health, socioeconomic and lifestyle factors was also collected by means of a face-to-face questionnaire performed at home by an interviewer. Aircraft noise exposure was assessed for each participant's home address using noise maps. Linear regression models were used to evaluate the effects of aircraft noise exposure on the morning and evening cortisol levels and on the daily variation of cortisol per hour. This study suggests a modification of the cortisol circadian rhythm in relation to aircraft noise exposure. This exposure was associated with a smaller variation of cortisol levels over the day, with unchanged morning cortisol levels, but higher cortisol levels in the evening. These findings provide some support for a psychological stress induced by aircraft noise exposure, resulting in HPA dysregulation and a flattened cortisol rhythm, thus contributing to cardiovascular diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, Daniel J.; Bielawski, William J.

    1991-01-01

    A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.

  11. Depression Prevalence and Exposure to Organophosphate Esters in Aircraft Maintenance Workers.

    PubMed

    Hardos, Jennifer E; Whitehead, Lawrence W; Han, Inkyu; Ott, Darrin K; Waller, D Kim

    2016-08-01

    Previous studies found that aircraft maintenance workers may be exposed to organophosphates in hydraulic fluid and engine oil. Studies have also illustrated a link between long-term low-level organophosphate pesticide exposure and depression. A questionnaire containing the Patient Health Questionnaire 8 depression screener was e-mailed to 52,080 aircraft maintenance workers (with N = 4801 complete responses) in a cross-sectional study to determine prevalence and severity of depression and descriptions of their occupational exposures. There was no significant difference between reported depression prevalence and severity in similar exposure groups in which aircraft maintenance workers were exposed or may have been exposed to organophosphate esters compared to similar exposure groups in which they were not exposed. However, a dichotomous measure of the prevalence of depression was significantly associated with self-reported exposure levels from low (OR: 1.21) to moderate (OR: 1.68) to high exposure (OR: 2.70) and with each exposure route including contact (OR: 1.68), inhalation (OR: 2.52), and ingestion (OR: 2.55). A self-reported four-level measure of depression severity was also associated with a self-reported four-level measure of exposure. Based on self-reported exposures and outcomes, an association is observed between organophosphate exposure and depression; however, we cannot assume that the associations we observed are causal because some workers may have been more likely to report exposure to organophosphate esters and also more likely to report depression. Future studies should consider using a larger sample size, better methods for characterizing crew chief exposures, and bioassays to measure dose rather than exposure. Hardos JE, Whitehead LW, Han I, Ott DK, Waller DK. Depression prevalence and exposure to organophosphate esters in aircraft maintenance workers. Aerosp Med Hum Perform. 2016; 87(8):712-717.

  12. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    NASA Astrophysics Data System (ADS)

    Mansfield, J. A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident: collisions into an alert aircraft by an aircraft that is on landing or take-off; and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  13. Temperature of aircraft cargo flame exposure during accidents involving fuel spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, J.A.

    1993-01-01

    This report describes an evaluation of flame exposure temperatures of weapons contained in alert (parked) bombers due to accidents that involve aircraft fuel fires. The evaluation includes two types of accident, collisions into an alert aircraft by an aircraft that is on landing or take-off, and engine start accidents. Both the B-1B and B-52 alert aircraft are included in the evaluation.

  14. Children's cognition and aircraft noise exposure at home--the West London Schools Study.

    PubMed

    Matsui, T; Stansfeld, S; Haines, M; Head, J

    2004-01-01

    The association of aircraft noise exposure with cognitive performance was examined by means of a cross-sectional field survey. Two hundred thirty six children attending 10 primary schools around Heathrow Airport in west London were tested on reading comprehension, immediate/delayed recall and sustained attention. In order to obtain the information about their background, a questionnaire was delivered to the parents and 163 answers were collected. Logistic regression models were used to assess performance on the cognitive tests in relation to aircraft noise exposure at home and possible individual and school level confounding factors. A significant dose-response relationship was found between aircraft noise exposure at home and performance on memory tests of immediate/delayed recall. However there was no strong association with the other cognitive outcomes. These results suggest that aircraft noise exposure at home may affect children's memory.

  15. Cosmic radiation dose in aircraft--a neutron track etch detector.

    PubMed

    Vuković, B; Radolić, V; Miklavcić, I; Poje, M; Varga, M; Planinić, J

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  16. Selected methods for quantification of community exposure to aircraft noise

    NASA Technical Reports Server (NTRS)

    Edge, P. M., Jr.; Cawthorn, J. M.

    1976-01-01

    A review of the state-of-the-art for the quantification of community exposure to aircraft noise is presented. Physical aspects, people response considerations, and practicalities of useful application of scales of measure are included. Historical background up through the current technology is briefly presented. The developments of both single-event and multiple-event scales are covered. Selective choice is made of scales currently in the forefront of interest and recommended methodology is presented for use in computer programing to translate aircraft noise data into predictions of community noise exposure. Brief consideration is given to future programing developments and to supportive research needs.

  17. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  18. Modeling Flight Attendants’ Exposures to Pesticide in Disinsected Aircraft Cabins

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2014-01-01

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means±standard devitions) of daily total exposures intakes were 0.24 (3.8±10.0), 1.4 (4.2±5.7) and 0.15 (2.1±3.2) μg/(day kg BW) for scenarios of Residual Application, Preflight and Top-of-Descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than Top-of-Descent spray and Residual Application, respectively. PMID:24251734

  19. Hexavalent chromium exposures during full-aircraft corrosion control.

    PubMed

    Carlton, Gary N

    2003-01-01

    Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.

  20. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.

    PubMed

    Takada, M; Lewis, B J; Boudreau, M; Al Anid, H; Bennett, L G I

    2007-01-01

    Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.

  1. Transport index limits for shipments of radioactive material in passenger-carrying aircraft.

    DOT National Transportation Integrated Search

    1982-06-01

    To limit radiation exposure in passenger-carrying aircraft the Department of Transportation requires operators of such aircraft to exercise special control over packages of radioactive material bearing a "radioactive yellow" label. The degree of cont...

  2. Insecticide Exposures on Commercial Aircraft: A Literature Review and Screening Level Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy I.; McKone, Thomas E.

    2008-10-01

    The objective of this project was to provide initial estimates of the relationship between insecticide use on passenger aircraft and exposure levels present in the cabin environment. The work was initially divided into three tasks including 1) a review of insecticide application practices in commercial aircraft, 2) exploratory measurements of insecticide concentrations in treated aircraft and 3) screening level exposure modeling. Task 1 gathered information that is needed to assess the time-concentration history of insecticides in the airline cabin. The literature review focused on application practices, information about the cabin environment and existing measurements of exposure concentrations following treatment. Informationmore » from the airlines was not available for estimating insecticide application rates in the U.S. domestic fleet or for understanding how frequently equipment rotate into domestic routes following insecticide treatment. However, the World Health Organization (WHO) recommends several methods for treating aircraft with insecticide. Although there is evidence that these WHO guidelines may not always be followed, and that practices vary by airline, destination, and/or applicator company, the guidelines in combination with information related to other indoor environments provides a plausible basis for estimating insecticide loading rates on aircraft. The review also found that while measurements of exposure concentrations following simulated aerosol applications are available, measurements following residual treatment of aircraft or applications in domestic aircraft are lacking. Task 2 focused on developing an approach to monitor exposure concentrations in aircraft using a combination of active and passive sampling methods. An existing active sampling approach was intended to provide data immediately following treatment while a passive sampler was developed to provide wider coverage of the fleet over longer sampling periods. The passive

  3. Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence

    NASA Astrophysics Data System (ADS)

    Stevenson, David S.; Doherty, Ruth M.; Sanderson, Michael G.; Collins, William J.; Johnson, Colin E.; Derwent, Richard G.

    2004-09-01

    A chemistry-climate model has been applied to study the radiative forcings generated by aircraft NOx emissions through changes in ozone and methane. Four numerical experiments, where an extra pulse of aircraft NOx was emitted into the model atmosphere for a single month (January, April, July, or October), were compared to a control experiment, allowing the aircraft impact to be isolated. The extra NOx produces a short-lived (few months) pulse of ozone that generates a positive radiative forcing. However, the NOx and O3 both generate OH, which leads to a reduction in CH4. A detailed analysis of the OH budget reveals the spatial structure and chemical reactions responsible for the generation of the OH perturbation. Methane's long lifetime means that the CH4 anomaly decays slowly (perturbation lifetime of 11.1 years). The negative CH4 anomaly also has an associated negative O3 anomaly, and both of these introduce a negative radiative forcing. There are important seasonal differences in the response of O3 and CH4 to aircraft NOx, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric chemistry, convection parameterization) and experimental setup (pulse magnitude and duration) may somewhat influence the results: further work with a range of models is required to confirm these results quantitatively.

  4. Effects of changed aircraft noise exposure on experiential qualities of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-10-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway's main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found.

  5. Effects of Changed Aircraft Noise Exposure on Experiential Qualities of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    The literature indicates that sound and visual stimuli interact in the impression of landscapes. This paper examines the relationship between annoyance with sound from aircraft and annoyance with other area problems (e.g., careless bicycle riding, crowding, etc.), and how changes in noise exposure influence the perceived overall recreational quality of outdoor recreational areas. A panel study (telephone interviews) conducted before and after the relocation of Norway’s main airport in 1998 examined effects of decreased or increased noise exposure in nearby recreational areas (n = 591/455). Sound from aircraft annoyed the largest proportion of recreationists, except near the old airport after the change. The decrease in annoyance with sound from aircraft was accompanied by significant decreases in annoyance with most of the other area problems. Near the new airport annoyance with most factors beside sound from aircraft increased slightly, but not significantly. A relationship between aircraft noise annoyance and perceived overall recreational quality of the areas was found. PMID:21139858

  6. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  7. Epidemiology of accidental radiation exposures.

    PubMed Central

    Cardis, E

    1996-01-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398

  8. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  9. Health effects of prenatal radiation exposure.

    PubMed

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  10. Seat Vibration in Military Propeller Aircraft: Characterization, Exposure Assessment, and Mitigation

    DTIC Science & Technology

    2006-05-01

    vibration were fatigue and reduced performance during long missions. assessed in accordance with current international guidelines (ISO 2631 - The incident...Measurements and Flight Configurations ( BPF ) of these aircraft. The health risk and comfort reaction of the vibration exposures were assessed in For...constant bandwidth rms accelerations at the PRF atively level flight at altitudes ranging between 15,000 and BPF of each aircraft were evaluated. For

  11. The effects of road traffic and aircraft noise exposure on children's episodic memory: the RANCH project.

    PubMed

    Matheson, Mark; Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Haines, Mary; Barrio, Isabel Lopez; Hygge, Staffan; Stansfeld, Stephen

    2010-01-01

    Previous studies have found that chronic exposure to aircraft noise has a negative effect on children's performance on tests of episodic memory. The present study extended the design of earlier studies in three ways: firstly, by examining the effects of two noise sources, aircraft and road traffic, secondly, by examining exposure-effect relationships, and thirdly, by carrying out parallel field studies in three European countries, allowing cross-country comparisons to be made. A total of 2844 children aged between 8 years 10 months and 12 years 10 months (mean age 10 years 6 months) completed classroom-based tests of cued recall, recognition memory and prospective memory. Questionnaires were also completed by the children and their parents in order to provide information about socioeconomic context. Multilevel modeling analysis revealed aircraft noise to be associated with an impairment of recognition memory in a linear exposure-effect relationship. The analysis also found road traffic noise to be associated with improved performance on cued recall in a linear exposure-effect relationship. No significant association was found between exposure to aircraft noise and cued recall or prospective memory. Likewise, no significant association was found between road traffic noise and recognition or prospective memory. Taken together, these findings indicate that exposure to aircraft noise and road traffic noise can impact on certain aspects of children's episodic memory.

  12. Minimizing radiation exposure during percutaneous nephrolithotomy.

    PubMed

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  13. Does aircraft noise exposure increase the risk of hypertension in the population living near airports in France?

    PubMed

    Evrard, Anne-Sophie; Lefèvre, Marie; Champelovier, Patricia; Lambert, Jacques; Laumon, Bernard

    2017-02-01

    The largest study until now around 6 major European airports, the HYENA (HYpertension and Exposure to Noise near Airports) study, reported an excess risk of hypertension related to long-term aircraft noise exposure. The DEBATS (Discussion on the health effects of aircraft noise) study investigated the relationship between this exposure and the risk of hypertension in men and in women near French airports. Blood pressure of 1244 participants older than 18 years of age was measured. Information about health, socioeconomic and lifestyle factors was collected by means of a face-to-face questionnaire performed at home by an interviewer. Aircraft noise exposure was assessed for each participant's home address using noise maps. They were calculated with the Integrated Noise Model with a 1 dB(A)-resolution. The major potential confounders being risk factors for hypertension were included in the logistic regression models: age, occupational activity, body mass index, physical activity and alcohol consumption. After adjustment for the main potential confounders, an exposure-response relationship was evidenced between the risk of hypertension and aircraft noise exposure at night for men only. A 10-dB(A) increase in L night was associated with an OR of 1.34 (95% CI 1.00 to 1.97). These findings contribute to the overall evidence suggesting that aircraft noise exposure at night-time may increase the risk of hypertension in men. Hypertension is a well-known and established risk factor for cardiovascular disease. The association reported in the present study between aircraft noise and hypertension implies that aircraft noise might be a risk factor also for cardiovascular disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. DOE 2011 occupational radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less

  15. Radio frequency radiation exposure of the F-15 crewmember.

    PubMed

    Laughrey, Michael S; Grayson, J Kevin; Jauchem, James R; Misener, Andrea E

    2003-08-01

    In the United States Air Force, pilots of F-15 fighter aircraft use fire control radars to search for enemy targets and to launch beyond visual range radar missiles. The fire control radars must be of a sufficient power output to enable a target return, but pilots are concerned about deleterious health effects from the levels of radio frequency radiation (RFR) they are exposed to. Measurement of RFR while actually in flight in the F-15 has never been performed. This study was designed to document the RFR levels that pilots are exposed to on normal missions while in flight with the radar on and active. A hand-held meter was used to measure electromagnetic fields during three F-15 flights. Instrumentation consisted of a Narda Microwave Model 8718 digital survey meter and Model 8723 broadband isotropic E-field probe with a frequency range between 300 MHz and 50 GHz. The measurements were conducted in the rear cockpit of an F-15D aircraft. Three missions were flown representing the standard missions an F-15 pilot flies on an everyday basis. The missions were: night intercepts, offensive basic fighter maneuvers, and defensive basic fighter maneuvers. Based on the data collected during three F-15 missions, all recorded RFR exposure to the crewmember in the F-15 was within the OSHA Permissible Exposure Limit (PEL) of 10 mW x cm(-2). Based on a limited sample, RFR exposures in F-15 cockpits appear to be well below the PEL.

  16. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  17. Tidewater and Weather-exposure Tests on Metals Used in Aircraft II.

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard; Galvin, W G

    1942-01-01

    This report is an addendum to NACA Technical Note No. 736, which dealt with tidewater and weather-exposure tests being conducted by the National Bureau of Standards on various aluminum alloys, magnesium alloys, and stainless steels used in aircraft. The exposures were begun in June 1938 and were terminated, for this particular series, in June 1941. The methods of exposure and the materials being investigated are described, and the more important results obtained up to the conclusion of the second year's exposure are reported.

  18. Aircraft Crew Radiation Exposure in Aviation Altitudes During Quiet and Solar Storm Periods

    NASA Astrophysics Data System (ADS)

    Beck, Peter

    The European Commission Directorate General Transport and Energy published in 2004 a summary report of research on aircrew dosimetry carried out by the EURADOS working group WG5 (European Radiation Dosimetry Group, http://www.eurados.org/). The aim of the EURADOS working group WG5 was to bring together, in particular from European research groups, the available, preferably published, experimental data and results of calculations, together with detailed descriptions of the methods of measurement and calculation. The purpose is to provide a dataset for all European Union Member States for the assessment of individual doses and/or to assess the validity of different approaches, and to provide an input to technical recommendations by the experts and the European Commission. Furthermore EURADOS (European Radiation Dosimetry Group, http://www.eurados.org/) started to coordinate research activities in model improvements for dose assessment of solar particle events. Preliminary results related to the European research project CONRAD (Coordinated Network for Radiation Dosimetry) on complex mixed radiation fields at workplaces are presented. The major aim of this work is the validation of models for dose assessment of solar particle events, using data from neutron ground level monitors, in-flight measurement results obtained during a solar particle event and proton satellite data. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results obtained by different methods or groups, and comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H* (10). This paper gives an overview of aircrew radiation exposure measurements during quiet and solar storm conditions and focuses on dose results using the EURADOS In-Flight Radiation Data Base and published data on solar particle events

  19. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  20. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  1. Cancer risks after radiation exposure in middle age.

    PubMed

    Shuryak, Igor; Sachs, Rainer K; Brenner, David J

    2010-11-03

    Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis

  2. Radiation Exposure and Pregnancy

    MedlinePlus

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  3. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  4. Is aircraft noise exposure associated with cardiovascular disease and hypertension? Results from a cohort study in Athens, Greece.

    PubMed

    Dimakopoulou, Konstantina; Koutentakis, Konstantinos; Papageorgiou, Ifigeneia; Kasdagli, Maria-Iosifina; Haralabidis, Alexandros S; Sourtzi, Panayota; Samoli, Evangelia; Houthuijs, Danny; Swart, Wim; Hansell, Anna L; Katsouyanni, Klea

    2017-11-01

    We followed up, in 2013, the subjects who lived near the Athens International Airport and had participated in the cross-sectional multicountry HYENA study in 2004-2006. To evaluate the association of exposure to aircraft and road traffic noise with the incidence of hypertension and other cardiovascular outcomes. From the 780 individuals who participated in the cross-sectional study, 537 were still living in the same area and 420 accepted to participate in the follow-up. Aircraft and road traffic noise exposure was based on the estimations conducted in 2004-2006, linking geocoded residential addresses of the participants to noise levels. We applied multiple logistic regression and Cox proportional hazards models, adjusting for potential confounders. The incidence of hypertension was significantly associated with higher aircraft noise exposure during the night. Specifically, the OR for hypertension per 10 dB increase in Lnight aircraft noise exposure was 2.63 (95% CI 1.21 to 5.71). Doctor-diagnosed cardiac arrhythmia was significantly associated with Lnight aircraft noise exposure, when prevalent and incident cases were considered with an OR of 2.09 (95% CI 1.07 to 4.08). Stroke risk was also increased with increasing noise exposure but the association was not significant. Twenty-four-hour road traffic noise associations with the outcomes considered were weaker and less consistent. In conclusion, our cohort study suggests that long-term exposure to aircraft noise, particularly during the night, is associated with incident hypertension and possibly, also, cardiovascular effects. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Validation of Aircraft Noise Prediction Models at Low Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.

  6. [Creation of a crystalline lens radiation exposure defense cover and the effect of radiation exposure decrease on neuro-interventions].

    PubMed

    Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo

    2007-11-20

    A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.

  7. A Low LET Radiation Spectrometer for Measuring Particle Doses in Space and Aircraft

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Brucker, G. J.; Dachev, T. P.; Day, John H. (Technical Monitor)

    2002-01-01

    This paper presents experimental data that demonstrates the feasibility of fabricating a miniature nuclear particle dosimeter for monitoring doses in aircraft and satellites. The basic instrument is a Low Linear-Energy-Transfer (LET) Radiation Spectrometer (LoLRS) that is designed to measure the energy deposited by particles with low LET values. The heart of the instrument is a Silicon-Lithium Drifted Diode (SLDD). Test results show that the LoLRS can be used to monitor the radiation threat to personnel in flights of space- and aircraft and also to generate a comprehensive data base from aviation and satellite measurements that can contribute to the formulation of more accurate environmental radiation models for dose predictions with reduced uncertainty factors.

  8. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The effects of environmental exposure on composite materials are determined. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209, and T300/934. Future results will include AS-1/3501-6 and Kevlar 49/F161-188. Specimens are exposed on the exterior and interior of 737 airplanes of three airlines, and to continuous ground-level exposure at four locations. In addition, specimens are exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to five years at five ground-level exposure locations and on airplanes from one airline.

  9. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study.

    PubMed

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven; Dominici, Francesca

    2013-10-08

    To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥ 65 years) residing near airports. Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. 2218 zip codes surrounding 89 airports in the contiguous states. 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥ 65 years) residing near airports in 2009. Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports.

  10. Monitoring of fetal radiation exposure during pregnancy.

    PubMed

    Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei

    2013-09-01

    One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.

  11. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Gibbins, M. N.; Hoffman, D. J.

    1982-01-01

    The effects of environmental exposure on composite materials are studied. The environments considered are representative of those experienced by commercial jet aircraft. Initial results have been compiled for the following material systems: T300/5208, T300/5209 and T300/934. Specimens were exposed on the exterior and interior of Boeing 737 airplanes of three airlines, and to continuous ground level exposure at four locations. In addition specimens were exposed in the laboratory to conditions such as: simulated ground-air-ground, weatherometer, and moisture. Residual strength results are presented for specimens exposed for up to two years at three ground level exposure locations and on airplanes from two airlines. Test results are also given for specimens exposed to the laboratory simulated environments. Test results indicate that short beam shear strength is sensitive to environmental exposure and dependent on the level of absorbed moisture.

  12. Radiation exposure in the moon environment

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Matthiae, Daniel

    2012-12-01

    During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the

  13. Malignant mesothelioma following radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antman, K.H.; Corson, J.M.; Li, F.P.

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less

  14. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study

    PubMed Central

    Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven

    2013-01-01

    Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538

  15. Effects of commercial aircraft operating environment on composite materials

    NASA Technical Reports Server (NTRS)

    Chapman, A. J.; Hoffman, D. J.; Hodges, W. T.

    1980-01-01

    Long term effects of commercial aircraft operating environment on the properties and durability of composite materials are being systematically explored. Composite specimens configured for various mechanical property tests are exposed to environmental conditions on aircraft in scheduled airline service, on racks at major airports, and to controlled environmental conditions in the laboratory. Results of tests following these exposures will identify critical parameters affecting composite durability, and correlation of the data will aid in developing methods for predicting durability. Interim results of these studies show that mass change of composite specimens on commercial aircraft depends upon the regional climate and season, and that mass loss from composite surfaces due to ultraviolet radiation can be largely prevented by aircraft paint.

  16. Absorption of Solar Radiation by the Cloudy Atmosphere Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.

    1997-01-01

    As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.

  17. An operational approach for aircraft crew dosimetry: the SIEVERT system.

    PubMed

    Bottollier-Depois, J F; Blanchard, P; Clairand, I; Dessarps, P; Fuller, N; Lantos, P; Saint-Lô, D; Trompier, F

    2007-01-01

    The study of naturally occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on-board the aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some millisieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerised system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented.

  18. Small unmanned aircraft system for remote contour mapping of a nuclear radiation field

    NASA Astrophysics Data System (ADS)

    Guss, Paul; McCall, Karen; Malchow, Russell; Fischer, Rick; Lukens, Michael; Adan, Mark; Park, Ki; Abbott, Roy; Howard, Michael; Wagner, Eric; Trainham, Clifford P.; Luke, Tanushree; Mukhopadhyay, Sanjoy; Oh, Paul; Brahmbhatt, Pareshkumar; Henderson, Eric; Han, Jinlu; Huang, Justin; Huang, Casey; Daniels, Jon

    2017-09-01

    For nuclear disasters involving radioactive contamination, small unmanned aircraft systems (sUASs) equipped with nuclear radiation detection and monitoring capability can be very important tools. Among the advantages of a sUAS are quick deployment, low-altitude flying that enhances sensitivity, wide area coverage, no radiation exposure health safety restriction, and the ability to access highly hazardous or radioactive areas. Additionally, the sUAS can be configured with the nuclear detecting sensor optimized to measure the radiation associated with the event. In this investigation, sUAS platforms were obtained for the installation of sensor payloads for radiation detection and electro-optical systems that were specifically developed for sUAS research, development, and operational testing. The sensor payloads were optimized for the contour mapping of a nuclear radiation field, which will result in a formula for low-cost sUAS platform operations with built-in formation flight control. Additional emphases of the investigation were to develop the relevant contouring algorithms; initiate the sUAS comprehensive testing using the Unmanned Systems, Inc. (USI) Sandstorm platforms and other acquired platforms; and both acquire and optimize the sensors for detection and localization. We demonstrated contour mapping through simulation and validated waypoint detection. We mounted a detector on a sUAS and operated it initially in the counts per second (cps) mode to perform field and flight tests to demonstrate that the equipment was functioning as designed. We performed ground truth measurements to determine the response of the detector as a function of source-to-detector distance. Operation of the radiation detector was tested using different unshielded sources.

  19. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A controlmore » group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.« less

  20. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  1. Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation.

    PubMed

    Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-01-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re

  2. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study.

    PubMed

    Eriksson, Charlotta; Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-07-01

    Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference.

  3. Long-Term Aircraft Noise Exposure and Body Mass Index, Waist Circumference, and Type 2 Diabetes: A Prospective Study

    PubMed Central

    Hilding, Agneta; Pyko, Andrei; Bluhm, Gösta; Pershagen, Göran; Östenson, Claes-Göran

    2014-01-01

    Background: Long-term aircraft noise exposure may increase the risk of cardiovascular disease, but no study has investigated chronic effects on the metabolic system. Objectives: The aim of this study was to investigate effects of long-term aircraft noise exposure on body mass index (BMI), waist circumference, and type 2 diabetes. Furthermore, we explored the modifying effects of sleep disturbance. Methods: This prospective cohort study of residents of Stockholm County, Sweden, followed 5,156 participants with normal baseline oral glucose tolerance tests (OGTT) for up to 10 years. Exposure to aircraft noise was estimated based on residential history. Information on outcomes and confounders was obtained from baseline and follow-up surveys and examinations, and participants who developed prediabetes or type 2 diabetes were identified by self-reported physician diagnosis or OGTT at follow-up. Adjusted associations were assessed by linear, logistic, and random-effects models. Results: The mean (± SD) increases in BMI and waist circumference during follow-up were 1.09 ± 1.97 kg/m2 and 4.39 ± 6.39 cm, respectively. The cumulative incidence of prediabetes and type 2 diabetes was 8% and 3%, respectively. Based on an ordinal noise variable, a 5-dB(A) increase in aircraft noise was associated with a greater increase in waist circumference of 1.51 cm (95% CI: 1.13, 1.89), fully adjusted. This association appeared particularly strong among those who did not change their home address during the study period, which may be a result of lower exposure misclassification. However, no clear associations were found for BMI or type 2 diabetes. Furthermore, sleep disturbances did not appear to modify the associations with aircraft noise. Conclusions: Long-term aircraft noise exposure may be linked to metabolic outcomes, in particular increased waist circumference. Citation: Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Östenson CG. 2014. Long-term aircraft noise exposure and

  4. Radiation environment at aviation altitudes and in space.

    PubMed

    Sihver, L; Ploc, O; Puchalska, M; Ambrožová, I; Kubančák, J; Kyselová, D; Shurshakov, V

    2015-06-01

    On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and

  5. Implications of the road traffic and aircraft noise exposure and children's cognition and health (RANCH) study results for classroom acoustics

    NASA Astrophysics Data System (ADS)

    Stansfeld, Stephen A.; Clark, Charlotte

    2005-04-01

    Studies in West London have found associations between aircraft noise exposure and childrens' cognitive performance. This has culminated in the RANCH Study examining exposure-effect associations between aircraft and road traffic noise exposure and cognitive performance and health. The RANCH project, the largest cross-sectional study of noise and childrens health, examined 2844 children, 9-10 years old, from 89 schools around three major airports: in the Netherlands, Spain and the United Kingdom. Children were selected by external aircraft and road traffic noise exposure at school predicted from noise contour maps, modeling and on-site measurements. A substudy indicated high internal levels of noise within classrooms. Schools were matched for socioeconomic position within countries. Cognitive and health outcomes were measured by standardized tests and questionnaires administered in the classroom. A parental questionnaire collected information on socioeconomic position, parental education and ethnicity. Linear exposure-effect associations were found between chronic aircraft noise exposure and impairment of reading comprehension and recognition memory, maintained after adjustment for mothers education, socioeconomic factors, longstanding illness and classroom insulation. Road traffic noise exposure was linearly associated with episodic memory. The implications of these results for childrens' learning environments will be discussed. [Work supported by European Community (QLRT-2000-00197) Vth framework program.

  6. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  7. High intensity radiated field external environments for civil aircraft operating in the United States of America

    DOT National Transportation Integrated Search

    1998-12-01

    NAWCAD Patuxent River, Maryland, was tasked by the FAA to determine the High Intensity Radiated Field (HIRF) levels for civil aircraft operating in the U.S. The electromagnetic field survey will apply to civil aircraft seeking FAA certification under...

  8. Environmental exposure effects on composite materials for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.

    1978-01-01

    Activities reported include completion of the program design tasks, resolution of a high fiber volume problem and resumption of specimen fabrication, fixture fabrication, and progress on the analysis methodology and definition of the typical aircraft environment. Program design activities including test specimens, specimen holding fixtures, flap-track fairing tailcones, and ground exposure racks were completed. The problem experienced in obtaining acceptable fiber volume fraction results on two of the selected graphite epoxy material systems was resolved with an alteration to the bagging procedure called out in BAC 5562. The revised bagging procedure, involving lower numbers of bleeder plies, produces acceptable results. All required laminates for the contract have now been laid up and cured. Progress in the area of analysis methodology has been centered about definition of the environment that a commercial transport aircraft undergoes. The selected methodology is analagous to fatigue life assessment.

  9. Cosmic radiation dose measurements from the RaD-X flight campaign

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing

    2016-10-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  10. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  11. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    PubMed Central

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  12. Mortality and cancer morbidity after exposure to military aircraft fuel.

    PubMed

    Seldén, A; Ahlborg, G

    1991-08-01

    In order to elucidate a possible excess risk of lymphatic malignancies due to aircraft fuel exposure in the Swedish Armed Forces (SAF), a historical prospective cohort study was conducted. During a 9-year follow-up period, 3 cases of malignant lymphoma were detected versus 3.21 expected tumors of the lymphatic system (standardized incidence ratio (SIR) 93; 95% confidence interval (CI) 19-273) among 2,176 men. The overall SIR was 91 (CI 66-120), whereas the corresponding mortality ratio was only 54 (CI 42-68; p less than 0.001). In conclusion, no evidence was found for an association between military aircraft fuel and the occurrence of malignant lymphomas or other malignancies among exposed men in the SAF. For a definite risk assessment, further follow-up is necessary.

  13. Electromagnetic on-aircraft antenna radiation in the presence of composite plates

    NASA Technical Reports Server (NTRS)

    Kan, S. H-T.; Rojas, R. G.

    1994-01-01

    The UTD-based NEWAIR3 code is modified such that it can model modern aircraft by composite plates. One good model of conductor-backed composites is the impedance boundary condition where the composites are replaced by surfaces with complex impedances. This impedance-plate model is then used to model the composite plates in the NEWAIR3 code. In most applications, the aircraft distorts the desired radiation pattern of the antenna. However, test examples conducted in this report have shown that the undesired scattered fields are minimized if the right impedance values are chosen for the surface impedance plates.

  14. Interim results of long-term environmental exposures of advanced composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    Interim results from a number of ongoing, long-term environmental effects programs for composite materials are reported. The flight service experience is evaluated for 142 composite aircraft components after more than five years and one million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at five sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation has been observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  15. Estimates of radiation exposure from solar cosmic rays in SST altitudes

    NASA Technical Reports Server (NTRS)

    Foelsche, T.

    1974-01-01

    Factors influencing crew and passenger exposure to solar and galactic cosmic rays that is expected to occur during flights of supersonic transport aircraft are discussed, and some possibilities are considered for decreasing such exposure.

  16. Hexavalent Chromium and Isocyanate Exposures during Military Aircraft Painting under Crossflow Ventilation

    PubMed Central

    Bennett, James S.; Marlow, David A.; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-01-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers (“hosemen”). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group—the total of monomer and oligomer as NCO group mass—showed six of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re

  17. Measurement of dose equivalent distribution on-board commercial jet aircraft.

    PubMed

    Kubančák, J; Ambrožová, I; Ploc, O; Pachnerová Brabcová, K; Štěpán, V; Uchihori, Y

    2014-12-01

    The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them [International Commission on Radiation Protection. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21: (1-3), (1991)]. According to the Monte Carlo simulations [Battistoni, G., Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the doses to aircrew members taking into consideration the aircraft structures. Adv. Space Res. 36: , 1645-1652 (2005) and Ferrari, A., Pelliccioni, M. and Villari, R. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model. Radiat. Prot. Dosim. 108: (2), 91-105 (2004)], the ambient dose equivalent rate Ḣ*(10) depends on the location in the aircraft. The aim of this article is to experimentally evaluate Ḣ*(10) on-board selected types of aircraft. The authors found that Ḣ*(10) values are higher in the front and the back of the cabin and lesser in the middle of the cabin. Moreover, total dosimetry characteristics obtained in this way are in a reasonable agreement with other data, in particular with the above-mentioned simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants.

    PubMed

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders.

  19. Is there an association between aircraft noise exposure and the incidence of hypertension? A meta-analysis of 16784 participants

    PubMed Central

    Huang, Di; Song, XuPing; Cui, Qi; Tian, Jinhui; Wang, Quan; Yang, Kehu

    2015-01-01

    To determine if aircraft noise exposure causes an increased incidence of hypertension among residents near airports. We conducted a meta-analysis of observational studies to evaluate the association between aircraft noise exposure and the incidence of hypertension. PubMed, Embase, Web of Science, the Cochrane Library, and the Chinese Biomedical Literature Database were searched without any restrictions. Odds ratios (ORs) with 95% confidence intervals (CIs) were extracted. The pooled ORs were calculated using both the fixed effects model and random effects model. All analyses were performed using STATA version 12.0 software (Stata Corporation, College Station, TX, USA). We examined five studies, comprising a total of 16,784 residents. The overall OR for hypertension in residents with aircraft noise exposure was 1.63 (95% CI, 1.14-2.33), and one of our included studies showed that there was no evidence that aircraft noise is a risk factor for hypertension in women. According to our subgroup analysis, the summary OR for the incidence was 1.31 (95% CI, 0.85-2.02) with I2 of 80.7% in women and 1.36 (95% CI, 1.15-1.60) with moderate heterogeneity in men. The pooled OR for the incidence of hypertension in residents aged over 55 years and under 55 years was 1.66 (95% CI, 1.21-2.27) with no heterogeneity and 1.78 (95% CI, 1.33-2.39) with I2 of 29.4%, respectively. The present meta-analysis suggests that aircraft noise could contribute to the prevalence of hypertension, but the evidence for a relationship between aircraft noise exposure and hypertension is still inconclusive because of limitations in study populations, exposure characterization, and adjustment for important confounders. PMID:25774612

  20. Post-Vietnam military herbicide exposures in UC-123 Agent Orange spray aircraft.

    PubMed

    Lurker, Peter A; Berman, Fred; Clapp, Richard W; Stellman, Jeanne Mager

    2014-04-01

    During the Vietnam War, approximately 20 million gallons of herbicides, including ~10.5 million gallons of dioxin-contaminated Agent Orange, were sprayed by about 34 UC-123 aircraft that were subsequently returned to the United States, without decontamination or testing, to three Air Force reserve units for transport operations (~1971-1982). In 1996, observed dioxin contamination led to withdrawal of these UC-123s from public auction and to their smelting in 2009. Current Air Force and Department of Veterans Affairs policies stipulate that "dried residues" of chemical herbicides and dioxin had not lead to meaningful exposures to flight crew and maintenance personnel, who are thus ineligible for Agent Orange-related benefits or medical examinations and treatment. Sparse monitoring data are available for analysis. Three complementary approaches for modeling potential exposures to dioxin in the post-Vietnam war aircraft were employed: (1) using 1994 and 2009 Air Force surface wipe data to model personnel exposures and to estimate dioxin body burden for dermal-oral exposure for dried residues using modified generic US Environmental Protection Agency intake algorithms; (2) comparing 1979 Air Force 2,4- dichlorophenoxyacetic acid and 2,4-5-trichlorophenoxyacetic acid air samples to saturated vapor pressure concentrations to estimate potential dioxin exposure through inhalation, ingestion and skin contact with contaminated air and dust; and (3) applying emission models for semivolatile organic compounds from contaminated surfaces to estimate airborne contamination. Model (1): Body-burden estimates for dermal-oral exposure were 0.92 and 5.4pg/kg body-weight-day for flight crew and maintainers. The surface wipe concentrations were nearly two orders of magnitude greater than the US Army guidance level. Model (2): measured airborne concentrations were at least five times greater than saturated vapor pressure, yielding dioxin estimates that ranged from 13.2-27.0pg/m(3), thus

  1. Modeling flight attendants' exposure to secondhand smoke in commercial aircraft: historical trends from 1955 to 1989.

    PubMed

    Liu, Ruiling; Dix-Cooper, Linda; Hammond, S Katharine

    2015-01-01

    Flight attendants were exposed to elevated levels of secondhand smoke (SHS) in commercial aircraft when smoking was allowed on planes. During flight attendants' working years, their occupational SHS exposure was influenced by various factors, including the prevalence of active smokers on planes, fliers' smoking behaviors, airplane flight load factors, and ventilation systems. These factors have likely changed over the past six decades and would affect SHS concentrations in commercial aircraft. However, changes in flight attendants' exposure to SHS have not been examined in the literature. This study estimates the magnitude of the changes and the historic trends of flight attendants' SHS exposure in U.S. domestic commercial aircraft by integrating historical changes of contributing factors. Mass balance models were developed and evaluated to estimate flight attendants' exposure to SHS in passenger cabins, as indicated by two commonly used tracers (airborne nicotine and particulate matter (PM)). Monte Carlo simulations integrating historical trends and distributions of influence factors were used to simulate 10,000 flight attendants' exposure to SHS on commercial flights from 1955 to 1989. These models indicate that annual mean SHS PM concentrations to which flight attendants were exposed in passenger cabins steadily decreased from approximately 265 μg/m(3) in 1955 and 1960 to 93 μg/m(3) by 1989, and airborne nicotine exposure among flight attendants also decreased from 11.1 μg/m(3) in 1955 to 6.5 μg/m(3) in 1989. Using duration of employment as an indicator of flight attendants' cumulative occupational exposure to SHS in epidemiological studies would inaccurately assess their lifetime exposures and thus bias the relationship between the exposure and health effects. This historical trend should be considered in future epidemiological studies.

  2. Radiation exposure of the anesthesiologist in the neurointerventional suite.

    PubMed

    Anastasian, Zirka H; Strozyk, Dorothea; Meyers, Philip M; Wang, Shuang; Berman, Mitchell F

    2011-03-01

    Scatter radiation during interventional radiology procedures can produce cataracts in participating medical personnel. Standard safety equipment for the radiologist includes eye protection. The typical configuration of fluoroscopy equipment directs radiation scatter away from the radiologist and toward the anesthesiologist. This study analyzed facial radiation exposure of the anesthesiologist during interventional neuroradiology procedures. Radiation exposure to the forehead of the anesthesiologist and radiologist was measured during 31 adult neuroradiologic procedures involving the head or neck. Variables hypothesized to affect anesthesiologist exposure were recorded for each procedure. These included total radiation emitted by fluoroscopic equipment, radiologist exposure, number of pharmacologic interventions performed by the anesthesiologist, and other variables. Radiation exposure to the anesthesiologist's face averaged 6.5 ± 5.4 μSv per interventional procedure. This exposure was more than 6-fold greater (P < 0.0005) than for noninterventional angiographic procedures (1.0 ± 1.0) and averaged more than 3-fold the exposure of the radiologist (ratio, 3.2; 95% CI, 1.8-4.5). Multiple linear regression analysis showed that the exposure of the anesthesiologist was correlated with the number of pharmacologic interventions performed by the anesthesiologist and the total exposure of the radiologist. Current guidelines for occupational radiation exposure to the eye are undergoing review and are likely to be lowered below the current 100-150 mSv/yr limit. Anesthesiologists who spend significant time in neurointerventional radiology suites may have ocular radiation exposure approaching that of a radiologist. To ensure parity with safety standards adopted by radiologists, these anesthesiologists should wear protective eyewear.

  3. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    NASA Astrophysics Data System (ADS)

    Talbot, Lee

    1999-03-01

    The European Union's Basic Safety Standards Directive (96/29/Euratom) lays down safety standards for the protection of workers and the general public against the effects of ionising radiations. Article 42 of the Directive deals with the protection of aircrew. It states that for crew of jet aircraft who are likely to be subject to exposure to more than 1 mSv y-1 appropriate measures must be taken, in particular: to assess the exposure of the crew concerned, to take into account the assessed exposure when organising working schedules with a view to reducing the doses of highly exposed aircrew, to inform concerned workers of the health risks involved in their work, to apply Article 10 to female aircrew. (The unborn child shall be treated like a member of the public.) This Directive must be transformed into national law of the 15 member states of the European Union by 13 May 2000. The European Commission and the Radiological Protection Institute of Ireland sponsored this International Conference. The objective of this conference was to assist both the airline industry and the national regulatory organisations in identifying the means available to comply with the requirements of the Directive. Over 200 delegates attended the conference from more than 25 countries. The welcoming addresses were made by Mary Upton (Director of the Radiological Protection Institute of Ireland), Joe Jacob (Minister for State responsible for Nuclear Safety) and James Currie (Director-General for the Environment, Nuclear Safety and Civil Protection). Mr Currie stated that there was a need for political decisions to be based on good science, and that technological trends will lead to higher and longer flights, and therefore higher radiation doses. The first day concentrated on the scientific basis of measurement, calculation and monitoring of cosmic radiation. The first speaker, Dr Heinrich from the University of Siegen, Germany, talked about the physics of cosmic radiation fields. He pointed

  4. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Comparison of ScaRaB, GOES 8, Aircraft, and Surface Observations of the Absorption of Solar Radiation by Clouds

    NASA Technical Reports Server (NTRS)

    Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick

    2002-01-01

    Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).

  6. Short-term annoyance from nocturnal aircraft noise exposure: results of the NORAH and STRAIN sleep studies.

    PubMed

    Quehl, Julia; Müller, Uwe; Mendolia, Franco

    2017-11-01

    The German Aerospace Center (DLR) investigated in the NORAH sleep study the association between a distinct change in nocturnal aircraft noise exposure due to the introduction of a night curfew (11:00 p.m.-5:00 a.m.) at Frankfurt Airport and short-term annoyance reactions of residents in the surrounding community. Exposure-response curves were calculated by random effects logistic regression to evaluate the aircraft noise-related parameters (1) number of overflights and (2) energy equivalent noise level L ASeq for the prediction of short-term annoyance. Data of the NORAH sleep study were compared with the STRAIN sleep study which was conducted by DLR near Cologne-Bonn Airport in 2001/2002 (N = 64), representing a steady-state/low-rate change. The NORAH sleep study was based on questionnaire surveys with 187 residents living in the vicinity of Frankfurt Airport. Noise-induced short-term annoyance and related non-acoustical variables were assessed. Nocturnal aircraft noise exposure was measured inside the residents' home. A statistically significant rise in the portion of annoyed residents with increasing number of overflights was found. Similarly, the portion of annoyed subjects increased with rising L ASeq . Importance of the frequency of fly-overs for the prediction of annoyance reactions was emphasized. The annoyance probability was significantly higher in the NORAH than in the STRAIN sleep study. Results confirm the importance of both acoustical parameters for the prediction of short-term annoyance due to nocturnal aircraft noise. Quantitative annoyance models that were derived at steady-state/low-rate change airports cannot be directly applied to airports that underwent a distinct change in operational and noise exposure patterns.

  7. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    PubMed

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  9. Effects of changed aircraft noise exposure on the use of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-11-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway's main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied.

  10. Effects of Changed Aircraft Noise Exposure on the Use of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway’s main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied. PMID:21139867

  11. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Cancer.gov

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  12. An Epidemiological Prospective Study of Children’s Health and Annoyance Reactions to Aircraft Noise Exposure in South Africa

    PubMed Central

    Seabi, Joseph

    2013-01-01

    The purpose of this study was to investigate health and annoyance reactions to change in chronic exposure to aircraft noise on a sample of South African children. It was the intention of this study to examine if effects of noise on health and annoyance can be demonstrated. If so, whether such effects persist over time, or whether such effects are reversible after the cessation of exposure to noise. A cohort of 732 children with a mean age of 11.1 (range = 8–14) participated at baseline measurements in Wave 1 (2009), and 649 (mean age = 12.3; range = 9–15) and 174 (mean age = 13.3; range = 10–16) children were reassessed in Wave 2 (2010) and Wave 3 (2011) after the relocation of the airport, respectively. The findings revealed that the children who were exposed to chronic aircraft noise continued to experience significantly higher annoyance than their counterparts in all the waves at school, and only in Wave 1 and Wave 2 at home. Aircraft noise exposure did not have adverse effects on the children’s self-reported health outcomes. Taken together, these findings suggest that chronic exposure to aircraft noise may have a lasting impact on children’s annoyance, but not on their subjective health rating. This is one of the first longitudinal studies of this nature in the African continent to make use of an opportunity resulting from the relocation of airport. PMID:23823713

  13. Radiation Exposure from Medical Exams and Procedures

    MedlinePlus

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  14. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  15. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  16. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  17. Radiation exposure in gastroenterology: improving patient and staff protection.

    PubMed

    Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  18. Radiation exposure to sonographers from nuclear medicine patients: A review.

    PubMed

    Earl, Victoria Jean; Badawy, Mohamed Khaldoun

    2018-06-01

    Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.

  19. Impact of climate change on occupational exposure to solar radiation.

    PubMed

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  20. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  1. Occupational Ocular UV Exposure in Civilian Aircrew.

    PubMed

    Chorley, Adrian C; Baczynska, Katarzyna A; Benwell, Martin J; Evans, Bruce J W; Higlett, Michael P; Khazova, Marina; O'Hagan, John B

    2016-01-01

    Ultraviolet radiation (UVR) increases with altitude; however, there are a number of other factors which may influence ocular exposure during flight. The aim of this study was to assess ocular UVR exposure of pilots in airline and off-shore helicopter operations on different aircraft types and to compare with exposure in a typical office environment. In-flight data were captured on equipment including a CCD array spectroradiometer on five return sector European airline flights and one transatlantic flight from London Gatwick in addition to four helicopter flights from Aberdeen Dyce airport. Further data were collected in an office environment from three workstations during summer and winter months. A wide variation in ocular UVA dose was found during flights. The main factor influencing exposure was the UVR transmission of the windshield, which fell into two distinct profile types. In an aircraft with good UVA blocking properties, ocular exposure was found to be equivalent to office exposure and did not exceed international guideline limits regardless of external conditions or flight time. Most aircraft assessed had poor UVA blocking windshields which resulted in an ocular exposure to the unprotected eye in excess of international guideline limits (up to between 4.5 to 6.5 times greater during one flight). No significant UVB dose was found. Pilots should be warned of the potential high UVA exposure during flight and advised on the use of sunglasses. A windshield labeling system would allow the pilot to tailor their eye protection practices to that particular aircraft.

  2. Aircraft disinsection: exposure assessment and evaluation of a new pre-embarkation method.

    PubMed

    Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Klasen, Jutta; Hoffmann, Godehard; Appel, Klaus E

    2006-01-01

    A new "pre-embarkation" method for aircraft disinsection was investigated using two different 2% d-phenothrin containing aerosols. Five experiments in aircrafts of the type Airbus 310 (4x) and Boeing 747-400 (1x) were performed. In the absence of passengers and crew the d-phenothrin aerosol was sprayed under the seat rows and in a second step at the height of approximately 1.60 m by moving from one end of the cabin to the other. Concentration levels of d-phenothrin were determined at different time periods after application of the aerosol spray. In a B 747-400 with the air conditioning system operating the concentrations ranged between 853 and 1753 microg/m3 during and till 5 min after the beginning of spraying at different locations in the cabin. Within 5-20min after the end of the spraying concentrations of 36-205 microg/m3 and 20-40 min thereafter only ca. 1 microg d-phenothrin/m3 were detectable (average values in relation to each period of measurement). On cabin interior surfaces the median values for mainly horizontal areas ranged from 100 to 1160 ng d-phenothrin/cm2. d-Phenothrin concentrations in the air were sufficient to kill flying insects like house flies and mosquitoes within 20 min. Horizontal surfaces were 100% effective against insects up to 24 h after spraying. Doses inhaled by sprayers determined by personal measurements were calculated to be 30-235 microg d-phenothrin per 100 g spray applied (30% in the respirable fraction for Arrow Aircraft Disinsectant; 10% for Aircraft Disinsectant Denka). If passengers will board, e.g., 20 min after the end of the disinsection operation, inhalation exposure is estimated to be practically negligible. Also possible dermal exposure from residues in seats and headrests is very low for passengers during the flight. Therefore any health effects for passengers and crew members are very unlikely.

  3. Radiation exposure of air carrier crewmembers II.

    DOT National Transportation Integrated Search

    1992-01-01

    The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposur...

  4. Radiation exposure of U.S. military individuals.

    PubMed

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30).

  5. Radiation exposure from fluoroscopy during orthopedic surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, S.A.

    1989-11-01

    The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less

  6. ARMAS and NAIRAS Comparisons of Radiation at Aviation Altitudes

    NASA Astrophysics Data System (ADS)

    Bell, L. D.

    2015-12-01

    Space Environment Technologies and the Space Weather Center (SWC) at Utah State University are deploying and obtaining effective dose rate radiation data from dosimeters flown on research aircraft. This project is called Automated Radiation Measurements for Aerospace Safety (ARMAS). Through several dozen flights since 2013 the ARMAS project has successfully demonstrated the operation of a micro-dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from galactic cosmic rays (GCR's) and solar energetic particles (SEP's). Space weather effects upon the near Earth environment are to dynamic changes in the energy transfer process from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, and atmospheric regions can significantly affect human tissue and the aircrafts technology as a result of radiation exposure. We describe and compare the types of radiation we have been measuring with the NAIRAS global climatological model as it relates to human tissue susceptibility and as a source at different altitude regions.

  7. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  8. Radiation Safety Issues in High Altitude Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  9. Radiation safety aspects of commercial high-speed flight transportation

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Nealy, John E.; Cucinotta, Francis A.; Shinn, Judy L.; Hajnal, Ferenc; Reginatto, Marcel; Goldhagen, Paul

    1995-01-01

    High-speed commercial flight transportation is being studied for intercontinental operations in the 21st century, the projected operational characteristics for these aircraft are examined, the radiation environment as it is now known is presented, and the relevant health issues are discussed. Based on a critical examination of the data, a number of specific issues need to be addressed to ensure an adequate knowledge of the ionizing radiation health risks of these aircraft operations. Large uncertainties in our knowledge of the physical fields for high-energy neutrons and multiply-charged ion components need to be reduced. Improved methods for estimating risks in prenatal exposure need to be developed. A firm basis for solar flare monitoring and forecasting needs to be developed with means of exposure abatement.

  10. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  11. Radiation exposure and lung disease in today's nuclear world.

    PubMed

    Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew

    2017-03-01

    Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.

  12. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less

  13. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  14. Control of excessive lead exposure in radiator repair workers.

    PubMed

    1991-03-01

    In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.

  15. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  17. Cosmic radiation exposure and persistent cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K; Chmielewski, Nicole N; Giedzinski, Erich; Acharya, Munjal M; Britten, Richard A; Baulch, Janet E; Limoli, Charles L

    2016-10-10

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

  18. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    PubMed

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  19. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  20. Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.

    2002-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  1. Overview of atmospheric ionizing radiation (AIR) research: SST-present.

    PubMed

    Wilson, J W; Goldhagen, P; Rafnsson, V; Clem, J M; De Angelis, G; Friedberg, W

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  2. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  3. Exposure to fall hazards and safety climate in the aircraft maintenance industry.

    PubMed

    Neitzel, Richard L; Seixas, Noah S; Harris, Michael J; Camp, Janice

    2008-01-01

    Falls represent a significant occupational hazard, particularly in industries with dynamic work environments. This paper describes rates of noncompliance with fall hazard prevention requirements, perceived safety climate and worker knowledge and beliefs, and the association between fall exposure and safety climate measures in commercial aircraft maintenance activities. Walkthrough observations were conducted on aircraft mechanics at two participating facilities (Sites A and B) to ascertain the degree of noncompliance. Mechanics at each site completed questionnaires concerning fall hazard knowledge, personal safety beliefs, and safety climate. Questionnaire results were summarized into safety climate and belief scores by workgroup and site. Noncompliance rates observed during walkthroughs were compared to the climate-belief scores, and were expected to be inversely associated. Important differences were seen in fall safety performance between the sites. The study provided a characterization of aircraft maintenance fall hazards, and also demonstrated the effectiveness of an objective hazard assessment methodology. Noncompliance varied by height, equipment used, location of work on the aircraft, shift, and by safety system. Although the expected relationship between safety climate and noncompliance was seen for site-average climate scores, workgroups with higher safety climate scores had greater observed noncompliance within Site A. Overall, use of engineered safety systems had a significant impact on working safely, while safety beliefs and climate also contributed, though inconsistently. The results of this study indicate that safety systems are very important in reducing noncompliance with fall protection requirements in aircraft maintenance facilities. Site-level fall safety compliance was found to be related to safety climate, although an unexpected relationship between compliance and safety climate was seen at the workgroup level within site. Finally, observed

  4. FLUKA simulation of TEPC response to cosmic radiation.

    PubMed

    Beck, P; Ferrari, A; Pelliccioni, M; Rollet, S; Villari, R

    2005-01-01

    The aircrew exposure to cosmic radiation can be assessed by calculation with codes validated by measurements. However, the relationship between doses in the free atmosphere, as calculated by the codes and from results of measurements performed within the aircraft, is still unclear. The response of a tissue-equivalent proportional counter (TEPC) has already been simulated successfully by the Monte Carlo transport code FLUKA. Absorbed dose rate and ambient dose equivalent rate distributions as functions of lineal energy have been simulated for several reference sources and mixed radiation fields. The agreement between simulation and measurements has been well demonstrated. In order to evaluate the influence of aircraft structures on aircrew exposure assessment, the response of TEPC in the free atmosphere and on-board is now simulated. The calculated results are discussed and compared with other calculations and measurements.

  5. Decreasing radiation exposure on pediatric portable chest radiographs.

    PubMed

    Hawking, Nancy G; Sharp, Ted D

    2013-01-01

    To determine whether additional shielding designed for pediatric patients during portable chest exams that ascertain endotracheal tube placement would significantly decrease the amount of scatter radiation. Children aged 24 months or younger were intubated and received daily morning chest radiographs to determine endotracheal tube placement. For each measurement, the amount of scatter radiation decreased by more than 20% from a nonshielded exposure to a shielded exposure. There was a significant decrease in scatter radiation when using the lead shielding device along with appropriate collimation vs appropriate collimation alone. These results suggest that applying additional shielding to appropriately collimated chest radiographs could significantly reduce scatter radiation and therefore the overall dose to young children.

  6. Exposure assessment of aluminum arc welding radiation.

    PubMed

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  7. NTPR Radiation Exposure Reports

    Science.gov Websites

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Detonations 1945-1962, Vol II: Oceanic Test Series DNA-6041F For the Record - A History of the Nuclear Test

  8. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  9. Diagnostic radiation exposure in pediatric trauma patients.

    PubMed

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (p<0.0001). Burn injuries had the lowest radiation dose [1.2 (±2.6) mSv], whereas motor vehicle collision victims had the highest dose [18.8 (±14.7) mSv]. When the use of radiologic imaging is considered essential, cumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  10. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    PubMed

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative

  11. Fluoroscopic radiation exposure: are we protecting ourselves adequately?

    PubMed

    Hoffler, C Edward; Ilyas, Asif M

    2015-05-06

    While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures

  12. Absorption of Solar Radiation by Clouds: Interpretations of Satellite, Surface, and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.

    1996-01-01

    To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.

  13. On the role of the radiation directivity in noise reduction for STOL aircraft.

    NASA Technical Reports Server (NTRS)

    Gruschka, H. D.

    1972-01-01

    The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.

  14. Approximating the Probability of Mortality Due to Protracted Radiation Exposures

    DTIC Science & Technology

    2016-06-01

    syndrome of acute radiation sickness. In the MARCELL model, radiation exposure dynamically depletes the bone marrow cell population, the underpinning of...Protracted Radiation Exposures DTRA-TR-16-054 HDTRA1-14-D-0003; 0005 Prepared by: Applied Research Associates, Inc. 801 N. Quincy Street...Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 1010 per second (s–1

  15. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  16. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  17. The impact of aircraft noise exposure on South African children's reading comprehension: the moderating effect of home language.

    PubMed

    Seabi, Joseph; Cockcroft, Kate; Goldschagg, Paul; Greyling, Mike

    2012-01-01

    Given the limited studies conducted within the African continent, the purpose of this study was to investigate the impact of chronic aircraft noise exposure and the moderating effect of home language on the learners' reading comprehension. The sample comprised 437 (52%) senior primary learners exposed to high levels of aircraft noise (Experimental group) and 337 (48%) learners residing in a quieter area (Control group). Of these, 151 learners in the Experimental group spoke English as a first language (EFL) and 162 spoke English as a second language (ESL). In the Control group, the numbers were similarly divided (EFL n = 191; ESL n = 156). A univariate General Linear Model was used to investigate the effects of aircraft noise exposure and language on reading comprehension, while observing for the possible impact of intellectual ability, gender, and socioeconomic status on the results. A significant difference was observed between ESL and EFL learners in favor of the latter (F 1,419 = 21.95, P =.000). In addition a substantial and significant interaction effect was found between the experimental and control groups for the two language groups. For the EFL speakers there was a strong reduction in reading comprehension in the aircraft noise group. By contrast this difference was not significant for the ESL speakers. Implications of the findings and suggestions for further research are made in the article.

  18. Nondestructive monitoring of aircraft composites using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Balbekin, Nikolay S.; Novoselov, Evgenii V.; Pavlov, Pavel V.; Bespalov, Victor G.; Petrov, Nikolay V.

    2015-03-01

    In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.

  19. A comparison of a laboratory and field study of annoyance and acceptability of aircraft noise exposures. [human reactions and tolerance

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1977-01-01

    Residents living in close, middle and distant areas from JFK Airport were included in a field interview and laboratory study. Judgments were made of simulated aircraft noise exposures of comparable community indoor noise levels and mixes of aircraft. Each group of subjects judged the levels of noise typical for its distance area. Four different numbers of flyovers were tested: less than average for each area, the approximate average, the peak number, or worst day, and above peak number. The major findings are: (1) the reported integrated field annoyance is best related to the annoyance reported for the simulated approximate worst day exposure in the laboratory; (2) annoyance is generally less when there are fewer aircraft flyovers, and the subject has less fear of crashes and more favorable attitudes toward airplanes; (3) beliefs in harmful health effects and misfeasance by operators of aircraft are also highly correlated with fear and noise annoyance; (4) in direct retrospective comparisons of number of flights, noise levels and annoyance, subjects more often said the worst day laboratory exposured more like their usual home environments; and (5) subjects do not expect an annoyance-free environment. Half of the subjects can accept an annoyance level of 5 to 6 from a possible annoyance range of 0 to 9, 28% can live with an annoyance intensity of 7, and only 5% can accept the top scores of 8 to 9.

  20. Occupational radiation exposure in nuclear medicine department in Kuwait

    NASA Astrophysics Data System (ADS)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  1. Absorption of Solar Radiation by the Cloudy Atmosphere: Further Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.

    1998-01-01

    We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.

  2. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  3. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    NASA Technical Reports Server (NTRS)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  4. The relationship between ultraviolet radiation exposure and vitamin D status.

    PubMed

    Engelsen, Ola

    2010-05-01

    This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  5. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Yoshitake

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less

  6. Aircraft Noise and Quality of Life around Frankfurt Airport

    PubMed Central

    Schreckenberg, Dirk; Meis, Markus; Kahl, Cara; Peschel, Christin; Eikmann, Thomas

    2010-01-01

    In a survey of 2,312 residents living near Frankfurt Airport aircraft noise annoyance and disturbances as well as environmental (EQoL) and health-related quality of life (HQoL) were assessed and compared with data on exposure due to aircraft, road traffic, and railway noise. Results indicate higher noise annoyance than predicted from general exposure-response curves. Beside aircraft sound levels source-related attitudes were associated with reactions to aircraft noise. Furthermore, aircraft noise affected EQoL in general, although to a much smaller extent. HQoL was associated with aircraft noise annoyance, noise sensitivity and partly with aircraft noise exposure, in particular in the subgroup of multimorbid residents. The results suggest a recursive relationship between noise and health, yet this cannot be tested in cross-sectional studies. Longitudinal studies would be recommendable to get more insight in the causal paths underlying the noise-health relationship. PMID:20948931

  7. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. Materials and Methods: This institutional review board–approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Results: Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality

  8. A study of smart card for radiation exposure history of patient.

    PubMed

    Rehani, Madan M; Kushi, Joseph F

    2013-04-01

    The purpose of this article is to undertake a study on developing a prototype of a smart card that, when swiped in a system with access to the radiation exposure monitoring server, will locate the patient's radiation exposure history from that institution or set of associated institutions to which it has database access. Like the ATM or credit card, the card acts as a secure unique "token" rather than having cash, credit, or dose data on the card. The system provides the requested radiation history report, which then can be printed or sent by e-mail to the patient. The prototype system is capable of extending outreach to wherever the radiation exposure monitoring server extends, at county, state, or national levels. It is anticipated that the prototype shall pave the way for quick availability of patient exposure history for use in clinical practice for strengthening radiation protection of patients.

  9. Medical management of three workers following a radiation exposure incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.A.; Sax, S.E.; Rumack, E.R.

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experiencedmore » somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.« less

  10. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  11. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.

  12. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults.

    PubMed

    Schmidt, Frank P; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas

    2013-12-01

    Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with

  13. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  14. High Altitude Radiations Relevant to the High Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagan, P.; Maiden, D. L.; Tai, H.

    2004-01-01

    The Langley Research Center (LaRC) performed atmospheric radiation studies under the SST development program in which important ionizing radiation components were measured and extended by calculations to develop the existing atmospheric ionizing radiation (AIR) model. In that program the measured neutron spectrum was limited to less than 10 MeV by the available 1960-1970 instrumentation. Extension of the neutron spectrum to high energies was made using the LaRC PROPER-3C monte carlo code. It was found that the atmospheric neutrons contributed about half of the dose equivalent and approximately half of the neutron contribution was from high energy neutrons above 10 MeV. Furthermore, monte carlo calculations of solar particle events showed that potential exposures as large as 10-100 mSv/hr may occur on important high latitude routes but acceptable levels of exposure could be obtained if timely descent to subsonic altitudes could be made. The principal concern was for pregnant occupants onboard the aircraft. As a result of these studies the FAA Advisory Committee on the Radiobiological Aspects of the SST recommended: 1. Crew members will have to be informed of their exposure levels 2. Maximum exposures on any flight to be limited to 5 mSv 3. Airborne radiation detection devices for total exposure and exposure rates 4. Satellite monitoring system to provide SST aircraft real-time information on atmospheric radiation levels for exposure mitigation 5. A solar forecasting system to warn flight operations of an impending solar event for flight scheduling and alert status. These recommendations are a reasonable starting point to requirements for the HSCT with some modification reflecting new standards of protection as a result of changing risk coefficients.

  15. Cumulative radiation exposure and cancer risk estimation in children with heart disease.

    PubMed

    Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D

    2014-07-08

    Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.

  16. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  17. Digital methods for reducing radiation exposure during medical fluoroscopy

    NASA Astrophysics Data System (ADS)

    Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.

    1990-07-01

    There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.

  18. Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoying; Wang, Xiaojun; Wang, Ruixing; Wang, Lei

    2015-11-01

    The infrared radiation (IR) intensity is generally used to embody the stealth characteristics of a supersonic aircraft, which directly affects its survivability in warfare. Under such circumstances, the research on IR signature as an important branch of stealth technology is significant to overcome this threat for survivability enhancement. Considering the existence of uncertainties in material and environment, the IR intensity is indeed a range rather than a specific value. In this paper, subjected to the properties of the IR, an analytic process containing the uncertainty propagation and the reliability evaluation is investigated when taking into account that the temperature of object, the atmospheric transmittance and the spectral emissivity of materials are all regarded as uncertain parameters. For one thing, the vertex method is used to analyze and estimate the dispersion of IR intensity; for another, the safety assessment of the stealth performance for aircraft is conducted by non-probabilistic reliability analysis. For the purpose of the comparison and verification, the Monte Carlo simulation is discussed as well. The validity, usage, and efficiency of the developed methodology are demonstrated by two application examples eventually.

  19. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    PubMed

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. [Cutaneous radiation syndrome after accidental skin exposure to ionizing radiation].

    PubMed

    Peter, R U

    2013-12-01

    Accidental exposure of the human skin to single doses of ionizing radiation greater than 3 Gy results in a distinct clinical picture, which is characterized by a transient and faint erythema after a few hours, then followed by severe erythema, blistering and necrosis. Depending on severity of damage, the latter generally occurs 10-30 days after exposure, but in severe cases may appear within 48 hrs. Between three and 24 months after exposure, epidermal atrophy combined with progressive dermal and subcutaneous fibrosis is the predominant clinical feature. Even years and decades after exposure, atrophy of epidermis, sweat and sebaceous glands; telangiectases; and dermal and subcutaneous fibrosis may be found and even continue to progress. For this distinct pattern of deterministic effects following cutaneous accidental radiation exposure the term "cutaneous radiation syndrome (CRS)" was coined in 1993 and has been accepted by all international authorities including IAEA and WHO since 2000. In contrast to the classical concept that inhibition of epidermal stem cell proliferation accounts for the clinical symptomatology, research of the last three decades has demonstrated the additional crucial role of inflammatory processes in the etiology of both acute and chronic sequelae of the CRS. Therefore, therapeutic approaches should include topical and systemic anti-inflammatory measures at the earliest conceivable point, and should be maintained throughout the acute and subacute stages, as this reduces the need for surgical intervention, once necrosis has occurred. If surgical intervention is planned, it should be executed with a conservative approach; no safety margins are needed. Antifibrotic measures in the chronic stage should address the chronic inflammatory nature of this process, in which over-expression TGF beta-1 may be a target for therapeutic intervention. Life-long follow-up often is required for management of delayed effects and for early detection of secondary

  1. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.

    PubMed

    Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D

    2016-05-01

    Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.

  3. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of Individual...

  4. Lead exposure in Mexican radiator repair workers.

    PubMed

    Dykeman, Ronald; Aguilar-Madrid, Guadalupe; Smith, Tom; Juárez-Pérez, Cuauhtemoc Arturo; Piacitelli, Gregory M; Hu, Howard; Hernandez-Avila, Mauricio

    2002-03-01

    Lead exposure was investigated among 73 Mexican radiator repair workers (RRWs), 12 members of their family (4 children and 8 wives), and 36 working controls. RRWs were employed at 4 radiator repair shops in Mexico City and 27 shops in Cuernavaca and surrounding areas. Exposure was assessed directly through the use of personal air sampling and hand wipe samples. In addition, industrial hygiene inspections were performed and detailed questionnaires were administered. Blood lead levels were measured by graphite furnace atomic absorption spectroscopy (AAS). The mean (SD) values for blood lead of the RRWs, 35.5 (13.5) microg/dl, was significantly greater than the same values for the working controls, 13.6 (8.7) microg/dl; P < 001. After excluding a single outlier (247 microg/m(3)), air lead levels ranged from 0 to 99 microg/m(3) with a mean (SD) value of 19 (23) microg/m(3) (median = 7.9 microg/m(3)). In a final multivariate regression model of elevated blood lead levels, the strongest predictors were smoking (vs. non-smoking), the number of radiators repaired per day on average, and the use (vs. non-use) of a uniform while at work, which were associated with blood lead elevations of 11.4 microg/dl, 1.95 microg/dl/radiator/day, and 16.4 microg/dl, respectively (all P <.05). Uniform use was probably a risk factor because they were not laundered regularly and consequently served as reservoir of contamination on which RRWs frequently wiped their hands. Lead exposure is a significant problem of radiator repair work, a small industry that is abundant in Mexico and other developing countries. Copyright 2002 Wiley-Liss, Inc.

  5. Buccal mucosa micronuclei counts in relation to exposure to low dose-rate radiation from the Chornobyl nuclear accident and other medical and occupational radiation exposures.

    PubMed

    Bazyka, D; Finch, S C; Ilienko, I M; Lyaskivska, O; Dyagil, I; Trotsiuk, N; Gudzenko, N; Chumak, V V; Walsh, K M; Wiemels, J; Little, M P; Zablotska, L B

    2017-06-23

    Ionizing radiation is a well-known carcinogen. Chromosome aberrations, and in particular micronuclei represent an early biological predictor of cancer risk. There are well-documented associations of micronuclei with ionizing radiation dose in some radiation-exposed groups, although not all. That associations are not seen in all radiation-exposed groups may be because cells with micronuclei will not generally pass through mitosis, so that radiation-induced micronuclei decay, generally within a few years after exposure. Buccal samples from a group of 111 male workers in Ukraine exposed to ionizing radiation during the cleanup activities at the Chornobyl nuclear power plant were studied. Samples were taken between 12 and 18 years after their last radiation exposure from the Chornobyl cleanup. The frequency of binucleated micronuclei was analyzed in relation to estimated bone marrow dose from the cleanup activities along with a number of environmental/occupational risk factors using Poisson regression adjusted for overdispersion. Among the 105 persons without a previous cancer diagnosis, the mean Chornobyl-related dose was 59.5 mSv (range 0-748.4 mSv). There was a borderline significant increase in micronuclei frequency among those reporting work as an industrial radiographer compared with all others, with a relative risk of 6.19 (95% CI 0.90, 31.08, 2-sided p = 0.0729), although this was based on a single person. There was a borderline significant positive radiation dose response for micronuclei frequency with increase in micronuclei per 1000 scored cells per Gy of 3.03 (95% CI -0.78, 7.65, 2-sided p = 0.1170), and a borderline significant reduction of excess relative MN prevalence with increasing time since last exposure (p = 0.0949). There was a significant (p = 0.0388) reduction in MN prevalence associated with bone X-ray exposure, but no significant trend (p = 0.3845) of MN prevalence with numbers of bone X-ray procedures. There are indications of

  6. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  7. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  8. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  9. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  10. ICRP Publication 132: Radiological Protection from Cosmic Radiation in Aviation.

    PubMed

    Lochard, J; Bartlett, D T; Rühm, W; Yasuda, H; Bottollier-Depois, J-F

    2016-06-01

    In this publication, the International Commission on Radiological Protection (ICRP) provides updated guidance on radiological protection from cosmic radiation in aviation, taking into account the current ICRP system of radiological protection, the latest available data on exposures in aviation, and experience gained worldwide in the management of exposures in aviation. The publication describes the origins of cosmic radiation, how it exposes passengers and aircraft crew, the basic radiological protection principles that apply to this existing exposure situation, and the available protective actions. For implementation of the optimisation principle, the Commission recommends a graded approach proportionate to the level of exposure that may be received by individuals. The objective is to keep the exposure of the most exposed individuals to a reasonable level. The Commission also recommends that information be disseminated to raise awareness about cosmic radiation, and to support informed decisions among concerned stakeholders.

  11. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  12. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  13. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  14. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  15. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  16. Seat vibration in military propeller aircraft: characterization, exposure assessment, and mitigation.

    PubMed

    Smith, Suzanne D

    2006-01-01

    There have been increasing reports of annoyance, fatigue, and even neck and back pain during prolonged operation of military propeller aircraft, where persistent multi-axis vibration occurs at higher frequencies beyond human whole-body resonance. This paper characterizes and assesses the higher frequency vibration transmitted to the occupants onboard these aircraft. Multi-axis accelerations were measured at the occupied seating surfaces onboard the WC/C-130J, C-130H3, and E-2C Hawkeye. The effects of the vibration were assessed in accordance with current international guidelines (ISO 2631-1:1997). The relative psychophysical effects of the frequency components and the effects of selected mitigation strategies were also investigated. The accelerations associated with the blade passage frequency measured on the passenger seat pans located on the side of the fuselage near the propeller plane of the C-130J (102 Hz) and C-130H3 (68 Hz) were noteworthy (5.19 +/- 1.72 ms(-2) rms and 7.65 +/- 0.71 ms(-2) rms, respectively, in the lateral direction of the aircraft). The psychophysical results indicated that the higher frequency component would dominate the side passengers' perception of the vibration. Balancing the props significantly reduced the lower frequency propeller rotation vibration (17 Hz), but had little effect on the blade passage frequency vibration. The relationships among the frequency, vibration direction, and seat measurement sites were complex, challenging the development of seating systems and mitigation strategies. Psychophysical metrics could provide a tool for optimizing mitigation strategies, but the current international vibration standard may not provide optimum assessment methods for evaluating higher frequency operational exposures.

  17. A translatable predictor of human radiation exposure.

    PubMed

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  18. Current methods of monitoring radiation exposure from CT.

    PubMed

    Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H

    2013-09-01

    Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.

  19. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  20. DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.

    PubMed

    Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther

    2018-06-01

    In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.

  1. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  2. Prospective Measurement of Patient Exposure to Radiation During Pediatric Ureteroscopy

    PubMed Central

    Kokorowski, Paul J.; Chow, Jeanne S.; Strauss, Keith; Pennison, Melanie; Routh, Jonathan C.; Nelson, Caleb P.

    2013-01-01

    Objective Little data have been reported regarding radiation exposure during pediatric endourologic procedures, including ureteroscopy (URS). We sought to measure radiation exposure during pediatric URS and identify opportunities for exposure reduction. Methods We prospectively observed URS procedures as part of a quality improvement initiative. Pre-operative patient characteristics, operative factors, fluoroscopy settings and radiation exposure were recorded. Our outcomes were entrance skin dose (ESD, in mGy) and midline dose (MLD, in mGy). Specific modifiable factors were identified as targets for potential quality improvement. Results Direct observation was performed on 56 consecutive URS procedures. Mean patient age was 14.8 ± 3.8 years (range 7.4 to 19.2); 9 children were under age 12 years. Mean ESD was 46.4 ± 48 mGy. Mean MLD was 6.2 ± 5.0 mGy. The most important major determinant of radiation dose was total fluoroscopy time (mean 2.68 ± 1.8 min) followed by dose rate setting, child anterior-posterior (AP) diameter, and source to skin distance (all p<0.01). The analysis of factors affecting exposure levels found that the use of ureteral access sheaths (p=0.01) and retrograde pyelography (p=0.04) were significantly associated with fluoroscopy time. We also found that dose rate settings were higher than recommended in up to 43% of cases and ideal C-arm positioning could have reduced exposure 14% (up to 49% in some cases). Conclusions Children receive biologically significant radiation doses during URS procedures. Several modifiable factors contribute to dose and could be targeted in efforts to implement dose reduction strategies. PMID:22341275

  3. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  4. Summary of retrospective asbestos and welding fume exposure estimates for a nuclear naval shipyard and their correlation with radiation exposure estimates.

    PubMed

    Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P

    2009-07-01

    In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to

  5. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  6. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  7. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  8. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  9. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  10. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  11. Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.

    PubMed

    Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A

    2011-11-01

    The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.

  12. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  13. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  14. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults

    PubMed Central

    Schmidt, Frank P.; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas

    2013-01-01

    Aims Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. Methods and results We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). Conclusion In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of

  15. Radiation Exposure and Attributable Cancer Risk in Patients With Esophageal Atresia.

    PubMed

    Yousef, Yasmine; Baird, Robert

    2018-02-01

    Cases of esophageal carcinoma have been documented in survivors of esophageal atresia (EA). Children with EA undergo considerable amounts of diagnostic imaging and consequent radiation exposure potentially increasing their lifetime cancer mortality risk. This study evaluates the radiological procedures performed on patients with EA and estimates their cumulative radiation exposure and attributable lifetime cancer mortality risk. Medical records of patients with EA managed at a tertiary care center were reviewed for demographics, EA subtype, and number and type of radiological investigations. Existing normative data were used to estimate the cumulative radiation exposure and lifetime cancer risk per patient. The present study included 53 patients with a mean follow-up of 5.7 years. The overall median and maximum estimated effective radiation dose in the neonatal period was 5521.4 μSv/patient and 66638.6 μSv/patient, respectively. This correlates to a median and maximum estimated cumulative lifetime cancer mortality risk of 1:1530 and 1:130, respectively. Hence, radiation exposure in the neonatal period increased the cumulative cancer mortality risk a median of 130-fold and a maximum of 1575-fold in EA survivors. Children with EA are exposed to significant amounts of radiation and an increased estimated cumulative cancer mortality risk. Efforts should be made to eliminate superfluous imaging.

  16. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    PubMed

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.

  17. Do black ducks and wood ducks habituate to aircraft disturbance?

    USGS Publications Warehouse

    Conomy, J.T.; Dubovsky, J.A.; Collazo, J.A.; Fleming, W.J.

    1998-01-01

    Requests to increase military aircraft activity in some training facilities in the United States have raised the need to determine if waterfowl and other wildlife are adversely affected by aircraft disturbance. We hypothesized that habituation was a possible proximate factor influencing the low proportion of free-ranging ducks reacting to military aircraft activities in a training range in coastal North Carolina during winters 1991 and 1992. To test this hypothesis, we subjected captive, wild-strain American black ducks (Anas rubripes) and wood ducks (Aix sponsa) to actual and simulated activities of jet aircraft. In the first experiment, we placed black ducks in an enclosure near the center of aircraft activities on Piney Island, a military aircraft target range in coastal North Carolina. The proportion of times black ducks reacted (e.g., alert posture, fleeing response) to visual and auditory aircraft activity decreased from 38 to 6% during the first 17 days of confinement. Response rates remained stable at 5.8% thereafter. In the second experiment, black ducks and wood ducks were exposed to 6 different recordings of jet noise. The proportion of times black ducks reacted to noise decreased (P 0.05) in time-activity budgets of black ducks between pre-exposure to noise and 24 hr after first exposure. Unlike black ducks, wood duck responses to jet noise did not decrease uniformly among experimental groups following initial exposure to noise (P = 0.01). We conclude that initial exposure to aircraft noise elicits behavioral responses from black ducks and wood ducks. With continued exposure of aircraft noise, black ducks may become habituated. However, wood ducks did not exhibit the same pattern of response, suggesting that the ability of waterfowl to habituate to aircraft noise may be species specific.

  18. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miraglia, Roberto, E-mail: rmiraglia@ismett.edu; Maruzzelli, Luigi, E-mail: lmaruzzelli@ismett.edu; Cortis, Kelvin, E-mail: kelvincortis@ismett.edu

    2016-02-15

    PurposeTransjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.Materials and methodsThree hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure donemore » in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm{sup 2} and fluoroscopy time [FT] in minutes) was retrospectively analyzed.ResultsDAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm{sup 2}) as compared to Group II (217 ± 130; 178; 276 Gy cm{sup 2}; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm{sup 2}p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).ConclusionsReal-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.« less

  19. Exposure to aircraft and road traffic noise and associations with heart disease and stroke in six European countries: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Although a number of studies have found an association between aircraft noise and hypertension, there is a lack of evidence on associations with other cardiovascular disease. For road traffic noise, more studies are available but the extent of possible confounding by air pollution has not been established. Methods This study used data from the Hypertension and Environmental Noise near Airports (HYENA) study. Cross-sectional associations between self-reported ‘heart disease and stroke’ and aircraft noise and road traffic noise were examined using data collected between 2004 and 2006 on 4712 participants (276 cases), who lived near airports in six European countries (UK, Germany, Netherlands, Sweden, Greece, Italy). Data were available to assess potential confounding by NO2 air pollution in a subsample of three countries (UK, Netherlands, Sweden). Results An association between night-time average aircraft noise and ‘heart disease and stroke’ was found after adjustment for socio-demographic confounders for participants who had lived in the same place for ≥ 20 years (odds ratio (OR): 1.25 (95% confidence interval (CI) 1.03, 1.51) per 10 dB (A)); this association was robust to adjustment for exposure to air pollution in the subsample. 24 hour average road traffic noise exposure was associated with ‘heart disease and stroke’ (OR: 1.19 (95% CI 1.00, 1.41), but adjustment for air pollution in the subsample suggested this may have been due to confounding by air pollution. Statistical assessment (correlations and variance inflation factor) suggested only modest collinearity between noise and NO2 exposures. Conclusions Exposure to aircraft noise over many years may increase risks of heart disease and stroke, although more studies are needed to establish how much the risks associated with road traffic noise may be explained by air pollution. PMID:24131577

  20. Cancer risk estimation caused by radiation exposure during endovascular procedure

    NASA Astrophysics Data System (ADS)

    Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.

    2014-05-01

    The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.

  1. Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2008-01-01

    A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel.

  2. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  3. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  4. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.

    PubMed

    Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John

    2016-03-01

    Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation

  5. Effect of ventilation velocity on hexavalent chromium and isocyanate exposures in aircraft paint spraying.

    PubMed

    Bennett, James; Marlow, David; Nourian, Fariba; Breay, James; Feng, Amy; Methner, Mark

    2018-03-01

    Exposure control system performance was evaluated during aircraft paint spraying at a military facility. Computational fluid dynamics (CFD) modeling, tracer gas testing, and exposure monitoring examined contaminant exposure vs. crossflow ventilation velocity. CFD modeling using the RNG k-ϵ turbulence model showed exposures to simulated methyl isobutyl ketone of 294 and 83.6 ppm, as a spatial average of five worker locations, for velocities of 0.508 and 0.381 m/s (100 and 75 fpm), respectively. In tracer gas experiments, observed supply/exhaust velocities of 0.706/0.503 m/s (136/99 fpm) were termed full-flow, and reduced velocities were termed 3/4-flow and half-flow. Half-flow showed higher tracer gas concentrations than 3/4-flow, which had the lowest time-averaged concentration, with difference in log means significant at the 95% confidence level. Half-flow compared to full-flow and 3/4-flow compared to full-flow showed no statistically significant difference. CFD modeling using these ventilation conditions agreed closely with the tracer results for the full-flow and 3/4-flow comparison, yet not for the 3/4-flow and half-flow comparison. Full-flow conditions at the painting facility produced a velocity of 0.528 m/s (104 fpm) midway between supply and exhaust locations, with the supply rate of 94.4 m 3 /s (200,000 cfm) exceeding the exhaust rate of 68.7 m 3 /s (146,000 cfm). Ventilation modifications to correct this imbalance created a midhangar velocity of 0.406 m/s (80.0 fpm). Personal exposure monitoring for two worker groups-sprayers and sprayer helpers ("hosemen")-compared process duration means for the two velocities. Hexavalent chromium (Cr[VI]) exposures were 500 vs. 360 µg/m 3 for sprayers and 120 vs. 170 µg/m 3 for hosemen, for 0.528 m/s (104 fpm) and 0.406 m/s (80.0 fpm), respectively. Hexamethylene diisocyanate (HDI) monomer means were 32.2 vs. 13.3 µg/m 3 for sprayers and 3.99 vs. 8.42 µg/m 3 for hosemen. Crossflow

  6. Overview on association of different types of leukemias with radiation exposure.

    PubMed

    Gluzman, D F; Sklyarenko, L M; Zavelevich, M P; Koval, S V; Ivanivska, T S; Rodionova, N K

    2015-06-01

    Exposure to ionizing radiation is associated with increasing risk of various types of hematological malignancies. The results of major studies on association of leukemias and radiation exposure of large populations in Japan and in Ukraine are analyzed. The patterns of different types of leukemia in 295 Chernobyl clean-up workers diagnosed according to the criteria of up-to-date World Health Organization classification within 10-25 years following Chernobyl catastrophe are summarized. In fact, a broad spectrum of radiation-related hematological malignancies has been revealed both in Life Span Study in Japan and in study of Chernobyl clean-up workers in Ukraine. The importance of the precise diagnosis of tumors of hematopoietic and lymphoid tissues according to up-to-date classifications for elucidating the role of radiation as a causative factor of leukemias is emphasized. Such studies are of high importance since according to the recent findings, radiation-associated excess risks of several types of leukemias seem to persist throughout the follow-up period up to 55 years after the radiation exposure.

  7. Impact of a Disposable Sterile Radiation Shield on Operator Radiation Exposure During Percutaneous Coronary Intervention of Chronic Total Occlusions.

    PubMed

    Shorrock, Deborah; Christopoulos, Georgios; Wosik, Jedrek; Kotsia, Anna; Rangan, Bavana; Abdullah, Shuaib; Cipher, Daisha; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-07-01

    Daily radiation exposure over many years can adversely impact the health of medical professionals. Operator radiation exposure was recorded for 124 percutaneous coronary interventions (PCIs) performed at our institution between August 2011 and May 2013: 69 were chronic total occlusion (CTO)-PCIs and 55 were non-CTO PCIs. A disposable radiation protection sterile drape (Radpad; Worldwide Innovations & Technologies, Inc) was used in all CTO-PCI cases vs none of the non-CTO PCI cases. Operator radiation exposure was compared between CTO and non-CTO PCIs. Mean age was 64.6 ± 6.2 years and 99.2% of the patients were men. Compared with non-CTO PCI, patients undergoing CTO-PCI were more likely to have congestive heart failure, to be current smokers, and to have longer lesions, and less likely to have prior PCI and a saphenous vein graft target lesion. CTO-PCI cases had longer procedural time (median: 123 minutes [IQR, 85-192 minutes] vs 27 minutes [IQR, 20-44 minutes]; P<.001), fluoroscopy time (35 minutes [IQR, 19-54 minutes] vs 8 minutes [IQR, 5-16 minutes]; P<.001), number of stents placed (2.4 ± 1.5 vs 1.7 ± 0.9; P<.001), and patient air kerma radiation exposure (3.92 Gray [IQR, 2.48-5.86 Gray] vs 1.22 Gray [IQR, 0.74-1.90 Gray]; P<.001), as well as dose area product (267 Gray•cm² [IQR, 163-4.25 Gray•cm²] vs 84 Gray•cm² [IQR, 48-138 Gray•cm²]; P<.001). In spite of higher patient radiation exposure, operator radiation exposure was similar between the two groups (20 μSv [IQR, 9.5-31 μSv] vs 15 μSv [IQR, 7-23 μSv]; P=.07). Operator radiation exposure during CTO-PCI can be reduced to levels similar to less complicated cases with the use of a disposable sterile radiation protection shield.

  8. Comparative occupational radiation exposure between fixed and mobile imaging systems.

    PubMed

    Kendrick, Daniel E; Miller, Claire P; Moorehead, Pamela A; Kim, Ann H; Baele, Henry R; Wong, Virginia L; Jordan, David W; Kashyap, Vikram S

    2016-01-01

    Endovascular intervention exposes surgical staff to scattered radiation, which varies according to procedure and imaging equipment. The purpose of this study was to determine differences in occupational exposure between procedures performed with fixed imaging (FI) in an endovascular suite compared with conventional mobile imaging (MI) in a standard operating room. A series of 116 endovascular cases were performed over a 4-month interval in a dedicated endovascular suite with FI and conventional operating room with MI. All cases were performed at a single institution and radiation dose was recorded using real-time dosimetry badges from Unfors RaySafe (Hopkinton, Mass). A dosimeter was mounted in each room to establish a radiation baseline. Staff dose was recorded using individual badges worn on the torso lead. Total mean air kerma (Kar; mGy, patient dose) and mean case dose (mSv, scattered radiation) were compared between rooms and across all staff positions for cases of varying complexity. Statistical analyses for all continuous variables were performed using t test and analysis of variance where appropriate. A total of 43 cases with MI and 73 cases with FI were performed by four vascular surgeons. Total mean Kar, and case dose were significantly higher with FI compared with MI. (mean ± standard error of the mean, 523 ± 49 mGy vs 98 ± 19 mGy; P < .00001; 0.77 ± 0.03 mSv vs 0.16 ± 0.08 mSv, P < .00001). Exposure for the primary surgeon and assistant was significantly higher with FI compared with MI. Mean exposure for all cases using either imaging modality, was significantly higher for the primary surgeon and assistant than for support staff (ie, nurse, radiology technologist) beyond 6 feet from the X-ray source, indicated according to one-way analysis of variance (MI: P < .00001; FI: P < .00001). Support staff exposure was negligible and did not differ between FI and MI. Room dose stratified according to case complexity (Kar) showed statistically significantly

  9. Increased prevalence of hypertension in a population exposed to aircraft noise

    PubMed Central

    Rosenlund, M; Berglind, N; Pershagen, G; Jarup, L; Bluhm, G

    2001-01-01

    OBJECTIVES—To investigate whether there is a relation between residential exposure to aircraft noise and hypertension.
METHODS—The study population comprised two random samples of subjects aged 19-80 years, one including 266 residents in the vicinity of Stockholm Arlanda airport, and another comprising 2693 inhabitants in other parts of Stockholm county. The subjects were classified according to the time weighted equal energy and maximum aircraft noise levels at their residence. A questionnaire provided information on individual characteristics including history of hypertension.
RESULTS—The prevalence odds ratio for hypertension adjusted for age, sex, smoking, and education was 1.6 (95% confidence interval (95% CI) 1.0 to 2.5) among those with energy averaged aircraft noise levels exceeding 55 dBA, and 1.8 (95% CI 1.1 to 2.8) among those with maximum aircraft noise levels exceeding 72 dBA. An exposure-response relation was suggested for both exposure measures. The exposure to aircraft noise seemed particularly important for older subjects and for those not reporting impaired hearing ability.
CONCLUSIONS—Community exposure to aircraft noise may be associated with hypertension. PMID:11706142

  10. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  11. Effect of advanced aircraft noise reduction technology on the 1990 projected noise environment around Patrick Henry Airport. [development of noise exposure forecast contours for projected traffic volume and aircraft types

    NASA Technical Reports Server (NTRS)

    Cawthorn, J. M.; Brown, C. G.

    1974-01-01

    A study has been conducted of the future noise environment of Patric Henry Airport and its neighboring communities projected for the year 1990. An assessment was made of the impact of advanced noise reduction technologies which are currently being considered. These advanced technologies include a two-segment landing approach procedure and aircraft hardware modifications or retrofits which would add sound absorbent material in the nacelles of the engines or which would replace the present two- and three-stage fans with a single-stage fan of larger diameter. Noise Exposure Forecast (NEF) contours were computed for the baseline (nonretrofitted) aircraft for the projected traffic volume and fleet mix for the year 1990. These NEF contours are presented along with contours for a variety of retrofit options. Comparisons of the baseline with the noise reduction options are given in terms of total land area exposed to 30 and 40 NEF levels. Results are also presented of the effects on noise exposure area of the total number of daily operations.

  12. ESCOMPTE experiment: intercomparison of four aircraft dynamical, thermodynamical, radiation and chemical measurements

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Corsmeier, U.; Kalthoff, N.; Kottmeier, C.; Lothon, M.; Wieser, A.; Hofherr, T.; Perros, P.

    2005-03-01

    Among seven airplanes involved in the Experience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emission (ESCOMPTE) experiment in 2001, four measured classical meteorological parameters, radiation fluxes, trace gases and turbulence (for three among four): the Dornier 128 from the Institut für Meteorologie und Klimaforschung, the Fokker 27 ARAT from the Institut National des Sciences de l'Univers, the Merlin 4 and Piper Aztec 23 from Météo France. This paper presents the results of intercomparison flights between three pairs of aircraft. The results are very similar for mean parameters except for the horizontal wind measurements provided by the Merlin that showed a problem that is probably linked to the measurement of the aircraft velocity. Further investigation is required to know whether corrections are possible or not for these wind measurements. Turbulence is studied along two legs over a flat and homogeneous area: in spite of the heterogeneity of the measured functions (one leg is close to the top of the boundary layer), the comparison is rather good. The relative accuracy of the data provided to the data base is given. It easily allows to use the huge amount of aircraft data collected during the experiment with very few restrictions. We underline some points where efforts should be borne for future experiments: wind coupling between Inertial Navigation System data and Global Positioning System (GPS) data, CO and NO x measurements.

  13. Radiation exposure of patient and surgeon in minimally invasive kidney stone surgery.

    PubMed

    Demirci, A; Raif Karabacak, O; Yalçınkaya, F; Yiğitbaşı, O; Aktaş, C

    2016-05-01

    Percutaneous nephrolithotomy (PNL) and retrograde intrarenal surgery (RIRS) are the standard treatments used in the endoscopic treatment of kidney stones depending on the location and the size of the stone. The purpose of the study was to show the radiation exposure difference between the minimally invasive techniques by synchronously measuring the amount of radiation the patients and the surgeon received in each session, which makes our study unique. This is a prospective study which included 20 patients who underwent PNL, and 45 patients who underwent RIRS in our clinic between June 2014 and October 2014. The surgeries were assessed by dividing them into three steps: step 1: the access sheath or ureter catheter placement, step 2: lithotripsy and collection of fragments, and step 3: DJ catheter or re-entry tube insertion. For the PNL and RIRS groups, mean stone sizes were 30mm (range 16-60), and 12mm (range 7-35); mean fluoroscopy times were 337s (range 200-679), and 37s (range 7-351); and total radiation exposures were 142mBq (44.7 to 221), and 4.4mBq (0.2 to 30) respectively. Fluoroscopy times and radiation exposures at each step were found to be higher in the PNL group compared to the RIRS group. When assessed in itself, the fluoroscopy time and radiation exposure were stable in RIRS, and the radiation exposure was the highest in step 1 and the lowest in step 3 in PNL. When assessed for the 19 PNL patients and the 12 RIRS patients who had stone sizes≥2cm, the fluoroscopy time in step 1, and the radiation exposure in steps 1 and 2 were found to be higher in the PNL group than the RIRS group (P<0.001). Although there is need for more prospective randomized studies, RIRS appears to be a viable alternate for PNL because it has short fluoroscopy time and the radiation exposure is low in every step. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Method for minimizing the radiation exposure from scoliosis radiographs. [X ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, A.A.; Fritz, S.L.; Asher, M.A.

    1981-01-01

    The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.

  15. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  16. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  17. Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.

    PubMed

    Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj

    2013-09-01

    Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.

  18. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  19. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    NASA Astrophysics Data System (ADS)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  20. Risk assessment and management of radiofrequency radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  1. Risk assessment and management of radiofrequency radiation exposure

    NASA Astrophysics Data System (ADS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  2. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  3. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  4. Effects of aircraft overflights on wilderness recreationists.

    PubMed

    Fidell, S; Silvati, L; Howe, R; Pearsons, K S; Tabachnick, B; Knopf, R C; Gramann, J; Buchanan, T

    1996-11-01

    On-site and telephone opinion surveys were conducted to assess outdoor recreationists' annoyance with aircraft overflights of wilderness areas. Although current technology for measuring noise exposure does not yet permit accurate and cost-effective estimates of dosage-response relationships in outdoor recreational settings, it was nonetheless possible to construct a rough relationship between estimated aircraft noise exposure and annoyance from the data of the on-site study. In the second survey, telephone interviews were administered to another sample of outdoor recreationists within 2 weeks of their return from visits to 12 wilderness areas. The prevalence of aircraft noise-induced annoyance (in any degree) among respondents in all wilderness areas ranged from 5% to 32%. The prevalence of a consequential degree of aircraft noise-induced annoyance among respondents was less than 5% in all wilderness areas combined. Noise-induced annoyance proved to be a more direct measure of the effects of aircraft overflights on recreationists than more global measures such as visit satisfaction or intent to revisit.

  5. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  6. Radiation exposure and radiation protection of the physician in iodine-131 Lipiodol therapy of liver tumours.

    PubMed

    Risse, J H; Ponath, C; Palmedo, H; Menzel, C; Grünwald, F; Biersack, H J

    2001-07-01

    Intra-arterial iodine-131 labelled Lipiodol therapy for liver cancer has been investigated for safety and efficacy over a number of years, but data on radiation exposure of personnel have remained unavailable to date. The aim of this study was to assess the radiation exposure of the physician during intra-arterial 131I-Lipiodol therapy for liver malignancies and to develop appropriate radiation protection measures and equipment. During 20 intra-arterial administrations of 131I-Lipiodol (1110-1924 MBq), radiation dose equivalents (RDE) to the whole body, fingers and eyes of the physician were determined for (a) conventional manual administration through a shielded syringe, (b) administration with an automatic injector and (c) administration with a lead container developed in-house. Administration by syringe resulted in a finger RDE of 19.5 mSv, an eye RDE of 130-140 microSv, and a whole-body RDE of 108-119 microSv. The injector reduced the finger RDE to 5 mSv. With both technique (a) and technique (b), contamination of angiography materials was observed. The container allowed safe transport and administration of the radiopharmaceutical from 4 m distance and reduced the finger RDE to <3 microSv and the eye RDE to <1 microSv during injection. During femoral artery compression, radiation exposure to the fingers reached 170 microSv, but the whole-body dose could be reduced from a mean RDE of 114 microSv to 14 microSv. No more contamination occurred. In conclusion, radiation exposure was high when 131I-Lipiodol was administered by syringe or injector, but was significantly reduced with the lead container.

  7. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  8. Initiation-promotion model of tumor prevalence in mice from space radiation exposures

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  9. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    PubMed

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  10. Discussion of "Polybrominated diphenyl ethers in aircraft cabins--a source of human exposure?" by Anna Christiansson et al. [Chemosphere 73(10) (2008) 1654-1660].

    PubMed

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf

    2010-01-01

    This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.

  11. Cell phone radiation exposure on brain and associated biological systems.

    PubMed

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  12. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.W.; Mak, H.K.; Lachman, R.S.

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  13. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.

    PubMed

    Herman, M W; Mak, H K; Lachman, R S

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  14. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  15. Elastomeric Seal Performance after Terrestrial Ultraviolet Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.; Dunlap, Patrick H.

    2015-01-01

    Ultraviolet radiation was evaluated to determine its negative effects on the performance of elastomeric gas pressure seals. The leak rates of the silicone elastomer S0383-70 O-ring test articles were used to quantify the degradation of the seals after exposure to vacuum-ultraviolet and/or middle-to-near-ultraviolet wavelength radiation. Three groups of seals were exposed in terrestrial facilities to 115-165 nm wavelength radiation, 230-500 nm wavelength radiation, or both spectrums, for an orbital spaceflight equivalent of 125 hours. The leak rates of the silicone elastomer S0383-70 seals were quantified and compared to samples that received no radiation. Each lot contained six samples and statistical t-tests were used to determine the separate and combined influences of exposure to the two wavelength ranges. A comparison of the mean leak rates of samples exposed to 115-165 nm wavelength radiation to the control specimens showed no difference, suggesting that spectrum was not damaging. The 230-500 nm wavelength appeared to be damaging, as the mean leak rates of the specimens exposed to that range of wavelengths, and those exposed to the combined 115-165 nm and 230-500 nm spectrums, were significantly different from the leak rates of the control specimens. Most importantly, the test articles exposed to both wavelength spectrums exhibited mean leak rates two orders of magnitude larger than any other exposed specimens, which suggested that both wavelength spectrums are important when simulating the orbital environment.

  16. Limited Internal Radiation Exposure Associated with Resettlements to a Radiation-Contaminated Homeland after the Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12–30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers’ resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309–1050 Bq/kg), and 5.3 Bq/kg (range, 5.1–18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10-2 mSv/y (range, 1.0 x 10-2-4.1 x 10-2 mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure. PMID:24312602

  17. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  18. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    PubMed Central

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  19. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a

  20. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  1. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  2. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  3. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  4. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  5. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  6. Personalized technologist dose audit feedback for reducing patient radiation exposure from CT.

    PubMed

    Miglioretti, Diana L; Zhang, Yue; Johnson, Eric; Lee, Choonsik; Morin, Richard L; Vanneman, Nicholas; Smith-Bindman, Rebecca

    2014-03-01

    The aim of this study was to determine whether providing radiologic technologists with audit feedback on doses from CT examinations they conduct and education on dose-reduction strategies reduces patients' radiation exposure. This prospective, controlled pilot study was conducted within an integrated health care system from November 2010 to October 2011. Ten technologists at 2 facilities received personalized dose audit reports and education on dose-reduction strategies; 9 technologists at a control facility received no intervention. Radiation exposure was measured by the dose-length product (DLP) from CT scans performed before (n = 1,630) and after (n = 1,499) the intervention and compared using quantile regression. Technologists were surveyed before and after the intervention. For abdominal CT, DLPs decreased by 3% to 12% at intervention facilities but not at the control facility. For brain CT, DLPs significantly decreased by 7% to 12% at one intervention facility; did not change at the second intervention facility, which had the lowest preintervention DLPs; and increased at the control facility. Technologists were more likely to report always thinking about radiation exposure and associated cancer risk and optimizing settings to reduce exposure after the intervention. Personalized audit feedback and education can change technologists' attitudes about, and awareness of, radiation and can lower patient radiation exposure from CT imaging. Copyright © 2014 American College of Radiology. All rights reserved.

  7. Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting?

    PubMed

    Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M

    2017-08-02

    The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.

  8. Effect of Vascular Access Site Choice on Radiation Exposure During Coronary Angiography: The REVERE Trial (Randomized Evaluation of Vascular Entry Site and Radiation Exposure).

    PubMed

    Pancholy, Samir B; Joshi, Pankaj; Shah, Sanjay; Rao, Sunil V; Bertrand, Olivier F; Patel, Tejas M

    2015-08-17

    This study sought to perform a randomized noninferiority trial of radiation exposure during cardiac catheterization comparing femoral access (FA) with left radial access (LRA) and right radial access (RRA). Increased radiation exposure with radial approach compared with femoral approach remains a controversial issue. This study randomized 1,493 patients undergoing cardiac catheterization at a tertiary care center to FA, LRA, and RRA in a 1:1:1 fashion. The primary endpoint was air kerma. The secondary endpoints included dose-area product, fluoroscopy time and operator dose per procedure, number of cineangiograms, and number of catheters. Baseline and procedural characteristics were similar among groups. No significant differences were observed in air kerma (medians: FA: 421 mGy [interquartile range (IQR): 337 to 574 mGy], LRA: 454 mGy [IQR: 331 to 643 mGy], and RRA: 483 mGy [IQR: 382 to 592 mGy], p = 0.146), dose-area product (medians: FA: 25.5 Gy cm(2) [IQR: 19.6 to 34.5 Gy cm(2)], LRA: 26.6 Gy cm(2) [IQR: 19.5 to 37.5 Gy cm(2)], and RRA: 27.7 Gy cm(2) [IQR: 21.9 to 34.4 Gy cm(2)], p = 0.40), or fluoroscopy time (medians: FA: 1.3 min [IQR: 1.0 to 1.7 min], LRA: 1.3 min [IQR: 1.0 to 1.7 min], and RRA: 1.32 min [IQR: 1.0 to 1.7 min], p = 0.19) among the 3 access sites. Median operator exposure was higher in the LRA group (3 mrem [IQR: 2 to 5 mrem], p = 0.001 vs. FA, and p = 0.0001 vs. RRA) compared with the FA (2 mrem [IQR: 2 to 4 mrem] and RRA groups (3 mrem [IQR: 2 to 5 mrem]). Radiation exposure to patients was similar during diagnostic coronary angiography with FA, RRA, and LRA. However, LRA was associated with significantly higher operator radiation exposure than were FA and RRA procedures. (Randomized Evaluation of Vascular Entry Site and Radiation Exposure [REVERE]; NCT01677481). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  10. [Radiation safety of exploitation of radiation sources at the civil aviation airlines].

    PubMed

    Afanas'ev, R V; Zuev, V G; Berezin, G I; Sereda, V N; Zasiad'ko, A K

    2004-01-01

    Radiation risks from isotope-containing equipment, and ionizing and unused X-ray radiation sources are characterized and relevant normative documents with safety requirements to radiation sources installation, radiation safety of aircraft servicing and repair, hand luggage control and heavy luggage registration, personal protection items, system of radiation monitoring at airlines and aircraft works, and liability for breach of performance guidelines are cited.

  11. Occupational radiation exposure experience: Paducah Gaseous Diffusion Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.C.

    1975-01-01

    The potential for significant uranium exposure in gaseous diffusion plants is very low. The potential for significant radiation exposure in uranium hexafluoride manufacturing is very real. Exposures can be controlled to low levels only through the cooperation and commitment of facility management and operating personnel. Exposure control can be adequately monitored by a combination of air analyses, urinalyses, and measurements of internal deposition as obtained by the IVRML. A program based on control of air-borne uranium exposure has maintained the internal dose of the Paducah Gaseous Diffusion Plant workman to less than one-half the RPG dose to the lung (15more » rem/year) and probably to less than one-fourth that dose. (auth)« less

  12. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marica, Lucia; Moraru, Luminita

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performedmore » on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.« less

  13. Real-Time Cloud, Radiation, and Aircraft Icing Parameters from GOES over the USA

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Nguyen, Louis; Smith, William, Jr.; Young, David; Khaiyer, Mandana; Palikonda, Rabindra; Spangenberg, Douglas; Doelling, Dave; Phan, Dung; Nowicki, Greg

    2004-01-01

    A preliminary new, physically based method for realtime estimation of the probability of icing conditions has been demonstrated using merged GOES-10 and 12 data over the continental United States and southern Canada. The algorithm produces pixel-level cloud and radiation properties as well as an estimate of icing probability with an associated intensity rating Because icing depends on so many different variables, such as aircraft size or air speed, it is not possible to achieve 100% success with this or any other type of approach. This initial algorithm, however, shows great promise for diagnosing aircraft icing and putting it at the correct altitude within 0.5 km most of the time. Much additional research must be completed before it can serve as a reliable input for the operational CIP. The delineation of the icing layer vertical boundaries will need to be improved using either the RUC or balloon soundings or ceilometer data to adjust the cloud base height, a change that would require adjustment of the cloud-top altitude also.

  14. Effectiveness of Fluorography versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography

    PubMed Central

    Shah, Binita; Mai, Xingchen; Tummala, Lakshmi; Kliger, Chad; Bangalore, Sripal; Miller, Louis H.; Sedlis, Steven P.; Feit, Frederick; Liou, Michael; Attubato, Michael; Coppola, John; Slater, James

    2014-01-01

    Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference <45 inches and glomerular filtration rate >60mL/min were randomized to the Fluorography (n=25) or Cineangiography (n=25) group. Patients in the Fluorography group underwent coronary angiography using retrospectively-stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator’s discretion. Patients in the Cineangiography group underwent coronary angiography using routine cineangiography. The primary endpoint was patient radiation exposure measured by radiochromic film. Secondary endpoints included the radiation output measurement of kerma-area product (KAP) and air kerma at the interventional reference point (Ka,r), and operator radiation exposure measured by dosimeter. Patient radiation exposure (158.2mGy [76.5–210.2] vs 272.5mGy [163.3–314.0], p=0.001), KAP (1323μGy m2 [826–1765] vs 3451μGy m2 [2464–4818], p<0.001), and Ka,r (175 mGy [112–252] vs 558 mGy [313–621], p<0.001)was significantly lower in the Fluorography compared with Cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction though statistically non-significant (Fluorography 2.35 μGy [1.24–6.30] vs Cineangiography 5.03μGy [2.48–7.80], p=0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography with repeat injection under cineangiography only when needed was efficacious at reducing patient radiation exposure. PMID:24513469

  15. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  16. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  17. Effects of cold exposure on wet aircraft passengers : a review.

    DOT National Transportation Integrated Search

    1994-05-01

    The incorporation of a cabin water spray system (CWSS) aboard commercial passenger aircraft has been suggested as a mechanism of reducing passenger death and injury from the fire and smoke commonly associated with aircraft accidents. A potential heal...

  18. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis. © 2014 by the Society for Experimental Biology and Medicine.

  19. Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment

    PubMed Central

    Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ

    2013-01-01

    Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755

  20. Review of field studies of aircraft noise-induced sleep disturbance.

    PubMed

    Michaud, David S; Fidell, Sanford; Pearsons, Karl; Campbell, Kenneth C; Keith, Stephen E

    2007-01-01

    Aircraft noise-induced sleep disturbance (AN-ISD) is potentially among the more serious effects of aircraft noise on people. This literature review of recent field studies of AN-ISD finds that reliable generalization of findings to population-level effects is complicated by individual differences among subjects, methodological and analytic differences among studies, and predictive relationships that account for only a small fraction of the variance in the relationship between noise exposure and sleep disturbance. It is nonetheless apparent in the studied circumstances of residential exposure that sleep disturbance effects of nighttime aircraft noise intrusions are not dramatic on a per-event basis, and that linkages between outdoor aircraft noise exposure and sleep disturbance are tenuous. It is also apparent that AN-ISD occurs more often during later than earlier parts of the night; that indoor sound levels are more closely associated with sleep disturbance than outdoor measures; and that spontaneous awakenings, or awakenings attributable to nonaircraft indoor noises, occur more often than awakenings attributed to aircraft noise. Predictions of sleep disturbance due to aircraft noise should not be based on over-simplifications of the findings of the reviewed studies, and these reports should be treated with caution in developing regulatory policy for aircraft noise.

  1. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  2. Breast cancer and exposure to aircraft, road, and railway-noise: a case-control study based on health insurance records.

    PubMed

    Hegewald, Janice; Schubert, Melanie; Wagner, Mandy; Dröge, Patrik; Prote, Ursel; Swart, Enno; Möhler, Ulrich; Zeeb, Hajo; Seidler, Andreas

    2017-11-01

    Objectives Aircraft, road, and rail traffic noise can cause sleep disturbances. Since night work and shorter sleep durations have been linked to increased risks of breast cancer, we examined if 24-hour, or day- or night-time traffic noise exposure may also increase the risk of breast cancer. Methods To investigate the noise-related risks of breast cancer, the pseudonymized insurance records of three large statutory health companies (2005-2010) for women aged ≥40 years living in the region surrounding the Frankfurt international airport were analyzed with address-specific acoustic data representing aircraft, road, and rail-traffic noise. Noise exposure among women with incident breast cancer (N=6643) were compared with that of control subjects (N=471 596) using logistic regression and adjusting for age, hormone replacement therapy, education and occupation (only available for 27.9%), and a regional proportion of persons receiving long-term unemployment benefits as an ecological indicator of socioeconomic level. Analyses were also stratified according to estrogen receptor (ER) status. Results An increased odds ratio (OR) was observed for ER negative (ER-) tumors at 24-hour aircraft noise levels 55-59 dB [OR 55-59 dB 1.41, 95% confidence interval (CI) 1.04-1.90] but not for ER positive (ER+) breast cancers (OR 55-59 dB 0.95, 95% CI 0.75-1.20). Clear associations between road and rail traffic noise were not observed. Conclusions The results indicate increased aircraft noise may be an etiologic factor for ER- breast cancers. However, information regarding potential confounding factors was largely unattainable. Further research is required to understand how environmental noise may be involved in the pathogenesis of ER- breast cancers.

  3. Children's annoyance reactions to aircraft and road traffic noise.

    PubMed

    van Kempen, Elise E M M; van Kamp, Irene; Stellato, Rebecca K; Lopez-Barrio, Isabel; Haines, Mary M; Nilsson, Mats E; Clark, Charlotte; Houthuijs, Danny; Brunekreef, Bert; Berglund, Birgitta; Stansfeld, Stephen A

    2009-02-01

    Since annoyance reactions of children to environmental noise have rarely been investigated, no source specific exposure-response relations are available. The aim of this paper is to investigate children's reactions to aircraft and road traffic noise and to derive exposure-response relations. To this end, children's annoyance reactions to aircraft and road traffic noise in both the home and the school setting were investigated using the data gathered in a cross-sectional multicenter study, carried out among 2844 children (age 9-11 years) attending 89 primary schools around three European airports. An exposure-response relation was demonstrated between exposure to aircraft noise at school (L(Aeq,7-23 h)) and severe annoyance in children: after adjustment for confounders, the percentage severely annoyed children was predicted to increase from about 5.1% at 50 dB to about 12.1% at 60 dB. The findings were consistent across the three samples. Aircraft noise at home (L(Aeq,7-23 h)) demonstrated a similar relation with severe annoyance. Children attending schools with higher road traffic noise (L(Aeq,7-23 h)) were more annoyed. Although children were less annoyed at levels above 55 dB, the shapes of the exposure-response relations found among children were comparable to those found in their parents.

  4. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of

  5. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    PubMed

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.

  7. Does Traffic-related Air Pollution Explain Associations of Aircraft and Road Traffic Noise Exposure on Children's Health and Cognition? A Secondary Analysis of the United Kingdom Sample From the RANCH Project

    PubMed Central

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A.

    2012-01-01

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001–2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9–10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719

  8. Effects of fetal microwave radiation exposure on offspring behavior in mice

    PubMed Central

    Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang

    2015-01-01

    Abstract The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. PMID:25359903

  9. Radiation exposure in the young level 1 trauma patient: a retrospective review.

    PubMed

    Gottschalk, Michael B; Bellaire, Laura L; Moore, Thomas

    2015-01-01

    Computed tomography (CT) has become an increasingly popular and powerful tool for clinicians managing trauma patients with life-threatening injuries, but the ramifications of increasing radiation burden on individual patients are not insignificant. This study examines a continuous series of 337 patients less than 40 years old admitted to a level 1 trauma center during a 4-month period. Primary outcome measures included number of scans; effective dose of radiation from radiographs and CT scans, respectively; and total effective dose from both sources over patients' hospital stays. Several variables, including hospital length of stay, initial Glasgow Coma Scale score, and Injury Severity Score, correlated with greater radiation exposure. Blunt trauma victims were more prone to higher doses than those with penetrating or combined penetrating and blunt trauma. Location and mechanism of injury were also found to correlate with radiation exposure. Trauma patients as a group are exposed to high levels of radiation from X-rays and CT scans, and CT scans contribute a very high proportion (91.3% ± 11.7%) of that radiation. Certain subgroups of patients are at a particularly high risk of exposure, and greater attention to cumulative radiation dose should be paid to patients with the above mentioned risk factors.

  10. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  11. Nuclear Submarines and Aircraft Carriers | Radiation ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear submarines and aircraft carriers are powered by onboard nuclear reactors. Heat from the nuclear reaction makes the steam needed to power the submarine. When a nuclear vessel is taken out of service, its radioactive parts are disposed of and monitored.

  12. Invasive Cardiologists Are Exposed to Greater Left Sided Cranial Radiation: The BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures).

    PubMed

    Reeves, Ryan R; Ang, Lawrence; Bahadorani, John; Naghi, Jesse; Dominguez, Arturo; Palakodeti, Vachaspathi; Tsimikas, Sotirios; Patel, Mitul P; Mahmud, Ehtisham

    2015-08-17

    This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures. Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear. Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure. Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side. Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT

  13. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.

    PubMed

    Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria

    The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Noise levels in a neonatal transport incubator in medically configured aircraft.

    PubMed

    Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V

    2011-01-01

    The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  16. Roll plane analysis of on-aircraft antennas

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Marhefka, R. J.; Byu, C. L.

    1974-01-01

    Roll plane radiation patterns of on-aircraft antennas are analyzed using high frequency solutions. Aircraft-antenna pattern performance in which the aircraft is modelled in its most basic form is presented. The fuselage is assumed to be a perfectly conducting elliptic cylinder with the antennas mounted near the top or bottom. The wings are simulated by arbitrarily many sided flat plates and the engines by circular cylinders. The patterns in each case are verified by measured results taken on simple models as well as scale models of actual aircraft.

  17. Radiation safety protocol using real-time dose reporting reduces patient exposure in pediatric electrophysiology procedures.

    PubMed

    Patel, Akash R; Ganley, Jamie; Zhu, Xiaowei; Rome, Jonathan J; Shah, Maully; Glatz, Andrew C

    2014-10-01

    Radiation exposure during pediatric catheterization is significant. We sought to describe radiation exposure and the effectiveness of radiation safety protocols in reducing exposure during catheter ablations with electrophysiology studies in children and patients with congenital heart disease. We additionally sought to identify at-risk patients. We retrospectively reviewed all interventional electrophysiology procedures performed from April 2009 to September 2011 (6 months preceding intervention, 12 months following implementation of initial radiation safety protocol, and 8 months following implementation of modified protocol). The protocols consisted of low pulse rate fluoroscopy settings, operator notification of skin entrance dose every 1,000 mGy, adjusting cameras by >5 at every 1,000 mGy, and appropriate collimation. The cohort consisted of 291 patients (70 pre-intervention, 137 after initial protocol implementation, 84 after modified protocol implementation) at a median age of 14.9 years with congenital heart disease present in 11 %. Diagnoses included atrioventricular nodal reentrant tachycardia (25 %), atrioventricular reentrant tachycardia (61 %), atrial tachycardias (12 %), and ventricular tachycardia (2 %). There were no differences between groups based on patient, arrhythmia, and procedural characteristics. Following implementation of the protocols, there were significant reductions in all measures of radiation exposure: fluoroscopy time (17.8 %), dose area product (80.2 %), skin entry dose (81.0 %), and effective dose (76.9 %), p = 0.0001. Independent predictors of increased radiation exposure included larger patient weight, longer fluoroscopy time, and lack of radiation safety protocol. Implementation of a radiation safety protocol for pediatric and congenital catheter ablations can drastically reduce radiation exposure to patients without affecting procedural success.

  18. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  19. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  20. Sun sensing guidance system for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. D. (Principal Investigator)

    1982-01-01

    A sun sensing guidance system for high altitude aircraft is described. The system is characterized by a disk shaped body mounted for rotation aboard the aircraft in exposed relation to solar radiation. The system also has a plurality of mutually isolated chambers; each chamber being characterized by an opening having a photosensor disposed therein and arranged in facing relation with the opening for receiving incident solar radiation and responsively providing a voltage output. Photosensors are connected in paired relation through a bridge circuit for providing heading error signals in response to detected imbalances in intensities of solar radiation.

  1. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.

    PubMed

    de Ree, Hans; van den Berg, Martin; Brand, Teus; Mulder, Gerard J; Simons, Ries; Veldhuijzen van Zanten, Brinio; Westerink, Remco H S

    2014-12-01

    Possible exposure to TriCresyl Phosphates (TCPs) has led to concerns among airline crew members. One isomer, Tri-ortho-Cresyl Phosphate (ToCP) is known to be neurotoxic and exposure to ToCP via contaminated cabin air has been suggested to be associated with the alleged Aerotoxic syndrome. The symptoms associated with Aerotoxic syndrome are diverse, including headaches, loss of balance, numbness and neurobehavioral abnormalities such as emotional instability, depression and cognitive dysfunction. Other ortho-isomers are toxic as well, but the non-ortho isomers are regarded as less toxic. In a collaborative effort to increase insight into the possible association between exposure to TCPs via contaminated cabin air and Aerotoxic syndrome, we performed an exposure- and toxicological risk assessment. Measurements in KLM 737 aircraft have demonstrated the presence of non-ortho isomers in low concentrations, though ToCP and other ortho-isomers could not be detected. Based on this exposure assessment, we established a toxicological risk model that also takes into account human differences in bioactivation and detoxification to derive a hazard quotient. From this model it appears unlikely that the health effects and alleged Aerotoxic syndrome are due to exposure to ToCP. Alternative explanations for the reported symptoms are discussed, but evaluation of the current findings in light of the criteria for occupational disease leads to the conclusion that the Aerotoxic Syndrome cannot be regarded as such. Additional research is thus required to unravel the underlying causes for the reported health complaints. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Uncertainties in estimating health risks associated with exposure to ionising radiation.

    PubMed

    Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E

    2013-09-01

    The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose

  3. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990-2009.

    PubMed

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2017-04-01

    Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. AL cases diagnosed over 1990-2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002-2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland.

  4. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  5. Mutagens in urine of non-smoking and smoking workers in an aircraft tyre retreading plant. Skin exposure as a causal factor?

    PubMed

    Bos, R P; Kromhout, H; Ikink, H; de Haan, W; Koppejan, J; Theuws, J L

    1989-05-01

    In an aircraft type retreading plant environmental samples taken at several departments showed mutagenic properties. Thursday urine samples of non-smoking and smoking workers showed higher urinary mutagenicity than urine samples collected on Sundays, thus suggesting occupational exposure to mutagenic substances. A relation between urinary mutagenicity on Thursdays and skin contamination measured on Wednesdays was observed. The data suggest that intake through the skin plays an important role in the occupational exposure to mutagenic compounds of rubber workers.

  6. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar

    2003-08-06

    BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with

  7. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  8. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  9. The risk of radiation exposure to the eyes of the interventional pain physician.

    PubMed

    Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.

  10. The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician

    PubMed Central

    Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381

  11. Radiation exposure in transcatheter patent ductus arteriosus closure: time to tune?

    PubMed

    Villemain, Olivier; Malekzadeh-Milani, Sophie; Sitefane, Fidelio; Mostefa-Kara, Meriem; Boudjemline, Younes

    2018-05-01

    The aims of this study were to describe radiation level at our institution during transcatheter patent ductus arteriosus occlusion and to evaluate the components contributing to radiation exposure. Transcatheter occlusion relying on X-ray imaging has become the treatment of choice for patients with patent ductus arteriosus. Interventionists now work hard to minimise radiation exposure in order to reduce risk of induced cancers. We retrospectively reviewed all consecutive children who underwent transcatheter closure of patent ductus arteriosus from January 2012 to January 2016. Clinical data, anatomical characteristics, and catheterisation procedure parameters were reported. Radiation doses were analysed for the following variables: total air kerma, mGy; dose area product, Gy.cm2; dose area product per body weight, Gy.cm2/kg; and total fluoroscopic time. A total of 324 patients were included (median age=1.51 [Q1-Q3: 0.62-4.23] years; weight=10.3 [6.7-17.0] kg). In all, 322/324 (99.4%) procedures were successful. The median radiation doses were as follows: total air kerma: 26 (14.5-49.3) mGy; dose area product: 1.01 (0.56-2.24) Gy.cm2; dose area product/kg: 0.106 (0.061-0.185) Gy.cm2/kg; and fluoroscopic time: 2.8 (2-4) min. In multivariate analysis, a weight >10 kg, a ductus arteriosus width <2 mm, complications during the procedure, and a high frame rate (15 frames/second) were risk factors for an increased exposure. Lower doses of radiation can be achieved with subsequent recommendations: technical improvement, frame rate reduction, avoidance of biplane cineangiograms, use of stored fluoroscopy as much as possible, and limitation of fluoroscopic time. A greater use of echocardiography might even lessen the exposure.

  12. Patient radiation exposure during different kyphoplasty techniques.

    PubMed

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  13. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  14. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  15. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Astrophysics Data System (ADS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  16. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Technical Reports Server (NTRS)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  17. AN ANALYSIS OF OPERATING PHYSICIAN AND PATIENT RADIATION EXPOSURE DURING RADIAL CORONARY ANGIOPLASTIES.

    PubMed

    Tarighatnia, Ali; Mesbahi, Asghar; Alian, Amir Hossein Mohammad; Koleini, Evin; Nader, Nader

    2018-03-23

    The objective of this study was to evaluate radiation exposure levels in conjunction with operator dose implemented, patient vascular characteristics, and other technical angiographic parameters. In total, 756 radial coronary angioplasties were evaluated in a major metropolitan general hospital in Tabriz, Iran. The classification of coronary lesions was based on the ACC/AHA system. One interventional cardiologist performed all of the procedures using a single angiography unit. The mean kerma-area product and mean cumulative dose for all cases was 5081 μGy m2 and 814.44 mGy, respectively. Average times of 26.16 and 9.1 min were recorded for the overall procedure and fluoroscopy, respectively. A strong correlation was demonstrated between types of lesions, number of stents and vessels treated in relation to physician radiation exposure. It was determined that operator radiation exposure levels for percutaneous coronary interventions lesions (complex) were higher than that of simple and moderate lesions. In addition, operator radiation exposure levels increased with the treatment of more coronary vessels and implementation of additional stents.

  18. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  19. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  20. Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study

    PubMed Central

    Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony

    2013-01-01

    Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051

  1. The Development of Materials for Structures and Radiation Shielding in Aerospace

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    2001-01-01

    Polymeric materials on space vehicles and high-altitude aircraft win be exposed to highly penetrating radiations. These radiations come from solar flares and galactic cosmic rays (GCR). Radiation from solar flares consists primarily of protons with energies less than 1 GeV. On the other hand, GCR consist of nuclei with energies as high as 10(exp 10) GeV. Over 90% of the nuclei in GCR are protons and alpha particles, however there is a small but significant component of particles with atomic numbers greater than ten. Particles with high atomic number (Z) and high energy interact with very high specific ionization and thus represent a serious hazard for humans and electronic equipment on a spacecraft or on high-altitude commercial aircraft (most importantly for crew members who would have long exposures). Neutrons generated by reactions with the high energy particles also represent a hazard both for humans and electronic equipment.

  2. Management of fear of radiation exposure in carers of outpatients treated with iodine-131.

    PubMed

    Calais, Phillipe J; Page, Andrew C; Turner, J Harvey

    2012-07-01

    To characterise potential fear of radiation exposure in a normal population of individuals who have volunteered to care for a radioactive family member or friend after outpatient radioimmunotherapy (RIT) treatment for cancer, and obtain their knowing and willing acceptance of the risk. Over 750 carers of 300 patients confined to their homes for 1 week following outpatient iodine-131 rituximab RIT of lymphoma were interviewed by a nuclear medicine physicist according to a multi-visit integrated protocol designed to minimise radiation exposure, define risk and gain informed consent. Median radiation exposure of carers was 0.49 mSv (range 0.01-3.7 mSv) which is below the Western Australian regulatory limit of 5 mSv for consenting adult carers of radioactive patients. After signing a declaration of consent, only 2 carers of 750 abrogated their responsibility and none of those who carried out their duties expressed residual concerns at the end of the exit interview with respect to their radiation exposure. Fear of radiation exposure in a normal population may be characterised as a normal emotional response. In the special case of carers of radioactive patients, this fear may be successfully managed by rational, authoritative and empathic explanation to define the risk and gain willing acceptance within the context of domiciliary patient care.

  3. Radiation exposure and risk assessment for critical female body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Hardy, Alva C.

    1991-01-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.

  4. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  5. Lead exposure and radiator repair work.

    PubMed Central

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-01-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level. PMID:2817174

  6. Lead exposure and radiator repair work.

    PubMed

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-11-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level.

  7. Effect of space relevant radiation exposure on differentiation and mineralization of murine osteoprogenitor cells

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600

  8. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    PubMed Central

    Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.

    2016-01-01

    Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490

  9. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    PubMed

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  10. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  11. Airline Pilot Cosmic Radiation and Circadian Disruption Exposure Assessment from Logbooks and Company Records

    PubMed Central

    Grajewski, Barbara; Waters, Martha A.; Yong, Lee C.; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli II, Rick T.

    2011-01-01

    Objectives: US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Methods: Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments’ block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Results: Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (Ptrend < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman’s r = 0.61–0.69). Conclusions: The methods

  12. Airline pilot cosmic radiation and circadian disruption exposure assessment from logbooks and company records.

    PubMed

    Grajewski, Barbara; Waters, Martha A; Yong, Lee C; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli, Rick T

    2011-06-01

    US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments' block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (P(trend) < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman's r = 0.61-0.69). The methods developed provided an exposure profile of this group

  13. Risk of breast cancer following low-dose radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, J.D. Jr.; Land, C.E.; Shore, R.E.

    1979-06-01

    Risk of breast cancer following radiation exposure was studied, based on surveys of tuberculosis patients who had multiple fluoroscopic examinations of the chest, mastitis patients given radiotherapy, and atomic bomb survivors. Analysis suggests that the risk is greatest for persons exposed as adolescents, although exposure at all ages carries some risk. The dose-response relationship was consistent with linearity in all studies. Direct evidence of radiation risk at doses under 0.5 Gy (50 rad) is apparent among A-bomb survivors. Fractionation does not appear to diminish risk, nor does time since exposure (even after 45 years of observation). The interval between exposuremore » and the clinical appearance of radiogenic breast cancer may be mediated by hormonal or other age-related factors but is unrelated to dose. Age-specific absolute risk estimtes for all studies are remarkably similar. The best estimate of risk among American women exposed after age 20 is 6.6 excess cancers/10/sup 4/ WY-Gy (10/sup 6/ WY-rad).« less

  14. Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation.

    PubMed

    Wakeford, Richard

    2009-06-01

    Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of alpha-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry

  15. A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranford, W.; Falkenbury, R.F.; Miller, R.A.

    1962-07-31

    The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less

  16. Decreased Radiation Exposure Among Orthopedic Residents Is Maintained When Using the Mini C-Arm After Undergoing Radiation Safety Training.

    PubMed

    Gendelberg, David; Hennrikus, William L; Sawyer, Carissa; Armstrong, Douglas; King, Steven

    2017-09-01

    The resident curriculum of the American Board of Orthopaedic Surgery emphasizes radiation safety. Gendelberg showed that, immediately after a program on fluoroscopic safety, residents used less radiation when using the mini C-arm to reduce pediatric fractures. The current study evaluated whether this effect lasted. Residents underwent a new annual 3-hour session on mini C-arm use and radiation. Group A included 53 reductions performed before training. Group B included 45 reductions performed immediately after training. Group C included 46 reductions performed 11 months later. For distal radius fractures, exposure time and amount were 38.1 seconds and 83.1 mR, respectively, for group A; 26.7 seconds and 32.6 mR, respectively, for group B; and 24.1 seconds and 40.0 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .525 and .293, respectively. When group C and group A were compared, P values were <.05 and <.01, respectively. For both bone forearm fractures, exposure time and amount were 41.2 seconds and 90.9 mR, respectively, for group A; 28.9 seconds and 30.4 mR, respectively, for group B; and 31.2 seconds and 43.6 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .704 and .117, respectively. When group C and group A were compared, P values were .183 and .004, respectively. No significant difference in radiation exposure was noted immediately after training vs 11 months later. A sustained decrease in radiation exposure occurred after an educational program on safe mini C-arm use. [Orthopedics. 2017; 40(5):e788-e792.]. Copyright 2017, SLACK Incorporated.

  17. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  18. Metastatic angiosarcoma of the spleen after accidental radiation exposure: a case report.

    PubMed

    Geffen, D B; Zirkin, H J; Mermershtain, W; Cohen, Y; Ariad, S

    1998-04-01

    Angiosarcoma is a rare malignant tumor arising from endothelial cells of blood vessels or lymphatic channels. Therapeutic irradiation, thoriumdioxide administration, pyothorax, and polyvinyl chloride exposure have been shown to be predisposing factors for developing angiosarcoma. Accidental radiation exposure has not been associated with angiosarcoma. We present an unusual case of angiosarcoma of the spleen, with metastases to bone, liver, breast, and bone marrow, in a woman who lived near the Chernobyl nuclear facility in the former Soviet Union at the time of the reactor accident in 1986. To the best of our knowledge, this is the first report of metastatic angiosarcoma after accidental radiation exposure.

  19. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust.

    PubMed Central

    Childers, J W; Witherspoon, C L; Smith, L B; Pleil, J D

    2000-01-01

    We used real-time monitors and low-volume air samplers to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. We used three types of photoelectric aerosol sensors (PASs) to measure real-time concentrations of particle-bound PAHs in a break room, downwind from a C-130H aircraft during a four-engine run-up test, in a maintenance hangar, in a C-130H aircraft cargo bay during cargo-drop training, downwind from aerospace ground equipment (AGE), and in a C-130H aircraft cargo bay during engine running on/off (ERO) loading and backup exercises. Two low-volume air samplers were collocated with the real-time monitors for all monitoring events except those in the break room and during in-flight activities. Total PAH concentrations in the integrated-air samples followed a general trend: downwind from two AGE units > ERO-loading exercise > four-engine run-up test > maintenance hangar during taxi and takeoff > background measurements in maintenance hangar. Each PAH profile was dominated by naphthalene, the alkyl-substituted naphthalenes, and other PAHs expected to be in the vapor phase. We also found particle-bound PAHs, such as fluoranthene, pyrene, and benzo[a]pyrene in some of the sample extracts. During flight-related exercises, total PAH concentrations in the integrated-air samples were 10-25 times higher than those commonly found in ambient air. Real-time monitor mean responses generally followed the integrated-air sample trends. These monitors provided a semiquantitative temporal profile of ambient PAH concentrations and showed that PAH concentrations can fluctuate rapidly from a baseline level < 20 to > 4,000 ng/m(3) during flight-related activities. Small handheld models of the PAS monitors exhibited potential for assessing incidental personal exposure to particle-bound PAHs in engine exhaust and for serving as

  20. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  1. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  2. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  3. Radiation exposure and safety practices during pediatric central line placement

    PubMed Central

    Saeman, Melody R.; Burkhalter, Lorrie S.; Blackburn, Timothy J.; Murphy, Joseph T.

    2015-01-01

    Purpose Pediatric surgeons routinely use fluoroscopy for central venous line (CVL) placement. We examined radiation safety practices and patient/surgeon exposure during fluoroscopic CVL. Methods Fluoroscopic CVL procedures performed by 11 pediatric surgeons in 2012 were reviewed. Fluoroscopic time (FT), patient exposure (mGy), and procedural data were collected. Anthropomorphic phantom simulations were used to calculate scatter and dose (mSv). Surgeons were surveyed regarding safety practices. Results 386 procedures were reviewed. Median FT was 12.8 seconds. Median patient estimated effective dose was 0.13 mSv. Median annual FT per surgeon was 15.4 minutes. Simulations showed no significant difference (p = 0.14) between reported exposures (median 3.5 mGy/min) and the modeled regression exposures from the C-arm default mode (median 3.4 mGy/min). Median calculated surgeon exposure was 1.5 mGy/year. Eight of 11 surgeons responded to the survey. Only three reported 100% lead protection and frequent dosimeter use. Conclusion We found non-standard radiation training, safety practices, and dose monitoring for the 11 surgeons. Based on simulations, the C-arm default setting was typically used instead of low dose. While most CVL procedures have low patient/surgeon doses, every effort should be used to minimize patient and occupational exposure, suggesting the need for formal hands-on training for non-radiologist providers using fluoroscopy. PMID:25837269

  4. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea.

    PubMed

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.

  5. Risk of radiation induced cataracts: investigation of radiation exposure to the eye lens during endourologic procedures.

    PubMed

    Hartmann, Josefin; Distler, Florian A; Baumueller, Martin; Guni, Ewald; Pahernik, Sascha A; Wucherer, Michael

    2018-06-14

    Due to new radiobiological data, the ICRP recommends a dose limit of 20mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the EU council directive 2013/59/EURATOM requires a reduction of the annual dose limit from 150mSv to 20mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions during which the patient is in the lithotomy position. The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of two months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied: well-calibrated electronic personal dosimeter EPD Mk2 and self-calibrated TLD-100H (both Thermo Fisher Scientific, Waltham, USA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time (FT). The correlation between DAP and the apron dose of the urologist was in average 0.07µSv per 1µGym². The more experienced urologists yielded a mean DAP of 166µGym² for stage I and 415µGym² for stage II procedures. The interventionist was exposed with 10µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20µSv (mean DAP: 233µGym²). The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, approximately 1000 interventions can be performed until the annual eye lens dose limit is achieved.

  6. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-06-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferretmore » was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of /sup 137/Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system.« less

  7. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Chang, Polly; Balog, Robert

    2014-11-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groupsmore » were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear

  8. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  9. Novel human radiation exposure biomarker panel applicable for population triage.

    PubMed

    Bazan, Jose G; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J; Cooper, David E

    2014-11-01

    To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other radiologic events. Copyright © 2014 Elsevier Inc. All

  10. BOOK REVIEW: NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States

    NASA Astrophysics Data System (ADS)

    Thurston, Jim

    2010-10-01

    This report by Committee 6 of the Council is an extensive update of a previous report on the exposure of the US population to ionizing radiation sources from data gathered in the 1980s (published as Report 93 in 1987). It is combined with an update on the more in-depth assessment of data on medical exposures previously reported in 1989 (Report 100). Individual chapters in this new report are dedicated to specific sources of exposure to the US population—both from natural and artificial radiation—and the level of detail in each chapter is intended to reflect the significance of the contribution of each source to the total collective dose of the population. The first chapter is on the most significant contributor: background radiation. It expands on the concept of natural background radiation in Report 93, renaming it 'ubiquitous background', and describing in detail the contributions from both extra-terrestrial and terrestrial sources. The data demonstrates that the average dose from such exposure has varied little since the previous report (a slight increase from 3.0 mSv to 3.1 mSv). The next chapter is on medical radiation, i.e. the exposure to the population when attending as patients, not including occupational exposure to hospital workers. The most striking data published in the entire report is the increase in the contribution to the total US population dose attributed to such medical exposures. It is now as significant as that from background radiation: medical exposures now account for an average effective dose to the US citizen of 3.00 mSv, up from 0.53 mSv in 1992 (Report 100). The most important contribution to this increase is the 1.46 mSv from CT scanning alone. The nuclear medicine (including PET) contribution is up from 0.14 mSv to 0.77mSv. This evidently must be due to significant changes in medical radiological practice in the US tied to the increase in the availability of CT and PET imaging facilities. These increasing contributions have driven

  11. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    1998-01-01

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  12. What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation

    DTIC Science & Technology

    2003-10-01

    aircrews, and their children irradiated in utero , the principal health concern is a small increase in the lifetime risk of fatal cancer . For both of...from cancer : adults, p.301; all ages, p.303. — Risks from irradiation in utero , p.302. — Inherited genetic defects from parental...Aircrews, Ionizing Radiation, Galactic Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Springfield, Virginia 22161 19

  13. Overview of the atmospheric ionizing radiation environment monitoring by Bulgarian build instruments

    NASA Astrophysics Data System (ADS)

    Dachev, Tsvetan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Spurny, Frantisek; Ploc, Ondrej; Uchihori, Yukio; Flueckiger, Erwin; Kudela, Karel; Benton, Eric

    2012-10-01

    Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks for their health. Spacecraft and aircraft crews are exposed to elevated levels of cosmic radiation of galactic and solar origin and to secondary radiation produced in the atmosphere, the vehicle structure and its contents. The aircraft crew monitoring is required by the following recommendations of the International Commission on Radiological Protection (ICRP) (ICRP 1990), the European Union (EU) introduced a revised Basic Safety Standards Directive (EC 1997) which, inter alia, included the exposure to cosmic radiation. This approach has been also adopted in other official documents (NCRP 2002). In this overview we present the results of ground based, mountain peaks, aircraft, balloon and rocket radiation environment monitoring by means of a Si-diode energy deposition spectrometer Liulin type developed first in Bulgarian Academy of Sciences (BAS) for the purposes of the space radiation monitoring at MIR and International Space Station (ISS). These spectrometers-dosemeters are further developed, calibrated and used by scientific groups in different countries. Calibration procedures of them are performed at different accelerators including runs in the CERN high-energy reference field, simulating the radiation field at 10 km altitude in the atmosphere and with heavy ions in Chiba, Japan HIMAC accelerator were performed also. The long term aircraft data base were accumulated using specially developed battery operated instrument in 2001-2009 years onboard of A310-300 aircrafts of Czech Air Lines, during 24 about 2 months runs with more than 2000 flights and 13500 flight hours on routes over the Atlantic Ocean mainly. The obtained experimental data are compared with computational models like CARI and EPCARD. The

  14. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    PubMed Central

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  15. Radiation exposure of the radiologist's eye lens during CT-guided interventions.

    PubMed

    Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther

    2014-02-01

    In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.

  16. Health consequences of aircraft noise.

    PubMed

    Kaltenbach, Martin; Maschke, Christian; Klinke, Rainer

    2008-08-01

    The ever-increasing level of air traffic means that any medical evaluation of its effects must be based on recent data. Selective literature review of epidemiological studies from 2000 to 2007 regarding the illnesses, annoyance, and learning disorders resulting from aircraft noise. In residential areas, outdoor aircraft noise-induced equivalent noise levels of 60 dB(A) in the daytime and 45 dB(A) at night are associated with an increased incidence of hypertension. There is a dose-response relationship between aircraft noise and the occurrence of arterial hypertension. The prescription frequency of blood pressure-lowering medications is associated dose-dependently with aircraft noise from a level of about 45 dB(A). Around 25% of the population are greatly annoyed by exposure to noise of 55 dB(A) during the daytime. Exposure to 50 dB(A) in the daytime (outside) is associated with relevant learning difficulties in schoolchildren. Based on recent epidemiological studies, outdoor noise limits of 60 dB(A) in the daytime and 50 dB(A) at night can be recommended on grounds of health protection. Hence, maximum values of 55 dB(A) for the day and 45 dB(A) for the night should be aimed for in order to protect the more sensitive segments of the population such as children, the elderly, and the chronically ill. These values are 5 to 10 dB(A) lower than those specified by the German federal law on aircraft noise and in the report "synopsis" commissioned by the company that runs Frankfurt airport (Fraport).

  17. Community reaction to aircraft noise around smaller city airports

    NASA Technical Reports Server (NTRS)

    Connor, W. K.; Patterson, H. P.

    1972-01-01

    The results are presented of a study of community reaction to jet aircraft noise in the vicinity of airports in Chattanooga, Tennessee, and Reno, Nevada. These cities were surveyed in order to obtain data for comparison with that obtained in larger cities during a previous study. (The cities studied earlier were Boston, Chicago, Dallas, Denver, Los Angeles, Miami, and New York.) The purpose of the present effort was to observe the relative reaction under conditions of lower noise exposure and in less highly urbanized areas, and to test the previously developed predictive equation for annoyance under such circumstances. In Chattanooga and Reno a total of 1960 personal interviews based upon questionnaires were obtained. Aircraft noise measurements were made concurrently and aircraft operations logs were maintained for several weeks in each city to permit computation of noise exposures. The survey respondents were chosen randomly from various exposure zones.

  18. Aircraft noise-induced awakenings are more reasonably predicted from relative than from absolute sound exposure levels.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Mestre, Vincent; Fidell, Linda

    2013-11-01

    Assessment of aircraft noise-induced sleep disturbance is problematic for several reasons. Current assessment methods are based on sparse evidence and limited understandings; predictions of awakening prevalence rates based on indoor absolute sound exposure levels (SELs) fail to account for appreciable amounts of variance in dosage-response relationships and are not freely generalizable from airport to airport; and predicted awakening rates do not differ significantly from zero over a wide range of SELs. Even in conjunction with additional predictors, such as time of night and assumed individual differences in "sensitivity to awakening," nominally SEL-based predictions of awakening rates remain of limited utility and are easily misapplied and misinterpreted. Probabilities of awakening are more closely related to SELs scaled in units of standard deviates of local distributions of aircraft SELs, than to absolute sound levels. Self-selection of residential populations for tolerance of nighttime noise and habituation to airport noise environments offer more parsimonious and useful explanations for differences in awakening rates at disparate airports than assumed individual differences in sensitivity to awakening.

  19. Feasibility of Epidemiologic Research on Nonauditory Health Effects of Residential Aircraft Noise Exposure. Volume 2. Background, General Process Model and Potential Studies

    DTIC Science & Technology

    1989-01-27

    Epidemiologic Study in 120 Oklahoma City 5.4 Chronic Exposure to Sonic Booms 122 5.4.1 White Sands Missile Range 122 5.4.2 Areas Overflown by SR-71 123...5.5 Chronic Exposure to Subsonic Civil Aircraft Noise 123 5.5.1 Design of an Ecologic Study in Airport Environs 124 Iv 5.5.2 Preliminary Evaluation of...dosage-effect relationships for different groups of individuals, one must be able to argue convincingly that a noise measure reflects some aspect of

  20. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  1. Indirect lead exposure among children of radiator repair workers.

    PubMed

    Aguilar-Garduño, C; Lacasaña, M; Tellez-Rojo, M M; Aguilar-Madrid, G; Sanin-Aguirre, L H; Romieu, I; Hernandez-Avila, M

    2003-06-01

    Secondary exposure to lead has been identified as a public health problem since the late 1940s; we investigate the risk of lead exposure among families of radiator repair workers. A sample of the wives and children, aged 6 months to 6 years (exposed children) (n = 19), of radiator repair workers and a sample of children whose parents were not occupationally exposed to lead (non-exposed children) (n = 29) were matched for age and residence; their geometric mean blood lead levels are compared. Blood samples were obtained by the finger stick method and environmental dust samples by the wipe method; both were analyzed using a portable anodic stripping voltameter. Dust lead levels were significantly higher in the houses of exposed children (143.8 vs. 3.9 microg/g; P < 0.01). In crude analyses, the highest lead levels were observed among children whose fathers worked in home-based workshops (22.4 microg/dl)(n = 6). Children whose fathers worked in an external workshop (n = 13) also had high levels (14.2 microg/dl) (P < 0.01), while blood lead levels in non-exposed children were significantly lower (5.6 microg/dl)(P < 0.01). The observed differences remained significant after adjustment for age and gender. This study confirms that children of radiator repair workers are at increased risk of lead exposure and public health interventions are needed to protect them. Copyright 2003 Wiley-Liss, Inc.

  2. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  3. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David

    2013-05-01

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  4. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    PubMed

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  5. 75 FR 8375 - Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... radiologic technologists or technologists in other specialties as well as physicians in all medical...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to...

  6. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009

    PubMed Central

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2016-01-01

    Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J

  7. [Chronic noise exposure and the cardiovascular system in aircraft pilots].

    PubMed

    Tomei, F; Papaleo, B; Baccolo, T P; Tomao, E; Alfi, P; Fantini, S

    1996-01-01

    The aim of this study was to assess whether pilots are exposed to any risk of effects on the cardiovascular apparatus, whether chronic exposure to noise can be a risk factor for this occupation, the importance of intensity, length and type of exposure to noise, and if any relationship exists between audiometric deficits and cardiovascular effects. The study comprised 416 pilots subdivided into two groups according to the different levels of chronic exposure to noise, and a group of 150 control subjects not exposed to noise. The results showed: a) a higher prevalence of hypertension, nearly always diastolic, and of ECG abnormalities in the group of pilots of turboprop aircraft compared to jet plane pilots and to controls (p < 0.005 and p < 0.01 respectively); b) a higher prevalence of orthostatic hypotension in the two groups of pilots than in the controls (p < 0.05); c) a higher prevalence of hypertension with audiometric deficit compared to hypertension without audiometric deficit both in the more heavily and in the less heavily exposed to noise (p < 0.05), and a higher prevalence of hypertension with audiometric deficit in subjects exposed to higher levels of noise compared to hypertension with deficit but in subjects with lower levels of exposure (p < 0.05); d) a higher prevalence of abnormalities of basal, maximum effort and recovery ECG in pilots exposed to higher noise intensity (p < 0.05); e) improved hypertensive response to ergometric test in pilots with basal hypertension; f) subjects with a maximal load up to 120 W belonged prevalently to the group exposed to more intense noise (p < 0.001), while those with maximal load up to 210 W (p < 0.001) belonged to the group exposed to less intense noise. Considering that pilots are comparable for traditional cardiovascular risk factors, including age, both within the group and with the controls, the results confirm 1) that pilots could be exposed to the risk of effects on the cardiovascular apparatus, 2) that

  8. Assessing the health effects associated with occupational radiation exposure in Korean radiation workers: protocol for a prospective cohort study.

    PubMed

    Seo, Songwon; Lim, Wan Young; Lee, Dal Nim; Kim, Jung Un; Cha, Eun Shil; Bang, Ye Jin; Lee, Won Jin; Park, Sunhoo; Jin, Young Woo

    2018-03-30

    The cancer risk of radiation exposure in the moderate-to-high dose range has been well established. However, the risk remains unclear at low-dose ranges with protracted low-dose rate exposure, which is typical of occupational exposure. Several epidemiological studies of Korean radiation workers have been conducted, but the data were analysed retrospectively in most cases. Moreover, groups with relatively high exposure, such as industrial radiographers, have been neglected. Therefore, we have launched a prospective cohort study of all Korean radiation workers to assess the health effects associated with occupational radiation exposure. Approximately 42 000 Korean radiation workers registered with the Nuclear Safety and Security Commission from 2016 to 2017 are the initial target population of this study. Cohort participants are to be enrolled through a nationwide self-administered questionnaire survey between 24 May 2016 and 30 June 2017. As of 31 March 2017, 22 982 workers are enrolled in the study corresponding to a response rate of 75%. This enrolment will be continued at 5-year intervals to update information on existing study participants and recruit newly hired workers. Survey data will be linked with the national dose registry, the national cancer registry, the national vital statistics registry and national health insurance data via personal identification numbers. Age-specific and sex-specific standardised incidence and mortality ratios will be calculated for overall comparisons of cancer risk. For dose-response assessment, excess relative risk (per Gy) and excess absolute risk (per Gy) will be estimated with adjustments for birth year and potential confounders, such as lifestyle factors and socioeconomic status. This study has received ethical approval from the institutional review board of the Korea Institute of Radiological and Medical Sciences (IRB No. K-1603-002-034). All participants provided written informed consent prior to enrolment. The findings

  9. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  10. Assessing effects of military aircraft noise on residential property values near airbases

    NASA Astrophysics Data System (ADS)

    Fidell, Sanford; Tabachnick, Barbara; Silvati, Laura; Cook, Brenda

    The question, 'Does military aircraft noise exposure affect residential property values in the vicinity of Air Force bases?', can be asked and answered with varying degrees of generality and tolerable errors of inference. Definitive answers are difficult to develop because the question itself may not be meaningful in some circumstances: property values are affected by many factors other than aircraft noise which can fluctuate greatly in different areas and during different time periods; credible attribution of causality for changes in property values uniquely to aircraft noise requires many costly study design measures; and prior findings suggest that if a relationship exists, it is not a large or especially strong one. Thus, evidence of a simple geographic association between aircraft noise exposure and residential property values does not provide a conclusive answer to the question. In an effort to develop more compelling evidence, the US Air Force is planning to compare historical records of sale prices of properties in areas of differential aircraft noise exposure during specific time periods with predictions of sale prices derived from a validated statistical model of residential property values.

  11. Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003.

    PubMed

    Kreuzer, M; Straif, K; Marsh, J W; Dufey, F; Grosche, B; Nosske, D; Sogl, M

    2012-03-01

    'Dusty occupations' and exposure to low-dose radiation have been suggested as potential risk factors for stomach cancer. Data from the German uranium miner cohort study are used to further evaluate this topic. The cohort includes 58 677 miners with complete information on occupational exposure to dust, arsenic and radiation dose based on a detailed job-exposure matrix. A total of 592 stomach cancer deaths occurred in the follow-up period from 1946 to 2003. A Poisson regression model stratified by age and calendar year was used to calculate the excess relative risk (ERR) per unit of cumulative exposure to fine dust or from cumulative absorbed dose to stomach from α or low-LET (low linear energy transfer) radiation. For arsenic exposure, a binary quadratic model was applied. After adjustment for each of the three other variables, a statistically non-significant linear relationship was observed for absorbed dose from low-LET radiation (ERR/Gy=0.30, 95% CI -1.26 to 1.87), α radiation (ERR/Gy=22.5, 95% CI -26.5 to 71.5) and fine dust (ERR/dust-year=0.0012, 95% CI -0.0020 to 0.0043). The relationship between stomach cancer and arsenic exposure was non-linear with a 2.1-fold higher RR (95% CI 0.9 to 3.3) in the exposure category above 500 compared with 0 dust-years. Positive statistically non-significant relationships between stomach cancer and arsenic dust, fine dust and absorbed dose from α and low-LET radiation were found. Overall, low statistical power due to low doses from radiation and dust are of concern.

  12. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1991-01-01

    The Ionizing Radiation Special Investigation Group (IRSIG) for the Long Duration Exposure Facility (LDEF) was established to perform radiation measurements and analysis not planned in the original experiments, and to assure availability of LDEF analysis results in a form useful to future missions. The IRSIG has organized extensive induced radioactivity measurements throughout LDEF, and a comprehensive program to compare the LDEF radiation measurements to values calculated using environment models. The activities and present status of the Group is described. The ionizing radiation results presented is summarized.

  13. A new diagnostic method for separating airborne and structureborne noise radiated by plates with applications for propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Mcgary, Michael C.

    1988-01-01

    The anticipated application of advanced turboprop propulsion systems is expected to increase the interior noise of future aircraft to unacceptably high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a prime obstacle in the development of efficient noise control treatments for propeller-driven aircraft. A new diagnostic method that permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on an aluminum plate. The results of the study indicate that the proposed method could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available.

  14. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

    PubMed Central

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047

  15. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cari Kitahara Explores Medical Radiation Exposures and Thyroid Cancer Etiology

    Cancer.gov

    Dr. Cari Kitahara has built a multidisciplinary research program to explore cancer risks from occupational and medical radiation exposures, and to investigate the etiology of radiosensitive tumors, including thyroid cancer.

  17. Computer Aided Dosimetry and Verification of Exposure to Radiation

    NASA Astrophysics Data System (ADS)

    Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise

    2002-06-01

    In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)

  18. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  19. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    PubMed

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  1. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  2. The effect of prescription eyewear on ocular exposure to ultraviolet radiation.

    PubMed Central

    Rosenthal, F S; Bakalian, A E; Taylor, H R

    1986-01-01

    Several studies have suggested that ultraviolet radiation in sunlight may cause cataracts and other eye disease. We evaluated the effect of prescription eyewear in attenuating ocular exposure to ultraviolet radiation (UVR) in the sunlight portions of the ultraviolet spectrum (295-350 nm). Using natural sunlight as the source, the attenuation was measured with two ultraviolet detectors, one sensitive to only UVB (295-315 nm) and one sensitive to both UVA and UVB (295-350 nm). A random sample of spectacles, spectacle lenses, and contact lenses was examined. The average transmission, as measured with either detector, was highest for soft contact lenses, followed by glass spectacle lenses, untinted hard contact lenses, and plastic spectacle lenses. Measurements performed with mannikins wearing spectacles showed that an average of 6.6 per cent of incident radiation reached the eye even when the lenses were covered with black opaque tape. The amount of exposure was increased substantially when the spectacles were moved 0.6 cm away from the forehead. The results show that the protection against ultraviolet exposure provided by prescription eyewear is highly variable and depends largely on its composition, size, and wearing position. PMID:3752323

  3. Aircraft noise, air pollution, and mortality from myocardial infarction.

    PubMed

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  4. Aircraft crew radiation workplaces: comparison of measured and calculated ambient dose equivalent rate data using the EURADOS in-flight radiation data base.

    PubMed

    Beck, Peter; Bartlett, David; Lindborg, Lennart; McAulay, Ian; Schnuer, Klaus; Schraube, Hans; Spurny, Frantisek

    2006-01-01

    In May 2000, the chairman of the European Radiation Dosimetry Group (EURADOS) invited a number of experts with experience of cosmic radiation dosimetry to form a working group (WG 5) on aircraft crew dosimetry. Three observers from the Article 31 Group of Experts as well as one observer from the Joint Aviation Authorities (JAA) were also appointed. The European Commission funded the meetings. Full meetings were organised in January 2001 and in November 2001. An editorial group, who are the authors of this publication, started late in 2002 to finalise a draft report, which was submitted to the Article 31 Group of Experts in June 2003. The methods and data reported are the product of the work of 26 research institutes from the EU, USA and Canada. Some of the work was supported by contracts with the European Commission, Directorate General XII, Science, Research and Development. A first overview of the EC report was published late in 2004. In this publication we focus on a comparison of measured and calculated ambient dose rate data using the EURADOS In-Flight Data Base. The evaluation of results obtained by different methods and groups, and comparison of measurement results and the results of calculations were performed in terms of the operational quantity ambient dose equivalent, H*(10). Aspects of measurement uncertainty are reported also. The paper discusses the estimation of annual doses for given flight hours and gives an outline of further research needed in the field of aircraft crew dosimetry, such as the influence of solar particle events.

  5. Radiation Exposure and Health Effects – is it Time to Reassess the Real Consequences?

    PubMed Central

    Thomas, G.A.; Symonds, P.

    2017-01-01

    Our acceptance of exposure to radiation is somewhat schizophrenic. We accept that the use of high doses of radiation is still one of the most valuable weapons in our fight against cancer, and believe that bathing in radioactive spas is beneficial. On the other hand, as a species, we are fearful of exposure to man-made radiation as a result of accidents related to power generation, even though we understand that the doses are orders of magnitude lower than those we use everyday in medicine. The 70th anniversary of the detonation of the atomic bombs in Hiroshima and Nagasaki was marked in 2015. The 30th anniversary of the Chernobyl nuclear power plant accident will be marked in April 2016. March 2016 also sees the fifth anniversary of the accident at the Fukushima nuclear power plant. Perhaps now is an opportune time to assess whether we are right to be fearful of the effects of low doses of radiation, or whether actions taken because of our fear of radiation actually cause a greater detriment to health than the direct effect of radiation exposure. PMID:26880062

  6. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  7. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  8. Spinal Disease in Aviators and Its Relationship to G-Exposure, Age, Aircraft Seating Angle, Exercise and Other Lifestyle Factors

    DTIC Science & Technology

    2000-08-01

    34Cervical Spinal Injury all other respects to the HP aviators studied. Methods: from Repeated Exposures to Sustained Acceleration" An anonymous survey...articles have reported anecdotal these groups were matched for all relevant spinal injuries in aviators of high-performance aircraft demographic and...symptoms or disease in the neck or lower back climbing turn and suffered a C5-6 ligamentous injury . were reported in the HP group as compared to the NHP

  9. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake.

    PubMed

    Matsuoka, Yutaka; Nishi, Daisuke; Nakaya, Naoki; Sone, Toshimasa; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Koido, Yuichi

    2012-05-15

    On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers.

  11. Basal cell carcinoma of the eyelids and solar ultraviolet radiation exposure

    PubMed Central

    Lindgren, G.; Diffey, B.; Larko, O.

    1998-01-01

    AIMS—To compare the distribution of eyelid basal cell carcinoma (BCC) with the relative ultraviolet radiation (UVR) exposure to different sites on the eyelids.
METHODS—The location of BCC on the eyelids was allocated to one of seven regions. The UVR exposure was recorded with a polymer film attached to the eyelids at seven sites in a manikin and in human subjects.
RESULTS—Localisation of the 329 tumours was mainly on the lower eyelids (225 tumours), and the medial canthal regions (87 tumours). There was no association between UVR doses at the seven sites of the eyelids and the location of BCCs. The UVR exposure was similar on the upper and lower eyelids, while the number of tumours on the lower eyelids outnumbered the upper lids by a factor of 13 (17 upper, 225 lower)
CONCLUSION—UVR exposure only partially explains the aetiology of periorbital BCC.

 Keywords: polysulphone film; basal cell carcinoma; ultraviolet radiation; eyelid PMID:9930273

  12. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  13. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    PubMed

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  14. Infrared thermographic diagnostic aid to aircraft maintenance

    NASA Astrophysics Data System (ADS)

    Delo, Michael; Delo, Steve

    2007-04-01

    Thermographic data can be used as a supplement to aircraft maintenance operations in both back shop and flight line situations. Aircraft systems such as electrical, propulsion, environmental, pitot static and hydraulic/pneumatic fluid, can be inspected using a thermal infrared (IR) imager. Aircraft systems utilize electro-hydraulic, electro-mechanical, and electro-pneumatic mechanisms, which, if accessible, can be diagnosed for faults using infrared technology. Since thermographs are images of heat, rather than light, the measurement principle is based on the fact that any physical object (radiating energy at infrared wavelengths within the IR portion of the electro-magnetic spectrum), can be imaged with infrared imaging equipment. All aircraft systems being tested with infrared are required to be energized for troubleshooting, so that valuable baseline data from fully operational aircraft can be collected, archived and referenced for future comparisons.

  15. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  16. Evaluation of radiation exposure from diagnostic radiology examination; availability of final recommendations--FDA. Notice.

    PubMed

    1986-02-19

    The Food and Drug Administration (FDA) is announcing the availability of a document entitled "Recommendations for Evaluation of Radiation Exposure from Diagnostic Radiology Examinations". The recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), encourage diagnostic radiology facilities to take voluntary action to: Become aware of the radiation levels experienced by patients undergoing the projections commonly given in the facility; compare their radiation levels to generally accepted levels for these projections; and bring the exposures back into line if their levels fall consistently outside these generally accepted levels.

  17. Exposure of the surgeon's hands to radiation during hand surgery procedures.

    PubMed

    Żyluk, Andrzej; Puchalski, Piotr; Szlosser, Zbigniew; Dec, Paweł; Chrąchol, Joanna

    2014-01-01

    The objective of the study was to assess the time of exposure of the surgeon's hands to radiation and calculate of the equivalent dose absorbed during surgery of hand and wrist fractures with C-arm fluoroscope guidance. The necessary data specified by the objective of the study were acquired from operations of 287 patients with fractures of fingers, metacarpals, wrist bones and distal radius. 218 operations (78%) were percutaneous procedures and 60 (22%) were performed by open method. Data on the time of exposure and dose of radiation were acquired from the display of the fluoroscope, where they were automatically generated. These data were assigned to the individual patient, type of fracture, method of surgery and the operating surgeon. Fixations of distal radial fractures required longer times of radiation exposure (mean 61 sec.) than fractures of the wrist/metacarpals and fingers (38 and 32 sec., respectively), which was associated with absorption of significantly higher equivalent doses. Fixations of distal radial fractures by open method were associated with statistically significantly higher equivalent doses (0.41 mSv) than percutaneous procedures (0.3 mSv). Fixations of wrist and metacarpal bone fractures by open method were associated with lower equivalent doses (0.34 mSv) than percutaneous procedures (0.37 mSv),but the difference was not significant. Fixations of finger fractures by open method were associated with lower equivalent doses (0.13 mSv) than percutaneous procedures (0.24 mSv), the difference being statistically non-significant. Statistically significant differences in exposure time and equivalent doses were noted between 4 surgeons participating in the study, but no definitive relationship was found between these parameters and surgeons' employment time. 1. Hand surgery procedures under fluoroscopic guidance are associated with mild exposure of the surgeons' hands to radiation. 2. The equivalent dose was related to the type of fracture

  18. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  19. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies.

    PubMed

    Veiga, Lene H S; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M Jacob; Sakata, Ritsu; Schneider, Arthur B; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M; Tucker, Margaret; Lundell, Marie; Lubin, Jay H

    2016-05-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2-4 Gy, leveled off between 10-30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94-4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation.

  20. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  1. Cosmic Radiation and Cataracts in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.

    Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.

  2. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    PubMed Central

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  3. [The remote effects of chronic exposure to ionizing radiation and electromagnetic fields with respect to hygienic standardization].

    PubMed

    Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L

    2003-01-01

    A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.

  4. Radiation exposure--do urologists take it seriously in Turkey?

    PubMed

    Söylemez, Haluk; Altunoluk, Bülent; Bozkurt, Yaşar; Sancaktutar, Ahmet Ali; Penbegül, Necmettin; Atar, Murat

    2012-04-01

    A questionnaire was administered to urologists to evaluate attitudes and behaviors about protection from radiation exposure during fluoroscopy guided endourological procedures. The questionnaire was e-mailed to 1,482 urologists, including urology residents, specialists and urologists holding all levels of academic degrees, between May and June 2011. The questionnaire administered to study participants was composed of demographic questions, and questions on radiation exposure frequency, and the use of dosimeters and flexible protective clothes. If a respondent reported not using dosimeters or protective clothes, additional questions asked for the reason. Of the 1,482 questionnaires 394 (26.58%) were returned, of which 363 had completed answers. A total of 307 physicians (84.58%) were exposed to ionizing radiation, of whom 79.61% stated that they perform percutaneous nephrolithotomy at the clinic. Fluoroscopy guidance was the initial choice of 96.19% of urologists during percutaneous nephrolithotomy. Despite the common use of lead aprons (75.24%) most urologists did not use dosimeters (73.94%), eyeglasses (76.95%) or gloves (66.67%) while 46.44% always used thyroid shields during fluoroscopy. When asked why they did not use protective clothing, the most common answers were that protective clothes are not ergonomic and not practical. Results clearly highlight the lack of use of ionizing radiation protection devices and dosimeters during commonly performed fluoroscopy guided endourological procedures among urologists in Turkey. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, Eiichi

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  6. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  7. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  8. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  9. Prevalence and an analysis of noise--induced hearing loss in army helicopter pilots and aircraft mechanics.

    PubMed

    Jaruchinda, Pariyanan; Thongdeetae, Taninsak; Panichkul, Suthee; Hanchumpol, Pongtep

    2005-11-01

    Hearing impairment from noise exposure has been reported in fix-wing pilots, especially in civilized countries. However, there are few studies on rotary wing aviators and aircraft mechanics, especially in developing countries whose hearing conservative program is not well established. The present study, therefore, was done to evaluate the prevalence of noise induced hearing loss and the contributing factors that may effect both groups of noise-exposed population. Report questionnaires were reviewed and physical examination combined with audiometric records of 34 pilots and 42 mechanics in the Royal Thai Army Aviation Center, Lobburi, were examined. Hearing loss was studied using four categories of significant threshold shift (STS). Amplitude of noise radiated by aircraft was also measured at different distances. No significant difference was found in prevalence of hearing loss in aviators (32.4%) and aircraft mechanics (47.6%), but in the aircraft mechanics group there were more damage of frequency involvement including speech frequency and high frequency and more decibels loss than aviators. The type of hearing protection and smoking index were strongly correlated with hearing loss. Age, flight time and alcohol habit had no significant effect and ninety percent of the subjects had no self awareness of hearing loss. Aircraft mechanics had more severity on hearing loss than aviators. Types of noise protector and cigarette smoking had significant association with hearing loss.

  10. Effects of radiation exposure from cardiac imaging: how good are the data?

    PubMed

    Einstein, Andrew J

    2012-02-07

    Concerns about medical exposure to ionizing radiation have become heightened in recent years as a result of rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This paper summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, this paper will address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher-dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac dose-level studies, albeit with exceptions. Using risk projection models developed by the U.S. National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared with the benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Reduction in operator radiation exposure during transradial coronary procedures using a simple lead rectangle.

    PubMed

    Osherov, Azriel B; Bruoha, Sharon; Laish Farkash, Avishag; Paul, Gideon; Orlov, Ian; Katz, Amos; Jafari, Jamal

    2017-02-01

    Transradial access for percutaneous coronary intervention (PCI) reduces procedural complications however, there are concerns regarding the potential for increased exposure to ionizing radiation to the primary operator. We evaluated the efficacy of a lead-attenuator in reducing radiation exposure during transradial PCI. This was a non-randomized, prospective, observational study in which 52 consecutive patients were assigned to either standard operator protection (n = 26) or the addition of the lead attenuator across their abdomen/pelvis (n = 26). In the attenuator group patients were relatively older with a higher prevalence of peripheral vascular disease (67.9 vs 58.7 p = 0.0292 and 12% vs 7.6% p < 0.001 respectively). Despite similar average fluoroscopy times (12.3 ± 9.8 min vs. 9.3 ± 5.4 min, p = 0.175) and average examination doses (111866 ± 80790 vs. 91,268 ± 47916 Gycm 2 , p = 0.2688), the total radiation exposure to the operator, at the thyroid level, was significantly lower when the lead-attenuator was utilized (20.2% p < 0.0001) as compared to the control group. Amongst the 26 patients assigned to the lead-attenuator, there was a significant reduction in measured radiation of 94.5% (p < 0.0001), above as compared to underneath the lead attenuator. Additional protection with the use of a lead rectangle-attenuator significantly lowered radiation exposure to the primary operator, which may confer long-term benefits in reducing radiation-induced injury. This is the first paper to show that a simple lead attenuator almost completely reduced the scattered radiation at very close proximity to the patient and should be considered as part of the standard equipment within catheterization laboratories.

  12. Reduction of radiation exposure during radiography for scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.E.; Hoffman, A.D.; Peterson, H.A.

    1983-01-01

    To reduce the radiation exposure received by young scoliosis patients during treatment, six changes in technique were instituted: (1) a posteroanterior projection, (2) specially designed leaded acrylic filters, (3) a high-speed screen-film system, (4) a specially designed cassette-holder and grid, (5) a breast-shield, and (6) additional filtration in the x-ray tube the thyroid, breast, and abdominal areas were made on an Alderson phantom. They revealed an eightfold reduction in abdominal exposure for both the posteroanterior and the lateral radiographys. There was a twentyfold reduction in exposure to the thyroid for the posteroanterior radiography from 100 to less than five milliroentgensmore » and for the lateral radiograph there was a 100-fold reduction from 618 to six milliroentgens. For the breasts there was a sixty-ninefold reduction from 344 to less than five milliroentgens for the posteroanterior radiography and a fifty-fivefold reduction from 277 to less than five milliroentgens for the lateral radiograph. These reductions in exposure were obtained without significant loss in the quality of the radiographs and in most instances with an improvement in the over-all quality of the radiograph due to the more uniform exposure.« less

  13. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  14. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less

  15. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  16. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake

    PubMed Central

    2012-01-01

    Background On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. Methods One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Results Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. Conclusion The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers. PMID:22455604

  17. [Paternal exposure to occupational electromagnetic radiation and sex ratio of the offspring: a meta-analysis].

    PubMed

    Tong, Shu-Hui; Liu, Yi-Ting; Liu, Yang

    2013-02-01

    To investigate the association between paternal exposure to occupational electromagnetic radiation and the sex ratio of the offspring. We searched various databases, including PubMed, Embase, Cochrane Library, OVID, Bioscience Information Service (BIOSIS), China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Database, for the literature relevant to the association of paternal exposure to occupational electromagnetic radiation with the sex ratio of the offspring. We conducted a meta-analysis on their correlation using Stata 11.0. There was no statistically significant difference in the sex ratio between the offspring with paternal exposure to occupational electromagnetic radiation and those without (pooled OR = 1.00 [95% CI: 0.95 -1.05], P = 0.875). Subgroup analysis of both case-control and cohort studies revealed no significant difference (pooled OR = 1.03 [95% CI: 0.99 -1.08], P = 0.104 and pooled OR = 0.98 [95% CI: 0.99 -1.08], P = 0.186, respectively). Paternal exposure to occupational electromagnetic radiation is not correlated with the sex ratio of the offspring.

  18. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany.

    PubMed

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence; Berg, Gabriele; Schlaefer, Klaus; Schüz, Joachim

    2007-09-01

    The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. We used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95% confidence interval (CI)=0.48-0.83), 1.08 (95% CI=0.80-1.45) and 0.97 (95% CI=0.54-1.75) for glioma, meningioma and acoustic neuroma, respectively. Elevated ORs were found for meningioma (OR 2.32, 95% CI: 0.90-5.96) and acoustic neuroma (OR 6.45, 95% CI: 0.62-67.16) for radiotherapy to the head and neck regions. We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation.

  19. Analysis and Synthesis of Tonal Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Allen, Matthew P.; Rizzi, Stephen A.; Burdisso, Ricardo; Okcu, Selen

    2012-01-01

    Fixed and rotary wing aircraft operations can have a significant impact on communities in proximity to airports. Simulation of predicted aircraft flyover noise, paired with listening tests, is useful to noise reduction efforts since it allows direct annoyance evaluation of aircraft or operations currently in the design phase. This paper describes efforts to improve the realism of synthesized source noise by including short term fluctuations, specifically for inlet-radiated tones resulting from the fan stage of turbomachinery. It details analysis performed on an existing set of recorded turbofan data to isolate inlet-radiated tonal fan noise, then extract and model short term tonal fluctuations using the analytic signal. Methodologies for synthesizing time-variant tonal and broadband turbofan noise sources using measured fluctuations are also described. Finally, subjective listening test results are discussed which indicate that time-variant synthesized source noise is perceived to be very similar to recordings.

  20. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  1. Health risks of exposure to non-ionizing radiation--myths or science-based evidence.

    PubMed

    Hietanen, Maila

    2006-01-01

    The non-ionizing radiation (NIR) contains large range of wavelengths and frequencies from vacuum ultraviolet (UV) radiation to static electric and magnetic fields. Biological effects of electromagnetic (EM) radiation depend greatly on wavelength and other physical parameters. The Sun is the most significant source of environmental UV exposure, so that outdoor workers are at risk of chronic over-exposure. Also exposure to short-wave visible light is associated with the aging and degeneration of the retina. Especially hazardous are laser beams focused to a small spot at the retina, resulting in permanent visual impairment. Exposure to EM fields induces body currents and energy absorption in tissues, depending on frequencies and coupling mechanisms. Thermal effects caused by temperature rise are basically understood, whereas the challenge is to understand the suspected non-thermal effects. Radiofrequency (RF) fields around frequencies of 900 MHz and 1800 MHz are of special interest because of the rapid advances in the telecommunication technology. The field levels of these sources are so low that temperature rise is unlikely to explain possible health effects. Other mechanisms of interaction have been proposed, but biological experiments have failed to confirm their existence.

  2. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  3. Radiation exposure during in-situ pinning of slipped capital femoral epiphysis hips: does the patient positioning matter?

    PubMed

    Mohammed, Riazuddin; Johnson, Karl; Bache, Ed

    2010-07-01

    Multiple radiographic images may be necessary during the standard procedure of in-situ pinning of slipped capital femoral epiphysis (SCFE) hips. This procedure can be performed with the patient positioned on a fracture table or a radiolucent table. Our study aims to look at any differences in the amount and duration of radiation exposure for in-situ pinning of SCFE performed using a traction table or a radiolucent table. Sixteen hips in thirteen patients who were pinned on radiolucent table were compared for the cumulative radiation exposure to 35 hips pinned on a fracture table in 33 patients during the same time period. Cumulative radiation dose was measured as dose area product in Gray centimeter2 and the duration of exposure was measured in minutes. Appropriate statistical tests were used to test the significance of any differences. Mean cumulative radiation dose for SCFE pinned on radiolucent table was statistically less than for those pinned on fracture table (P<0.05). The mean duration of radiation exposure on either table was not significantly different. Lateral projections may increase the radiation doses compared with anteroposterior projections because of the higher exposure parameters needed for side imaging. Our results showing decreased exposure doses on the radiolucent table are probably because of the ease of a frog leg lateral positioning obtained and thereby the ease of lateral imaging. In-situ pinning of SCFE hips on a radiolucent table has an additional advantage that the radiation dose during the procedure is significantly less than that of the procedure that is performed on a fracture table.

  4. Awareness of medical radiation exposure among patients: A patient survey as a first step for effective communication of ionizing radiation risks.

    PubMed

    Ria, F; Bergantin, A; Vai, A; Bonfanti, P; Martinotti, A S; Redaelli, I; Invernizzi, M; Pedrinelli, G; Bernini, G; Papa, S; Samei, E

    2017-11-01

    The European Directive 2013/59/EURATOM requires patient radiation dose information to be included in the medical report of radiological procedures. To provide effective communication to the patient, it is necessary to first assess the patient's level of knowledge regarding medical exposure. The goal of this work is to survey patients' current knowledge level of both medical exposure to ionizing radiation and professional disciplines and communication means used by patients to garner information. A questionnaire was designed comprised of thirteen questions: 737 patients participated in the survey. The data were analysed based on population age, education, and number of radiological procedures received in the three years prior to survey. A majority of respondents (56.4%) did not know which modality uses ionizing radiation. 74.7% had never discussed with healthcare professionals the risk concerning their medical radiological procedures. 70.1% were not aware of the professionals that have expertise to discuss the use of ionizing radiation for medical purposes, and 84.7% believe it is important to have the radiation dose information stated in the medical report. Patients agree with new regulations that it is important to know the radiation level related to the medical exposure, but there is little awareness in terms of which modalities use X-Rays and the professionals and channels that can help them to better understand the exposure information. To plan effective communication, it is essential to devise methods and adequate resources for key professionals (medical physicists, radiologists, referring physicians) to convey correct and effective information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  6. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  7. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  8. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  9. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  10. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  11. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  12. IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.

    EPA Science Inventory

    This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.

  13. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  14. Monte Carlo calculation of the radiation field at aircraft altitudes.

    PubMed

    Roesler, S; Heinrich, W; Schraube, H

    2002-01-01

    Energy spectra of secondary cosmic rays are calculated for aircraft altitudes and a discrete set of solar modulation parameters and rigidity cut-off values covering all possible conditions. The calculations are based on the Monte Carlo code FLUKA and on the most recent information on the interstellar cosmic ray flux including a detailed model of solar modulation. Results are compared to a large variety of experimental data obtained on the ground and aboard aircraft and balloons, such as neutron, proton, and muon spectra and yields of charged particles. Furthermore, particle fluence is converted into ambient dose equivalent and effective dose and the dependence of these quantities on height above sea level, solar modulation, and geographical location is studied. Finally, calculated dose equivalent is compared to results of comprehensive measurements performed aboard aircraft.

  15. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies

    PubMed Central

    Veiga, Lene H. S.; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M. Jacob; Sakata, Ritsu; Schneider, Arthur B.; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M.; Tucker, Margaret; Lundell, Marie; Lubin, Jay H.

    2016-01-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2–4 Gy, leveled off between 10–30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94–4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation. PMID:27128740

  16. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    PubMed

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  17. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.

    PubMed

    Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S

    2017-07-01

    The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society

  18. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.

    PubMed

    Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu

    2017-11-18

    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the

  19. Further studies of methods for reducing community noise around airports. [aircraft noise - aircraft engines

    NASA Technical Reports Server (NTRS)

    Petersen, R. H.; Barry, D. J.; Kline, D. M.

    1975-01-01

    A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated.

  20. ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...

  1. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  2. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produce ionizations directly or indirectly, but does not include electromagnetic radiations other than... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations...

  3. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  4. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  5. Radiation exposure and disease questionnaires of early entrants after the Hiroshima bombing.

    PubMed

    Imanaka, Tetsuji; Endo, Satoru; Kawano, Noriyuki; Tanaka, Kenichi

    2012-03-01

    It is popularly known that people who entered into the ground-zero area shortly after the atomic bombings in Hiroshima and Nagasaki suffered from various syndromes similar to acute radiation effects. External exposures from neutron-induced radionuclides in soil have recently been reassessed based on DS02 calculations as functions of both distance from the hypocentres and elapsed time after the explosions. Significant exposure due to induced radiation can be determined for those who entered the area within 1000 m from the hypocentres shortly after the bombing. Although it was impossible to track the action of each of the survivors over the days or weeks following the bombings in order to make reliable dose estimates for their exposures to soil activation or fallout, four individuals among those early entrants were investigated here to describe useful information of what happened shortly after the bombing.

  6. Aircraft and road traffic noise and children's cognition and health: a cross-national study.

    PubMed

    Stansfeld, S A; Berglund, B; Clark, C; Lopez-Barrio, I; Fischer, P; Ohrström, E; Haines, M M; Head, J; Hygge, S; van Kamp, I; Berry, B F

    Exposure to environmental stressors can impair children's health and their cognitive development. The effects of air pollution, lead, and chemicals have been studied, but there has been less emphasis on the effects of noise. Our aim, therefore, was to assess the effect of exposure to aircraft and road traffic noise on cognitive performance and health in children. We did a cross-national, cross-sectional study in which we assessed 2844 of 3207 children aged 9-10 years who were attending 89 schools of 77 approached in the Netherlands, 27 in Spain, and 30 in the UK located in local authority areas around three major airports. We selected children by extent of exposure to external aircraft and road traffic noise at school as predicted from noise contour maps, modelling, and on-site measurements, and matched schools within countries for socioeconomic status. We measured cognitive and health outcomes with standardised tests and questionnaires administered in the classroom. We also used a questionnaire to obtain information from parents about socioeconomic status, their education, and ethnic origin. We identified linear exposure-effect associations between exposure to chronic aircraft noise and impairment of reading comprehension (p=0.0097) and recognition memory (p=0.0141), and a non-linear association with annoyance (p<0.0001) maintained after adjustment for mother's education, socioeconomic status, longstanding illness, and extent of classroom insulation against noise. Exposure to road traffic noise was linearly associated with increases in episodic memory (conceptual recall: p=0.0066; information recall: p=0.0489), but also with annoyance (p=0.0047). Neither aircraft noise nor traffic noise affected sustained attention, self-reported health, or overall mental health. Our findings indicate that a chronic environmental stressor-aircraft noise-could impair cognitive development in children, specifically reading comprehension. Schools exposed to high levels of aircraft

  7. Life-span carcinogenicity studies on Sprague-Dawley rats exposed to γ-radiation: design of the project and report on the tumor occurrence after post-natal radiation exposure (6 weeks of age) delivered in a single acute exposure.

    PubMed

    Soffritti, Morando; Tibaldi, Eva; Bua, Luciano; Padovani, Michela; Falcioni, Laura; Lauriola, Michelina; Manservigi, Marco; Manservisi, Fabiana; Belpoggi, Fiorella

    2015-01-01

    Experimental long-term carcinogenicity bioassays conducted on rats and mice proved that ionizing radiation can induce a variety of tumor types. However few studies have been conducted on rats. This report deals with the effects of γ-radiation in groups of 416-1,051 6-weeks old Sprague-Dawley rats exposed to 0, 0.1, 1, or 3 Gy of γ-radiation delivered in a single acute exposure. The experiment lasted for the animals' lifespan and all were necropsied and underwent full histopathological evaluation. The results confirm the dose-related carcinogenic effects of γ-radiation for several organs and tissues. Moreover they indicate that exposure to 0.1 Gy induces a statistically significant increased incidence in Zymbal gland carcinomas and pancreas islet cell carcinomas in females. Our data show that exposure to γ-radiation induces carcinogenic effects at all tested doses. © 2014 Wiley Periodicals, Inc.

  8. [Eye lens radiation exposure during ureteroscopy with and without a face protection shield: Investigations on a phantom model].

    PubMed

    Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A

    2016-03-01

    Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.

  9. Atmospheric Ionizing Radiation and the High Speed Civil Transport. Chapter 1

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.; Wilson, J. W.; Jones, I. W.; Goldhagen, P.

    2003-01-01

    Atmospheric ionizing radiation is produced by extraterrestrial radiations incident on the Earth's atmosphere. These extraterrestrial radiations are of two sources: ever present galactic cosmic rays with origin outside the solar system and transient solar particle events that are at times very intense events associated with solar activity lasting several hours to a few days. Although the galactic radiation penetrating through the atmosphere to the ground is low in intensity, the intensity is more than two orders of magnitude greater at commercial aircraft altitudes. The radiation levels at the higher altitudes of the High Speed Civil Transport (HSCT) are an additional factor of two higher. Ionizing radiation produces chemically active radicals in biological tissues that alter the cell function or result in cell death. Protection standards against low levels of ionizing radiation are based on limitation of excess cancer mortality or limitation of developmental injury resulting in permanent damage to the offspring during pregnancy. The crews of commercial air transport operations are considered as radiation workers by the EPA, the FAA, and the International Commission on Radiological Protection (ICRP). The annual exposures of aircrews depend on the latitudes and altitudes of operation and flight time. Flight hours have significantly increased since deregulation of the airline industry in the 1980's. The FAA estimates annual subsonic aircrew exposures to range from 0.2 to 9.1 mSv compared to 0.5 mSv exposure of the average nuclear power plant worker in the nuclear industry. The commercial aircrews of the HSCT may receive exposures above recently recommended allowable limits for even radiation workers if flying their allowable number of flight hours. An adequate protection philosophy for background exposures in HSCT commercial airtraffic cannot be developed at this time due to current uncertainty in environmental levels. In addition, if a large solar particle event

  10. Occupational exposures to antineoplastic drugs and ionizing radiation in Canadian veterinary settings: findings from a national surveillance project.

    PubMed

    Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E

    2013-11-01

    Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.

  11. Influence of various factors on individual radiation exposure from the chernobyl disaster

    PubMed Central

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-01-01

    Background The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. Methods This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Results Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. Conclusion A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures. PMID:12495449

  12. Influence of various factors on individual radiation exposure from the Chernobyl disaster.

    PubMed

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-10-29

    The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures.

  13. Molecular pathway activation in cancer and tissue following space radiation exposure

    NASA Astrophysics Data System (ADS)

    Kovyrshina, Tatiana A.

    Space radiation exposure is an important safety concern for astronauts, especially since one of the risks is carcinogenesis. This thesis explores the link between lung, colorectal, and breast cancer and iron particles and gamma radiation on a molecular level. We obtained DNA microarrays for each condition from the Gene Expression Omnibus (GEO), a public functional genomics data repository, cleaned up the data, and analysed overexpression and underexpression of pathway analysis. Our results show that pathways which participate in DNA replication appear to be overexpressed in cancer cells and cells exposed to ionizing radiation.

  14. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis

    PubMed Central

    Li, Changzhao; Athar, Mohammad

    2016-01-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  15. CONSULTATION ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) expects to publish the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in calendar year 2005. The committee is expected to have analyzed the most recent epidemiology f...

  16. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  17. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  18. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  19. Impact of ionizing radiation exposure on in vitro differentiation of preosteoblastic cell lines

    NASA Astrophysics Data System (ADS)

    Hu, Yueyuan; Lau, Patrick; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Bone demineralization of astronauts during residence in microgravity is a well known phe-nomenon during space travel. Besides altered gravity conditions, radiation risk is considered to be one of the major health hazards for astronauts in both orbital and interplanetary space. Un-til know, little is known about the effects of space radiation on the skeletal system especially on the bone forming osteoblasts. Accelerator facilities are used to simulate parts of the radiation environment in space. We examined the effects of heavy ion exposure on osteoblastic differ-entiation of murine preosteoblastic cell lines to gain insight into potential cellular mechanisms involved in bone cellular response after exposure to heavy ions. Therefore, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. mRNA levels were determined using quantitative real time reverse transcriptase PCR (qRT-PCR). Expression of a target gene was standardized to unregulated reference genes. We investigated the transcriptional regulation of Osteocalcin (OCN) as well as TGF-β1, p21(CDKN1A) and the bone specific transcription factor Runx2 (cbfa1). We investigated gene expression modula-tions after exposure to energetic carbon ions (35 MeV/u, 73 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. X-irradiation dose-dependently increased the mRNA levels of p21(CDKN1A) and Runx2 (cbfa1) whereas expression of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more pronounced effect on osteoblastic specific gene expression within the dif-ferentiation process. Collectively, our results indicate that heavy ions facilitate osteoblastic differentiation more effectively than X-ray. Using the proposed in vitro model we confirmed that exposure to ionizing radiation significantly

  20. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  1. Noise Problems Associated with Ground Operations of Jet Aircraft

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.

    1959-01-01

    The nature of the noise-exposure problem for humans and the aircraft-structural-damage problem is each discussed briefly. Some discussion is directed toward available methods of minimizing the effects of noise on ground crews, on the aircraft structure, and on the surrounding community. A bibliography of available papers relating to noise-reduction devices is also included.

  2. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire

  3. Assessment of Health Consequences of Steel Industry Welders' Occupational Exposure to Ultraviolet Radiation.

    PubMed

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders' exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. In this case-control study, we measured the intensity of UV at the workers' wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders' wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm(2), respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures.

  4. Assessment of Health Consequences of Steel Industry Welders’ Occupational Exposure to Ultraviolet Radiation

    PubMed Central

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Background: Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders’ exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. Methods: In this case–control study, we measured the intensity of UV at the workers’ wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. Results: The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders’ wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm2, respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. Conclusions: This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures. PMID:26900437

  5. Progress Towards the Remote Sensing of Aircraft Icing Hazards

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David; Politovich, Marcia; Serke, David; Ryerson, Charles; Pazmany, Andrew; Solheim, Fredrick

    2009-01-01

    NASA has teamed with the FAA, DoD, industry, and academia for research into the remote detection and measurement of atmospheric conditions leading to aircraft icing hazards. The ultimate goal of this effort is to provide pilots, controllers, and dispatchers sufficient information to allow aircraft to avoid or minimize their exposure to the hazards of in-flight icing. Since the hazard of in-flight icing is the outcome of aircraft flight through clouds containing supercooled liquid water and strongly influenced by the aircraft s speed and configuration and by the length of exposure, the hazard cannot be directly detected, but must be inferred based upon the measurement of conducive atmospheric conditions. Therefore, icing hazard detection is accomplished through the detection and measurement of liquid water in regions of measured sub-freezing air temperatures. The icing environment is currently remotely measured from the ground with a system fusing radar, lidar, and multifrequency microwave radiometer sensors. Based upon expected ice accretion severity for the measured environment, a resultant aircraft hazard is then calculated. Because of the power, size, weight, and view angle constraints of airborne platforms, the current ground-based solution is not applicable for flight. Two current airborne concepts are based upon the use of either multifrequency radiometers or multifrequency radar. Both ground-based and airborne solutions are required for the future since groundbased systems can provide hazard detection for all aircraft in airport terminal regions while airborne systems will be needed to provide equipped aircraft with flight path coverage between terminal regions.

  6. Special analysis of community annoyance with aircraft noise reported by residents in the vicinity of JFK Airport, 1972

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1975-01-01

    During the summer of 1972, about 1500 residents were interviewed twice in 11 communities near JFK airport. Detailed aircraft operations reports were also collected for this period, and an effort has been made to analyze recorded human response data in relation to a number of physical exposure parameters. A series of exposure indexes, based on an arithmetic integration of aircraft operations, were correlated with summated aircraft noise annoyance responses. None of these correlations were as good as the CNR index which assumes a logrithmetic integration of numbers of aircraft exposures and includes a day-night differential weighting of 10:1. There were substantial variations in average annoyance responses among communities with similar CNR exposures, substantiating previous findings that attitudinal and other personal variables also play an important role in determining annoyance differences.

  7. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  8. [Occupational risk related to optical radiation exposure in construction workers].

    PubMed

    Gobba, F; Modenese, A

    2012-01-01

    Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.

  9. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  10. Environmental effects on composites for aircraft

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    A number of ongoing, long-term environmental effects programs for composite materials are evaluated. The flight service experience was evaluated for 142 composite aircraft components after more than 5 years and 1 million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at 5 sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation was observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  11. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    PubMed Central

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  12. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  13. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  14. [Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system "dose aware"].

    PubMed

    Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C

    2014-08-01

    There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be

  15. Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station.

    PubMed

    Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L

    2015-02-01

    The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.

  16. Estimated Internal and External Radiation Exposure of Caregivers of Patients With Pediatric Neuroblastoma Undergoing 131I Metaiodobenzylguanidine Therapy: A Prospective Pilot Study.

    PubMed

    Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin

    2017-04-01

    Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.

  17. Parental knowledge of radiation exposure in medical imaging used in the pediatric emergency department.

    PubMed

    Hartwig, Hans-David R; Clingenpeel, Joel; Perkins, Amy M; Rose, Whitney; Abdullah-Anyiwo, Joel

    2013-06-01

    We sought to quantify the knowledge base among parents and legal guardians presenting to our pediatric emergency department regarding radiation exposure during medical imaging and potential risks to children resulting from ionizing radiation. We sought to examine if a child's previous exposure to medical imaging changed caregiver knowledge base and discern caregivers' preference for future education on this topic. A prospective convenience sample survey was performed of caregivers who presented with their child to our tertiary pediatric emergency department. Parents or legal guardians (18-89 years) who accompanied a child (0-17 years) were eligible for inclusion and approached for enrollment. A structured questionnaire was administered by trained interviewers, and a chart review was conducted to ascertain if their child had a history of previous imaging. Sixty percent of caregivers interviewed (n = 205 of 340) did not associate any long-term negative effects with medical imaging. Among participants who did express a perceived risk from medical imaging radiation exposure, only 50% could indicate a known negative effect from exposure. We found no significant association between a child having had documented imaging studies and awareness of long-term negative effects (P = 0.22). Participants preferred to learn more about this topic from an Internet-based resource (50%), informational pamphlet (38%), or via treating physician (33%). Parents and legal guardians are largely unaware that exposure to radiation during medical imaging carries an inherent risk for their child. Health care providers wishing to educate caregivers should utilize reliable Internet sources, educational pamphlets, and direct communication.

  18. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    DTIC Science & Technology

    2016-08-01

    Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury

  19. Separation of airborne and structureborne noise radiated by plates constructed of conventional and composite materials with applications for prediction of interior noise paths in propeller driven aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1986-01-01

    The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.

  20. A first-principles model for estimating the prevalence of annoyance with aircraft noise exposure.

    PubMed

    Fidell, Sanford; Mestre, Vincent; Schomer, Paul; Berry, Bernard; Gjestland, Truls; Vallet, Michel; Reid, Timothy

    2011-08-01

    Numerous relationships between noise exposure and transportation noise-induced annoyance have been inferred by curve-fitting methods. The present paper develops a different approach. It derives a systematic relationship by applying an a priori, first-principles model to the findings of forty three studies of the annoyance of aviation noise. The rate of change of annoyance with day-night average sound level (DNL) due to aircraft noise exposure was found to closely resemble the rate of change of loudness with sound level. The agreement of model predictions with the findings of recent curve-fitting exercises (cf. Miedma and Vos, 1998) is noteworthy, considering that other analyses have relied on different analytic methods and disparate data sets. Even though annoyance prevalence rates within individual communities consistently grow in proportion to duration-adjusted loudness, variability in annoyance prevalence rates across communities remains great. The present analyses demonstrate that 1) community-specific differences in annoyance prevalence rates can be plausibly attributed to the joint effect of acoustic and non-DNL related factors and (2) a simple model can account for the aggregate influences of non-DNL related factors on annoyance prevalence rates in different communities in terms of a single parameter expressed in DNL units-a "community tolerance level."

  1. Contamination and radiation exposure in central Europe after the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, A.; Mueck, K.; Loosli, H.H.

    1996-06-01

    Ten years ago, on 26 April 1986, as a consequence of an accident in Unit 4 of the Chernobyl-NPP, a large quantity of radioactive material was released into the atmosphere for some days. This material was spread over wide areas of Europe. Due to variable weather conditions the activity concentrations in air varied considerably in different regions. Also as a consequence of large variations in precipitation intensity-particularly in the regions of Southeastern Germany, Austria and Southern Switzerland-up to 100 kBq m{sup -2} {sup 137}Cs were deposited on the soil. Due to fallout, washout, and/or rainout, a range of foodstuffs weremore » contaminated, and foodstuffs directly exposed to the fallout [vegetables and green fodder (grass)] showed the highest contamination levels. Consequently, milk also showed a significantly increased activity concentration, in particular of {sup 131}I. In the following years contamination in all kinds of foodstuffs decreased, but elevated contamination levels in special pathways like venison and mushrooms are still observed to date. This contamination resulted in additional exposure, mainly due to external radiation from ground and from consumption of contaminated food. The radiation exposure in the most contaminated areas was calculated on the basis of model assumptions and was found to be about 1 mSv during the first year after the accident. Using this model, the ingestion pathway was overestimated by at least a factor of two. This additional exposure decreased and is now less than 1 % on average; in the most contaminated areas, this is a few percent of the average natural radiation exposure.« less

  2. Investigation of the relationship between aircraft noise and community annoyance in China.

    PubMed

    Guoqing, Di; Xiaoyi, Liu; Xiang, Shi; Zhengguang, Li; Qili, Lin

    2012-01-01

    A survey of community annoyance induced by aircraft noise exposure was carried out around Hangzhou Xiaoshan International Airport. To investigate the relationship curves between aircraft noise and the percentage of "highly annoyed" persons in China and also to get annoyance threshold of aircraft noise in China. Noise annoyance induced by aircraft noise exposure was assessed by 764 local residents around the airport using the International Commission on Biological Effect of Noise (ICBEN) scale. The status quo of aircraft noise pollution was measured by setting up 39 monitoring points. The interpolation was used to estimate the weighted effective continuous perceived noise levels (LWECPN) in different areas around the airport, and the graph of equal noise level contour was drawn. The membership function was used to calculate the annoyance threshold of aircraft noise. Data were analyzed using SPSS 16.0 and Origin 8.0. The results showed that if LWECPN was 64.3 dB (Ldn was 51.4 dB), then 15% respondents were highly annoyed. If LWECPN was 68.1 dB (Ldn was 55.0 dB), then 25% respondents were highly annoyed. The annoyance threshold of aircraft noise (LWECPN) was 73.7 dB, while the annoyance threshold of a single flight incident instantaneous noise level (LAmax) was 72.9 dB. People around the airport had felt annoyed before the aircraft noise LWECPN reached the standard limit.

  3. Occupational exposure to solar radiation in Australia: who is exposed and what protection do they use?

    PubMed

    Carey, Renee N; Glass, Deborah C; Peters, Susan; Reid, Alison; Benke, Geza; Driscoll, Timothy R; Fritschi, Lin

    2014-02-01

    Solar ultraviolet radiation (UVR) exposure is widely recognised as a leading cause of skin cancer, with outdoor workers being particularly at risk. Little is known on a national level about how many workers are exposed to solar radiation, the circumstances in which they are exposed, or their use of protective measures. The Australian Work Exposures Study (AWES) was a cross-sectional telephone survey of 5,023 Australian workers aged 18 to 65. A subset of 1,113 respondents who indicated they worked outdoors was asked about their exposure to solar radiation in terms of the amount of time they spent working outdoors, their working location and their use of sun protective measures. A total of 1,100 respondents (22% overall) were assessed as being exposed to solar radiation at work. Exposure was more likely among males and those residing in lower socioeconomic and regional areas. Sun protection was used by 95% of the respondents, although the level of protection varied among workers, with only 8.7% classified as fully protected. This study provides valuable information regarding solar exposure that has not previously been available. The results of this study will inform strategies for risk reduction. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  4. Lead exposure among automobile radiator repair workers and their children in New York City.

    PubMed

    Nunez, C M; Klitzman, S; Goodman, A

    1993-05-01

    Despite a comprehensive Occupational Safety and Health Administration lead standard, exposure to lead continues in many industries. This paper describes a blood lead screening and education program for automobile radiator repair workers and their families in New York City. Results showed that 67% of automobile radiator repair workers (n = 62) in 89% of the shops tested (n = 24) had blood lead levels in excess of 25 micrograms/dl. The vast majority of workers had never been tested previously, and none had received health and safety training regarding occupational lead exposure. Although none of the workers' children's blood lead levels were in excess of then-current guidelines, several had levels which may be associated with subclinical toxicity and in excess of the revised Centers for Disease Control guidelines of 10 micrograms/dl. This project demonstrates that lead exposure in the automotive radiator repair industry continues to be widespread and that local health departments can assist in hazard identification and remediation.

  5. Hypertension and exposure to noise near airports: the HYENA study.

    PubMed

    Jarup, Lars; Babisch, Wolfgang; Houthuijs, Danny; Pershagen, Göran; Katsouyanni, Klea; Cadum, Ennio; Dudley, Marie-Louise; Savigny, Pauline; Seiffert, Ingeburg; Swart, Wim; Breugelmans, Oscar; Bluhm, Gösta; Selander, Jenny; Haralabidis, Alexandros; Dimakopoulou, Konstantina; Sourtzi, Panayota; Velonakis, Manolis; Vigna-Taglianti, Federica

    2008-03-01

    An increasing number of people are exposed to aircraft and road traffic noise. Hypertension is an important risk factor for cardiovascular disease, and even a small contribution in risk from environmental factors may have a major impact on public health. The HYENA (Hypertension and Exposure to Noise near Airports) study aimed to assess the relations between noise from aircraft or road traffic near airports and the risk of hypertension. We measured blood pressure and collected data on health, socioeconomic, and lifestyle factors, including diet and physical activity, via questionnaire at home visits for 4,861 persons 45-70 years of age, who had lived at least 5 years near any of six major European airports. We assessed noise exposure using detailed models with a resolution of 1 dB (5 dB for United Kingdom road traffic noise), and a spatial resolution of 250 x 250 m for aircraft and 10 x 10 m for road traffic noise. We found significant exposure-response relationships between night-time aircraft as well as average daily road traffic noise exposure and risk of hypertension after adjustment for major confounders. For night-time aircraft noise, a 10-dB increase in exposure was associated with an odds ratio (OR) of 1.14 [95% confidence interval (CI), 1.01-1.29]. The exposure-response relationships were similar for road traffic noise and stronger for men with an OR of 1.54 (95% CI, 0.99-2.40) in the highest exposure category (> 65 dB; p(trend) = 0.008). Our results indicate excess risks of hypertension related to long-term noise exposure, primarily for night-time aircraft noise and daily average road traffic noise.

  6. Performance deficit produced by partial body exposures to space radiation

    USDA-ARS?s Scientific Manuscript database

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  7. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    ScienceCinema

    Wiley, Al; Sugarman, Steve

    2018-02-07

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  8. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Al; Sugarman, Steve

    2015-03-08

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  9. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation

    PubMed Central

    Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie

    2017-01-01

    The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431

  10. Handler, bystander and reentry exposure to TCDD from application of Agent Orange by C-123 aircraft during the Vietnam War.

    PubMed

    Ross, John H; Hewitt, Andrew; Armitage, James; Solomon, Keith; Watkins, Deborah K; Ginevan, Michael E

    2015-02-01

    Using validated models and methods routinely employed by pesticide regulatory agencies, the absorbed dosages of Agent Orange (AO) herbicide contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were estimated for mixer/loaders, applicators, and individuals in the vicinity of applications of AO by C-123 aircraft during the Vietnam War. Resulting dosages of TCDD were then transformed to estimates of adipose residues, and compared to population biomonitoring of known mixer/loaders and applicators as well as ground troops in Vietnam and civilians in the U.S. Results demonstrate that mixer/loaders and applicators had the greatest exposures and their measured residues of TCDD in adipose were consistent with the estimated exposures. Further, the potentially exposed ground troops, including those who could have been directly sprayed during aerial defoliation, had measured adipose residues that were consistent with those in civilian U.S. populations with no defined source of exposure exposures and both of those cohorts had orders of magnitude less exposure than the mixer/loaders or applicators. Despite the availability of validated exposure modeling methods for decades, the quantitative TCDD dose estimates presented here are the first of their kind for the Vietnam conflict. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  12. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    PubMed

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  13. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  14. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  15. Fundamentals of Aerospace Medicine: Cosmic Radiation

    NASA Technical Reports Server (NTRS)

    Bagshaw, Michael; Cucionotta, Francis A.

    2007-01-01

    Cosmic rays were discovered in 1911 by the Austrian physicist, Victor Hess. The planet earth is continuously bathed in high-energy galactic cosmic ionizing radiation (GCR), emanating from outside the solar system, and sporadically exposed to bursts of energetic particles from the sun referred to as solar particle events (SPEs). The main source of GCR is believed to be supernovae (exploding stars), while occasionally a disturbance in the sun's atmosphere (solar flare or coronal mass ejection) leads to a surge of radiation particles with sufficient energy to penetrate the earth's magnetic field and enter the atmosphere. The inhabitants of planet earth gain protection from the effects of cosmic radiation from the earth s magnetic field and the atmosphere, as well as from the sun's magnetic field and solar wind. These protective effects extend to the occupants of aircraft flying within the earth s atmosphere, although the effects can be complex for aircraft flying at high altitudes and high latitudes. Travellers in space do not have the benefit of this protection and are exposed to an ionizing radiation field very different in magnitude and quality from the exposure of individuals flying in commercial airliners. The higher amounts and distinct types of radiation qualities in space lead to a large need for understanding the biological effects of space radiation. It is recognized that although there are many overlaps between the aviation and the space environments, there are large differences in radiation dosimetry, risks and protection for airline crew members, passengers and astronauts. These differences impact the application of radiation protection principles of risk justification, limitation, and the principle of as low as reasonably achievable (ALARA). This chapter accordingly is divided into three major sections, the first dealing with the basic physics and health risks, the second with the commercial airline experience, and the third with the aspects of cosmic

  16. Knowledge of outdoor workers on the effects of natural UV radiation and methods of protection against exposure.

    PubMed

    Hault, K; Rönsch, H; Beissert, S; Knuschke, P; Bauer, A

    2016-04-01

    The most important but influenceable risk factor in the development of skin cancer is the unprotected exposure to solar ultraviolet (UV) radiation. In order to assure adequate and effective protection against UV exposure, a level of knowledge about solar radiation and its effects is required. The objective of this study was to assess the knowledge of workers in outdoor professions on the effects of natural UV radiation and methods of protection against exposure. Forty outdoor workers were given a standardized questionnaire designed to ascertain their level of knowledge. The majority of participants knew exposure to solar radiation can be detrimental depending on exposure time. Eighty-three percentage recognized that people working regularly in an outdoor environment may be at risk due to high exposure. Long-sleeved clothing plus headgear and sunscreen containing sun-protecting substances were deemed adequate methods of protection by 83% and 85% respectively. Seventy percentage of the outdoor workers were familiar with the definition of the sun protection factor (SPF), yet only 25% correctly identified the amount of sunscreen needed to achieve the SPF as indicated on the product. A mere 8% of participants knew that symptoms of a sunburn first became apparent 3 h after sun exposure and only 18% were able to accurately gauge the amount of time they could spend in the sun before developing one. Although 30% had heard of the ultraviolet index (UVI), only 13% understood that protecting your skin using additional measures is recommended as of UVI 3. Overall, 30% of the outdoor workers thought themselves sufficiently protected against the harmful effects of the sun. While the participants of this study had a basic fundamental understanding of the effects of solar radiation and methods of protection against exposure, there remains an urgent need for further clarification across all demographic groups. © 2016 European Academy of Dermatology and Venereology.

  17. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  18. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  19. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  20. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing.

    PubMed

    Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh

    2014-07-01

    To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.