Sample records for aircraft vertical profiles

  1. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by <400 nm. The

  2. Modeling the CAPTEX Vertical Tracer Concentration Profiles.

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Stunder, Barbara J. B.

    1988-05-01

    Perfluorocarbon tracer concentration profiles measured by aircraft 600-900 km downwind of the release locations during CAPTEX are discussed and compared with some model results. In general, the concentrations decreased with height in the upper half of the boundary layer where the aircraft measurements were made. The results of a model sensitivity study suggested that the shape of the profile was primarily due to winds increasing with height and relative position of the sampling with respect to the upwind and downwind edge of the plume. Further modeling studies showed that relatively simple vertical mixing parameterizations could account for the complex vertical plume structure when the model had sufficient vertical resolution. In general, the model performed better with slower winds and corresponding longer transport times.

  3. Evaluation of vertical profiles to design continuous descent approach procedure

    NASA Astrophysics Data System (ADS)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  4. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  5. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  6. Computer programs for generation and evaluation of near-optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.; Patmore, L. C.

    1983-01-01

    Two extensive computer programs were developed. The first, called OPTIM, generates a reference near-optimum vertical profile, and it contains control options so that the effects of various flight constraints on cost performance can be examined. The second, called TRAGEN, is used to simulate an aircraft flying along an optimum or any other vertical reference profile. TRAGEN is used to verify OPTIM's output, examine the effects of uncertainty in the values of parameters (such as prevailing wind) which govern the optimum profile, or compare the cost performance of profiles generated by different techniques. A general description of these programs, the efforts to add special features to them, and sample results of their usage are presented.

  7. Vertical profiles in NO3 and N2O5 measured from an aircraft: Results from the NOAA P-3 and surface platforms during the New England Air Quality Study 2004

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Osthoff, Hans D.; Stutz, Jochen; Ryerson, Thomas B.; Wollny, Adam G.; Brock, Charles A.; Warneke, Carsten; de Gouw, Joost A.; Atlas, Eliot; Neuman, J. Andrew; Holloway, John S.; Lerner, Brian M.; Williams, Eric J.; Kuster, William C.; Goldan, Paul D.; Angevine, Wayne M.; Trainer, Michael; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2007-11-01

    The nocturnal nitrogen oxides, NO3 and N2O5, are important to the chemical transformation and transport of NOx, O3 and VOC. Their concentrations, sources and sinks are known to be vertically stratified in the nighttime atmosphere. In this paper, we report vertical profiles for NO3 and N2O5 measured from an aircraft (the NOAA P-3) as part of the New England Air Quality Study in July and August 2004. The aircraft data are compared to surface measurements made in situ from a ship and by long-path DOAS. Consistent with previous, vertically resolved studies of NO3 and N2O5, the aircraft measurements show that these species occur at larger concentrations and are longer lived aloft than they are at the surface. The array of in situ measurements available on the P-3 allows for investigation of the mechanisms that give rise to the observed vertical gradients. Selected vertical profiles from this campaign illustrate the role of biogenic VOC, particularly isoprene and dimethyl sulfide, both within and above the nocturnal and/or marine boundary layer. Gradients in relative humidity and aerosol surface may also create a vertical gradient in the rate of N2O5 hydrolysis. Low-altitude intercepts of power plant plumes showed strong vertical stratification, with plume depths of 80 m. The efficiency of N2O5 hydrolysis within these plumes was an important factor determining the low-level NOx and O3 transport or loss at night. Averages of nocturnal O3, NO2, NO3 and N2O5 binned according to altitude were consistent with the trends from individual profiles. While production rates of NO3 peaked near the surface, lifetimes of NO3 and N2O5 were maximum aloft, particularly in the free troposphere. Variability in NO3 and N2O5 was large and exceeded that of NO2 or O3 because of inhomogeneous distribution of NOx emissions and NO3 and N2O5 sinks.

  8. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  9. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  10. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-08-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  11. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  12. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  13. Vertical electromagnetic profiling (VEMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  14. Preliminary design of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Borchers, Paul; Gomer, Charlie; Henderson, Dean; Jacobs, Tavis; Lawson, Todd; Peterson, Eric; Ross, Tweed, III; Bellmard, Larry

    1990-01-01

    The preliminary design study of a supersonic Short Takeoff and Vertical Landing (STOVL) fighter is presented. A brief historical survey of powered lift vehicles was presented, followed by a technology assessment of the latest supersonic STOVL engine cycles under consideration by industry and government in the U.S. and UK. A survey of operational fighter/attack aircraft and the modern battlefield scenario were completed to develop, respectively, the performance requirements and mission profiles for the study. Three configurations were initially investigated with the following engine cycles: a hybrid fan vectored thrust cycle, a lift+lift/cruise cycle, and a mixed flow vectored thrust cycle. The lift+lift/cruise aircraft configuration was selected for detailed design work which consisted of: (1) a material selection and structural layout, including engine removal considerations, (2) an aircraft systems layout, (3) a weapons integration model showing the internal weapons bay mechanism, (4) inlet and nozzle integration, (5) an aircraft suckdown prediction, (6) an aircraft stability and control analysis, including a takeoff, hover, and transition control analysis, (7) a performance and mission capability study, and (8) a life cycle cost analysis. A supersonic fighter aircraft with STOVL capability with the lift+lift/cruise engine cycle seems a viable option for the next generation fighter.

  15. Update of Aircraft Profile Data for the Integrated Noise Model Computer Program. Volume 2. Appendix A: Aircraft Takeoff and Landing Profiles

    DTIC Science & Technology

    1992-03-01

    8 KT) 02- 10 -1992 09: 48 :32 AIRCRAFT ID AIRCRAFT AND ENGINE AIRCRAFT NUMBER NAMES CATEGORY ------------------- ------------------- -------- 003...MAX CLIMB 8 CLIMB ZErO MAX CLIMB 9 CLIMB ZERO MAX CLIMB A-21 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 02- 10 -1992 09: 48 :36 AIRCRAFT AIRCRAFT AND ENGINE...CLIMB ZERO USR SUPPL 34033 LB 10 CLIMB ZERO USR SUPPL 34798 LB A-194 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 06-24-1991 10 :33: 48 AIRCRAFT AIRCRAFT

  16. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 2 : appendix A aircraft takeoff and landing profiles

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...

  17. Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft

    DTIC Science & Technology

    2012-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VIABILITY OF CROSS...FLOW FAN FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT by Christopher T. Delagrange June 2012 Thesis Advisor: Garth V. Hobson Second...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Viability of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft 5. FUNDING

  18. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  19. Impacts of Space Shuttle thermal protection system tile on F-15 aircraft vertical tile

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1985-01-01

    Impacts of the space shuttle thermal protection system (TPS) tile on the leading edge and the side of the vertical tail of the F-15 aircraft were analyzed under different TPS tile orientations. The TPS tile-breaking tests were conducted to simulate the TPS tile impacts. It was found that the predicted tile impact forces compare fairly well with the tile-breaking forces, and the impact forces exerted on the F-15 aircraft vertical tail were relatively low because a very small fraction of the tile kinetic energy was dissipated in the impact, penetration, and fracture of the tile. It was also found that the oblique impact of the tile on the side of the F-15 aircraft vertical tail was unlikely to dent the tail surface.

  20. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  1. Analysis of wind profile measurements from an instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Paige, Terry S.; Murphy, Patrick J.

    1990-01-01

    The results of an experimental program to determine the capability of measuring wind profiles on support of STS operations with an instrumented aircraft are discussed. These results are a compilation of the flight experiments and the statistical data comparing the quality of the aircraft measurements with quasi-simultaneous and quasi-spatial overlapping Jimsphere measurements. An instrumented aircraft was chosen as a potential alternative to the Jimsphere/radar system for expediting the wind profile calculation by virtue of the ability of an aircraft to traverse the altitudes of interest in roughly 10 minutes. The two aircraft which participated in the study were F-104 and ER-2.

  2. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  3. Moving-base simulation evaluation of thrust margins for vertical landing for the NASA YAV-8B Harrier aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.

    1993-01-01

    A simulation experiment was conducted on Ames Research Center's Vertical Motion Simulator to evaluate the thrust margin for vertical landing required for the YAV-8B Harrier. Two different levels of ground effect were employed, representing the aircraft with or without lift improvement devices installed. In addition, two different inlet temperature profiles were included to cover a wide range of hot gas ingestion. For each ground effect and hot gas ingestion variant, vertical landings were performed at successively heavier weights, with the pilot assessing the acceptability of the operation in each case. Results are presented as a function of hover weight ratio and a metric of the mean ground effect and ingestion that reflect the increase in thrust margin required to provide acceptable control of sink rate during the descent to touchdown with increasing suck down and hot gas ingestion.

  4. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-11-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter category serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7 ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1 ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Some profiles may have been influenced by biomass burning sources as well, making quantitative attribution of organic aerosol sources difficult. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  5. Distributed Method to Optimal Profile Descent

    NASA Astrophysics Data System (ADS)

    Kim, Geun I.

    Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.

  6. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  7. RSRA vertical drag test report. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Flemming, R. J.

    1981-01-01

    The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.

  8. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    NASA Astrophysics Data System (ADS)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and

  9. How well can we Measure the Vertical Profile of Tropospheric Aerosol Extinction?

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.

    2005-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (MOP, May 2003) yielded one of the best measurement sets obtained to-date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(sub ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well characterized aerosol sampling ability carrying well proven and new aerosol instrumentation, devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from 6 different instuments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, ground-based Raman lidar and 2 ground-based elastic backscatter lidars. We find the in-situ measured sigma(sub ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002 - 0.004 K/m equivalent to 12-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(sub ep)(lambda) are higher. An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP and we expect better agreement from the recently restored system looking at the collective results from 6 field campaigns conducted since 1996, airborne in situ measurements of sigma(sub ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(sub ep)(lambda). On the other hand, sigma(sub ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state of-the art instrumentation is 15-20% at visible wavelengths and potentially larger in

  10. Radiation profiles through the atmosphere measured by an auto controlled glider aircraft

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf

    2014-05-01

    In 2011 radiation measurements through the atmosphere were made with a balloon borne short- and longwave net radiometer. These measurements were very promising and therefore new and improved sensors from Kipp&Zonen were used to equip a glider aircraft together with the standard Swiss radiosonde from Meteolabor AG. The glider serves as returning platform for the expensive and well calibrated radiation sensors. Double balloon technique is used to prevent pendulum motion during the ascent and to keep the radiation instruments as horizontal as possible. The built-in autopilot allows to return the gliderradiosonde to the launch site or to land it on predefined open space, which makes recovery much easier. The new return gliderradiosonde technique as well as new measurement possibilities will be shown. First measurements show radiation profiles through the atmosphere during different cloud conditions. Radiation profiles during different daytimes show the temporal resolution of vertical radiation profiles trough the atmosphere.

  11. Investigating Methods for Serving Visualizations of Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  12. Application of thrusting ejectors to tactical aircraft having vertical lift and short-field capability

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Stoll, F.; Aoyagi, K.

    1981-01-01

    The status of ejector development in terms of application to V/STOL aircraft is reported in three categories: aircraft systems and ejector concepts; ejector performance including prediction techniques and experimental data base available; and, integration of the ejector with complete aircraft configurations. Available prediction techniques are reviewed and performance of three ejector designs with vertical lift capability is summarized. Applications of the 'fuselage' and 'short diffuser' ejectors to fighter aircraft are related to current and planned research programs. Recommendations are listed for effort needed to evaluate installed performance.

  13. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Dubé, W. P.; Bahreini, R.; Middlebrook, A. M.; Brock, C. A.; Warneke, C.; de Gouw, J. A.; Washenfelder, R. A.; Atlas, E.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Schwarz, J. P.; Spackman, R.; Trainer, M.; Parrish, D. D.; Fehshenfeld, F. C.; Ravishankara, A. R.

    2013-05-01

    Organic compounds are a large component of aerosol mass, but organic aerosol (OA) sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC) and urban pollutants were concentrated within the nocturnal boundary layer (NBL), which varied in depth from 100-400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2-2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h-1), mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m-3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m-3.

  14. Flight investigation of a vertical-velocity command system for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

    1977-01-01

    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

  15. Vertical Profiles as Observational Constraints on Nitrous Oxide (N2O) Emissions in an Agricultural Region

    NASA Astrophysics Data System (ADS)

    Pusede, S.; Diskin, G. S.

    2015-12-01

    We use diurnal variability in near-surface N2O vertical profiles to derive N2O emission rates. Our emissions estimates are ~3 times greater than are accounted for by inventories, a discrepancy in line with results from previous studies using different approaches. We quantify the surface N2O concentration's memory of local surface emissions on previous days to be 50-90%. We compare measured profiles both over and away from a dense N2O source region in the San Joaquin Valley, finding that profile shapes, diurnal variability, and changes in integrated near-surface column abundances are distinct according to proximity to source areas. To do this work, we use aircraft observations from the wintertime DISCOVER-AQ project in California's San Joaquin Valley, a region of intense agricultural activity.

  16. Update of aircraft profile data for the Integrated Noise Model computer program, vol. 3 : appendix B aircraft performance coefficients

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, : aircraft aerodynamic performance coefficients and engine : performance coefficients for the aircraft data base : (Database 9) in the Integrated Noise Model (INM) computer : program. Flight...

  17. A manual control theory analysis of vertical situation displays for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Baron, S.; Levison, W. H.

    1973-01-01

    Pilot-vehicle-display systems theory is applied to the analysis of proposed vertical situation displays for manual control in approach-to-landing of a STOL aircraft. The effects of display variables on pilot workload and on total closed-loop system performance was calculated using an optimal-control model for the human operator. The steep approach of an augmentor wing jet STOL aircraft was analyzed. Both random turbulence and mean-wind shears were considered. Linearized perturbation equations were used to describe longitudinal and lateral dynamics of the aircraft. The basic display configuration was one that abstracted the essential status information (including glide-slope and localizer errors) of an EADI display. Proposed flight director displays for both longitudinal and lateral control were also investigated.

  18. Vertical dispersion of an aircraft wake: Aerosol-lidar analysis of entrainment and detrainment in the vortex regime

    NASA Astrophysics Data System (ADS)

    Sussmann, Ralf

    1999-01-01

    Vertical dispersion of contrails in the vortex regime is investigated by focusing on the role of entrainment and detrainment of exhaust with respect to the pair of trailing vortices. A ground-based backscatter-depolarization lidar with an integrated CCD camera provides information on optical and geometrical parameters of the contrail in the time span between 5.7 and 50.3 s behind a B747-400 aircraft. This is combined with coincident airborne in situ measurements of turbulence and the vertical profiles of temperature and wind speed in a case study. The two wingtip vortices, separated by 47 m, are descending with an increasing speed (2.5-3.1 m/s for 10.8-47.8 s behind aircraft) in the weakly non-stably-stratified atmosphere. The turbulent vertical dissipation rate on the day of the study above southern Germany is a factor of 1000 higher than found typically above oceans at cruising altitude. At 4.2 s behind the aircraft, a diffuse secondary wake starts to evolve above the two wingtip vortices. After ≈ 50 s the secondary wake encloses a cross-sectional area (4410 m2) comparable to that of the primary wake (4620 m2) and a relative ice surface area of 1:5. The observed early onset of the secondary wake is conjectured to be due to turbulent detrainment of fluid out of the primary wake which can be enhanced by detrainment due to baroclinic forces later in the vortex regime evolution. By exclusion of other mechanisms of secondary wake formation, detrainment of fluid from the primary wake is concluded to be the precondition for secondary wake formation. Detrainment due to baroclinic forces, shear or turbulence is, in general, unlikely to be absent for typical atmospheric conditions. It is suggested that the ambient humidity level may determine when a secondary wake is visible above a vortex pair and when it is not.

  19. Strapdown system redundancy management flight demonstration. [vertical takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The suitability of strapdown inertial systems in providing highly reliable short-term navigation for vertical take-off and landing (VTOL) aircraft operating in an intra-urban setting under all-weather conditions was assessed. A preliminary design configuration of a skewed sensor inertial reference system employing a redundancy management concept to achieve fail-operational, fail-operational performance, was developed.

  20. TOMS Validation Based on Profiles of Aerosol Properties in the Lower Troposphere as Obtained with Light Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Maring, Hal; Savoie, Dennis

    2003-01-01

    The goal of the University of Miami Aerosol Group (UMAG) in this project was to make measurements of vertical profiles of aerosol properties and aerosol optical depth using a light aircraft. The UMAG developed a light aircraft aerosol package (LAAP) that was used in light aircraft (Cessna 172) during the Puerto Rico Dust Experiment (PRIDE). This field campaign took place on Puerto Rico during July 2000. Design details and results from the use of the LAAP were presented at TOMS Science team meetings on April 1998, April 1999, and May 2000. Results from the LAAP collected during the PRIDE Experiment were presented at the Fall Meeting of the American Geophysical Union, December 2000. Some of the results from the LAAP collected during the PRIDE Experiment have been accepted for publication in the Journal of Geophysical Research in a "topical section" made up of papers from the PRIDE Program.

  1. Crash Simulation of a Vertical Drop Test of a Commuter-Class Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-ft/s (9.14-m/s) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kg) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial code for performing explicit transient dynamic simulations. Predictions of structural deformation and selected time-history responses were generated. The simulation was successfully validated through extensive test-analysis correlation.

  2. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China.

    PubMed

    Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei

    2015-08-01

    Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.

  3. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  4. Sampling the Vertical Moisture Structure of an Atmospheric River Event Using Airborne GPS Radio Occultation Profiling

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Malloy, K.; Murphy, B.; Sussman, J.; Zhang, W.

    2015-12-01

    Atmospheric rivers (ARs) are of high concern in California, bringing significant rain to the region over extended time periods of up to 5 days, potentially causing floods, and more importantly, contributing to the Sierra snowpack that provides much of the regional water resources. The CalWater project focuses on predicting the variability of the West Coast water supply, including improving AR forecasting. Unfortunately, data collection over the ocean remains a challenge and impacts forecasting accuracy. One novel technique to address this issue includes airborne GPS radio occultation (ARO), using broadcast GPS signals from space to measure the signal ray path bending angle and refractivity to retrieve vertical water vapor profiles. The Global Navigation Satellite System Instrument System for Multistatic and Occultation Sensing (GISMOS) system was developed for this purpose for recording and processing high-sample rate (10MHz) signals in the lower troposphere. Previous studies (Murphy et al, 2014) have shown promising results in acquiring airborne GPS RO data, comparing it to dropsondes and numerical weather models. CalWater launched a field campaign in the beginning of 2015 which included testing GISMOS ARO on the NOAA GIV aircraft for AR data acquisition, flying into the February 6th AR event that brought up to 35 cm of rain to central California. This case study will compare airborne GPS RO refractivity profiles to the NCEP-NCAR final reanalysis model and dropsonde profiles. We will show the data distribution and explain the sampling characteristics, providing high resolution vertical information to the sides of the aircraft in a manner complementary to dropsondes beneath the flight track. We will show how this method can provide additional reliable data during the development of AR storms.

  5. Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm

    NASA Technical Reports Server (NTRS)

    Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)

    2004-01-01

    In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.

  6. First Comparison of Remote Vertical Profiles of Refractory Black Carbon between the Atlantic and Pacific Basins on Global Scales

    NASA Astrophysics Data System (ADS)

    Katich, J. M.; Schwarz, J. P.

    2016-12-01

    The NASA Atmospheric Tomography Mission (ATom) provides a first opportunity to obtain vertical profiles of refractory black carbon (rBC) mass mixing ratios over global scale ( 65S - 85 N latitude) in the remote atmosphere over both the Pacific and Atlantic basins. A NOAA single-particle soot photometer (SP2) will fly on the NASA DC-8 research aircraft over July/August of 2016, obtaining near- continuous vertical profiling ( 0.3 to 12 km) over most of the Earth's latitude range, akin to the NSF HIPPO campaign that occurred only over the Pacific basin during 2009-2011. HIPPO analysis suggested both that high altitude rBC mass mixing ratios (MMRs) were likely zonally well mixed, and that global model estimates of remote rBC MMR throughout the upper troposphere globally, and not just over the Pacific, were likely biased high. Here we will present an initial analysis of the new, more complete data set in which Atlantic rBC profiles will be used to assess these prior suppositions.

  7. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  8. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  9. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  10. Compound Wing Vertical Takeoff and Landing Small Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Inventor); Motter, Mark A. (Inventor); Deloach, Richard (Inventor); Vranas, Thomas L. (Inventor); Prendergast, Joseph M. (Inventor); Lipp, Brittney N. (Inventor)

    2017-01-01

    Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.

  11. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    PubMed

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  12. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 3: User's manual for VATOL simulation program

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.

  13. Surface tension profiles in vertical soap films

    NASA Astrophysics Data System (ADS)

    Adami, N.; Caps, H.

    2015-01-01

    Surface tension profiles in vertical soap films are experimentally investigated. Measurements are performed by introducing deformable elastic objets in the films. The shape adopted by those objects once set in the film is related to the surface tension value at a given vertical position by numerically solving the adapted elasticity equations. We show that the observed dependency of the surface tension versus the vertical position is predicted by simple modeling that takes into account the mechanical equilibrium of the films coupled to previous thickness measurements.

  14. MAX-DOAS measurements of tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO in the suburban area of Xintai city, China: comparisons with aircraft and ground-based measurements, and investigation of transport

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Dörner, Steffen; Wagner, Thomas; Wang, Yuying; He, Hao; Ren, Xinrong; Li, Zhanqing; Li, Donghui; Xu, Hua; Li, Zhengqiang; Xu, Jiwei; Liu, Dong; Wang, Zhenzhu; De Smedt, Isabelle; Theys, Nicolas

    2017-04-01

    Xingtai is one of the most polluted cities in China and is located on the western edge of the large industrial zone of the North China plain. The Taihang Mountains in the west of Xingtai block transport of polluted air mass towards western China and cause accumulation of pollutants along the mountains. Severely polluted air harms health of about seven million inhabitants in Xingtai. Air pollution also affects condensation nuclei for the formation of convective clouds, and thus potentially initiates heavy rainfall. In order to study the interaction of pollutants and clouds, the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) Interaction Joint Experiment was held around Xingtai in the period from May to June 2016. Various instruments measuring gaseous pollutants, aerosols, clouds, precipitation, and radiance are operated at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xintai city and aboard two aircrafts which fly up and down in spirals between 0.2 km and 4 km over the station. We operated a Multi Axis (MAX-) Differential Optical Absorption Spectroscopy (DOAS) instrument at the station in order to derive tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO during daytime with a time resolution of about 10 minutes. We apply our profile inversion algorithm PriAM based on the optimal estimation theory to retrieve trace gas and aerosol profiles. The results are compared with other ground-based and aircraft measurements. In general reasonable consistency was found, but the comparison also revealed a considerable smoothing effect of the MAX-DOAS retrievals. The MAX-DOAS results are applied to characterize the vertical profiles and the diurnal cycles of the trace gas and aerosol pollutants. Lifted layers of pollutants, especially aerosols and SO2, were frequently observed during the campaign indicating frequent transport events of pollutants over the station. Rapid cleaning events of pollutants were also observed. We further investigate the

  15. Update of aircraft profile data for the Integrated Noise Model computer program, vol 1: final report

    DOT National Transportation Integrated Search

    1992-03-01

    This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...

  16. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  17. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    aerosol and black carbon mass mixing ratio with altitude than found in the observations. In contrast, measured profiles from the HIPPO project are qualitatively captured well. Similar conclusions hold for the comparison of simulated and measured aerosol particle number concentrations. On the one hand, these results exemplify the difficulty in evaluating the representativeness of the simulated global climatological state of the aerosol by means of comparison with individually measured vertical profiles. On the other hand, it highlights the value of aircraft campaigns with large spatial and temporal coverage for model evaluation.

  18. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  19. Determination of accurate vertical atmospheric profiles of extinction and turbulence

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Campbell, James; Hallenborg, Eric

    2017-09-01

    Our ability to generate an accurate vertical profile characterizing the atmosphere from the surface to a point above the boundary layer top is quite rudimentary. The region from a land or sea surface to an altitude of 3000 meters is dynamic and particularly important to the performance of many active optical systems. Accurate and agile instruments are necessary to provide measurements in various conditions, and models are needed to provide the framework and predictive capability necessary for system design and optimization. We introduce some of the path characterization instruments and describe the first work to calibrate and validate them. Along with a verification of measurement accuracy, the tests must also establish each instruments performance envelope. Measurement of these profiles in the field is a problem, and we will present a discussion of recent field test activity to address this issue. The Comprehensive Atmospheric Boundary Layer Extinction/Turbulence Resolution Analysis eXperiment (CABLE/TRAX) was conducted late June 2017. There were two distinct objectives for the experiment: 1) a comparison test of various scintillometers and transmissometers on a homogeneous horizontal path; 2) a vertical profile experiment. In this paper we discuss only the vertical profiling effort, and we describe the instruments that generated data for vertical profiles of absorption, scattering, and turbulence. These three profiles are the core requirements for an accurate assessment of laser beam propagation.

  20. In-situ NO and NO2 profiles measured onboard passenger aircraft over Frankfurt airport in Germany

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Houben, Norbert; Blomel, Torben; Tappertzhofen, Marlon; Volz-Thomas, Andreas; Petzold, Andreas

    2017-04-01

    NOx (sum of NO and NO2) play a central role in atmospheric chemistry related to ozone and oxidation capacity (OH and NO3 radicals). The most important sources of NOx in the upper troposphere are lightning, and transport from the boundary layer (combustion processes, from biomass burning, agriculture, and industry/transport/aircraft emissions). In-situ measurements of NOx from the upper troposphere and lower stratosphere (UTLS) down to the surface are rare, but important for understanding the local photochemistry and for the assessment of the impact of aviation on the budgets of greenhouse gases such as ozone. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System) operates a global-scale monitoring system for atmospheric temperature, trace gases, aerosols and clouds at high spatial resolution by passenger aircraft. The IAGOS NOx instrument is designed for the autonomous measurement of nitrogen oxides over serval months. The measurement principle is based on the well-established chemiluminescence technique, using one channel with sequential measurements of NO and NOx every 50 s. Here, we present vertical profiles of nitrogen oxides from the UTLS down to the surface for day and night time conditions obtained over 12 months in 2015 and 2016. The analysis focuses mainly on Europe, the region with the largest amount of profiles. Other regions (North America, South America and East Asia) will also be discussed. Typically, NO and NO2 varies in the low ppt range in the UT, slightly increasing towards the pressure altitude of 200 hPa. Down to the surface, the values of NO and of NO2 increase up to several ppb. These profiles combined with in-situ water vapor and cloud parameters will be valuable for validation of model and of satellite data in the future.

  1. On vertical profile of ozone at Syowa

    NASA Technical Reports Server (NTRS)

    Chubachi, Shigeru

    1994-01-01

    The difference in the vertical ozone profile at Syowa between 1966-1981 and 1982-1988 is shown. The month-height cross section of the slope of the linear regressions between ozone partial pressure and 100-mb temperature is also shown. The vertically integrated values of the slopes are in close agreement with the slopes calculated by linear regression of Dobson total ozone on 100-mb temperature in the period of 1982-1988.

  2. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio

  3. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    NASA Astrophysics Data System (ADS)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  4. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  5. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  6. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  7. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  8. Unsteady aerodynamic characterization of a military aircraft in vertical gusts

    NASA Technical Reports Server (NTRS)

    Lebozec, A.; Cocquerez, J. L.

    1985-01-01

    The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.

  9. Ensuring Interoperability Between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seungman

    2017-01-01

    The Unmanned Aircraft Systems (UAS) community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. Each definition was evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance in terms of how well it achieved: 1) the primary objective of restricting DAA vertical guidance prior to RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at DAA alerts when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region where DAA vertical guidance is restricted when the time to closest point of approach (CPA) is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  10. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  11. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  12. Ozone vertical profile changes over South Pole

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.

    1994-01-01

    Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.

  13. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  14. How Well do State-of-the-Art Techniques Measuring the Vertical Profile of Tropospheric Aerosol Extinction Compare?

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Ferrare, R.; Flynn, C.; Elleman, R.; Covert, D.; Strawa, A.; Welton, E.; Turner, D.; Jonsson, H.; Redemann, J.; hide

    2006-01-01

    The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated

  15. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less

  16. Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Sadovsky, Alexander V.

    2015-01-01

    An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.

  17. Optimizing Aircraft Trajectories with Multiple Cruise Altitudes in the Presence of Winds

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Sridhar, Banavar; Grabbe, Shon

    2014-01-01

    This study develops a trajectory optimization algorithm for approximately minimizing aircraft travel time and fuel burn by combining a method for computing minimum-time routes in winds on multiple horizontal planes, and an aircraft fuel burn model for generating fuel-optimal vertical profiles. It is applied to assess the potential benefits of flying user-preferred routes for commercial cargo flights operating between Anchorage, Alaska and major airports in Asia and the contiguous United States. Flying wind optimal trajectories with a fuel-optimal vertical profile reduces average fuel burn of international flights cruising at a single altitude by 1-3 percent. The potential fuel savings of performing en-route step climbs are not significant for many shorter domestic cargo flights that have only one step climb. Wind-optimal trajectories reduce fuel burn and travel time relative to the flight plan route by up to 3 percent for the domestic cargo flights. However, for trans-oceanic traffic, the fuel burn savings could be as much as 10 percent. The actual savings in operations will vary from the simulation results due to differences in the aircraft models and user defined cost indices. In general, the savings are proportional to trip length, and depend on the en-route wind conditions and aircraft types.

  18. A Direct Detection 1.6μm DIAL with Three Wavelengths for Measurements of Vertical CO2 Concentration and Temperature Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.

    2012-12-01

    We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical

  19. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  20. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  1. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  2. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  3. Aircraft landing control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor); Hansen, Rolf (Inventor)

    1982-01-01

    Upon aircraft landing approach, flare path command signals of altitude, vertical velocity and vertical acceleration are generated as functions of aircraft position and velocity with respect to the ground. The command signals are compared with corresponding actual values to generate error signals which are used to control the flight path.

  4. Subsonic Aircraft Soot: A Tracer Documenting Stratospheric Vertical Mixing and Barriers to Inter-Hemispheric Exchanges

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    Pole-to-pole variability of soot aerosol from subsonic aircraft is evidence of two important aspects of stratospheric transport. Vertical transport to 20 km pressure altitude from flight levels near 10-12 km cannot be explained by isentropic mixing. Instead, lofting in the tropics is a possibility. A strong meridional gradient implies that stratospheric soot aerosol residence time is shorter than are mixing times between the hemispheres. Therefore, little if any of exhaust constituents (with residence times similar to that of aircraft soot aerosol), emitted in heavily traveled flight corridors in northern mid-latitudes by a future supersonic fleet, would be transported to the southern hemisphere. However, a significant fraction of NOx could be lofted to altitudes above flight levels where it would dominate ozone depletion.

  5. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  6. Utilization of satellite imagery by in-flight aircraft. [for weather information

    NASA Technical Reports Server (NTRS)

    Luers, J. K.

    1976-01-01

    Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate.

  7. Design of a Low Cost Short Takeoff-vertical Landing Export Fighter/attack Aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, Anne; Bodeker, Dan, III; Miu, Steve; Petro, Laura; Senf, Cary Taylor; Woeltjen, Donald

    1990-01-01

    The design of a supersonic short takeoff and vertical landing (STOVL) aircraft is presented that is suitable for export. An advanced four poster, low bypass turbofan engine is to be used for propulsion. Preliminary aerodynamic analysis is presented covering a determination of CD versus CL, CD versus Mach number, as well as best cruise Mach number and altitude. Component locations are presented and center of gravity determined. Cost minimization is achieved through the use of developed subsystems and standard fabrication techniques using nonexotic materials. Conclusions regarding the viability of the STOVL design are presented.

  8. Radial-vertical profiles of tropical cyclone derived from dropsondes

    NASA Astrophysics Data System (ADS)

    Ren, Yifang

    The scopes of this thesis research are two folds: the first one is to the construct the intensity-based composite radial-vertical profiles of tropical cyclones (TC) using GPS-based dropsonde observations and the second one is to identify the major deficiencies of Mathur vortices against the dropsonde composites of TCs. The intensity-based dropsonde composites of TCs advances our understanding of the dynamic and thermal structure of TCs of different intensity along the radial direction in and above the boundary layer where lies the devastating high wind that causes property damages and storm surges. The identification of the major deficiencies of Mathur vortices in representing the radial-vertical profiles of TC of different intensity helps to improve numerical predictions of TCs since most operational TC forecast models need to utilize bogus vortices, such as Mathur vortices, to initialize TC forecasts and simulations. We first screen all available GPS dropsonde data within and round 35 named TCs over the tropical Atlantic basin from 1996 to 2010 and pair them with TC parameters derived from the best-track data provided by the National Hurricane Center (NHC) and select 1149 dropsondes that have continuous coverage in the lower troposphere. The composite radial-vertical profiles of tangential wind speed, temperature, mixing ratio and humidity are based for each TC category ranging from "Tropical Storm" (TS) to "Hurricane Category 1" (H1) through "Hurricane Category 5" (H5). The key findings of the dropsonde composites are: (i) all TCs have the maximum tangential wind within 1 km above the ground and a distance of 1-2 times of the radius of maximum wind (RMW) at the surface; (ii) all TCs have a cold ring surrounding the warm core near the boundary layer at a distance of 1-3 times of the RMW and the cold ring structure gradually diminishes at a higher elevation where the warm core structure prevails along the radial direction; (iii) the existence of such shallow cold

  9. Radially Magnetized Protoplanetary Disk: Vertical Profile

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  10. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  11. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  12. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less

  13. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.

    2015-03-01

    The combination of low anthropogenic emissions and large biogenic sources that characterizes the Southern Hemisphere (SH) leads to significant differences in atmospheric composition relative to the better studied Northern Hemisphere. This unique balance of sources poses significant challenges for global models. Carbon monoxide (CO) in particular is difficult to simulate in the SH due to the increased importance of secondary chemical production associated with the much more limited primary emissions. Here, we use aircraft observations from the 1991-2000 Cape Grim Overflight Program (CGOP) and the 2009-2011 HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO), together with model output from the SH Model Intercomparison Project, to elucidate the drivers of CO vertical structure in the remote SH. Observed CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific 10-20 years later, despite major differences in time periods, flight locations, and sampling strategies between the two data sets. These similarities suggest the processes driving observed vertical gradients are coherent across much of the remote SH and have not changed significantly over the past 2 decades. Model ability to simulate CO profiles reflects the interplay between biogenic emission sources, the chemical mechanisms that drive CO production from these sources, and the transport that redistributes this CO throughout the SH. The four chemistry-climate and chemical transport models included in the intercomparison show large variability in their abilities to reproduce the observed CO profiles. In particular, two of the four models significantly underestimate vertical gradients in austral summer and autumn, which we find are driven by long-range transport of CO produced from oxidation of biogenic compounds. Comparisons between the models show that more complex chemical

  14. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-07-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  15. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  16. A method for retrieving vertical ozone profiles from limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua

    2011-10-01

    A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.

  17. Measuring large-scale vertical motion in the atmosphere with dropsondes

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn

    2017-04-01

    Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.

  18. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  19. Static internal performance of ventral and rear nozzle concepts for short-takeoff and vertical-landing aircraft

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Carson, George T., Jr.

    1991-01-01

    The internal performance of two exhaust system concepts applicable to single-engine short-take-off and vertical-landing tactical fighter configurations was investigated. These concepts involved blocking (or partially blocking) tailpipe flow to the rear (cruise) nozzle and diverting it through an opening to a ventral nozzle exit for vertical thrust. A set of variable angle vanes at the ventral nozzle exit were used to vary ventral nozzle thrust angle between 45 and 110 deg relative to the positive axial force direction. In the vertical flight mode the rear nozzle (or tailpipe flow to it) was completely blocked. In the transition flight mode flow in the tailpipe was split between the rear and ventral nozzles and the flow was vectored at both exits for aircraft control purposes through this flight regime. In the cruise flight mode the ventral nozzle was sealed and all flow exited through the rear nozzle.

  20. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Matthew; Thompson, Christopher

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiencesmore » the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.« less

  1. TRAGEN: Computer program to simulate an aircraft steered to follow a specified verticle profile. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.

  2. Measuring vertical oxygen profiles in the hyporheic zone using planar optodes

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2012-04-01

    On of the key parameters, controlling biogeochemical reactions in the hyporheic zone (HZ) is the distribution of oxygen. A reliable measurement of the vertical oxygen distribution is an important tool to understand the dynamic fluctuations of the aerobic zone within the HZ. With repeated measurements of continuous profiles, mixing of surface water and groundwater as well as the consumption of oxygen can be evaluated. We present a novel approach for the in situ measurements of vertical oxygen distribution in the riverbed using a planar optode. The luminescence based optode measurement enables a non invasive measurement without consumption of oxygen, no creation of preferential flow paths and only minimal disturbance of the flow field. Possible atmospheric contamination by pumping pore water into a vessel can be avoided and the readings are independent of flow velocity. A self manufactured planar optode is wrapped around an acrylic tube and installed in the riverbed. The measurement is performed by vertically moving a profiler-piston inside the acrylic tube. The piston holds a robust polymer optical fibre which emits a modulated light signal through the acrylic glass to the optode-foil and transmits the induced luminescence signal back to a commercially available trace oxygen meter. Temperature compensation is accomplished using a depth-oriented temperature probe nearby and processing the raw data within a Matlab script. Robust and unbiased oxygen profiles are obtained by averaging multiple consecutive measurements. To ensure a constant velocity of the profiler for replicating the exact measuring depths, an electric motor device is used. First results at our test site show a variable oxygen profile down to 40 cm depth which is strongly influenced by stream level and upwelling groundwater conditions. The measured oxygen profiles will serve as input parameter for a 3D solute transport and chemical reaction subsurface model of the HZ.

  3. Observing the Great Plains Low-Level Jet Using the Aircraft Communications Addressing and Reporting System (ACARS): A Comparison with Boundary Layer Profiler Observations

    NASA Astrophysics Data System (ADS)

    Skinner, P. S.; Basu, S.

    2009-12-01

    Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.

  4. More vertical etch profile using a Faraday cage in plasma etching

    NASA Astrophysics Data System (ADS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  5. The power of vertical geolocation of atmospheric profiles from GNSS radio occultation.

    PubMed

    Scherllin-Pirscher, Barbara; Steiner, Andrea K; Kirchengast, Gottfried; Schwärz, Marc; Leroy, Stephen S

    2017-02-16

    High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.

  6. Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.

  7. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  8. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  9. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    NASA Astrophysics Data System (ADS)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  10. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  11. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  12. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  13. Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

    NASA Technical Reports Server (NTRS)

    Gerhardt, H. A.; Chen, W. S.

    1978-01-01

    The aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft was studied. The selected configuration features a tailless clipped delta wing with leading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed.

  14. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2012-11-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  15. Black carbon vertical profiles strongly affect its radiative forcing uncertainty

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  16. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; hide

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  17. Aircraft body-axis rotation measurement system

    NASA Technical Reports Server (NTRS)

    Cowdin, K. T. (Inventor)

    1983-01-01

    A two gyro four gimbal attitude sensing system having gimbal lock avoidance is provided with continuous azimuth information, rather than roll information, relative to the magnetic cardinal headings while in near vertical attitudes to allow recovery from vertical on a desired heading. The system is comprised of a means for stabilizing an outer roll gimbal that is common to a vertical gyro and a directional gyro with respect to the aircraft platform which is being angularly displaced about an axis substantially parallel to the outer roll gyro axis. A means is also provided for producing a signal indicative of the magnitude of such displacement as an indication of aircraft heading. Additional means are provided to cause stabilization of the outer roll gimbal whenever the pitch angle of the aircraft passes through a threshold prior to entering vertical flight and destabilization of the outer roll gimbal upon passing through the threshold when departing vertical flight.

  18. Aircraft control position indicator

    NASA Technical Reports Server (NTRS)

    Dennis, Dale V. (Inventor)

    1987-01-01

    An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces.

  19. An investigation of errors and data processing techniques for an RF multilateration system. [position and velocity measurements of vertical takeoff aircraft during landing

    NASA Technical Reports Server (NTRS)

    Britt, C. L., Jr.

    1975-01-01

    The development of an RF Multilateration system to provide accurate position and velocity measurements during the approach and landing phase of Vertical Takeoff Aircraft operation is discussed. The system uses an angle-modulated ranging signal to provide both range and range rate measurements between an aircraft transponder and multiple ground stations. Range and range rate measurements are converted to coordinate measurements and the coordinate and coordinate rate information is transmitted by an integral data link to the aircraft. Data processing techniques are analyzed to show advantages and disadvantages. Error analyses are provided to permit a comparison of the various techniques.

  20. Pilot Preferences on Displayed Aircraft Control Variables

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2013-01-01

    The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.

  1. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot

  2. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  3. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  4. Vertical and Spatial Profiling of Arctic Black Carbon on the North Slope of Alaska 2015: Comparison of Model and Observation

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2015-12-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic Cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, vertical profile information of BC is critical in reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the Department of Energy (DOE) Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Lastly, these aerosol and gas measurements provide an important dataset to assess the representativeness of ground sites at regional scales. Comparisons between observations and a global climate model (CAM5) simulations will be agumented with a discussion on the capability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the ability of the SP2 to partition rBC-containing particles into nascent or aged species allows an evaluation of how well the CAM5 model captures aging of long distant transported carbonaceous aerosols. Finally model sensitivity studies will be aso be presented that investigated the relative importance of the different emission sectors to the summer Arctic

  5. Development of Environmental Profiles for Testing Equipment Installed in Naval Aircraft (Fixed Wing).

    DTIC Science & Technology

    1979-02-01

    A 0 ’A099 7 1 3 tAU N A E R O S P A C E C O R P B E T H P A G E N Y F / 6 ~ ~ i DEVELOPMENT OF ENVIRONMENTAL. PROFILES FOR TESTING EQUIPMENT...IHIlia- ’ -Q IIIII.L25 MICROCOPY RESOLUTION’ TEST CHART C RMS-9-R-1 DEVELOPMENT OF ENVIRONMENTAL PROFILES FOR TESTING EQUIPMENT INSTALLED IN NAVAL... Development of Environmental Profiles for Testing ,’~ Final j quipment Installed in Naval Aircraft (Fixed Wing), e 7- e* 8 S. PERFORMING ORGANIZATION

  6. Aircraft Measurements of BrO, IO, Glyoxal, NO2, H2O, O2-O2 and Aerosol Extinction Profiles in the Tropics: Comparison with Aircraft-/Ship-Based in Situ and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Volkamer, R.; Baidar, S.; Campos, T. L.; Coburn, S.; DiGangi, J. P.; Dix, B.; Eloranta, E. W.; Koenig, T. K.; Morley, B.; Ortega, I.; hide

    2015-01-01

    Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2-O2 collision complexes (O4/ were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAXDOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/ National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity

  7. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  8. A comparison of optimal and noise-abatement trajectories of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Stepniewski, W. Z.; Gibs, J.; Hinterkeuser, W. Z.

    1972-01-01

    The potential benefits of flight path control to optimize performance and/or reduce the noise of a tilt-rotor aircraft operating in the takeoff and landing phases of flight are investigated. A theoretical performance-acoustic model is developed and then mathematically flown to yield representative takeoff and landing profiles. Minimum-time and minimum-fuel trajectories are compared to proposed noise-abatement profiles to assess the reductions in annoyance possible through flight path control. Significant reductions are feasible if a nearly vertical-takeoff flight profile is flown near the landing site; however, the time expended and fuel consumed increase.

  9. Vertical profile of fog microphysics : a case study

    NASA Astrophysics Data System (ADS)

    Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan

    2016-04-01

    The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.

  10. An investigation into the vertical axis control power requirements for landing VTOL type aircraft onboard nonaviation ships in various sea states

    NASA Technical Reports Server (NTRS)

    Stevens, M. E.; Roskam, J.

    1985-01-01

    The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a nonpiloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags. The piloted simulation was run using a fixed-based simulator at Ames Research center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the nonpiloted simulation. A unique aspect of the nonpiloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior.

  11. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.

    2014-11-01

    We use aircraft observations from the 1991-2000 Cape Grim Overflight Program and the 2009-2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km-1 in austral autumn to 2.2 ppbv km-1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.

  12. Ground-based lidar and microwave radiometry synergy for high vertical resolution absolute humidity profiling

    NASA Astrophysics Data System (ADS)

    Barrera-Verdejo, María; Crewell, Susanne; Löhnert, Ulrich; Orlandi, Emiliano; Di Girolamo, Paolo

    2016-08-01

    Continuous monitoring of atmospheric humidity profiles is important for many applications, e.g., assessment of atmospheric stability and cloud formation. Nowadays there are a wide variety of ground-based sensors for atmospheric humidity profiling. Unfortunately there is no single instrument able to provide a measurement with complete vertical coverage, high vertical and temporal resolution and good performance under all weather conditions, simultaneously. For example, Raman lidar (RL) measurements can provide water vapor with a high vertical resolution, albeit with limited vertical coverage, due to sunlight contamination and the presence of clouds. Microwave radiometers (MWRs) receive water vapor information throughout the troposphere, though their vertical resolution is poor. In this work, we present an MWR and RL system synergy, which aims to overcome the specific sensor limitations. The retrieval algorithm combining these two instruments is an optimal estimation method (OEM), which allows for an uncertainty analysis of the retrieved profiles. The OEM combines measurements and a priori information, taking the uncertainty of both into account. The measurement vector consists of a set of MWR brightness temperatures and RL water vapor profiles. The method is applied to a 2-month field campaign around Jülich (Germany), focusing on clear sky periods. Different experiments are performed to analyze the improvements achieved via the synergy compared to the individual retrievals. When applying the combined retrieval, on average the theoretically determined absolute humidity uncertainty is reduced above the last usable lidar range by a factor of ˜ 2 with respect to the case where only RL measurements are used. The analysis in terms of degrees of freedom per signal reveal that most information is gained above the usable lidar range, especially important during daytime when the lidar vertical coverage is limited. The retrieved profiles are further evaluated using

  13. Vertical profile of elemental concentrations in aerosol particles in the Bermuda area during GCE/CASE/WATOX

    NASA Astrophysics Data System (ADS)

    Ennis, G.; Sievering, H.

    1990-06-01

    During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.

  14. Aircraft measurements of BrO, IO, glyoxal, NO 2, H 2O, O 2–O 2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkamer, Rainer; Baidar, S.; Campos, T. L.

    Here, tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO 2), water vapor (H 2O) and O 2–O 2 collision complexes (O 4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosolmore » spectrometer (UHSAS) and in situ H 2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O 4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O 4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCD REF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship

  15. Visual display angles of conventional and a remotely piloted aircraft.

    PubMed

    Kamine, Tovy Haber; Bendrick, Gregg A

    2009-04-01

    Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.

  16. Technical Data Requirements for Shipboard and Shorebased Vertical/Short Takeoff and Landing (V/STOL) Aircraft. Revision A

    DTIC Science & Technology

    1978-04-26

    Geometry 11-13 13-12 Shipboard Heavw Weather Tiedown 11-14 11-13 Nose & ’Main Gear Load Deflection Curves 11-15 11-14 Main Wheel Tire Span vs Aircraft...sustained taxi roll under conditions of 40-knot headwind and for wheel roll over 1-1/2 inch cable immediately after initial forward motion? 9. Planform...rolling/roll-oG vertical takeoff versus VTO. Discuss various methods of approach (e. g., stern, offset, cross axial). A Define minimum wheel -to-deck

  17. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  18. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies

    PubMed Central

    Huang, Wenjiang; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-01-01

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R2 of 0.84–0.69, and RMSE of 5.37–5.56 µg/cm2 from the top to the bottom layers

  19. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.

    PubMed

    Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying

    2017-11-23

    Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers

  20. Ensuring Interoperability between UAS Detect-and-Avoid and Manned Aircraft Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Thipphavong, David; Cone, Andrew; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    The UAS community in the United States has identified the need for a collision avoidance region in which UAS Detect-and-Avoid (DAA) vertical guidance is restricted to preclude interoperability issues with manned aircraft collision avoidance system vertical resolution advisories (RAs). This paper documents the process by which the collision avoidance region was defined. Three candidate definitions were evaluated on 1.3 million simulated pairwise encounters between UAS and manned aircraft covering a wide range of horizontal and vertical closure rates, angles, and miss distances. They were evaluated with regard to UAS DAA interoperability with manned aircraft collision avoidance systems in terms of: 1) the primary objective of restricting DAA vertical guidance before RAs when the aircraft are close, and 2) the secondary objective of avoiding unnecessary restrictions of DAA vertical guidance at a DAA alert when the aircraft are further apart. The collision avoidance region definition that fully achieves the primary objective and best achieves the secondary objective was recommended to and accepted by the UAS community in the United States. By this definition, UAS and manned aircraft are in the collision avoidance region--during which DAA vertical guidance is restricted--when the time to closest point of approach is less than 50 seconds and either the time to co-altitude is less than 50 seconds or the current vertical separation is less than 800 feet.

  1. The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.

    2016-12-01

    The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.

  2. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    PubMed

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  3. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  4. Vertical distributions of fluorescent aerosol over the Eastern U.S.

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Robinson, E. S.; Schwarz, J. P.; Gao, R. S.

    2016-12-01

    The prevalence of bioaerosol in the atmosphere is relevant to atmospheric chemistry, microbial ecology and climate. These particles can act as effective cloud condensation nuclei (CCN) and ice nuclei (IN), representing a potential feedback between vegetation and precipitation. As bioaerosol frequently account for a substantial fraction of coarse mode aerosol in the boundary layer, they may have significant impacts on mixed-phase and/or cirrus cloud formation and climate. Very few measurements are available, however, to constrain loadings of bioaerosol in the free troposphere. Here we present vertical profiles of fluorescent aerosol concentration as a proxy for bioaerosol. The data were obtained over the eastern U.S. during the summer of 2016 using a Wide Band Integrated Bioaerosol Sensor (WIBS) installed aboard a NOAA Twin Otter research aircraft. The airspeed and inlet configuration were chosen to permit efficient sampling of aerosol with diameters of up to 10 μm. Vertical profiles extend from 1000 to 17,500 feet AGL, spanning a temperature range relevant to ice formation. 100 hours of data cover a latitude range from 30N to 46N and target a variety of potential bioaerosol source regions including forests, croplands, the Gulf of Mexico, and Lake Michigan. Observed vertical profiles are compared to expected loadings based on current model parameterizations and implications are discussed.

  5. Retrieving vertical ozone profiles from measurements of global spectral irradiance

    NASA Astrophysics Data System (ADS)

    Bernhard, Germar; Petropavlovskikh, Irina; Mayer, Bernhard

    2017-12-01

    A new method is presented to determine vertical ozone profiles from measurements of spectral global (direct Sun plus upper hemisphere) irradiance in the ultraviolet. The method is similar to the widely used Umkehr technique, which inverts measurements of zenith sky radiance. The procedure was applied to measurements of a high-resolution spectroradiometer installed near the centre of the Greenland ice sheet. Retrieved profiles were validated with balloon-sonde observations and ozone profiles from the space-borne Microwave Limb Sounder (MLS). Depending on altitude, the bias between retrieval results presented in this paper and MLS observations ranges between -5 and +3 %. The magnitude of this bias is comparable, if not smaller, to values reported in the literature for the standard Dobson Umkehr method. Total ozone columns (TOCs) calculated from the retrieved profiles agree to within 0.7±2.0 % (±1σ) with TOCs measured by the Ozone Monitoring Instrument on board the Aura satellite. The new method is called the Global-Umkehr method.

  6. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the

  7. Improving Vertical Jump Profiles Through Prescribed Movement Plans.

    PubMed

    Mayberry, John K; Patterson, Bryce; Wagner, Phil

    2018-06-01

    Mayberry, JK, Patterson, B, and Wagner, P. Improving vertical jump profiles through prescribed movement plans. J Strength Cond Res 32(6): 1619-1626, 2018-Developing practical, reliable, and valid methods for monitoring athlete wellness and injury risk is an important goal for trainers, athletes, and coaches. Previous studies have shown that the countermovement vertical jump (CMJ) test is both a reliable and valid metric for evaluating an athlete's condition. This study examines the effectiveness of prescribed workouts on improving the quality of movement during CMJ. The data set consists of 2,425 pairs of CMJ scans for high school, college, and professional athletes training at a privately owned facility. During each scan, a force plate recorded 3 ground reaction force (GRF) measurements known to impact CMJ performance: eccentric rate of force development (ERFD), average vertical concentric force (AVCF), and concentric vertical impulse (CVI). After an initial scan, coaches either assigned the athlete a specific 1- or 2-strength movement plan (treatment group) or instructed the athlete to choose their own workouts (control group) before returning for a follow-up scan. A multivariate analysis of covariance (MANCOVA) revealed significant differences in changes to GRF measurements between athletes in the 2 groups after adjusting for the covariates sex, sport, time between scans, and rounds of workout completed. A principal component analysis of GRF measurements further identified 4 primary groups of athlete needs and the results provide recommendations for effective workout plans targeting each group. In particular, split squats increase CVI and decrease ERFD/AVCF; deadlifts increase AVCF and decrease CVI; alternating squats/split squats increase ERFD/CVI and decrease AVCF; and alternating squats/deadlifts increase ERFD/AVCF and decrease CVI.

  8. Experimental study of vertical stress profiles of a confined granular bed under static and dynamic conditions.

    PubMed

    Mandato, S; Cuq, B; Ruiz, T

    2012-07-01

    In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.

  9. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  10. Aircraft laser sensing of sound velocity in water - Brillouin scattering

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Harding, John M.; Carnes, Michael; Pressman, AL; Kattawar, George W.; Fry, Edward S.

    1991-01-01

    A real-time data source for sound speed in the upper 100 m has been proposed for exploratory development. This data source is planned to be generated via a ship- or aircraft-mounted optical pulsed laser using the spontaneous Brillouin scattering technique. The system should be capable (from a single 10 ns 500 mJ pulse) of yielding range resolved sound speed profiles in water to depths of 75-100 m to an accuracy of 1 m/s. The 100 m profiles will provide the capability of rapidly monitoring the upper-ocean vertical structure. They will also provide an extensive, subsurface-data source for existing real-time, operational ocean nowcast/forecast systems.

  11. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering

  12. Development of a Flammability Test Method for Aircraft Blankets

    DOT National Transportation Integrated Search

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  13. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  14. Parameterization of Cirrus Cloud Vertical Profiles and Geometrical Thickness Using CALIPSO and CloudSat Data

    NASA Astrophysics Data System (ADS)

    Khatri, P.; Iwabuchi, H.; Saito, M.

    2017-12-01

    High-level cirrus clouds, which normally occur over more than 20% of the globe, are known to have profound impacts on energy budget and climate change. The scientific knowledge regarding the vertical structure of such high-level cirrus clouds and their geometrical thickness are relatively poorer compared to low-level water clouds. Knowledge regarding cloud vertical structure is especially important in passive remote sensing of cloud properties using infrared channels or channels strongly influenced by gaseous absorption when clouds are geometrically thick and optically thin. Such information is also very useful for validating cloud resolving numerical models. This study analyzes global scale data of ice clouds identified by Cloud profiling Radar (CPR) onboard CloudSat and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO to parameterize (i) vertical profiles of ice water content (IWC), cloud-particle effective radius (CER), and ice-particle number concentration for varying ice water path (IWP) values and (ii) the relation of cloud geometrical thickness (CGT) with IWP and CER for varying cloud top temperature (CTT) values. It is found that the maxima in IWC and CER profile shifts towards cloud base with the increase of IWP. Similarly, if the cloud properties remain same, CGT shows an increasing trend with the decrease of CTT. The implementation of such cloud vertical inhomogeneity parameterization in the forward model used in the Integrated Cloud Analysis System ICAS (Iwabuchi et al., 2016) generally shows increase of brightness temperatures in infrared channels compared to vertically homogeneous cloud assumption. The cloud vertical inhomogeneity is found to bring noticeable changes in retrieved cloud properties. Retrieved CER and cloud top height become larger for optically thick cloud. We will show results of comparison of cloud properties retrieved from infrared measurements and active remote sensing.

  15. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  16. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  17. Profile negotiation - A concept for integrating airborne and ground-based automation for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Den Braven, Wim; Williams, David H.

    1991-01-01

    The profile negotiation process (PNP) concept as applied to the management of arrival traffic within the extended terminal area is presented, focusing on functional issues from the ground-based perspective. The PNP is an interactive process between an aircraft and air traffic control (ATC) which combines airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible. Preliminary results from a real-time simulation study show that the controller teams are able to consistently and effectively negotiate conflict-free vertical profiles with 4D-equipped aircraft. The ability of the airborne 4D flight management system to adapt to ATC specified 4D trajectory constraints is found to be a requirement for successful execution of the PNP. It is recommended that the conventional method of cost index iteration for obtaining the minimum fuel 4D trajectory be supplemented by a method which constrains the profile speeds to those desired by ATC.

  18. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  19. Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Ma, XinCheng; Tie, Xuexi; Huang, Mengyu; Zhao, Chunsheng

    In this study, aerosol vertical distributions of 17 in-situ aircraft measurements during 2005 and 2006 springs are analyzed. The 17 flights are carefully selected to exclude dust events, and the analyses are focused on the vertical distributions of aerosol particles associated with anthropogenic activities. The results show that the vertical distributions of aerosol particles are strongly affected by weather and meteorological conditions, and 3 different types of aerosol vertical distributions corresponding to different weather systems are defined in this study. The measurement with a flat vertical gradient and low surface aerosol concentrations is defined as type-1; a gradual decrease of aerosols with altitudes and modest surface aerosol concentrations is defined as type-2; a sharp vertical gradient (aerosols being strongly depressed in the PBL) with high surface aerosol concentrations is defined as type-3. The weather conditions corresponding to the 3 different aerosol types are high pressure, between two high pressures, and low pressure systems (frontal inversions), respectively. The vertical mixing and horizontal transport for the 3 different vertical distributions are analyzed. Under the type-1 condition, the vertical mixing and horizontal transport were rapid, leading to strong dilution of aerosols in both vertical and horizontal directions. As a result, the aerosol concentrations in PBL (planetary boundary layer) were very low, and the vertical distribution was flat. Under the type-2 condition, the vertical mixing was strong and there was no strong barrier at the PBL height. The horizontal transport (wind flux) was modest. As a result, the aerosol concentrations were gradually reduced with altitude, with modest surface aerosol concentrations. Under the type-3 condition, there was a cold front near the region. As a result, a frontal inversion associated with weak vertical mixing appeared at the top of the inversion layer, forming a very strong barrier to

  20. Future V/STOL Aircraft For The Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1992-01-01

    Report describes geography and transportation needs of Asian Pacific region, and describes aircraft configurations suitable for region and compares performances. Examines applications of high-speed rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and landing (STOL) aircraft. Configurations benefit commerce, tourism, and development of resources.

  1. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from

  2. VSTOL Systems Research Aircraft (VSRA) Harrier

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.

  3. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  4. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    DOE PAGES

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; ...

    2016-08-02

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO 2, and is used exclusively for CO 2 in this paper. Retrieval of CO 2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate thatmore » there are approximately 3° of freedom for the CO 2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO 2 from measurements in the 1.61 μ (6220 cm -1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO 2 profile retrievals with sufficient precision for applications to carbon dynamics. As a result, we finish by discussing ongoing research which may allow CO 2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.« less

  5. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  6. Determination of crash test pulses and their application to aircraft seat analysis

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Williams, M. S.; Fasanella, E. L.

    1981-01-01

    Deceleration time histories (crash pulses) from a series of twelve light aircraft crash tests conducted at NASA Langley Research Center (LaRC) were analyzed to provide data for seat and airframe design for crashworthiness. Two vertical drop tests at 12.8 m/s (42 ft/s) and 36 G peak deceleration (simulating one of the vertical light aircraft crash pulses) were made using an energy absorbing light aircraft seat prototype. Vertical pelvis acceleration measured in a 50 percentile dummy in the energy absorbing seat were found to be 45% lower than those obtained from the same dummy in a typical light aircraft seat. A hybrid mathematical seat-occupant model was developed using the DYCAST nonlinear finite element computer code and was used to analyze a vertical drop test of the energy absorbing seat. Seat and occupant accelerations predicted by the DYCAST model compared quite favorably with experimental values.

  7. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  8. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2013-06-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds in a changing climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 125 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The overall agreement for the methods ranges between 44-88%; four methods produce total agreements around 85%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, which could be useful in atmospheric modeling. The total agreement, even when using low resolution profiles, can be improved up to 91% if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  9. Lidar and aircraft studies of deep Cirrus systems from the 1986 FIRE IFO

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Heymsfield, Andrew J.; Knight, Nancy C.

    1990-01-01

    Several NCAR King Air flight missions were conducted during the Wisconsin FIRE IFO experiment in support of the University of Utah polarization lidar observations of deep cirrus cloud systems at the Wausau ground site. Data collected from four cirrus systems are included in this analysis, including those of 22 and 28 October, and 1 and 2 November. Lidar data were generally obtained at 2 min intervals in the zenith direction over observation periods that ranged from approximately 4 to 10 h, bracketing the aircraft missions. The data were processed to yield height-time (HTI) displays of lidar linear depolarization ratio sigma and relative range-normalized return power P. King Air operations consisted of a combination of rapid profiling and Lagrangian spiral descents and stacked racetrack patterns in the vicinity of the field site. From the spiral descents are constructed vertical profiles of ice particle concentration N(sub i) and ice mass content IWC derived from PMS 2-D probe imagery and, when detected, FSSP cloud droplet concentration N(sub W) and liquid water content, LWC. Aircraft flight leg data are presented for the vertical velocity W and the same ice and water cloud content parameters. In addition, aerosol particle concentrations obtained with the ASAS probe are examined, and photographs of ice particles collected in-situ on oil-coated slides are presented to illustrate ice particle habit.

  10. Hypersonic aircraft design

    NASA Technical Reports Server (NTRS)

    Alkamhawi, Hani; Greiner, Tom; Fuerst, Gerry; Luich, Shawn; Stonebraker, Bob; Wray, Todd

    1990-01-01

    A hypersonic aircraft is designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and it was decided that the aircraft would use one full scale turbofan-ramjet. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic region. After considering aerodynamics, aircraft design, stability and control, cooling systems, mission profile, and landing systems, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets are also taken into consideration in the final design. A hypersonic aircraft was designed which uses scramjets to accelerate from Mach 6 to Mach 10 and sustain that speed for two minutes. Different propulsion systems were considered and a full scale turbofan-ramjet was chosen. Two solid rocket boosters were added to save fuel and help the aircraft pass through the transonic reqion. After the aerodynamics, aircraft design, stability and control, cooling systems, mission profile, landing systems, and their physical interactions were considered, a conventional aircraft configuration was chosen over that of a waverider. The conventional design was chosen due to its landing characteristics and the relative expense compared to the waverider. Fuel requirements and the integration of the engine systems and their inlets were also considered in the designing process.

  11. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  12. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  13. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors.

    PubMed

    Thipphavong, David P

    2016-09-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  14. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    PubMed Central

    Thipphavong, David P.

    2017-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%. PMID:28684883

  15. Top-of-Climb Matching Method for Reducing Aircraft Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Thipphavong, David P.

    2016-01-01

    The inaccuracies of the aircraft performance models utilized by trajectory predictors with regard to takeoff weight, thrust, climb profile, and other parameters result in altitude errors during the climb phase that often exceed the vertical separation standard of 1000 feet. This study investigates the potential reduction in altitude trajectory prediction errors that could be achieved for climbing flights if just one additional parameter is made available: top-of-climb (TOC) time. The TOC-matching method developed and evaluated in this paper is straightforward: a set of candidate trajectory predictions is generated using different aircraft weight parameters, and the one that most closely matches TOC in terms of time is selected. This algorithm was tested using more than 1000 climbing flights in Fort Worth Center. Compared to the baseline trajectory predictions of a real-time research prototype (Center/TRACON Automation System), the TOC-matching method reduced the altitude root mean square error (RMSE) for a 5-minute prediction time by 38%. It also decreased the percentage of flights with absolute altitude error greater than the vertical separation standard of 1000 ft for the same look-ahead time from 55% to 30%.

  16. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  17. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-07-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year-1, in agreement with the currently accepted global growth rate based on

  18. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, Philip T.; Flanagan, Sarah M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.

  19. Shifts of radiocesium vertical profiles in sediments and their modelling in Japanese lakes.

    PubMed

    Fukushima, Takehiko; Komatsu, Eiji; Arai, Hiroyuki; Kamiya, Koichi; Onda, Yuichi

    2018-02-15

    Vertical profiles of radiocesium concentrations were measured in sediment cores collected at various times after the 2011 Fukushima nuclear accident in five Japanese lakes (Hinuma, Kasumigaura, Kitaura, Onogawa and Sohara) with different morphological and trophic characteristics in order to investigate the sedimentation-diffusion processes. In lakes where sediments had high porosities and experienced considerable wave action due to shallowness, we observed rapid penetration of radiocesium to a certain depth just after the accident, followed by downward movement of the peak depths. In contrast, gradual downward transfers of distinct peaks were found in other types of lakes. A one-dimensional differential sediment model with water-sediments interaction processes was constructed to describe the vertical shift of radiocesium profiles. Our proposed submodels relating to the length scales of the mixing using wind-induced stress and porosity of sediments were constructed based on one measurement of the vertical distribution of radiocesium in three lakes (Hinuma, Kasumigaura and Sohara). This model was then validated using samples from those lakes in different years, as well as from two other lakes. Good agreement was obtained. We discuss our findings, the limits of model application, and future research targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  1. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  2. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew C.; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the detect-and-avoid (DAA) minimum operational performance standards (MOPS) for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance should be provided during recovery of DAA well clear separation with a non-cooperative VFR aircraft. Although the original hypothesis was that vertical maneuvers for DAA well clear recovery should only be offered when sensor vertical rate errors are small, this paper suggests that UAS climb and descent performance should be considered-in addition to sensor errors for vertical position and vertical rate-when determining whether to offer vertical guidance. A fast-time simulation study involving 108,000 encounters between a UAS and a non-cooperative visual-flight-rules aircraft was conducted. Results are presented showing that, when vertical maneuver guidance for DAA well clear recovery was suppressed, the minimum vertical separation increased by roughly 50 feet (or horizontal separation by 500 to 800 feet). However, the percentage of encounters that had a risk of collision when performing vertical well clear recovery maneuvers was reduced as UAS vertical rate performance increased and sensor vertical rate errors decreased. A class of encounter is identified for which vertical-rate error had a large effect on the efficacy of horizontal maneuvers due to the difficulty of making the correct left/right turn decision: crossing conflict with intruder changing altitude. Overall, these results support logic that would allow vertical maneuvers when UAS vertical performance is sufficient to avoid the intruder, based on the intruder's estimated vertical position and vertical rate, as well as the vertical rate error of the UAS' sensor.

  3. Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry

    2017-01-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3

  4. Effects of pressing schedule on formation of vertical density profile for MDF panels

    Treesearch

    Zhiyong Cai; James H. Muehl; Jerrold E. Winandy

    2006-01-01

    A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...

  5. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling.

    PubMed

    Asnicar, Francesco; Manara, Serena; Zolfo, Moreno; Truong, Duy Tin; Scholz, Matthias; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna; Tett, Adrian; Segata, Nicola

    2017-01-01

    The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum , Coprococcus comes , and Ruminococcus bromii , were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se , does not necessarily equate to vertical transmission, as species

  6. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling

    PubMed Central

    Manara, Serena; Truong, Duy Tin; Armanini, Federica; Ferretti, Pamela; Gorfer, Valentina; Pedrotti, Anna

    2017-01-01

    ABSTRACT The gut microbiome becomes shaped in the first days of life and continues to increase its diversity during the first months. Links between the configuration of the infant gut microbiome and infant health are being shown, but a comprehensive strain-level assessment of microbes vertically transmitted from mother to infant is still missing. We collected fecal and breast milk samples from multiple mother-infant pairs during the first year of life and applied shotgun metagenomic sequencing followed by computational strain-level profiling. We observed that several specific strains, including those of Bifidobacterium bifidum, Coprococcus comes, and Ruminococcus bromii, were present in samples from the same mother-infant pair, while being clearly distinct from those carried by other pairs, which is indicative of vertical transmission. We further applied metatranscriptomics to study the in vivo gene expression of vertically transmitted microbes and found that transmitted strains of Bacteroides and Bifidobacterium species were transcriptionally active in the guts of both adult and infant. By combining longitudinal microbiome sampling and newly developed computational tools for strain-level microbiome analysis, we demonstrated that it is possible to track the vertical transmission of microbial strains from mother to infants and to characterize their transcriptional activity. Our work provides the foundation for larger-scale surveys to identify the routes of vertical microbial transmission and its influence on postinfancy microbiome development. IMPORTANCE Early infant exposure is important in the acquisition and ultimate development of a healthy infant microbiome. There is increasing support for the idea that the maternal microbial reservoir is a key route of microbial transmission, and yet much is inferred from the observation of shared species in mother and infant. The presence of common species, per se, does not necessarily equate to vertical transmission, as

  7. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B.; Rappenglück, B.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced well by the model. The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to HONO conversion on the ground was the dominant source of HONO

  8. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Oh, H.-J.; Lefer, B. L.; Rappenglück, B.; Stutz, J.

    2011-04-01

    Nitrous acid (HONO) often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH) in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS) measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP), near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations. Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1-2 and 7-8 September in the nocturnal boundary layer (NBL). The unobserved increase of HONO to NO2 ratio (HONO/NO2) with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of weak precipitation during this night. HONO formation and removal rates averaged over the lowest 300 m of the atmosphere showed that NO2 to

  9. Representativeness analysis of CO_{2} profiles near a tall tower and from commercial airliner programs

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Katrynski, Krzysztof; Nedelec, Philippe; Machida, Toshinobu; Matsueda, Hidekazu; Sawa, Yousuke; Gerbig, Christoph

    2010-05-01

    Aircraft profiles for atmospheric trace gases have been collected using both rental aircraft and from commercial airliners. High-accuracy regular in situ CO2 measurements aboard rental aircraft over northeast Poland have been upgraded since August 2008. During each flight, two profiles are taken with a spatial separation of 20 kilometers. Until now, 74 profiles with continuous CO2 have been collected. Meanwhile, aircraft profiles for carbon monoxide (CO) have been made aboard commercial airliners within MOZAIC (Measurement of Ozone, water vapor, carbon monoxide and nitrogen oxides by AIrbus in-service airCraft) and for CO2 within CONTRAIL (Comprehensive Observation Network for TRace gases byAIrLiner) respectively. Starting from 2011, IAGOS-ERI (Integration of routine Aircraft measurements into a Global Observing System - European Research Infrastructure) will provide continuous CO2, CH4 and H2O measurements using instruments deployed aboard commercial airliners, with many profiles during take-off and landing over airports distributed all over the globe. These profiles contain not only vertical gradients but also regionally representative information. It is of importance to investigate how these profiles could be used for applications such as satellite validation and inverse modeling to retrieve surface-atmosphere exchange fluxes of greenhouse gases at regional to continental scales. Especially profiles from commercial airliners near major cities, which are potentially influenced by local fossil fuel emissions, need to be assessed with respect to their regional representativeness. We analyzed CO profiles over Frankfurt airport from the MOZAIC and CO2 profiles from CONTRAIL using STILT (the Stochastic Time Inverted Lagrangian Transport model) combined with a high resolution CO emission map in central Europe. Combining STILT footprints (maps of sensitivities to upstream surface fluxes) with high resolution emission inventories allows to attribute the contribution

  10. Application of a new vertical profiling tool (ESASS) for sampling groundwater quality during hollow-stem auger drilling

    USGS Publications Warehouse

    Harte, P.T.; Flanagan, S.M.

    2011-01-01

    A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.

  11. Detectability of high power aircraft

    NASA Astrophysics Data System (ADS)

    Dettmar, Klaus Uwe; Kruse, Juergen; Loebert, Gerhard

    1992-05-01

    In addition to the measures aiming at improving the probability of survival for an aircraft, including aircraft performance, flight profile selection, efficient electronic warfare equipment, and self protection weapons, it is shown that an efficient measure consists of reducing aircraft signature (radar, infrared, acoustic, visual) in connection with the use of signature avionics. The American 'stealth' aircrafts are described as examples.

  12. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  13. FIRE aircraft observations of horizontal and vertical transport in marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Paluch, Ilga R.; Lenschow, Donald H.

    1990-01-01

    A major goal of research on marine stratocumulus is to try to understand the processes that generate and dissipate them. One approach to studying this problem is to investigate the boundary layer structure in the vicinity of a transition from a cloudy to a cloud-free region to document the differences in structure on each side of the transition. Since stratiform clouds have a major impact on the radiation divergence in the boundary layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal inhomogeneity in air temperature and turbulence intensity. This leads to a considerable difference in horizontal and vertical transports between the cloudy and cloud-free regions. Measurements are used from the NCAR Electra aircraft during flights 5 (7 July 1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a LANDSAT overflight, and was designed to investigate the transition across a well-defined N-S cloud boundary, since the LANDSAT image can document the cloud cover in considerable detail. Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10 was flown at night in an area of scattered small cumuli and broken cloud patches.

  14. Comparing the cloud vertical structure derived from several methods based on measured atmospheric profiles and active surface measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-04-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, is an important characteristic in order to describe the impact of clouds on climate. In this work several methods to estimate the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering number and position of cloud layers, with a ground based system which is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ on the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study these methods are applied to 193 radiosonde profiles acquired at the ARM Southern Great Plains site during all seasons of year 2009 and endorsed by GOES images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e. when the whole CVS is correctly estimated) for the methods ranges between 26-64%; the methods show additional approximate agreement (i.e. when at least one cloud layer is correctly assessed) from 15-41%. Further tests and improvements are applied on one of these methods. In addition, we attempt to make this method suitable for low resolution vertical profiles, like those from the outputs of reanalysis methods or from the WMO's Global Telecommunication System. The perfect agreement, even when using low resolution profiles, can be improved up to 67% (plus 25% of approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  15. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  16. Manned-Unmanned Teaming of Aircraft - Literature Search

    DTIC Science & Technology

    2013-12-01

    unmanned aircraft reconnaissance system MQ 8B Fire Scout vertical takeoff and landing unmanned system MQ 5B Hunter medium altitude unmanned aerial...201140, and allows their crew to view sensor data from unmanned aircraft systems (UAS) and send data from the helicopter’s sensors to the ground.35 No...Helicopter, AAI unmanned Aircraft Systems , and Textron Inc. It opened in December 2012 in Huntsville Alabama. It will enable “a software and

  17. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  18. Relative humidity vertical profiling using lidar-based synergistic methods in the framework of the Hygra-CD campaign

    NASA Astrophysics Data System (ADS)

    Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John

    2018-02-01

    Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.

  19. Implementation of a Battery Health Monitor and Vertical Lift Aircraft Testbed for the Application of an Electrochemisty-Based State of Charge Estimator

    NASA Technical Reports Server (NTRS)

    Potteiger, Timothy R.; Eure, Kenneth W.; Levenstein, David

    2017-01-01

    Prediction methods concerning remaining charge in lithium-ion batteries that power unmanned aerial vehicles are of critical concern for the safe fulfillment of mission objectives. In recent years, lithium-ion batteries have been the power source for both fixed wing and vertical lift electric vehicles. The purpose of this document is to describe in detail the implementation of a battery health monitor for estimating the state of charge of a lithium-ion battery and a lithium-ion polymer battery that is used to power a vertical lift aircraft test-bed. It will be demonstrated that an electro-chemistry based state of charge estimator effectively tracks battery discharge characteristics and may be employed as a useful tool in monitoring battery health.

  20. The vertical profile of winds on Titan.

    PubMed

    Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L

    2005-12-08

    One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.

  1. Vibrations measured in the passenger cabins of two jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mixson, J. S.; Scholl, H. F.

    1975-01-01

    Accelerations in the lateral and vertical directions were measured at two locations on the floor of a three-jet-engine aircraft and at two locations on the floor of a two-jet-engine aircraft during a total of 13 flights, each of which included taxiing, takeoff, ascent, cruise, descent, and landing. Accelerations over the frequency range 0 to 25 Hz were recorded continuously on magnetic tape and were synchronized with the VGH recorders in the aircraft so that vibratory accelerations could be correlated with the operating conditions of the aircraft. From the results it was indicated that the methodology used in segmenting the data, which were obtained in a continuous and repetitive manner, contributes to establishing baseline data representative of the flight characteristics of aircraft. Significant differences among flight conductions were found to occur. The lateral accelerations were approximately 15 percent of the vertical accelerations during flight but as much as 50 to 100 percent of the vertical accelerations during ground operations. The variation between the responses of the two aircraft was not statistically significant. The results also showed that more than 90 percent of the vibratory energy measured during flight occurred in the 0- to 3.0-Hz frequency range. Generally, the vibration amplitudes were normally distributed.

  2. Aircraft Design Considerations to Meet One Engine Inoperative (OEI) Safety Requirements

    NASA Technical Reports Server (NTRS)

    Scott, Mark W.

    2012-01-01

    Commercial airlines are obligated to operate such that an aircraft can suffer an engine failure at any point in its mission and terminate the flight without an accident. Only minimal aircraft damage is allowable, such as brake replacement due to very heavy application, or an engine inspection and/or possible removal due to use of an emergency rating. Such performance criteria are often referred to as zero exposure, referring to zero accident exposure to an engine failure. The critical mission segment for meeting one engine inoperative (OEI) criteria is takeoff. For a given weight, wind, and ambient condition, fixed wing aircraft require a balanced field length. This is the longer of the distance to take off if an engine fails at a predetermined critical point in the takeoff profile, or the distance to reject the takeoff and brake to a stop. Rotorcraft have requirements for horizontal takeoff procedures that are equivalent to a balanced field length requirements for fixed wing aircraft. Rotorcraft also perform vertical procedures where no runway or heliport distance is available. These were developed primarily for elevated heliports as found on oil rigs or rooftops. They are also used for ground level operations as might be found at heliports at the end of piers or other confined areas.

  3. Combined Ocean and Atmospheric Lidar Profile Results during the Ship-Aircraft Bio-Optical Experiment.

    NASA Astrophysics Data System (ADS)

    Hair, J. W.; Hostetler, C. A.; Hu, Y.; Behrenfeld, M. J.; Butler, C. F.; Harper, D. B.; Hare, R. J.; Berkoff, T.; Cook, A. L.; Collins, J. E., Jr.; Stockley, N.; Twardowski, M.; Cetinic, I.; Ferrare, R. A.; Mack, T. L.

    2016-02-01

    First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical and biological measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL subsurface ocean backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals. This presentation will include an overview of the instrument and measurement methodology, show examples from the campaign, and provide preliminary comparisons with the in situ optics and satellite retrievals.

  4. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011-2012) of field campaigns

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Cappelletti, David; Busetto, Maurizio; Mazzola, Mauro; Lupi, Angelo; Lanconelli, Christian; Becagli, Silvia; Traversi, Rita; Caiazzo, Laura; Giardi, Fabio; Moroni, Beatrice; Crocchianti, Stefano; Fierz, Martin; Močnik, Griša; Sangiorgi, Giorgia; Perrone, Maria G.; Maturilli, Marion; Vitale, Vito; Udisti, Roberto; Bolzacchini, Ezio

    2016-10-01

    We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC) concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard). The campaign lasted 2 years (2011-2012) and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l.) during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  5. Finite Element Aircraft Simulation of Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.

    1997-01-01

    A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.

  6. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  7. Passenger comfort response times as a function of aircraft motion

    NASA Technical Reports Server (NTRS)

    Rinalducci, E. J.

    1975-01-01

    The relationship between a passenger's response time of changes in level of comfort experienced as a function of aircraft motion was examined. The aircraft used in this investigation was capable of providing a wide range of vertical and transverse accelerations by means of direct lift flap control surfaces and side force generator surfaces in addition to normal control surfaces. Response times to changes in comfort were recorded along with the passenger's rating of comfort on a five point scale. In addition, a number of aircraft motion variables including vertical and transverse accelerations were also recorded. Results indicate some relationship between human comfort response times to reaction time data.

  8. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  9. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  10. Seasonal variability of aerosol vertical profiles over east US and west Europe: GEOS-Chem/APM simulation and comparison with CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2014-04-01

    In this study, we employed 5 years (2007-2011) of the CALIPSO level-3 monthly aerosol extinction product to compare with the GEOS-Chem/APM simulations for the same time period over two major industrial regions (east US and west Europe). The objective is to understand which aerosol types or species significantly determine the vertical profiles by comparing the seasonal variability between the simulations and observations. Our study shows that the model successfully produces the magnitude of aerosol extinction, profile shape, and their seasonal variability observed by CALIPSO over both east US (EUS) and west Europe (WEU). The extinctions below 1 km make up 44-79% to the total, from either the model simulations or satellite retrievals, with larger percentages in winter seasons (62-79%) and smaller percentages in summer seasons (44-57%) associated with the strength of vertical transport. The shape of the vertical profiles has, therefore, a distinct seasonal variability, with a more like quasi-exponential shape in DJF (December, January, and February) and SON (September, October, and November) than in MAM (March, April, and May) and JJA (June, July, and August), which have been discerned from both measurements and simulations. Analysis of modeled aerosol species indicates that secondary particles (SP), containing sulfate, ammonia, nitrate, and secondary organic aerosols (SOAs), predominantly determine the total aerosol vertical profiles while black carbon (BC), primary organic carbon (OC), and sea salt (SS), only account for a small fraction and are also limited near the surface. Mineral dust (DS) contributes more to the total extinction over WEU than over EUS, particularly in MAM, a result of being adjacent to the North Africa desert. Secondary inorganic aerosol (SIA, i.e. sulfate, ammonia, and nitrate) contributes most of the total SP mass in DJF and SON while SOA is particularly important in MAM and JJA when the emissions from leafed plants are active. Our study also

  11. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft, the... engine, wing, or a portion of a wing is attached to the fuselage) to be furnished to the Government under...

  12. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft, the... engine, wing, or a portion of a wing is attached to the fuselage) to be furnished to the Government under...

  13. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft, the... engine, wing, or a portion of a wing is attached to the fuselage) to be furnished to the Government under...

  14. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft, the... engine, wing, or a portion of a wing is attached to the fuselage) to be furnished to the Government under...

  15. 48 CFR 1852.228-70 - Aircraft ground and flight risk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., vertical take-off aircraft, lighter-than-air airships, or other nonconventional types of aircraft, the... engine, wing, or a portion of a wing is attached to the fuselage) to be furnished to the Government under...

  16. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal

  17. Impact of the reduced vertical separation minimum on the domestic United States

    DOT National Transportation Integrated Search

    2009-01-31

    Aviation regulatory bodies have enacted the reduced vertical separation minimum standard over most of the globe. The reduced vertical separation minimum is a technique that reduces the minimum vertical separation distance between aircraft from 2000 t...

  18. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  19. Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

  20. Moving Base Simulation of an ASTOVL Lift-Fan Aircraft

    DOT National Transportation Integrated Search

    1995-08-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan : short takeoff/vertical landing fighter aircraft was conducted on the Vertical : Motion Simulator at Ames Research Center. Objectives of the experiment were to : (1)assess ...

  1. Designing for aircraft structural crashworthiness

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Caiafa, C.

    1981-01-01

    This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.

  2. Multiple-Purpose Subsonic Naval Aircraft (MPSNA) Multiple Application Propfan Study (MAPS)

    NASA Technical Reports Server (NTRS)

    Winkeljohn, D. M.; Mayrand, C. H.

    1986-01-01

    A conceptual design study compared a selected propfan-powered aircraft to a turbofan-powered aircraft for multiple Navy carrier-based support missions in the 1995 timeframe. Conventional takeoff and landing (CTOL) propfan and turbofan-powered designs and short takeoff/vertical landing (STOVL) propfan-powered designs are presented. Ten support mission profiles were defined and the aircraft were sized to be able to perform all ten missions. Emphasis was placed on efficient high altitude loiter for Airborne Early Warning (AEW) and low altitude high speed capability for various offensive and tactical support missions. The results of the study show that the propfan-powered designs have lighter gross weights, lower fuel fractions, and equal or greater performance capability than the turbofan-powered designs. Various sensitives were developed in the study, including the effect of using single-rotation versus counter-rotation propfans and the effect of AEW loiter altitude on vehicle gross weight and empty weight. A propfan technology development plan was presented which illustrates that the development of key components can be achieved without accelerated schedules through the extension of current and planned government and civil propfan programs.

  3. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  4. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  5. Airborne Sunphotometer Measurements of Aerosol Optical Depth and Columnar Water Vapor During the Puerto Rico Dust Experiment, and Comparison with Land, Aircraft, and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, Philip B.; Reid, Jeffrey; Redemann, Jens; Schmid, Beat; Allen, Duane A.; Torres, Omar; Levy, Robert C.; Remer, Lorraine A.; Holben, Brent N.; hide

    2002-01-01

    Analyses of aerosol optical depth (AOD) and columnar water vapor (CWV) measurements obtained with the six-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) mounted on a twin-engine aircraft during the summer 2000 Puerto Rico Dust Experiment are presented. In general, aerosol extinction values calculated from AATS-6 AOD measurements acquired during aircraft profiles up to 5 km ASL reproduce the vertical structure measured by coincident aircraft in-situ measurements of total aerosol number and surface area concentration. Calculations show that the spectral dependence of AOD was small (mean Angstrom wavelength exponents of approximately 0.20) within three atmospheric layers defined as the total column beneath the top of each aircraft profile, the region beneath the trade wind inversion, and the region within the Saharan Air Layer (SAL) above the trade inversion. This spectral behavior is consistent with attenuation of incoming solar radiation by large dust particles or by dust plus sea salt. Values of CWV calculated from profile measurements by AATS-6 at 941.9 nm and from aircraft in-situ measurements by a chilled mirror dewpoint hygrometer agree to within approximately 4% (0.13 g/sq cm). AATS-6 AOD values measured on the ground at Roosevelt Roads Naval Air Station and during low altitude aircraft runs over the adjacent Cabras Island aerosol/radiation ground site agree to within 0.004 to 0.030 with coincident data obtained with an AERONET Sun/sky Cimel radiometer located at Cabras Island. For the same observation times, AERONET retrievals of CWV exceed AATS-6 values by a mean of 0.74 g/sq cm (approximately 21 %) for the 2.9-3.9 g/sq cm measured by AATS-6. Comparison of AATS-6 aerosol extinction values obtained during four aircraft ascents over Cabras Island with corresponding values calculated from coincident aerosol backscatter measurements by a ground-based micro-pulse lidar (MPL-Net) located at Cabras yields a similar vertical structure above the trade

  6. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  7. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  8. Microwave Radiometer and Lidar Synergy for High Vertical Resolution Thermodynamic Profiling in a Cloudy Scenario

    NASA Astrophysics Data System (ADS)

    Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.

    2016-12-01

    Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong

  9. 26 x 6.6 radial-belted aircraft tire performance

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.

    1991-01-01

    Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.

  10. Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.

    1993-01-01

    As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

  11. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  12. AVALON: definition and modeling of a vertical takeoff and landing UAV

    NASA Astrophysics Data System (ADS)

    Silva, N. B. F.; Marconato, E. A.; Branco, K. R. L. J. C.

    2015-09-01

    Unmanned Aerial Vehicles (UAVs) have been used in numerous applications, like remote sensing, precision agriculture and atmospheric data monitoring. Vertical takeoff and landing (VTOL) is a modality of these aircrafts, which are capable of taking off and landing vertically, like a helicopter. This paper presents the definition and modeling of a fixed- wing VTOL, named AVALON (Autonomous VerticAL takeOff and laNding), which has the advantages of traditional aircrafts with improved performance and can take off and land in small areas. The principles of small UAVs development were followed to achieve a better design and to increase the range of applications for this VTOL. Therefore, we present the design model of AVALON validated in a flight simulator and the results show its validity as a physical option for an UAV platform.

  13. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  14. Quantitative precipitation estimation in complex orography using quasi-vertical profiles of dual polarization radar variables

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Roberto, Nicoletta; Adirosi, Elisa; Gorgucci, Eugenio; Baldini, Luca

    2017-04-01

    Weather radars are nowadays a unique tool to estimate quantitatively the rain precipitation near the surface. This is an important task for a plenty of applications. For example, to feed hydrological models, mitigate the impact of severe storms at the ground using radar information in modern warning tools as well as aid the validation studies of satellite-based rain products. With respect to the latter application, several ground validation studies of the Global Precipitation Mission (GPM) products have recently highlighted the importance of accurate QPE from ground-based weather radars. To date, a plenty of works analyzed the performance of various QPE algorithms making use of actual and synthetic experiments, possibly trained by measurement of particle size distributions and electromagnetic models. Most of these studies support the use of dual polarization variables not only to ensure a good level of radar data quality but also as a direct input in the rain estimation equations. Among others, one of the most important limiting factors in radar QPE accuracy is the vertical variability of particle size distribution that affects at different levels, all the radar variables acquired as well as rain rates. This is particularly impactful in mountainous areas where the altitudes of the radar sampling is likely several hundred of meters above the surface. In this work, we analyze the impact of the vertical profile variations of rain precipitation on several dual polarization radar QPE algorithms when they are tested a in complex orography scenario. So far, in weather radar studies, more emphasis has been given to the extrapolation strategies that make use of the signature of the vertical profiles in terms of radar co-polar reflectivity. This may limit the use of the radar vertical profiles when dual polarization QPE algorithms are considered because in that case all the radar variables used in the rain estimation process should be consistently extrapolated at the surface

  15. Aircraft Rollout Iterative Energy Simulation

    NASA Technical Reports Server (NTRS)

    Kinoshita, L.

    1986-01-01

    Aircraft Rollout Iterative Energy Simulation (ARIES) program analyzes aircraft-brake performance during rollout. Simulates threedegree-of-freedom rollout after nose-gear touchdown. Amount of brake energy dissipated during aircraft landing determines life expectancy of brake pads. ARIES incorporates brake pressure, actual flight data, crosswinds, and runway characteristics to calculate following: brake energy during rollout for up to four independent brake systems; time profiles of rollout distance, velocity, deceleration, and lateral runway position; and all aerodynamic moments on aircraft. ARIES written in FORTRAN 77 for batch execution.

  16. Collins Aerodyne VTOL aircraft investigations

    NASA Image and Video Library

    1960-01-11

    Collins Aerodyne vertical take-off and landing (VTOL) aircraft investigations. Ground plane support system. 3/4 front view. Dave Koening (from Collins Aerodyne) in photo. Mounted on variable height struts, ground board system, zero degree angle of attack. 01/11/1960

  17. Improving the efficiency of smaller transport aircraft

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1984-01-01

    Considered apart from its propulsive system the high altitude airplane itself adapted to higher flight altitudes than those in current use. Scaling on the assumption of constant aircraft density indicates that this conclusion applies most importantly to smaller transport aircraft. Climb to 60,000 ft could save time and energy for trips as short as 500 miles. A discussion of the effect of winglets on aircraft efficiency is presented. A 10% reduction of induced drag below that of a comparable elliptic wing can be achieved either by horizontal or vertical wing tip extensions.

  18. Observations and modelling of the boundary layer using remotely piloted aircraft

    NASA Astrophysics Data System (ADS)

    Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg

    2014-05-01

    Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher

  19. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    NASA Astrophysics Data System (ADS)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  20. A New Airborne Lidar for Remote Sensing of Canopy Fluorescence and Vertical Profile

    NASA Astrophysics Data System (ADS)

    Ounis, A.; Bach, J.; Mahjoub, A.; Daumard, F.; Moya, I.; Goulas, Y.

    2016-06-01

    We report the development of a new lidar system for airborne remote sensing of chlorophyll fluorescence (ChlF) and vertical profile of canopies. By combining laserinduced fluorescence (LIF), sun-induced fluorescence (SIF) and canopy height distribution, the new instrument will low the simultaneous assessment of gross primary production (GPP), photosynthesis efficiency and above ground carbon stocks. Technical issues of the lidar development are discussed and expected performances are presented.

  1. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  2. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  3. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  4. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  5. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    NASA Astrophysics Data System (ADS)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  6. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  7. CO2 profile retrievals from TCCON spectra

    NASA Astrophysics Data System (ADS)

    Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the vertical CO2 profile, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform profile retrievals in which the pressure broadening effect of absorption lines is used to retrieve vertical gas profiles, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved vertical CO2 profiles of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 profiles from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.

  8. Aircraft Spacings that Produce a Vortex-Free Region Below Flight Formation

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2000-01-01

    Theoretical estimates are presented for the motion of vortex wakes shed by multiple aircraft flying in close formation. The purpose of the theoretical study was to determine whether the spacings between adjacent aircraft in close formations could be designed so that the lift-generated vortices being trailed would move upward rather than downward. In this way, a region below the formation is produced that is free of vortices. It was found that aircraft can be arranged in formations so that the inboard wake vortices all move upward rather than downward. The two outboard vortices travel downward at a greatly reduced velocity that depends on the number of aircraft in the formation. If the desired motions are to be produced, the lateral spacings between adjacent aircraft centerlines must be between 1.1 and 1.5 wingspans, and the vertical spacings between -0.025 and -0.15 wingspans. Since the range of acceptable spacings is small, it is recommended that the position accuracy between aircraft in the formation be kept within about + or - 0.01 wingspan of the center of acceptable spacings so that aircraft meandering do not cause unwanted vortex excursions. It was also found that, if the in-trail spacings between adjacent aircraft are more than 4 wingspans, the foregoing vertical spacings must be adjusted to allow for the additional downward travel of the vortices shed by leading aircraft.

  9. Aircraft-borne DOAS limb observations of iodine monoxide around Borneo

    NASA Astrophysics Data System (ADS)

    Großmann, Katja; Hossaini, Ryan; Mantle, Hannah; Chipperfield, Martyn; Wittrock, Folkard; Peters, Enno; Lampel, Johannes; Walker, Hannah; Heard, Dwayne; Krystofiak, Gisèle; Catoire, Valéry; Dorf, Marcel; Werner, Bodo; Pfeilsticker, Klaus

    2015-04-01

    Iodine monoxide (IO) has a major impact on the photochemistry of the troposphere. It can for example catalytically destroy ozone, influence the atmospheric oxidation capacity by changing the partitioning of the HOx and NOx species, or contribute to the formation of ultrafine particles. Information regarding the vertical distribution of IO is still sparse since only few vertical profiles of IO exist for the troposphere. Spectroscopic measurements were carried out from aboard the research aircraft DLR-Falcon during the SHIVA (Stratospheric ozone: Halogen Impacts in a Varying Atmosphere) campaign at Malaysian Borneo in November and December 2011 to study the abundance and transport of trace gases in the lower atmosphere. Sixteen research flights were performed covering legs near the surface in the marine boundary layer (MBL) as well as in the free troposphere (FT) up to an altitude of 13 km. The spectroscopic measurements were evaluated using the Differential Optical Absorption Spectroscopy (DOAS) technique in limb geometry, which supports observations of UV/visible absorbing trace gases, such as O4, BrO, IO, NO2, HCHO, CHOCHO, HONO and H2O, and altitude information was gained via the O4 scaling technique and/or full inversion. The inferred vertical profiles of IO showed mixing ratios of 0.5-1.5 ppt in the MBL, which decreased to 0.1-0.3 ppt in the FT. Occasionally, the IO observed in the FT of the marine environment coincided with elevated amounts of CO, but no IO was observed over land, neither in the boundary layer, nor in the FT. This behavior strongly indicated that the major sources for IO were organic and inorganic precursor molecules emitted from the ocean, which during daytime rapidly formed a sizable amount of IO in the MBL that was occasionally transported into the FT where efficient loss processes for IO must exist. The inferred vertical profiles of IO are compared to simulations using the global 3-D chemistry transport model TOMCAT including recent fluxes

  10. Impact of flight systems integration on future aircraft design

    NASA Technical Reports Server (NTRS)

    Hood, R. V.; Dollyhigh, S. M.; Newsom, J. R.

    1984-01-01

    Integrations trends in aircraft are discussed with an eye to manifestations in future aircraft designs through interdisciplinary technology integration. Current practices use software changes or small hardware fixes to solve problems late in the design process, e.g., low static stability to upgrade fuel efficiency. A total energy control system has been devised to integrate autopilot and autothrottle functions, thereby eliminating hardware, reducing the software, pilot workload, and cost, and improving flight efficiency and performance. Integrated active controls offer reduced weight and larger payloads for transport aircraft. The introduction of vectored thrust may eliminate horizontal and vertical stabilizers, and location of the thrust at the vehicle center of gravity can provide vertical takeoff and landing capabilities. It is suggested that further efforts will open a new discipline, aeroservoelasticity, and tests will become multidisciplinary, involving controls, aerodynamics, propulsion and structures.

  11. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Lift-fan aircraft: Lessons learned-the pilot's perspective

    NASA Technical Reports Server (NTRS)

    Gerdes, Ronald M.

    1993-01-01

    This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.

  13. Flight through thunderstorm outflows. [aircraft landing

    NASA Technical Reports Server (NTRS)

    Frost, W.; Crosby, B.; Camp, D. W.

    1978-01-01

    Computer simulation of aircraft landing through thunderstorm gust fronts is carried out. The two-dimensional, nonlinear equations or aircraft motion containing all wind shear terms are solved numerically. The gust front spatial wind field inputs are provided in the form of tabulated experimental data which are coupled with a computer table lookup routine to provide the required wind components and shear at any given position within an approximate 500 m by 1 km vertical plane. The aircraft is considered to enter the wind field at a specified position under trimmed conditions. Both fixed control and automatic control landings are simulated. Flight paths, as well as control inputs necessary to maintain specified trajectories, are presented and discussed for aircraft having characteristics of a DC-8, B-747, augmentor-wing STOL, and a DHC-6.

  14. V/STOL aircraft configurations and opportunities in the Pacific Basin

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced aircraft configurations offer new transportation options for the Pacific Basin. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, subsonic vertical and short takeoff and landing (V/STOL) aircraft, and subsonic short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for satisfying many of the transportation requirements of the Pacific Basin; as such, they could revolutionize short-haul transportation in that region.

  15. Civil applications of high-speed rotorcraft and powered-lift aircraft configurations

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1987-01-01

    Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

  16. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  17. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  18. Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils

    Treesearch

    John F. Hunt; Weiqi Leng; Mehdi Tajvidi

    2017-01-01

    In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...

  19. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  20. Quantifying Variations in Airborne Gravity Data Quality Due to Aircraft Selection with the Gravity for the Re-Definition of the American Vertical Datum Project

    NASA Astrophysics Data System (ADS)

    Youngman, M.; Weil, C.; Salisbury, T.; Villarreal, C.

    2015-12-01

    The U.S. National Geodetic Survey is collecting airborne gravity with the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project to produce a geoid supporting heights accurate to 2 centimeters, where possible, with a modernized U.S. vertical datum in 2022. Targeting 15.6 million square kilometers, the GRAV-D project is unprecedented in its scope of consistently collected airborne gravity data across the entire U.S. and its holdings. Currently over 42% of data collection has been completed by 42 surveys (field campaigns) covering 34 completed blocks (data collection areas). The large amount of data available offers a unique opportunity to evaluate the causes of data quality variation from survey to survey. Two metrics were chosen to use as a basis for comparing the quality of each survey/block: 1. total crossover error (i.e. difference in gravity recorded at all locations of crossing flight lines) and 2. the statistical difference of the airborne gravity from the EGM2008 global model. We have determined that the aircraft used for surveying contributes significantly to the variation in data quality. This paper will further expand upon that recent work, using statistical analysis to determine the contribution of aircraft selection to data quality taking into account other variables such as differences in survey setup or weather conditions during surveying.

  1. Satellite remote sensing and ozonesonde observation of ozone vertical profile and severe storm development

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1988-01-01

    Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.

  2. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  3. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  4. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams

    NASA Astrophysics Data System (ADS)

    Cervania, A.; Knack, I. M. W.

    2017-12-01

    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  5. Impact of spatial inhomogeneities on stratospheric species vertical profiles from remote-sensing balloon-borne instruments

    NASA Astrophysics Data System (ADS)

    Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude

    Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.

  6. Analysis and characterization of the vertical wind profile in UAE

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.

    2011-12-01

    In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have

  7. The design of sport and touring aircraft

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Guenther, W.

    1984-01-01

    General considerations concerning the design of a new aircraft are discussed, taking into account the objective to develop an aircraft can satisfy economically a certain spectrum of tasks. Requirements related to the design of sport and touring aircraft included in the past mainly a high cruising speed and short take-off and landing runs. Additional requirements for new aircraft are now low fuel consumption and optimal efficiency. A computer program for the computation of flight performance makes it possible to vary automatically a number of parameters, such as flight altitude, wing area, and wing span. The appropriate design characteristics are to a large extent determined by the selection of the flight altitude. Three different wing profiles are compared. Potential improvements with respect to the performance of the aircraft and its efficiency are related to the use of fiber composites, the employment of better propeller profiles, more efficient engines, and the utilization of suitable instrumentation for optimal flight conduction.

  8. Dynamics of ultralight aircraft: Motion in vertical gusts

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1977-01-01

    Gust load calculations are extended to the range of conditions encountered by ultralight aircraft such as hang gliders. Having wing loadings of the order of 5 kg/sq m, these gliders acquire a substantial fraction of the motion of a gust within a distance of 1 or 2 m. Comparative loads and displacements for a small powered airplane having a wing loading of 50 kg sq m and for a commercial jet with 500 kg sq m are shown.

  9. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Tosti, Louis P.

    1959-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.

  10. A Flight Study of the Conversion Maneuver of a Tilt-Duct VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Tapscott, Robert J.; Kelley, Henry L.

    1960-01-01

    Flight records are presented from an early flight test of a wing-tip mounted tilting-ducted-fan, vertical-take-off and landing (VTOL) aircraft configuration. Time histories of the aircraft motions, control positions, and duct pitching-moment variation are presented to illustrate the characteristics of the aircraft in hovering, in conversion from hovering to forward flight, and in conversion from forward flight to hovering. The results indicate that during essentially continuous slow level- flight conversions, this aircraft experiences excessive longitudinal trim changes. Studies have shown that the large trim changes are caused primarily by the variation of aerodynamic moments acting on the duct units. Action of the duct-induced downwash on the horizontal stabilizer during the conversion also contributes to the longitudinal trim variations. Time histories of hovering and slow vertical descent in the final stages of landing in calm air show angular motions of the aircraft as great as +/- 10 deg. about all axes. Stick and pedal displacements required to control the aircraft during the landing maneuver were on the order of 50 to 60 percent of the total travel available.

  11. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren

    2016-08-01

    Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for

  12. Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys

    NASA Astrophysics Data System (ADS)

    Gandolfi, Ilaria; Curci, Gabriele; Falasca, Serena; Ferrero, Luca

    2017-04-01

    Analysis and high resolution modelling of black carbon vertical profiles measured over three Italian valleys Ilaria Gandolfi1,2, Gabriele Curci1,2, Serena Falasca1,2, Luca Ferrero3 1 Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 2 Center of Excellence CETEMPS, University of L'Aquila, L'Aquila, Italy 3 POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy Last decades were characterized by a growing interest in aerosols: mainly for their effect on human health and on the energy balance of solar and planetary radiation, thus their role in climate change. In this study, we analyze the evolution of vertical profile of black carbon (BC) through tethered balloon observations and chemistry-transport modelling. Black carbon is regarded as the second most important anthropogenic climate forcing agent and its concentration varies significantly depending on the altitude and the sources on the territory. In winter of 2010 University Of Milan Bicocca conducted three intensive measurements campaigns over three Italian basin valleys (Terni, Po Valley, Passiria Valley). The choice of the valleys was made taking into consideration the orography and the river basin structure. The measurement campaign was based on a helium-filled tethered balloon, on which the instrumentation for the analysis has been mounted; the instrumentation consisted on a meteorological station, an OPC, a cascade impactor and a micro-Aethalometer. Subsequently, at University of L'Aquila simulations were produced to help interpretation of these vertical aerosol profiles (mass, composition and distribution) and related optical properties (scattering, absorption) using a chemistry-transport model (WRF-CHIMERE) at high horizontal resolution (1 km). The analysis focused primarily on the calculation of the heating rate and of the Direct Radiative Effect (DRE), and on the analysis of the

  13. Wind Tunnel Measurements and Calculations of Aerodynamic Interactions Between Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Derby, Michael R.; Wadcock, Alan J.

    2002-01-01

    Wind tunnel measurements and calculations of the aerodynamic interactions between two tiltrotor aircraft in helicopter mode are presented. The measured results include the roll moment and thrust change on the downwind aircraft, as a function of the upwind aircraft position (longitudinal, lateral, and vertical). Magnitudes and locations of the largest interactions are identified. The calculated interactions generally match the measurements, with discrepancies attributed to the unsteadiness of the wake and aerodynamic forces on the airframe. To interpret the interactions in terms of control and power changes on the aircraft, additional calculations are presented for trimmed aircraft with gimballed rotors.

  14. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  15. Variations of GHGs from the lower-troposphere to the UT/LS revealed by two Japanese regular aircraft observation programs

    NASA Astrophysics Data System (ADS)

    Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Imasu, Ryoichi

    2014-05-01

    A Japan-centered observation network consisting of two regular aircraft programs have revealed the greenhouse gases variations from the lower-troposphere to the upper-troposphere/lower-stratosphere (UT/LS) regions. In the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project, in-situ continuous measurement equipment (CME) onboard commercial passenger aircraft world-widely observes CO2 profiles in vertical over tens of airports and in horizontal in the UT/LS regions. The CONTRAIL-CME has revealed three-dimensional structure of the global CO2 distribution and has exposed significant inter-hemispheric transport of CO2 through the upper-troposphere. In inverse modeling, the CME data have provided strong constraints on CO2 flux estimation especially for the Asian tropics. Automatic flask air sampling equipment (ASE) is also onboard the CONTRAIL aircraft and has been observing CO2 mixing ratios as well as those of methane, carbon monoxide, nitrous oxide and other trace species in the upper-troposphere between Japan and Australia. The observation period of the ASE has reached 20 years. In recent years, the ASE program has extended to the northern subarctic UT/LS region and has given an insight of transport mechanisms in the UT/LS by observing seasonal GHGs variations. In the other aircraft observation program by Japan Meteorological Agency, variations of GHGs have been observed by flask-sampling onboard a C-130H aircraft horizontally in the mid-troposphere over the western North Pacific as well as vertically over Minamitorishima-Island. The C-130H aircraft has persistently observed high mixing ratios of CH4 in the mid-troposphere, which seems to be originated from fossil fuel combustion throughout the year as well as from biogenic sources during summer in the Asian regions. Those above aircraft observation programs have a significant role for constraining GHGs flux estimates by filling the data gap of the existing surface measurement network

  16. Aircraft-type dependency of contrail evolution

    NASA Astrophysics Data System (ADS)

    Unterstrasser, S.; Görsch, N.

    2014-12-01

    The impact of aircraft type on contrail evolution is assessed using a large eddy simulation model with Lagrangian ice microphysics. Six different aircraft ranging from the small regional airliner Bombardier CRJ to the largest aircraft Airbus A380 are taken into account. Differences in wake vortex properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice crystal number. Larger aircraft produce contrails with more ice crystals (assuming that the number of initially generated ice crystals per kilogram fuel is constant). These initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 min than those of small aircraft. A parameterization for the final vertical displacement of the wake vortex system is provided, depending only on the initial vortex circulation and stratification. Cloud resolving simulations are used to examine whether the aircraft-induced initial differences have a long-lasting mark. These simulations suggest that the synoptic scenario controls the contrail cirrus evolution qualitatively. However, quantitative differences between the contrail cirrus properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions of A380-produced contrails are about 1.5 to 2.5 times higher than those from contrails of a Bombardier CRJ.

  17. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  18. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-02-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier Transform Spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information is not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs are typically within 60 m of those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (Collision-Induced Absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC, CONTRAIL and HIPPO, yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS dataset is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.5 ± 0.7 ppm yr-1, in agreement with the currently accepted global growth rate based on ground-based measurements.

  19. Aircraft microwave observations and simulations of deep convection from 18 to 183 GHz. II - Model results

    NASA Technical Reports Server (NTRS)

    Yeh, Hwa-Young M.; Prasad, N.; Mack, Robert A.; Adler, Robert F.

    1990-01-01

    In this June 29, 1986 case study, a radiative transfer model is used to simulate the aircraft multichannel microwave brightness temperatures presented in the Adler et al. (1990) paper and to study the convective storm structure. Ground-based radar data are used to derive hydrometeor profiles of the storm, based on which the microwave upwelling brightness temperatures are calculated. Various vertical hydrometeor phase profiles and the Marshall and Palmer (M-P, 1948) and Sekhon and Srivastava (S-S, 1970) ice particle size distributions are experimented in the model. The results are compared with the aircraft radiometric data. The comparison reveals that the M-P distribution well represents the ice particle size distribution, especially in the upper tropospheric portion of the cloud; the S-S distribution appears to better simulate the ice particle size at the lower portion of the cloud, which has a greater effect on the low-frequency microwave upwelling brightness temperatures; and that, in deep convective regions, significant supercooled liquid water (about 0.5 g/cu m) may be present up to the -30 C layer, while in less convective areas, frozen hydrometeors are predominant above -10 C level.

  20. a Comparitive Study Using Geometric and Vertical Profile Features Derived from Airborne LIDAR for Classifying Tree Genera

    NASA Astrophysics Data System (ADS)

    Ko, C.; Sohn, G.; Remmel, T. K.

    2012-07-01

    We present a comparative study between two different approaches for tree genera classification using descriptors derived from tree geometry and those derived from the vertical profile analysis of LiDAR point data. The different methods provide two perspectives for processing LiDAR point clouds for tree genera identification. The geometric perspective analyzes individual tree crowns in relation to valuable information related to characteristics of clusters and line segments derived within crowns and overall tree shapes to highlight the spatial distribution of LiDAR points within the crown. Conversely, analyzing vertical profiles retrieves information about the point distributions with respect to height percentiles; this perspective emphasizes of the importance that point distributions at specific heights express, accommodating for the decreased point density with respect to depth of canopy penetration by LiDAR pulses. The targeted species include white birch, maple, oak, poplar, white pine and jack pine at a study site northeast of Sault Ste. Marie, Ontario, Canada.

  1. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    NASA Technical Reports Server (NTRS)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landscape and analyzed LAI variations over different land cover types. Mean values of total LAI were 1.74, 5.20, 5.41 and 5.62 over open pasture, secondary forests, regeneration forests after selective-logging and old-growth forests respectively. Lastly, we evaluated the sensitivities of our LAI retrieval model to variations in canopy/ground reflectance ratio and to waveform noise such as induced by topographic slopes. We found for both, that the effects were not significant for moderate LAI values (about 4). However model derivations of LAI might be inaccurate in areas of high-slope and high LAI (about 8) if ground return energies are low. This research suggests that large footprint waveform lidar can provide accurate vertical LAI profile estimates that do not saturate even at the high LAI levels in tropical rain forests and may be a useful tool for understanding the light transmittance within these canopies.

  2. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  3. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.

  4. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  5. Development of the Vertical Electro Magnetic Profiling (VEMP) method

    NASA Astrophysics Data System (ADS)

    Miura, Yasuo; Osato, Kazumi; Takasugi, Shinji; Muraoka, Hirofumi; Yasukawa, Kasumi

    1996-09-01

    As a part of the "Deep-Seated Geothermal Resources Survey (DSGR)" project being undertaken by the New Energy and Industrial Technology Development Organization (NEDO), the "Vertical Electro Magnetic Profiling (VEMP)" method is being developed to accurately obtain deep resistivity structures. The VEMP method takes multi-frequency three-component magnetic field data in an open hole well using controlled source transmitters emitted at the surface (either loop or grounded-wire sources). Numerical simulations using EM3D have demonstrated that phase data of the VEMP method is not only very sensitive to the general resistivity structure, but will also indicate the presence of deeper anomalies. Forward modelling was used to determine the required transmitter moments for various grounded-wire and loop sources for a field test using the WD-1 well in the Kakkonda geothermal area. VEMP logging of the WD-1 well was carried out in May 1994 and the processed field data matches the computer simulations quite well.

  6. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  7. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    PubMed

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 4-D cloud properties from passive satellite data and applications to resolve the flight icing threat to aircraft

    NASA Astrophysics Data System (ADS)

    Smith, William L., Jr.

    The threat for aircraft icing in clouds is a significant hazard that routinely impacts aviation operations. Accurate diagnoses and forecasts of aircraft icing conditions requires identifying the location and vertical distribution of clouds with super-cooled liquid water (SLW) droplets, as well as the characteristics of the droplet size distribution. Traditional forecasting methods rely on guidance from numerical models and conventional observations, neither of which currently resolve cloud properties adequately on the optimal scales needed for aviation. Satellite imagers provide measurements over large areas with high spatial resolution that can be interpreted to identify the locations and characteristics of clouds, including features associated with adverse weather and storms. This thesis develops new techniques for interpreting cloud products derived from satellite data to infer the flight icing threat to aircraft in a wide range of cloud conditions. For unobscured low clouds, the icing threat is determined using empirical relationships developed from correlations between satellite imager retrievals of liquid water path and droplet size with icing conditions reported by pilots (PIREPS). For deep ice over water cloud systems, ice and liquid water content profiles are derived by using the imager cloud properties to constrain climatological information on cloud vertical structure and water phase obtained apriori from radar and lidar observations, and from cloud model analyses. Retrievals of the SLW content embedded within overlapping clouds are mapped to the icing threat using guidance from an airfoil modeling study. Compared to PIREPS, the satellite icing detection and intensity accuracies are found to be about 90% and 70%, respectively. Mean differences between the imager IWC retrievals with those from CloudSat and Calipso are less than 30%. This level of closure in the cloud water budget can only be achieved by correcting for errors in the imager retrievals due

  9. Technology Assessment for Large Vertical-Lift Transport Tiltrotors

    NASA Technical Reports Server (NTRS)

    Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.

    2010-01-01

    The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.

  10. Atmospheric O2, CO2 and delta13C measurements from aircraft sampling over Griffin Forest, Perthshire, UK.

    PubMed

    Sturm, Patrick; Leuenberger, Markus; Moncrieff, John; Ramonet, Michel

    2005-01-01

    Regular vertical aircraft sampling has been performed in the lower troposphere above Griffin Forest, near Aberfeldy, Perthshire, UK (56 degrees 37'N, 3 degrees 47'W), between February 2003 and May 2004, for analysis of O2/N2, CO2 and delta13C of CO2. We sampled flasks between 800 and 3100 m above sea level. The peak-to-peak amplitude of the seasonal cycle of O2/N2 decreases from 171 per meg at 800 m to 113 per meg at 3100 m. Furthermore, the seasonal cycle is shifted from low to high altitudes with a lag of about 1 month. The same features are observed for CO2 with a decrease in the peak-to-peak amplitude of the seasonal cycle from 17.6 ppm at 800 m to 11.4 ppm at 3100 m. The vertical profiles show decreasing O2/N2 ratios in summer and increasing O2/N2 ratios in wintertime with increasing sampling height, due to surface exchange of oxygen with the land biosphere and the ocean. The O2:CO2 exchange ratios of the vertical profiles vary between -1.5 and -2.4 mol O2/mol CO2. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Measurements of Aerosol Vertical Profiles and Optical Properties during INDOEX 1999 Using Micro-Pulse Lidars

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Voss, Kenneth J.; Quinn, Patricia K.; Flatau, Piotr J.; Markowicz, Krzysztof; Campbell, James R.; Spinhirne, James D.; Gordon, Howard R.; Johnson, James E.; Starr, David OC. (Technical Monitor)

    2001-01-01

    lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

  12. Observed changes in the vertical profile of stratopheric nitrous oxide at Thule, Greenland, February - March 1992

    NASA Technical Reports Server (NTRS)

    Emmons, Louisa K.; Reeves, John M.; Shindell, Drew T.; Dezafra, Robert L.

    1994-01-01

    Using a ground-based mm-wave spectrometer, we have observed stratospheric N2O over Thule, Greenland (76.3 N, 68.4 W) during late February and March, 1992. Vertical profiles of mixing ratio ranging from 16 to 50 km were recovered from molecular emission spectra. The profiles of early March show an abrupt increase in the lower-stratosphere N2O mixing ratio similar to the spring-to-summer change associated with the break up of the Antarctic polar vortex. This increase is correlated with changes in potential vorticity, air temperature, and ozone mixing ratio.

  13. Retrieval of vertical aerosol- and trace gas profiles in the Antarctic troposphere using helicopter-borne MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Buxmann, Joelle; Frieß, Udo; Platt, Ulrich

    2014-05-01

    During springtime in polar regions when the sunlight returns, bromine monoxide (BrO) is released from sea ice into the atmosphere from saline surfaces due to an autocatalytic reaction mechanism. BrO affects the oxidative properties of the troposphere and can lead to a virtually complete depletion of surface ozone within a few days or even hours. Furthermore, the oxidation of gaseous elemental mercury by BrO renders this toxic compound soluble and leads to a deposition and thus entry of mercury into the vulnerable biosphere. However, the exact nature of the bromine radical sources in polar regions, as well as the details of the mechanisms leading to bromine explosions and also the interactions between dynamics and chemistry are not yet completely understood. For a better understanding of these processes, an accurate determination of the spatio-temporal distribution of BrO is crucial. We present first measurements of BrO and aerosols performed onboard a helicopter using a compact Multi AXial Differential Absorption Spectroscopy (MAX-DOAS) instrument during a cruise of the German research vessel Polarstern in the Antarctic Weddell Sea between August and October 2013. Numerous flights were performed in the boundary layer as well as in the free troposphere up to 2300m. Due to its versatility, allowing measurements at multiple altitudes with small elevation angles and thus high air mass factors, a helicopter as a platform for MAX-DOAS measurements offers a considerably improved information content throughout the lower troposphere compared to MAX-DOAS measurements from the ground. Using our HEIPRO (HEIdelberg Profile) retrieval algorithm based on optimal estimation, vertical profiles of aerosols and trace gases can be retrieved with an unprecedented vertical resolution and a better sensitivity for higher altitudes. Furthermore, these measurements allow for a thorough characterization of the dynamical and chemical processes bromine radicals are involved in. We will present

  14. Environmental Assessment: T-6 Aircraft Basing and Operation

    DTIC Science & Technology

    2004-06-01

    The operating characteristics of the T -6 are similar to the T-37. Thus, the T-6 traffic pattern aircraft ground tracks, profiles , and airspeeds are...low-income populations.” Adverse is defined by the Federal Interagency Working Group on Environmental Justice as “having a deleterious effect on...types of aircraft (i.e., large and trainer) was considered a significant safety issue. Safety concerns include mixing the flight profiles of two

  15. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  16. Vertically operating flight vehicle for drilling and agricultural use

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    The invention deals with an aircraft which ascends and descends vertically and which is used for recreational aircraft, as well as for drilling and in agriculture. The invention combines the floating effect of a parachute with the helicopter to develop a flight vehicle with multiple uses which go beyond those of contemporary flight vehicles. Both hub mechanisms and thrust power are implemented to achieve this goal. Four designs are described in detail.

  17. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    NASA Astrophysics Data System (ADS)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  18. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  19. Comparison of the GOSAT TANSO-FTS TIR CH volume mixing ratio vertical profiles with those measured by ACE-FTS, ESA MIPAS, IMK-IAA MIPAS, and 16 NDACC stations

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Strong, Kimberly; Walker, Kaley A.; Boone, Chris D.; Raspollini, Piera; Plieninger, Johannes; Bader, Whitney; Conway, Stephanie; Grutter, Michel; Hannigan, James W.; Hase, Frank; Jones, Nicholas; de Mazière, Martine; Notholt, Justus; Schneider, Matthias; Smale, Dan; Sussmann, Ralf; Saitoh, Naoko

    2017-10-01

    The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS uses three short-wave infrared (SWIR) bands to retrieve total columns of CO2 and CH4 along its optical line of sight and one thermal infrared (TIR) channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios (VMRs) in the troposphere. We examine version 1 of the TANSO-FTS TIR CH4 product by comparing co-located CH4 VMR vertical profiles from two other remote-sensing FTS systems: the Canadian Space Agency's Atmospheric Chemistry Experiment FTS (ACE-FTS) on SCISAT (version 3.5) and the European Space Agency's Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat (ESA ML2PP version 6 and IMK-IAA reduced-resolution version V5R_CH4_224/225), as well as 16 ground stations with the Network for the Detection of Atmospheric Composition Change (NDACC). This work follows an initial inter-comparison study over the Arctic, which incorporated a ground-based FTS at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, and focuses on tropospheric and lower-stratospheric measurements made at middle and tropical latitudes between 2009 and 2013 (mid-2012 for MIPAS). For comparison, vertical profiles from all instruments are interpolated onto a common pressure grid, and smoothing is applied to ACE-FTS, MIPAS, and NDACC vertical profiles. Smoothing is needed to account for differences between the vertical resolution of each instrument and differences in the dependence on a priori profiles. The smoothing operators use the TANSO-FTS a priori and averaging kernels in all cases. We present zonally averaged mean CH4 differences between each instrument and TANSO-FTS with and without smoothing, and we examine their information content, their sensitive altitude range, their correlation, their a priori dependence, and the variability within

  20. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  1. Vertical radar profiles for the calibration of unsaturated flow models under dynamic water table conditions

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Gallotti, L.; Ventura, V.; Andreotti, G.

    2003-04-01

    The identification of flow and transport characteristics in the vadose zone is a fundamental step towards understanding the dynamics of contaminated sites and the resulting risk of groundwater pollution. Borehole radar has gained popularity for the monitoring of moisture content changes, thanks to its apparent simplicity and its high resolution characteristics. However, cross-hole radar requires closely spaced (a few meters), plastic-cased boreholes, that are rarely available as a standard feature in sites of practical interest. Unlike cross-hole applications, Vertical Radar Profiles (VRP) require only one borehole, with practical and financial benefits. High-resolution, time-lapse VRPs have been acquired at a crude oil contaminated site in Trecate, Northern Italy, on a few existing boreholes originally developed for remediation via bioventing. The dynamic water table conditions, with yearly oscillations of roughly 5 m from 6 to 11 m bgl, offers a good opportunity to observe via VRP a field scale drainage-imbibition process. Arrival time inversion has been carried out using a regularized tomographic algorithm, in order to overcome the noise introduced by first arrival picking. Interpretation of the vertical profiles in terms of moisture content has been based on standard models (Topp et al., 1980; Roth et al., 1990). The sedimentary sequence manifests itself as a cyclic pattern in moisture content over most of the profiles. We performed preliminary Richards' equation simulations with time varying later table boundary conditions, in order to estimate the unsaturated flow parameters, and the results have been compared with laboratory evidence from cores.

  2. Case Studies of the Vertical Structure of the Direct Shortwave Aerosol Radiative Forcing During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Hobbs, P. V.; Hartley, W. S.; Bergstrom, R. W.; Browell, E. V.; Russell, P. B.

    2000-01-01

    The vertical structure of aerosol-induced radiative flux changes in the Earth's troposphere affects local heating rates and thereby convective processes, the formation and lifetime of clouds, and hence the distribution of chemical constituents. We present observationally based estimates of the vertical structure of direct shortwave aerosol radiative forcing for two case studies from the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) which took place on the U.S. east coast in July 1996. The aerosol radiative forcings are computed using the Fu-Liou broadband radiative transfer model. The aerosol optical properties used in the radiative transfer simulations are calculated from independent vertically resolved estimates of the complex aerosol indices of refraction in two to three distinct vertical layers, using profiles of in situ particle size distributions measured aboard the University of Washington research aircraft. Aerosol single-scattering albedos at 450 nm thus determined range from 0.9 to 0.985, while the asymmetry factor varies from 0.6 to 0.8. The instantaneous shortwave aerosol radiative forcings derived from the optical properties of the aerosols are of the order of -36 Wm(exp -2) at the top of the atmosphere and about -56 Wm(exp -2) at the surface for both case studies.

  3. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  4. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  5. Static Aeroelasticity in Combat Aircraft.

    DTIC Science & Technology

    1986-01-01

    stiffness scaled beam machined along a predicted elastic axis, and load iola- tion cuts forward and aft of the beam, has proved to be most successful...aircraft components. Many papers deal with the activities in the field of structural optimization.’ 4sing fiber composites , a new design technique...Supersonic Design Composite Structures Fly - by - Wire Thin Profiles Aeroelastic Tailoring Unstable Aircraft V Variable Camber Lght Weight Pilot Handling

  6. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  7. Gust response of commercial jet aircraft including effects of autopilot operation

    NASA Technical Reports Server (NTRS)

    Goldberg, J. H.

    1982-01-01

    A simplified theory of aircraft vertical acceleration gust response based on a model including pitch, vertical displacement and control motions due to autopilot operation is presented. High-order autopilot transfer functions are utilized for improved accuracy in the determination of the overall response characteristics. Four representative commercial jet aircraft were studied over a wide range of operating conditions and comparisons of individual responses are given. It is shown that autopilot operation relative to the controls fixed case causes response attenuation of from 10 percent to approximately 25 percent depending on flight condition and increases in crossing number up to 30 percent, with variations between aircraft of from 5 percent to 10 percent, in general, reflecting the differences in autopilot design. A detailed computer program description and listing of the calculation procedure suitable for the general application of the theory to any airplane autopilot combination is also included.

  8. Global-mean BC lifetime as an indicator of model skill? Constraining the vertical aerosol distribution using aircraft observations

    NASA Astrophysics Data System (ADS)

    Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.

    2017-12-01

    Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or

  9. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  10. Inertial instrument system for aerial surveying

    USGS Publications Warehouse

    Brown, R.H.; Chapman, W.H.; Hanna, W.F.; Mongan, C.E.; Hursh, J.W.

    1985-01-01

    An inertial guidance system for aerial surveying has been developed under contract to the U.S. Geological Survey. This prototype system, known as the aerial profiling of terrain (APT) system, is designed to determine continuously the positions of points along an aircraft flight path, or the underlying terrain profile, to an accuracy of + or - 0.5 ft (15 cm) vertically and + or - 2 ft (61 cm) horizontally. The system 's objective thus is to accomplish, from a fixed-wing aircraft, what would traditionally be accomplished from ground-based topographic surveys combined with aerial photography and photogrammetry. The two-part strategy for measuring the terrain profile entails: (1) use of an inertial navigator for continuous determination of the three-coordinate position of the aircraft, and (2) use of an eye-safe pulsed laser profiler for continuous measurement of the vertical distance from aircraft to land surface, so that the desired terrain profile can then be directly computed. The APT system, installed in a DeHavilland Twin Otter aircraft, is typically flown at a speed of 115 mph (105 knots) at an altitude of 2,000 ft (610 m) above the terrain. Performance-evaluation flights have shown that the vertical and horizontal accuracy specifications are met. (USGS)

  11. Convection Fingerprints on the Vertical Profiles of Q1 and Q2

    NASA Astrophysics Data System (ADS)

    Chang, C.; Lin, H.; Chou, C.

    2013-12-01

    Different types of tropical convection left their fingerprints on vertical structures of apparent heat source (Q1) and apparent moisture sink (Q2). Profile of deep convection on condensation heating and drying has been well-documented, yet direct assessment of shallow convection remains to be explored. Shallow convection prevails over subtropical ocean, where large-scale subsidence is primarily balanced by radiative cooling and moistening due to surface evaporation instead of moist convection. In this study a united framework is designed to investigate the vertical structures of tropical marine convections in three reanalysis data, including ERA-Interim, MERRA, and CFSR. It starts by sorting and binning data from the lightest to the heaviest rain. Then the differences between two neighboring bins are used to examine the direct effects for precipitation change, in light of the fact that non-convective processes would change slowly from bin to bin. It is shown that all three reanalyses reveal the shallow convective processes in light rain bins, featured by re-evaporating and detraining at the top of boundary layer and lower free troposphere. For heavy rain bins, three reanalyses mainly differ in their numbers and altitudes of heating and drying peaks, implying no universal agreement has been reached on partitioning of cloud populations. Coherent variations in temperature, moisture, and vertical motion are also discussed. This approach permits a systematical survey and comparison of tropical convection in GCM-type models, and preliminary studies of three reanalyses suggest certain degree of inconsistency in simulated convective feedback to large-scale heat and moisture budgets.

  12. Internal-flow systems for aircraft

    NASA Technical Reports Server (NTRS)

    Rogallo, F M

    1941-01-01

    An investigation has been made to determine efficient arrangements for an internal-flow system of an aircraft when such a system operates by itself or in combination with other flow systems. The investigation included a theoretical treatment of the problem and tests in the NACA 5-foot vertical wind tunnel of inlet and outlet openings in a flat plate and in a wing.

  13. DC-8 Scanning Lidar Characterization of Aircraft Contrails and Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Oseberg, Terje E.

    1998-01-01

    An angular-scanning large-aperture (36 cm) backscatter lidar was developed and deployed on the NASA DC-8 research aircraft as part of the SUCCESS (Subsonic Aircraft: Contrail and Cloud Effects Special Study) program. The lidar viewing direction could be scanned continuously during aircraft flight from vertically upward to forward to vertically downward, or the viewing could be at fixed angles. Real-time pictorial displays generated from the lidar signatures were broadcast on the DC-8 video network and used to locate clouds and contrails above, ahead of, and below the DC-8 to depict their spatial structure and to help select DC-8 altitudes for achieving optimum sampling by onboard in situ sensors. Several lidar receiver systems and real-time data displays were evaluated to help extend in situ data into vertical dimensions and to help establish possible lidar configurations and applications on future missions. Digital lidar signatures were recorded on 8 mm Exabyte tape and generated real-time displays were recorded on 8mm video tape. The digital records were transcribed in a common format to compact disks to facilitate data analysis and delivery to SUCCESS participants. Data selected from the real-time display video recordings were processed for publication-quality displays incorporating several standard lidar data corrections. Data examples are presented that illustrate: (1) correlation with particulate, gas, and radiometric measurements made by onboard sensors, (2) discrimination and identification between contrails observed by onboard sensors, (3) high-altitude (13 km) scattering layer that exhibits greatly enhanced vertical backscatter relative to off-vertical backscatter, and (4) mapping of vertical distributions of individual precipitating ice crystals and their capture by cloud layers. An angular scan plotting program was developed that accounts for DC-8 pitch and velocity.

  14. Noise suppression due to annulus shaping of an inverted-velocity-profile coaxial nozzle. [supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J.; Vonglahn, U.

    1980-01-01

    An inverted velocity profile coaxial nozzle for use with supersonic cruise aircraft produces less jet noise than an equivalent conical nozzle. Furthermore, decreasing the annulus height (increasing radius ratio with constant flow) results in further noise reduction benefits. The annulus shape (height) was varied by an eccentric mounting of the annular nozzle with respect to a conical core nozzle. Acoustic measurements were made in the flyover plane below the narrowest portion of the annulus and at 90 deg and 180 deg from this point. The model-scale spectra are scaled up to engine size (1.07 m diameter) and the perceived noise levels for the eccentric and baseline concentric inverted velocity profile coaxial nozzles are compared over a range of operating conditions. The implications of the acoustic benefits derived with the eccentric nozzle to practical applications are discussed.

  15. Ozone Profiles in the Baltimore-Washington Region (2006-2011): Satellite Comparisons and DISCOVER-AQ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Stauffer, Ryan M.; Miller, Sonya K.; Martins, Douglas K.; Joseph, Everette; Weinheimer, Andrew J.; Diskin, Glenn S.

    2014-01-01

    Much progress has been made in creating satellite products for tracking the pollutants ozone and NO2 in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.05N; 76.9W) and Baltimore (Edgewood, MD, 39.4N; 76.3W) during the July 2011 DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiment. First, we compare column-ozone amounts from the Beltsville and Edgewood sondes with data from overpassing satellites. Second, processes influencing ozone profile structure are analyzed using Laminar Identification and tracers: sonde water vapor, aircraft CO and NOy. Third, Beltsville ozone profiles and meteorological influences in July 2011 are compared to those from the summers of 2006-2010. Sonde-satellite offsets in total ozone during July 2011 at Edgewood and Beltsville, compared to the Ozone Monitoring Instrument (OMI), were 3 percent mean absolute error, not statistically significant. The disagreement between an OMIMicrowave Limb Sounder-based tropospheric ozone column and the sonde averaged 10 percent at both sites, with the sonde usually greater than the satellite. Laminar Identification (LID), that distinguishes ozone segments influenced by convective and advective transport, reveals that on days when both stations launched ozonesondes, vertical mixing was stronger at Edgewood. Approximately half the lower free troposphere sonde profiles have very dry laminae, with coincident aircraft spirals displaying low CO (80-110 ppbv), suggesting stratospheric influence. Ozone budgets at Beltsville in July 2011, determined with LID, as well as standard meteorological indicators, resemble those

  16. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  17. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  18. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  19. One year of vertical wind profiles measurements at a Mediterranean coastal site of South Italy

    NASA Astrophysics Data System (ADS)

    Calidonna, Claudia Roberta; Avolio, Elenio; Federico, Stefano; Gullì, Daniel; Lo Feudo, Teresa; Sempreviva, Anna Maria

    2015-04-01

    In order to develop wind farms projects is challenging to site them on coastal areas both onshore and offshore as suitable sites. Developing projects need high quality databases under a wide range of atmospheric conditions or high resolution models that could resolve the effect of the coastal discontinuity in the surface properties. New parametrizations are important and high quality databases are also needed for formulating them. Ground-based remote sensing devices such as lidars have been shown to be functional for studying the evolution of the vertical wind structure coastal atmospheric boundary layer both on- and offshore. Here, we present results from a year of vertical wind profiles, wind speed and direction, monitoring programme at a site located in the Italian Calabria Region, Central Mediterranean, 600m from the Thyrrenian coastline, where a Lidar Doppler, ZephIr (ZephIr ltd) has been operative since July 2013. The lidar monitors wind speed and direction from 10m up to 300m at 10 vertical levels with an average of 10 minutes and it is supported by a metmast providing: Atmospheric Pressure, Solar Radiation, Precipitation, Relative Humidity, Temperature,Wind Speed and Direction at 10m. We present the characterization of wind profiles during one year period according to the time of the day to transition periods night/day/night classified relating the local scale, breeze scale, to the large scale conditions. The dataset is also functional for techniques for short-term prediction of wind for the renewable energy integration in the distribution grids. The site infrastructure is funded within the Project "Infrastructure of High Technology for Environmental and Climate Monitoring" (I-AMICA) (PONa3_00363) by the Italian National Operative Program (PON 2007-2013) and European Regional Development Fund. Real-time data are show on http://www.i-amica.it/i-amica/?page_id=1122.

  20. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  1. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  2. Retrieval of profile information from airborne multiaxis UV-visible skylight absorption measurements.

    PubMed

    Bruns, Marco; Buehler, Stefan A; Burrows, John P; Heue, Klaus-Peter; Platt, Ulrich; Pundt, Irene; Richter, Andreas; Rozanov, Alexej; Wagner, Thomas; Wang, Ping

    2004-08-01

    A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

  3. Small Scale Motions Observed by Aircraft in the Tropical Tropopause Layer - Convective and Non-Convective Environments

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, T. P.; Dean-Day, J.

    2016-01-01

    Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.

  4. Ground-Based Remote or In Situ Measurement of Vertical Profiles of Wind in the Lower Troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, Andrew; Newman, Jennifer

    Knowledge of winds in the lower troposphere is essential for a range of applications, including weather forecasting, transportation, natural hazards, and wind energy. This presentation focuses on the measurement of vertical profiles of wind in the lower troposphere for wind energy applications. This presentation introduces the information that wind energy site development and operations require, how it used, and the benefits and problems of current measurements from in-situ measurements and remote sensing. The development of commercial Doppler wind lidar systems over the last 10 years are shown, along with the lessons learned from this experience. Finally, potential developments in windmore » profiling aimed at reducing uncertainty and increasing data availability are introduced.« less

  5. Correction of Electron Density Profiles in the Low Ionosphere Based on the Data of Vertical Sounding with the IRI Model

    NASA Astrophysics Data System (ADS)

    Denisenko, P. F.; Maltseva, O. A.; Sotsky, V. V.

    2018-03-01

    The method of correcting the daytime vertical profiles of electron plasma frequency in the low ionosphere from International Refererence Ionosphere (IRI) model in accordance with the measured data of the virtual heights and absorption of signal radiowaves (method A1) reflected from the bottom of E-region at vertical sounding (VS) is presented. The method is based on the replacement of the IRI model profile by an approximation of analytical dependence with parameters determined according to VS data and partially by the IRI model. The method is tested by the results of four joint ground-based and rocket experiments carried out in the 1970s at midlatitudes of the European part of Russia upon the launches of high-altitude geophysical rockets of the Vertical series. It is shown that the consideration of both virtual reflection heigths and absorption makes it possible to obtain electron density distributions that show the best agreement with the rocket measurements made at most height ranges in the D- and E-regions. In additional, the obtained distributions account more adequately than the IRI model for the contributions of D- and E-regions to absorption of signals reflected above these regions.

  6. Considerations of Unmanned Aircraft Classification for Civil Airworthiness Standards

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Hayhurst, Kelly J.; Morris, A. Terry; Verstynen, Harry A.

    2013-01-01

    The use of unmanned aircraft in the National Airspace System (NAS) has been characterized as the next great step forward in the evolution of civil aviation. Although use of unmanned aircraft systems (UAS) in military and public service operations is proliferating, civil use of UAS remains limited in the United States today. This report focuses on one particular regulatory challenge: classifying UAS to assign airworthiness standards. Classification is useful for ensuring that meaningful differences in design are accommodated by certification to different standards, and that aircraft with similar risk profiles are held to similar standards. This paper provides observations related to how the current regulations for classifying manned aircraft, based on dimensions of aircraft class and operational aircraft categories, could apply to UAS. This report finds that existing aircraft classes are well aligned with the types of UAS that currently exist; however, the operational categories are more difficult to align to proposed UAS use in the NAS. Specifically, the factors used to group manned aircraft into similar risk profiles do not necessarily capture all relevant UAS risks. UAS classification is investigated through gathering approaches to classification from a broad spectrum of organizations, and then identifying and evaluating the classification factors from these approaches. This initial investigation concludes that factors in addition to those currently used today to group manned aircraft for the purpose of assigning airworthiness standards will be needed to adequately capture risks associated with UAS and their operations.

  7. Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control

    NASA Technical Reports Server (NTRS)

    Falco, M.; Kelley, H. J.

    1973-01-01

    Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.

  8. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO 2 with HIPPO and SGP aircraft profile measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.

    2012-01-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases.more » We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.« less

  9. Comparison of AC and Original Formulation Confor Foam Performance in Civil Aircraft Vertical Impact Tests

    DOT National Transportation Integrated Search

    2017-01-01

    Rate sensitive foams are often used in aircraft seat designs; recently, the formulation of one of the more common types of foam, Confor, was changed. The previous Standard version came in four stiffness levels, which all met aircraft flammability ...

  10. Effects of Aircraft On Aerosol Abundance in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Ferry, G. V.; Pueschel, R. F.; Strawa, A. W.; Howard, S. D.; Verma, S.; Mahoney, M. J.; Bui, T. P.; Hannan, J. R.; Fuelberg, H. E.; Condon, Estelle P. (Technical Monitor)

    1999-01-01

    A significant increase in sulfuric acid aerosol concentration was detected above 10 km pressure altitude during a cross-corridor flight out of Shannon on October 23, 1997. The source of this aerosol is ascribed to commercial aircraft operations in flight corridors above 10 km, because (1) a stable atmosphere prevented vertical air mass exchanges and thus eliminated surface sources, (2) air mass back trajectories documented the absence of remote continental sources, and (3) temperature profiler data showed the tropopause at least one kilometers above flight altitude throughout the flight. Particle volatility identified 70% H2SO4, 20% (NH4)2SO4 and 10% nonvolatile aerosol in the proximity of flight corridors, and (10-30)% H2SO4, up to 50% (NH4)2SO4, and (40-60)% nonvolatile aerosols in air that was not affected by aircraft operations below 10 km. Only a very small fraction of the nonvolatile particles (determined with a condensation nucleus counter) could be morphologically identified as soot aerosol (validated by scanning electron microscopy of wire impactor samples). The newly formed H2SO4 particles did not measurably affect surface area and volume of the background aerosol due to their small size, hence did not affect radiative transfer directly.

  11. Vertical and Lateral Electron Content in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.

    2016-12-01

    The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.

  12. Aerodynamics Model for a Generic ASTOVL Lift-Fan Aircraft

    DOT National Transportation Integrated Search

    1995-04-01

    This report describes the aerodynamics model used in a simulation model of : an advanced short takeoff and vertical landing lift-far fighter aircraft. The : simulation model was developed for use in piloted evaluations of transition and : hover fligh...

  13. Moving base simulation of an ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.

  14. Ski jump takeoff performance predictions for a mixed-flow, remote-lift STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.

    1992-01-01

    A ski jump model was developed to predict ski jump takeoff performance for a short takeoff and vertical landing (STOVL) aircraft. The objective was to verify the model with results from a piloted simulation of a mixed flow, remote lift STOVL aircraft. The prediction model is discussed. The predicted results are compared with the piloted simulation results. The ski jump model can be utilized for basic research of other thrust vectoring STOVL aircraft performing a ski jump takeoff.

  15. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved withmore » good accuracy. Furthermore, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  16. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) Experiment

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Charlock, Thomas; Wielicki, Bruce; Kahn, Ralph; Martins, J. Vanderlei; Gatebe, Charles; Hobbs, Peter V.; Purgold, G. Carl; Redemann, Jens; Remer, Lorraine

    2004-01-01

    NASA has developed an Earth Observing System (EOS) consisting of a series of satellites designed to study global change from space. The EOS flagship is the EOS TERRA satellite, launched in December 1999, equipped with five unique sensors to monitor and study the Earth s heat budget and many of the key controlling variables governing the Earth's climate system. CLAMS, the Chesapeake Lighthouse and Aircraft Measurements for Satellites field campaign was conducted from NASA Wallops Flight Facility and successfully executed over the middle Atlantic eastern seaboard from July 10 August 2, 2001. CLAMS is primarily a shortwave closure experiment designed to validate and improve EOS TERRA satellite data products being derived from three sensors: CERES (Clouds and Earth's Radiant Energy System), MISR (Multi-angle Imaging Spectro-Radiometer) and MODIS (MODerate Resolution Imaging Spectroradiometer). CLAMS is jointly sponsored by the CERES, MISR and MODIS instrument teams and the NASA GEWEX Global Aerosol Climatology Project (GACP). CLAMS primary objectives are to validate satellite-based retrievals of aerosol properties and vertical profiles of radiative flux, temperature and water vapor. Central to CLAMS measurement strategy is the Chesapeake Lighthouse, a stable sea platform located in the Atlantic Ocean, 13 miles east of Virginia Beach near the mouth of the Chesapeake Bay and the site of an ongoing CERES Ocean Validation Experiment (COVE). Six research aircraft were deployed to make detailed measurements of the atmosphere and ocean surface in the vicinity of COVE, over the surrounding ocean, over nearby NOAA buoys and over a few land sites. The measurements are used to validate and provide ground truth for simultaneous products being derived from TERRA data, a key step toward an improved understanding and ability to predict changes in the Earth's climate. One of the two CERES instruments on-board TERRA was programmed for Rotating Azimuth Plane Scans (RAPS) during CLAMS

  17. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed

    PubMed Central

    Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K.; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50–150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely. PMID:29561851

  18. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    PubMed

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  19. The Design of Ocean Turbulence Measurement with a Free Fall Vertical Profiler

    NASA Astrophysics Data System (ADS)

    Luan, Xin; Xin, Jia; Zhu, Tieyi; Yang, Hua; Teng, Yuru; Song, Dalei

    2018-03-01

    The newly designed instrument Free Fall Vertical Profiler (FFVP) developed by Ocean University of China (OUC) had been deployed in the Western Pacific in March 08, 2017 and succeed to collect turbulence signals about 350-m-deep water. According to the requirements of turbulence measurement, the mechanical design was developed for turbulence platform to achieve stability and good flow tracking. By analysing the Heading, Pitch and Roll, the results suggested that the platform satisfies the requirements of stability. The power spectrum of the cleaned shear signals using the noise correction algorithm match well with the theoretical Nasmyth spectrum and the rate of turbulence dissipation are approximately 10-8 W/kg. In general, the FFVP was rationally designed and provided a good measurement platform for turbulence observation.

  20. Guide to measurement of winds with instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

    1991-01-01

    Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

  1. Flight dynamics and control modelling of damaged asymmetric aircraft

    NASA Astrophysics Data System (ADS)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  2. Refining the effects of aircraft motion on an airborne beam-type gravimeter

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Weil, C.

    2016-12-01

    A challenge of modern airborne gravimetry is identifying an aircraft/autopilot combination that will allow for high quality data collection. The natural motion of the aircraft coupled with the autopilot's reaction to changing winds and turbulence can result in a successful data collection effort when the motion is benign or in total failure when the motion is at its worst. Aircraft motion plays such an important role in airborne gravimetry for several reasons, but most importantly to this study it affects the behavior of the gravimeter's gyro-stabilized platform. The gyro-stabilized platform keeps the sensor aligned with a time-averaged local vertical to produce a scalar measurement along the plumb direction. However, turbulence can cause the sensor to align temporarily with aircraft horizontal accelerations that can both decrease the measured gravity (because the sensor is no longer aligned with the gravity field) and increase the measured gravity (because horizontal accelerations are coupling into the measurement). NOAA's Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project has collected airborne gravity data using a Micro-g LaCoste TAGS (Turnkey Airborne Gravity System) beam-type meter on a variety of mostly turboprop aircraft with a wide range of outcomes, some different than one would predict. Some aircraft that seem the smoothest to the operator in flight do not produce as high quality a measurement as one would expect. Alternatively, some aircraft that have significant motion produce very high quality data. Due to the extensive nature of the GRAV-D survey, significant quantities of data exist on our various successful aircraft. In addition, we have numerous flights, although fewer, that were not successful for a number of reasons. In this study, we use spectral analysis to evaluate the aircraft motion for our various successful aircraft and compare with the problem flights in our effort to identify the signature motions indicative of

  3. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  4. What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.

    2005-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  5. What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.

    2006-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  6. Three-Dimensional Temperature and Wind Profiles Obtained Using UAV-Based Acoustic Atmospheric Tomography

    NASA Astrophysics Data System (ADS)

    Finn, A.

    2017-12-01

    The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense atmospheric temperature and wind profiles simultaneously. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into vertical cross-sections and 3D volumes of virtual temperature and wind vectors, which enables the atmosphere to be visualised and monitored over time up to altitudes of 1,200m and over baselines of up to 600m. This paper reports on results from two short campaigns during which 2D and 3D profiles of wind and temperature obtained in this way were compared to: measurements taken by co-located mid-range Doppler SODAR and LIDAR; and temperature measurements made by instruments carried by unmanned aircraft flying through the intervening atmosphere. Large eddy simulation of daytime atmospheric boundary layers were also used to examine the anticipated performance of the instruments and the nature of any errors. The observations obtained using all systems are shown to correspond closely.

  7. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  8. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-02-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr-1 (1Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.

  9. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A. M.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-05-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual amplitude of carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37 ± 0.20 Pg C yr-1 (1 Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.

  10. Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; Gonzalez-Ramos, Y.; Schneider, M.

    2015-05-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of δD(H2O) as a means to validate the remote sensing humidity and δD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

  11. Airborne in situ vertical profiling of HDO/H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Sanati, S.; Christner, E.; Zahn, A.; Balzer, M.; Bouquet, H.; McManus, J. B.; González-Ramos, Y.; Schneider, M.

    2015-01-01

    Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as δ D(H2O were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(δ D) ≈ 10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote-sensing measurements of δ D(H2O) as a means to validate the remote sensing humidity and δ D(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and δ D(H2O) correlations we were able to identify different layers of airmasses with specific isotopic signatures. The results are discussed.

  12. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Image and Video Library

    1997-10-30

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997.

  13. Light hydrocarbons vertical profiles and fluxes in a french rural area

    NASA Astrophysics Data System (ADS)

    Kanakidou, M.; Bonsang, B.; Lambert, G.

    By means of manned hot air balloon flights, in July 1986, an experiment was conducted in a rural area of southwest France in order to determine the production at ground level of non-methane hydrocarbons in the C 2-C 6 range. Flux determinations were based on vertical profiles before and after the development of a temperature inversion layer which allowed the measurement of the NMHC accumulation close to ground level. The main species produced in the late afternoon were acetylene, propane, ethene, propene and ethane with production rates of the order of 0.5 to 2 × 10 -4g of C m -2 h -1. Isoprene was found to be the main other unsaturated species also produced. The fluxes and the atmospheric content of the air column before the inversion are consistent with an average OH radical concentration of 2 × 10 6 cm -3.

  14. Aircraft technology opportunities for the 21st Century

    NASA Technical Reports Server (NTRS)

    Albers, James A.; Zuk, John

    1988-01-01

    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry.

  15. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    PubMed

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  16. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    PubMed Central

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  17. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  18. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with

  19. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance x,ary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are (1) determining, what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major U.S. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with

  20. Safe structures for future aircraft

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.

    1983-01-01

    The failure mechanisms, design lessons, and test equipment employed by NASA in establishing the airworthiness and crashworthiness of aircraft components for commercial applications are described. The composites test programs have progressed to medium primary structures such as stabilizers and a vertical fin. The failures encountered to date have been due to the nonyielding nature of composites, which do not diffuse loads like metals, and the presence of eccentricities, irregular shapes, stiffness changes, and discontinuities that cause tension and shear. Testing to failure, which always occurred in first tests before the design loads were reached, helped identify design changes and reinforcements that produced successful products. New materials and NDE techniques are identified, together with aircraft structural design changes that offer greater protection to the passengers, fuel antimisting agents, and landing gear systems.

  1. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  2. Fuel conservation merits of advanced turboprop transport aircraft

    NASA Technical Reports Server (NTRS)

    Revell, J. D.; Tullis, R. H.

    1977-01-01

    The advantages of a propfan powered aircraft for the commercial air transportation system were assessed by the comparison with an equivalent turbofan transport. Comparisons were accomplished on the basis of fuel utilization and operating costs, as well as aircraft weight and size. Advantages of the propfan aircraft, concerning fuel utilization and operating costs, were accomplished by considering: (1) incorporation of propfan performance and acoustic data; (2) revised mission profiles (longer design range and reduction in; and cruise speed) (3) utilization of alternate and advanced technology engines.

  3. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  4. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  5. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    NASA Astrophysics Data System (ADS)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  6. Seasonal ozone vertical profiles over North America using the AQMEII group of air quality models: model inter-comparison and stratospheric intrusion

    EPA Science Inventory

    This study utilizes simulations for the North American domain from four modeling groups that participated in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) to evaluate seasonal ozone vertical profiles simulated for the year 2010 against ozo...

  7. Using High and Low Resolution Profiles of CO2 and CH4 Measured with AirCores to Evaluate Transport Models and Atmospheric Columns Retrieved from Space

    NASA Astrophysics Data System (ADS)

    Membrive, O.; Crevoisier, C. D.; Sweeney, C.; Hertzog, A.; Danis, F.; Picon, L.; Engel, A.; Boenisch, H.; Durry, G.; Amarouche, N.

    2015-12-01

    Over the past decades many methods have been developed to monitor the evolution of greenhouse gases (GHG): ground networks (NOAA, ICOS, TCCON), aircraft campaigns (HIPPO, CARIBIC, Contrail…), satellite observations (GOSAT, IASI, AIRS…). Nevertheless, precise and regular vertical profile measurements are currently still missing from the observing system. To address this need, an original and innovative atmospheric sampling system called AirCore has been developed at NOAA (Karion et al. 2010). This new system allows balloon measurements of GHG vertical profiles from the surface up to 30 km. New versions of this instrument have been developed at LMD: a high-resolution version "AirCore-HR" that differs from other AirCores by its high vertical resolution and two "light" versions (lower resolution) aiming to be flown under meteorological balloon. LMD AirCores were flown on multi-instrument gondolas along with other independent instruments measuring CO2 and CH4 in-situ during the Strato Science balloon campaigns operated by the French space agency CNES in collaboration with the Canadian Space Agency in Timmins (Ontario, Canada) in August 2014 and 2015. First, we will present comparisons of the vertical profiles retrieved with various AirCores (LMD and Frankfurt University) to illustrate repeatability and impact of the vertical resolution as well as comparisons with independent in-situ measurements from other instruments (laser diode based Pico-SDLA). Second, we will illustrate the usefulness of AirCore measurements in the upper troposphere and stratosphere for validating and interpreting vertical profiles from atmospheric transport models as well as observations of total and partial column of methane and carbon dioxide from several current and future spaceborne missions such as: ACE-FTS, IASI and GOSAT.

  8. Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile

    NASA Technical Reports Server (NTRS)

    Moreau, G.; Robert, C.

    1994-01-01

    A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.

  9. Vertical Motion Characteristics of Tropical Cyclones Determined with Airborne Doppler Radial Velocities.

    NASA Astrophysics Data System (ADS)

    Black, Micheal L.; Burpee, Robert W.; Marks, Frank D., Jr.

    1996-07-01

    Vertical motions in seven Atlantic hurricanes are determined from data recorded by Doppler radars on research aircraft. The database consists of Doppler velocities and reflectivities from vertically pointing radar rays collected along radial flight legs through the hurricane centers. The vertical motions are estimated throughout the depth of the troposphere from the Doppler velocities and bulk estimates of particle fallspeeds.Portions of the flight tracks are subjectively divided into eyewall, rainband, stratiform, and `other' regions. Characteristics of the vertical velocity and radar structure are described as a function of altitude for the entire dataset and each of the four regions. In all of the regions, more than 70% of the vertical velocities range from 2 to 2 m s1. The broadest distribution of vertical motion is in the eyewall region where 5% of the vertical motions are >5 m s1. Averaged over the entire dataset, the mean vertical velocity is upward at all altitudes. Mean downward motion occurs only in the lower troposphere of the stratiform region. Significant vertical variations in the mean profiles of vertical velocity and reflectivity are discussed and related to microphysical processes.In the lower and middle troposphere, the characteristics of the Doppler-derived vertical motions are similar to those described in an earlier study using flight-level vertical velocities, even though the horizontal resolution of the Doppler data is 750 m compared to 125 m from the in situ flight-level measurements. The Doppler data are available at higher altitudes than those reached by turboprop aircraft and provide information on vertical as well as horizontal variations. In a vertical plane along the radial flight tracks, Doppler up- and downdrafts are defined at each 300-m altitude interval as vertical velocities whose absolute values continuously exceed 1.5 m s1, with at least one speed having an absolute value greater than 3.0 m s1. The properties of the Doppler

  10. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also

  11. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  12. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  13. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  14. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  15. Sea Surface Slope Statistics for Intermediate and Shore Scale Ocean Waves Measured Using a Low-Altitude Aircraft

    NASA Technical Reports Server (NTRS)

    Vandemack, Douglas; Crawford, Tim; Dobosy, Ron; Elfouhaily, Tanos; Busalacchi, Antonio J. (Technical Monitor)

    1999-01-01

    Ocean surface remote sensing techniques often rely on scattering or emission linked to shorter- scale gravity-capillary ocean wavelets. However, it is increasingly apparent that slightly longer wavelengths of O(10 to 500 cm) are vital components in the robust sea surface description needed to link varied global remote sensing data sets. This paper describes a sensor suite developed to examine sea surface slope variations in the field using an aircraft flying at very low altitude (below 30 m) and will also provide preliminary measurements detailing changes in slope characteristics versus sea state and friction velocity. Two-dimensional surface slope is measured using simultaneous range measurements from three compact short-range laser altimeters mounted in an equilateral triangle arrangement with spacing of about 1 m. In addition, all three lasers provide independent wave elevation profiles after GPS-aided correction for aircraft altitude. Laser range precision is 1 cm rms while vertical motion correction is 15 cm rms. The measurements are made along-track at approximately 1 m intervals setting the spatial scale of the measurement to cover waves of intermediate to long scale. Products available for this array then include surface elevation, two-dimensional slope distribution, and the cross- and along-track 1-D slope distributions. To complement the laser, a down-looking mm-wave radar scatterometer is centered within the laser array to measure radar backscatter simultaneously with the laser slope. The radar's footprint is nominally 1 m in diameter. Near-vertical radar backscatter is inversely proportional to the small-scale surface slope variance and to the tilt of the underlying (laser-measured) surface facet. Together the laser and radar data provide information on wave roughness from the longest scales down to about 1 cm. These measurements are complemented by aircraft turbulence probe data that provides robust surface flux information.

  16. Use of Collocated KWAJEX Satellite, Aircraft, and Ground Measurements for Understanding Ambiguities in TRMM Radiometer Rain Profile Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven

    2002-01-01

    Coordinated ground, aircraft, and satellite observations are analyzed from the 1999 TRMM Kwajalein Atoll field experiment (KWAJEX) to better understand the relationships between cloud microphysical processes and microwave radiation intensities in the context of physical evaluation of the Level 2 TRMM radiometer rain profile algorithm and uncertainties with its assumed microphysics-radiation relationships. This talk focuses on the results of a multi-dataset analysis based on measurements from KWAJEX surface, air, and satellite platforms to test the hypothesis that uncertainties in the passive microwave radiometer algorithm (TMI 2a12 in the nomenclature of TRMM) are systematically coupled and correlated with the magnitudes of deviation of the assumed 3-dimensional microphysical properties from observed microphysical properties. Re-stated, this study focuses on identifying the weaknesses in the operational TRMM 2a12 radiometer algorithm based on observed microphysics and radiation data in terms of over-simplifications used in its theoretical microphysical underpinnings. The analysis makes use of a common transform coordinate system derived from the measuring capabilities of the aircraft radiometer used to survey the experimental study area, i.e., the 4-channel AMPR radiometer flown on the NASA DC-8 aircraft. Normalized emission and scattering indices derived from radiometer brightness temperatures at the four measuring frequencies enable a 2-dimensional coordinate system that facilities compositing of Kwajalein S-band ground radar reflectivities, ARMAR Ku-band aircraft radar reflectivities, TMI spacecraft radiometer brightness temperatures, PR Ku-band spacecraft radar reflectivities, bulk microphysical parameters derived from the aircraft-mounted cloud microphysics laser probes (including liquid/ice water contents, effective liquid/ice hydrometeor radii, and effective liquid/ice hydrometeor variances), and rainrates derived from any of the individual ground, aircraft

  17. A NASA study of the impact of technology on future carrier based tactical aircraft - Overview

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III

    1992-01-01

    This paper examines the impact of technology on future carrier based tactical aircraft. The results were used in the Center for Naval Analysis Future Carrier Study. The NASA Team designed three classes of aircraft ('Fighter', 'Attack', and 'Multimission') with two different technology levels. The Multimission aircraft were further analyzed by examining the penalty on the aircraft for both catapult launch/arrested landing recovery (Cat/trap) and short take-off/vertical landing (STOVL). The study showed the so-called STOVL penalty was reduced by engine technology and the next generation Strike Fighter will pay more penalty for Cat/trap than for STOVL capability.

  18. Flying After Conducting an Aircraft Excessive Cabin Leakage Test.

    PubMed

    Houston, Stephen; Wilkinson, Elizabeth

    2016-09-01

    Aviation medical specialists should be aware that commercial airline aircraft engineers may undertake a 'dive equivalent' operation while conducting maintenance activities on the ground. We present a worked example of an occupational risk assessment to determine a minimum safe preflight surface interval (PFSI) for an engineer before flying home to base after conducting an Excessive Cabin Leakage Test (ECLT) on an unserviceable aircraft overseas. We use published dive tables to determine the minimum safe PFSI. The estimated maximum depth acquired during the procedure varies between 10 and 20 fsw and the typical estimated bottom time varies between 26 and 53 min for the aircraft types operated by the airline. Published dive tables suggest that no minimum PFSI is required for such a dive profile. Diving tables suggest that no minimum PFSI is required for the typical ECLT dive profile within the airline; however, having conducted a risk assessment, which considered peak altitude exposure during commercial flight, the worst-case scenario test dive profile, the variability of interindividual inert gas retention, and our existing policy among other occupational groups within the airline, we advised that, in the absence of a bespoke assessment of the particular circumstances on the day, the minimum PFSI after conducting ECLT should be 24 h. Houston S, Wilkinson E. Flying after conducting an aircraft excessive cabin leakage test. Aerosp Med Hum Perform. 2016; 87(9):816-820.

  19. DC-8 scanning lidar characterization of aircraft contrails and cirrus clouds

    NASA Technical Reports Server (NTRS)

    Nielsen, Norman B.; Uthe, Edward E. (Principal Investigator)

    1996-01-01

    A Subsonic Assessment (SASS) element of the overall Atmospheric Effects of Aviation Project (AEAP) was initiated by NASA to assess the atmospheric impact of subsonic aircraft. SRI was awarded a project to develop and test a scanning backscatter lidar for installation on the NASA DC-8 (year 1), participate in the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program (year 2), and conduct a comprehensive analysis of field data (year 3). A scanning mirror pod attached to the DC-8 aircraft provides for scanning lidar observations ahead of the DC-8 and fixed-angle upward or downward observations. The lidar system installed within the DC-8 transmits 275 MJ at 1.06 gm wavelength or about 130 mJ at 1.06 and 0.53 gm simultaneously. Range-resolved aerosol backscatter is displayed in real time in terms of cloud/contrail spatial distributions. The objectives of the project are to map contrail/cloud vertical distributions ahead of DC-8; provide DC-8 guidance into enhanced scattering layers; document DC-8 flight path intersection of contrail and cloud geometries (in-situ measurement positions relative to cloud/contrail shape and an extension of in-situ measurements into the vertical -- integrated contrail/cloud properties); analyze contrail/cloud radiative properties with LIRAD (combined lidar and radiometry) technique; evaluate mean particle sizes of aircraft emissions from two-wavelength observations; study contrail/cloud interactions, diffusion, and mass decay/growth; and make observations in the near-field of aircraft engine emissions. The scanning mirror pod may also provide a scanning capability for other remote sensing instruments.

  20. Seismic anisotropy in gas-hydrate- and gas-bearing sediments on the Blake Ridge, from a walkaway vertical seismic profile

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Sen, M.K.; Lizarralde, D.; Wood, W.T.; Hutchinson, D.R.; Dillon, William P.; Hoskins, H.; Stephen, R.A.

    2003-01-01

    We present results from an analysis of anisotropy in marine sediments using walkaway vertical seismic profiles from the Blake Ridge, offshore South Carolina. We encountered transverse isotropy (TI) with a vertical symmetry axis in a gas-hydrate-bearing unit of clay and claystone with Thomsen parameters ?? = 0.05 ?? 0.02 and ?? = 0.04 ?? 0.06. TI increased to ?? = 0.16 ?? 0.04 and ?? = 0.19 ?? 0.12 in the underlying gas zone. Rock physics modeling suggests that the observed TI is caused by a partial alignment of clay particles rather than high-velocity gas-hydrate veins. Similarly, the increase of TI in the gas zone is not caused by thin low-velocity gas layers but rather, we speculate, by the sharp contrast between seismic properties of an anisotropic sediment frame and elongated gas-bearing pore voids. Our results underscore the significance of anisotropy for integrating near-vertical and wide-angle seismic data.

  1. Vertical Motion Simulator Experiment on Stall Recovery Guidance

    NASA Technical Reports Server (NTRS)

    Schuet, Stefan; Lombaerts, Thomas; Stepanyan, Vahram; Kaneshige, John; Shish, Kimberlee; Robinson, Peter; Hardy, Gordon H.

    2017-01-01

    A stall recovery guidance system was designed to help pilots improve their stall recovery performance when the current aircraft state may be unrecognized under various complicating operational factors. Candidate guidance algorithms were connected to the split-cue pitch and roll flight directors that are standard on large transport commercial aircraft. A new thrust guidance algorithm and cue was also developed to help pilots prevent the combination of excessive thrust and nose-up stabilizer trim. The overall system was designed to reinforce the current FAA recommended stall recovery procedure. A general transport aircraft model, similar to a Boeing 757, with an extended aerodynamic database for improved stall dynamics simulation fidelity was integrated into the Vertical Motion Simulator at NASA Ames Research Center. A detailed study of the guidance system was then conducted across four stall scenarios with 30 commercial and 10 research test pilots, and the results are reported.

  2. Collision avoidance for aircraft in abort landing

    NASA Astrophysics Data System (ADS)

    Mathwig, Jarret

    We study the collision avoidance between two aircraft flying in the same vertical plane: a host aircraft on a glide path and an intruder aircraft on a horizontal trajectory below that of the host aircraft and heading in the opposite direction. Assuming that the intruder aircraft is uncooperative, the host aircraft executes an optimal abort landing maneuver: it applies maximum thrust setting and maximum angle of attack lifting the flight path over the original path, thereby increasing the timewise minimum distance between the two aircraft and, in this way, avoiding the potential collision. In the presence of weak constraints on the aircraft and/or the environment, the angle of attack must be brought to the maximum value and kept there until the maximin point is reached. On the other hand, in the presence of strong constraints on the aircraft and the environment, desaturation of the angle of attack might have to take place before the maximin point is reached. This thesis includes four parts. In the first part, after an introduction and review of the available literature, we reformulate and solve the one-subarc Chebyshev maximin problem as a two-subarc Bolza-Pontryagin problem in which the avoidance and the recovery maneuvers are treated simultaneously. In the second part, we develop a guidance scheme (gamma guidance) capable of approximating the optimal trajectory in real time. In the third part, we present the algorithms employed to solve the one-subarc and two-subarc problems. In the fourth part, we decompose the two-subarc Bolza-Pontryagin problem into two one-subarc problems: the avoidance problem and the recovery problem, to be solved in sequence; remarkably, for problems where the ratio of total maneuver time to avoidance time is sufficiently large (≥5), this simplified procedure predicts accurately the location of the maximin point as well as the maximin distance.

  3. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  4. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  5. Active Control of F/A-18 Vertical Tail Buffeting using Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawerence J.; Harrand, Vincent J.

    2003-01-01

    Vertical tail buffeting is a serious multidisciplinary problem that limits the performance of twin-tail fighter aircraft. The buffet problem occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. This paper describes a multidisciplinary computational investigation for buffet load alleviation of full F/A-18 aircraft using distributed piezoelectric actuators. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the smart structure are expressed with a three-dimensional finite element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, fluid-structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. Peak values of the power spectral density of tail tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. RMS values of tip acceleration are reduced by as much as 12%.

  6. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  7. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  8. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  9. The use of vertical seismic profiles in seismic investigations of the earth

    USGS Publications Warehouse

    Balch, Alfred H.; Lee, M.W.; Miller, J.J.; Ryder, Robert T.

    1982-01-01

    During the past 8 years, the U.S. Geological Survey has conducted an extensive investigation on the use of vertical seismic profiles (VSP) in a variety of seismic exploration applications. Seismic sources used were surface air guns, vibrators, explosives, marine air guns, and downhole air guns. Source offsets have ranged from 100 to 7800 ft. Well depths have been from 1200 to over 10,000 ft. We have found three specific ways in which VSPs can be applied to seismic exploration. First, seismic events observed at the surface of the ground can be traced, level by level, to their point of origin within the earth. Thus, one can tie a surface profile to a well log with an extraordinarily high degree of confidence. Second, one can establish the detectability of a target horizon, such as a porous zone. One can determine (either before or after surface profiling) whether or not a given horizon or layered sequence returns a detectable reflection to the surface. The amplitude and character of the reflection can also be observed. Third, acoustic properties of a stratigraphic sequence can be measured and sometimes correlated to important exploration parameters. For example, sometimes a relationship between apparent attenuation and sand percentage can be established. The technique shows additional promise of aiding surface exploration indirectly through studies of the evolution of the seismic pulse, studies of ghosts and multiples, and studies of seismic trace inversion techniques. Nearly all current seismic data‐processing techniques are adaptable to the processing of VSP data, such as normal moveout (NMO) corrections, stacking, single‐and multiple‐channel filtering, deconvolution, and wavelet shaping.

  10. Rapid Parameterization Schemes for Aircraft Shape Optimization

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2012-01-01

    A rapid shape parameterization tool called PROTEUS is developed for aircraft shape optimization. This tool can be applied directly to any aircraft geometry that has been defined in PLOT3D format, with the restriction that each aircraft component must be defined by only one data block. PROTEUS has eight types of parameterization schemes: planform, wing surface, twist, body surface, body scaling, body camber line, shifting/scaling, and linear morphing. These parametric schemes can be applied to two types of components: wing-type surfaces (e.g., wing, canard, horizontal tail, vertical tail, and pylon) and body-type surfaces (e.g., fuselage, pod, and nacelle). These schemes permit the easy setup of commonly used shape modification methods, and each customized parametric scheme can be applied to the same type of component for any configuration. This paper explains the mathematics for these parametric schemes and uses two supersonic configurations to demonstrate the application of these schemes.

  11. Preprocessing for Eddy Dissipation Rate and TKE Profile Generation

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.; McKissick, Burnell T. (Technical Monitor)

    2001-01-01

    The Aircraft Vortex Spacing System (AVOSS), a set of algorithms to determine aircraft spacing according to wake vortex behavior prediction, requires turbulence profiles to appropriately determine arrival and departure aircraft spacing. The ambient atmospheric turbulence profile must always be produced, even if the result is an arbitrary (canned) profile. The original turbulence profile code was generated By North Carolina State University and used in a non-real-time environment in the past. All the input parameters could be carefully selected and screened prior to input. Since this code must run in real-time using actual measurements in the field as input, it became imperative to begin a data checking and screening process as part of the real-time implementation. The process described herein is a step towards ensuring that the best possible turbulence profile is always provided to AVOSS. Data fill-ins, constant profiles and arbitrary profiles are used only as a last resort, but are essential to ensure uninterrupted application of AVOSS.

  12. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three

  13. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  14. Behavior-based vs. system-based training and displays for automated vertical guidance

    DOT National Transportation Integrated Search

    1997-04-01

    Aircraft automation, particularly the automation surrounding vertical navigation has been cited as an area of training difficulty and a source of confusion during operation. A number of incidents and accidents have been attributed to a lack of crew u...

  15. Supersonic aerodynamic characteristics of conformal carriage monoplanar circular missile configurations with low-profile quadriform tail fins

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel tests were conducted on monoplanar circular missile configurations with low-profile quadriform tail fins to provide an aerodynamic data base to study and evaluate air-launched missile candidates for efficient conformal carriage on supersonic-cruise-type aircraft. The tests were conducted at Mach numbers from 1.70 to 2.86 for a constant Reynolds number per foot of 2,000,000. Selected test results are presented to show the effects of tail-fin dihedral angle, wing longitudinal and vertical location, and nose-body strakes on the static longitudinal and lateral-directional aerodynamic stability and control characteristics.

  16. Aerodynamic design trends for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  17. GPM and TRMM Radar Vertical Profiles and Impact on Large-scale Variations of Surface Rain

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Adler, R. F.

    2017-12-01

    Previous studies by the authors using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data have shown that TRMM Precipitation Radar (PR) and GPM Dual-Frequency Precipitation Radar (DPR) surface rain estimates do not have corresponding amplitudes of inter-annual variations over the tropical oceans as do passive microwave observations by TRMM Microwave Imager (TMI) and GPM Microwave Imager (GMI). This includes differences in surface temperature-rainfall variations. We re-investigate these relations with the new GPM Version 5 data with an emphasis on understanding these differences with respect to the DPR vertical profiles of reflectivity and rainfall and the associated convective and stratiform proportions. For the inter-annual variation of ocean rainfall from both passive microwave (TMI and GMI) and active microwave (PR and DPR) estimates, it is found that for stratiform rainfall both TMI-PR and GMI-DPR show very good correlation. However, the correlation of GMI-DPR is much higher than TMI-PR in convective rainfall. The analysis of vertical profile of PR and DPR rainfall during the TRMM and GPM overlap period (March-August, 2014) reveals that PR and DPR have about the same rainrate at 4km and above, but PR rainrate is more than 10% lower that of DPR at the surface. In other words, it seems that convective rainfall is better defined with DPR near surface. However, even though the DPR results agree better with the passive microwave results, there still is a significant difference, which may be a result of DPR retrieval error, or inherent passive/active retrieval differences. Monthly and instantaneous GMI and DPR data need to be analyzed in details to better understand the differences.

  18. Low profile, high load vertical rolling positioning stage

    DOEpatents

    Shu, Deming; Barraza, Juan

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  19. Kinematic GPS solutions for aircraft trajectories: Identifying and minimizing systematic height errors associated with atmospheric propagation delays

    USGS Publications Warehouse

    Shan, S.; Bevis, M.; Kendrick, E.; Mader, G.L.; Raleigh, D.; Hudnut, K.; Sartori, M.; Phillips, D.

    2007-01-01

    When kinematic GPS processing software is used to estimate the trajectory of an aircraft, unless the delays imposed on the GPS signals by the atmosphere are either estimated or calibrated via external observations, then vertical height errors of decimeters can occur. This problem is clearly manifested when the aircraft is positioned against multiple base stations in areas of pronounced topography because the aircraft height solutions obtained using different base stations will tend to be mutually offset, or biased, in proportion to the elevation differences between the base stations. When performing kinematic surveys in areas with significant topography it should be standard procedure to use multiple base stations, and to separate them vertically to the maximum extent possible, since it will then be much easier to detect mis-modeling of the atmosphere. Copyright 2007 by the American Geophysical Union.

  20. NARVAL North - Remote Sensing of Postfrontal Convective Clouds and Precipitation over the North Atlantic with the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Klepp, Christian; Ament, Felix; Bakan, Stephan; Crewell, Susanne; Hagen, Martin; Hirsch, Lutz; Jansen, Friedhelm; Konow, Heike; Mech, Mario; Pfeilsticker, Klaus; Schäfler, Andreas; Stevens, Bjorn

    2014-05-01

    The new German research aircraft HALO (High Altitude and Long Range Research Aircraft) became recently available for measurement flights in atmospheric research. It's capacity of measuring from a high altitude vertical profiles of all components of atmospheric water - like vapor, liquid and ice, in both cloud and precipitation forms, as well as the aerosol particles upon which cloud droplets form - makes it a unique research platform. The aircraft, equipped with advanced radiometers, radar and lidar technology, the HALO Microwave Package (HAMP), is an initiative by German climate and environmental research institutions and is operated by the German Aerospace Center (DLR). One of the first major missions to exploit the capabilities of HALO was conducted for the NARVAL project (Next-generation Aircraft Remote-Sensing for Validation Studies) during January 2014. After studying subtropical clouds one month before in the first NARVAL phase, the interest of NARVAL North focused on the study of cold air convection and precipitation in the form of rain and snow. Based at Keflavik airport (Iceland), several flights were conducted to examine the specific small-scale precipitation structures behind the backsides of cold fronts over the North Atlantic. This should help to narrow the gap in the understanding of substantial differences between satellite observations and model calculations in such situations. First data analysis of these measurements indicate promising results. The poster will describe the HALO instrument packages as well as the collected observations during the campaign and will present preliminary scientific findings.

  1. Aerial profiling of terrain to define stream-valley geometry: study report

    USGS Publications Warehouse

    Desai, Mukund; Drohan, William A.; Hursh, John W.; Mamon, Glenn; Youmans, Douglas G.

    1976-01-01

    A six-month engineering analysis was performed by The Charles Stark Draper Laboratory, Inc., at the request of the U. S. Geological Survey, to investigate the suitability of an airborne instrument package based on inertial techniques to serve as the datum for a laser altimeter in a system for aerial profiling of terrain to determine selected features of stream-valley geometry to an accuracy of ± 0.5 ft. in the vertical coordinate and ± 10 ft. in the horizontal coordinates. Feasible system configuration features a high performance inertial platform incorporating an integral laser tracker, pointing and ranging on retroreflectors on the ground, in order to provide the frequent updates needed to meet the accuracy requirements. In all environments except those of severe gravity gradients the nominal two- by twenty-mile survey area can be covered using three ground-surveyed retroreflectors, interspersed with several unlocated retroreflectors that are surveyed in by the airborne system along a longitudinal path within the river valley when the aircraft arrives over the site. Subsequent transverse profiling runs (traverses that may be spaced as close as one-quarter mile apart) are flown using, in turn, all retroreflectors as updating position references. Pointing and range information from the tracker are optimally combined with the on-board inertial measurements and available gravity data to provide position information and serve as the height datum for a terrain-clearance measuring laser altimeter. Data-logging means and operator display, as well as steering commands to the aircraft autopilot, are provided. The system configuration is capable of operating in single- or twin-engine aircraft including helecopters. It is recommended that work proceed into the design phase.

  2. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  3. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  4. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.; Walton, W. T.; Baker, P. L.

    1982-01-01

    A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.

  5. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing

    PubMed Central

    Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane

    2017-01-01

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434

  6. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

    PubMed

    Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane

    2017-09-14

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.

  7. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  8. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  9. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  10. A numerical study of the hot gas environment around a STOVL aircraft in ground proximity

    NASA Technical Reports Server (NTRS)

    Vanoverbeke, Thomas J.; Holdeman, James D.

    1988-01-01

    The development of Short Takeoff Vertical Landing (STOVL) aircraft has historically been an empirical- and experience-based technology. In this study, a 3-D turbulent flow CFD code was used to calculate the hot gas environment around an STOVL aircraft operating in ground proximity. Preliminary calculations are reported for a typical STOVL aircraft configuration to identify key features of the flow field, and to demonstrate and assess the capability of current 3-D CFD codes to calculate the temperature of the gases ingested at the engine inlet as a function of flow and geometric conditions.

  11. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  12. Preliminary control law and hardware designs for a ride quality augmentation system for commuter aircraft. Phase 2

    NASA Technical Reports Server (NTRS)

    Davis, D. J.; Linse, D. J.; Suikat, R.; Entz, D. P.

    1986-01-01

    The continued investigation of the design of Ride Quality Augmentation Systems (RQAS) for commuter aircraft is described. The purpose of these RQAS is the reduction of the vertical and lateral acceleration response of the aircraft due to atmospheric turbulence by the application of active control. The current investigations include the refinement of the sample data feedback control laws based on the control-rate-weighting and output-weighting optimal control design techniqes. These control designs were evaluated using aircraft time simulations driven by Dryden spectra turbulence. Fixed gain controllers were tested throughout the aircrft operating envelope. The preliminary design of the hardware modifications necessary to implement and test the RQAS on a commuter aircraft is included. These include a separate surface elevator and the flap modifications to provide both direct lift and roll control. A preliminary failure mode investigation was made for the proposed configuration. The results indicate that vertical acceleration reductions of 45% and lateral reductions of more than 50% are possible. A fixed gain controller appears to be feasible with only minor response degradation.

  13. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean.

    PubMed

    Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi

    2005-08-01

    Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.

  14. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    NASA Technical Reports Server (NTRS)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  15. Comparing inversion techniques for constraining CO2 fluxes in the Brazilian Amazon Basin with aircraft observations

    NASA Astrophysics Data System (ADS)

    Chow, V. Y.; Gerbig, C.; Longo, M.; Koch, F.; Nehrkorn, T.; Eluszkiewicz, J.; Ceballos, J. C.; Longo, K.; Wofsy, S. C.

    2012-12-01

    The Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program spanned the dry to wet and wet to dry transition seasons in November 2008 & May 2009 respectively. It resulted in ~150 vertical profiles covering the Brazilian Amazon Basin (BAB). With the data we attempt to estimate a carbon budget for the BAB, to determine if regional aircraft experiments can provide strong constraints for a budget, and to compare inversion frameworks when optimizing flux estimates. We use a LPDM to integrate satellite-, aircraft-, & surface-data with mesoscale meteorological fields to link bottom-up and top-down models to provide constraints and error bounds for regional fluxes. The Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by meteorological fields from BRAMS, ECMWF, and WRF are coupled to a biosphere model, the Vegetation Photosynthesis Respiration Model (VPRM), to determine regional CO2 fluxes for the BAB. The VPRM is a prognostic biosphere model driven by MODIS 8-day EVI and LSWI indices along with shortwave radiation and temperature from tower measurements and mesoscale meteorological data. VPRM parameters are tuned using eddy flux tower data from the Large-Scale Biosphere Atmosphere experiment. VPRM computes hourly CO2 fluxes by calculating Gross Ecosystem Exchange (GEE) and Respiration (R) for 8 different vegetation types. The VPRM fluxes are scaled up to the BAB by using time-averaged drivers (shortwave radiation & temperature) from high-temporal resolution runs of BRAMS, ECMWF, and WRF and vegetation maps from SYNMAP and IGBP2007. Shortwave radiation from each mesoscale model is validated using surface data and output from GL 1.2, a global radiation model based on GOES 8 visible imagery. The vegetation maps are updated to 2008 and 2009 using landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil. A priori fluxes modeled by STILT-VPRM are optimized using data from BARCA, eddy covariance sites, and flask measurements. The

  16. Production of Lightning NO(x) and its Vertical Distribution Calculated from 3-D Cloud-scale Chemical Transport Model Simulations

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo

    2009-01-01

    A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.

  17. Fuel-conservative guidance system for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  18. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2017-01-01

    Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was

  19. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  20. Estimation of aircraft angular coordinates using a directional-microphone array--An experimental study.

    PubMed

    Genescà, Meritxell; Svensson, U Peter; Taraldsen, Gunnar

    2015-04-01

    Ground reflections cause problems when estimating the direction of arrival of aircraft noise. In traditional methods, based on the time differences between the microphones of a compact array, they may cause a significant loss of accuracy in the vertical direction. This study evaluates the use of first-order directional microphones, instead of omnidirectional, with the aim of reducing the amplitude of the reflected sound. Such a modification allows the problem to be treated as in free field conditions. Although further tests are needed for a complete evaluation of the method, the experimental results presented here show that under the particular conditions tested the vertical angle error is reduced ∼10° for both jet and propeller aircraft by selecting an appropriate directivity pattern. It is also shown that the final level of error depends on the vertical angle of arrival of the sound, and that the estimates of the horizontal angle of arrival are not influenced by the directivity pattern of the microphones nor by the reflective properties of the ground.

  1. Point-Mass Aircraft Trajectory Prediction Using a Hierarchical, Highly-Adaptable Software Design

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Woods, Sharon E.; Wing, David J.

    2017-01-01

    A highly adaptable and extensible method for predicting four-dimensional trajectories of civil aircraft has been developed. This method, Behavior-Based Trajectory Prediction, is based on taxonomic concepts developed for the description and comparison of trajectory prediction software. A hierarchical approach to the "behavioral" layer of a point-mass model of aircraft flight, a clear separation between the "behavioral" and "mathematical" layers of the model, and an abstraction of the methods of integrating differential equations in the "mathematical" layer have been demonstrated to support aircraft models of different types (in particular, turbojet vs. turboprop aircraft) using performance models at different levels of detail and in different formats, and promise to be easily extensible to other aircraft types and sources of data. The resulting trajectories predict location, altitude, lateral and vertical speeds, and fuel consumption along the flight path of the subject aircraft accurately and quickly, accounting for local conditions of wind and outside air temperature. The Behavior-Based Trajectory Prediction concept was implemented in NASA's Traffic Aware Planner (TAP) flight-optimizing cockpit software application.

  2. Vertical Distribution of 14CO2 in the Free Troposphere and Stratosphere

    NASA Astrophysics Data System (ADS)

    Garofalo, L.; Guilderson, T. P.; Atlas, E. L.; Blake, D. R.; Pfister, L.; Boering, K. A.

    2016-12-01

    The radiocarbon (14C) content of CO2 has long been used to quantify inventories, residence times and gross fluxes of carbon in and between the atmosphere, biosphere, and oceans, and can also be used to study large-scale atmospheric transport, as we have recently shown in Kanu et al. [2016]. Here, we present new measurements of the vertical distribution of Δ14C-CO2 from whole air samples collected aboard NASA aircraft (ER-2, DC-8, WB-57) in flight campaigns in 1997, 2000, 2004, 2012, and 2013 and have used them to estimate the net 14CO2 flux between the stratosphere and the troposphere. To within the uncertainties of the current set of measurements, we do not detect a trend in the net 14CO2 flux nor a dependence on the solar cycle in 14C production, which may further suggest that there has not been a change in stratospheric residence times over this time period. For the new vertical profiles of 14CO2 from the DC3 (2012) and SEAC4RS (2013) missions that extend into the lower troposphere from the stratosphere, the 14CO2 content generally increases with increasing altitude, as expected for a tracer with a stratospheric source (cosmogenic production in the upper troposphere/lower stratosphere) combined with a 14C-depleted source of CO2 at the surface (fossil fuel combustion). However, in several vertical profiles from the SEAC4RS mission, low ozone was measured at 410K (several kilometers above the tropopause), for which very low 14CO2 was also observed. These and other tracers, along with back-trajectory calculations, suggest that this air did not enter the stratosphere by local or regional convective input into the stratosphere, but rather by long-range influences from the Asian monsoon. Kanu, A. M., L. L. Comfort, T. P. Guilderson, P. J. Cameron-Smith, D. J. Bergmann, E. L. Atlas, S. Schauffler, K. A. Boering, "Measurements and modeling of contemporary radiocarbon in the stratosphere," Geophys. Res. Lett. 43, 1399-1406, 2016.

  3. Study of aerodynamic technology for single-cruise-engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Mark, L.

    1982-01-01

    Conceptual designs and analyses were conducted on two V/STOL supersonic fighter/attack aircraft. These aircraft feature low footprint temperature and pressure thrust augmenting ejectors in the wings for vertical lift, combined with a low wing loading, low wave drag airframe for outstanding cruise and supersonic performance. Aerodynamic, propulsion, performance, and mass properties were determined and are presented for each aircraft. Aerodynamic and Aero/Propulsion characteristics having the most significant effect on the success of the up and away flight mode were identified, and the certainty with which they could be predicted was defined. A wind tunnel model and test program are recommended to resolve the identified uncertainties.

  4. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  5. Tiltrotor noise reduction through flight trajectory management and aircraft configuration control

    NASA Astrophysics Data System (ADS)

    Gervais, Marc

    A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise

  6. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  7. Design optimization of high-speed proprotor aircraft

    NASA Technical Reports Server (NTRS)

    Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.

    1993-01-01

    NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.

  8. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  9. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  10. Materials Examination of the Vertical Stabilizer from American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.

    2005-01-01

    The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.

  11. Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements

    NASA Astrophysics Data System (ADS)

    Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard A.; Clayton, Marian F.; Andrews, Elisabeth; Ogren, John A.; Johnson, Roy R.; Russell, Philip B.; Gore, Warren J.; Dominguez, Roseanne

    2009-11-01

    The accuracy with which vertical profiles of aerosol extinction σep(λ) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP σep(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar σep(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities ρw are 8% larger when compared to AATS-14, whereas in situ measured ρw aboard two different aircraft are smaller than the

  12. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; hide

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  13. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  14. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  15. Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.

    1996-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.

  16. Comprehensive Analysis of Two Downburst-Related Aircraft Accidents

    NASA Technical Reports Server (NTRS)

    Shen, J.; Parks, E. K.; Bach, R. E.

    1996-01-01

    Although downbursts have been identified as the major cause of a number of aircraft takeoff and landing accidents, only the 1985 Dallas/Fort Worth (DFW) and the more recent (July 1994) Charlotte, North Carolina, landing accidents provided sufficient onboard recorded data to perform a comprehensive analysis of the downburst phenomenon. The first step in the present analysis was the determination of the downburst wind components. Once the wind components and their gradients were determined, the degrading effect of the wind environment on the airplane's performance was calculated. This wind-shear-induced aircraft performance degradation, sometimes called the F-factor, was broken down into two components F(sub 1) and F(sub 2), representing the effect of the horizontal wind gradient and the vertical wind velocity, respectively. In both the DFW and Charlotte cases, F(sub 1) was found to be the dominant causal factor of the accident. Next, the aircraft in the two cases were mathematically modeled using the longitudinal equations of motion and the appropriate aerodynamic parameters. Based on the aircraft model and the determined winds, the aircraft response to the recorded pilot inputs showed good agreement with the onboard recordings. Finally, various landing abort strategies were studied. It was concluded that the most acceptable landing abort strategy from both an analytical and pilot's standpoint was to hold constant nose-up pitch attitude while operating at maximum engine thrust.

  17. Airsickness and aircraft motion during short-haul flights.

    PubMed

    Turner, M; Griffin, M J; Holland, I

    2000-12-01

    There is little quantitative information that can be used to predict the incidence of airsickness from the motions experienced in military or civil aviation. This study examines the relationship between low-frequency aircraft motion and passenger sickness in short-haul turboprop flights within the United Kingdom. A questionnaire survey of 923 fare-paying passengers was conducted on 38 commercial airline flights. Concurrent measurements of aircraft motion were made on all journeys, yielding approximately 30 h of aircraft motion data. Overall, 0.5% of passengers reported vomiting, 8.4% reported nausea (range 0% to 34.8%) and 16.2% reported illness (range 0% to 47.8%) during flight. Positive correlations were found between the percentage of passengers who experienced nausea or felt ill and the magnitude of low-frequency lateral and vertical motion, although neither motion uniquely predicted airsickness. The incidence of motion sickness also varied with passenger age, gender, food consumption and activity during air travel. No differences in sickness were found between passengers located in different seating sections of the aircraft, or as a function of moderate levels of alcohol consumption. The passenger responses suggest that a useful prediction of airsickness can be obtained from magnitudes of low frequency aircraft motion. However, some variations in airsickness may also be explained by individual differences between passengers and their psychological perception of flying.

  18. Fuel-conservative guidance system for powered-lift aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal-area guidance, comprising two modes of operation, has been developed and evaluated in flight tests. In the first or predictive mode, fuel-efficient approach trajectories are synthesized in fast time. In the second or tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion-system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The paper describes the design theory and discusses the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft.

  19. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  20. Coastal water monitoring using a vertical profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong Guk; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik

    2017-04-01

    Using a profiler system, the Aqualog, composed of a moored wire and a carrier in which a CTD was installed, we have been monitoring coastal water in Korea since August 2016. With this monitoring system, we were able to observe rapid warming of surface water that resulted in large damage to fish farms. The profiles showed that the warming was associated with low salinity water due to the fresh water discharge from the Yangtze River. We also observed change in water properties due to a typhoon. Along the Korean coast there are many aquafarms, which are becoming more vulnerable to environmental change. With the data from the profiler we would be able to help the aquafarms to sustain.

  1. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-12-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.

  2. Classification of Tropical Oceanic Precipitation using High Altitude Aircraft: Microwave and Electric Field Measurements

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Cecil, Daniel; LaFontaine, Frank J.; Blakeslee, Richard; Mach, Douglas; Heymsfield, Gerald; Marks, Frank, Jr.; Zipser, Edward

    2004-01-01

    During the 1998 and 2001 hurricane seasons of the western Atlantic Ocean and Gulf of Mexico, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration ER-2 high altitude aircraft as part of the Third Convection and Moisture Experiment (CAMEX-3) and the Fourth Convection and Moisture Experiment (CAMEX-4). Several hurricanes, tropical storms, and other precipitation systems were sampled during these experiments. An oceanic rainfall screening technique has been developed using AMPR passive microwave observations of these systems collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz. This technique combines the information content of the four AMPR frequencies regarding the gross vertical structure of hydrometeors into an intuitive and easily executable precipitation mapping format. The results have been verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scans collected by the National Oceanic and Atmospheric Administration WP-3D Orion radar. Matching the rainfall classification results with coincident electric field information collected by the LIP readily identifies convective rain regions within the precipitation fields. This technique shows promise as a real-time research and analysis tool for monitoring vertical updraft strength and convective intensity from airborne platforms such as remotely operated or uninhabited aerial vehicles. The technique is analyzed and discussed for a wide variety of precipitation types using the 26 August 1998 observations of Hurricane Bonnie near landfall.

  3. Two F/A-18B aircraft involved in the AFF program return to base in close formation with the autonomo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    After completing a milestone autonomous station-keeping formation, two F/A-18B aircraft from the NASA Dryden Flight Research Center, Edwards, California, return to base in close formation with the autonomous function disengaged. For the milestone, the aircraft were spaced approximately 200 feet nose-to-tail and 50 feet apart laterally and vertically. Autonomous formation control was maintained by the trailing aircraft, the Systems Research Aircraft (SRA), in the lateral and vertical axes to within five feet of the commanded position. Nose-to-tail separation of the aircraft was controlled by manual throttle inputs by the trailing aircraft's pilot. The milestone was accomplished on the seventh flight of a 12 flight phase. The AFF flights were a first for a project under NASA's Revolutionary (RevCon) in Aeronautics Project. Dryden was the lead NASA center for RevCon, an endeavor to accelerate the exploration of high-risk, revolutionary technologies in atmospheric flight. Automated formation flight could lead to formation fuel efficiencies and higher air traffic capacity. In the background is the U. S. Borax mine, Boron, California, near the Dryden/Edwards Air Force Base complex. Autonomous Formation Flight (AFF) is intended to allow an aircraft to fly in close formation over long distances using advanced positioning and controls technology. It utilizes Global Positioning System satellites and inertial navigation systems to position two or more aircraft in formation, with an accuracy of a few inches. This capability is expected to yield fuel efficiency improvements.

  4. The Tropical Convective Spectrum. Part 1; Archetypal Vertical Structures

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Petersen, Walter A.; Cecil, Daniel J.

    2005-01-01

    A taxonomy of tropical convective and stratiform vertical structures is constructed through cluster analysis of 3 yr of Tropical Rainfall Measuring Mission (TRMM) "warm-season" (surface temperature greater than 10 C) precipitation radar (PR) vertical profiles, their surface rainfall, and associated radar-based classifiers (convective/ stratiform and brightband existence). Twenty-five archetypal profile types are identified, including nine convective types, eight stratiform types, two mixed types, and six anvil/fragment types (nonprecipitating anvils and sheared deep convective profiles). These profile types are then hierarchically clustered into 10 similar families, which can be further combined, providing an objective and physical reduction of the highly multivariate PR data space that retains vertical structure information. The taxonomy allows for description of any storm or local convective spectrum by the profile types or families. The analysis provides a quasi-independent corroboration of the TRMM 2A23 convective/ stratiform classification. The global frequency of occurrence and contribution to rainfall for the profile types are presented, demonstrating primary rainfall contribution by midlevel glaciated convection (27%) and similar depth decaying/stratiform stages (28%-31%). Profiles of these types exhibit similar 37- and 85-GHz passive microwave brightness temperatures but differ greatly in their frequency of occurrence and mean rain rates, underscoring the importance to passive microwave rain retrieval of convective/stratiform discrimination by other means, such as polarization or texture techniques, or incorporation of lightning observations. Close correspondence is found between deep convective profile frequency and annualized lightning production, and pixel-level lightning occurrence likelihood directly tracks the estimated mean ice water path within profile types.

  5. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the

  6. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  7. Escorting commercial aircraft to reduce the MANPAD threat

    NASA Astrophysics Data System (ADS)

    Hock, Nicholas; Richardson, M. A.; Butters, B.; Walmsley, R.; Ayling, R.; Taylor, B.

    2005-11-01

    This paper studies the Man-Portable Air Defence System (MANPADS) threat against large commercial aircraft using flight profile analysis, engagement modelling and simulation. Non-countermeasure equipped commercial aircraft are at risk during approach and departure due to the large areas around airports that would need to be secured to prevent the use of highly portable and concealable MANPADs. A software model (CounterSim) has been developed and was used to simulate an SA-7b and large commercial aircraft engagement. The results of this simulation have found that the threat was lessened when a escort fighter aircraft is flown in the 'Centreline Low' position, or 25 m rearward from the large aircraft and 15 m lower, similar to the Air-to-Air refuelling position. In the model a large aircraft on approach had a 50% chance of being hit or having a near miss (within 20m) whereas escorted by a countermeasure equipped F-16 in the 'Centerline Low' position, this was reduced to only 14%. Departure is a particularly vulnerable time for large aircraft due to slow climb rates and the inability to fly evasive manoeuvres. The 'Centreline Low' escorted departure greatly reduced the threat to 16% hit or near miss from 62% for an unescorted heavy aircraft. Overall the CounterSim modelling has showed that escorting a civilian aircraft on approach and departure can reduce the MANPAD threat by 3 to 4 times.

  8. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    PubMed Central

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  9. Assessment of the risk due to release of carbon fiber in civil aircraft accidents, phase 2

    NASA Technical Reports Server (NTRS)

    Pocinki, L.; Cornell, M. E.; Kaplan, L.

    1980-01-01

    The risk associated with the potential use of carbon fiber composite material in commercial jet aircraft is investigated. A simulation model developed to generate risk profiles for several airports is described. The risk profiles show the probability that the cost due to accidents in any year exceeds a given amount. The computer model simulates aircraft accidents with fire, release of fibers, their downwind transport and infiltration of buildings, equipment failures, and resulting ecomomic impact. The individual airport results were combined to yield the national risk profile.

  10. Vertical cup-to-disc ratio measurement for diagnosis of glaucoma on fundus images

    NASA Astrophysics Data System (ADS)

    Hatanaka, Yuji; Noudo, Atsushi; Muramatsu, Chisako; Sawada, Akira; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2010-03-01

    Glaucoma is a leading cause of permanent blindness. Retinal fundus image examination is useful for early detection of glaucoma. In order to evaluate the presence of glaucoma, the ophthalmologists determine the cup and disc areas and they diagnose glaucoma using a vertical cup-to-disc ratio. However, determination of the cup area is very difficult, thus we propose a method to measure the cup-to-disc ratio using a vertical profile on the optic disc. First, the blood vessels were erased from the image and then the edge of optic disc was then detected by use of a canny edge detection filter. Twenty profiles were then obtained around the center of the optic disc in the vertical direction on blue channel of the color image, and the profile was smoothed by averaging these profiles. After that, the edge of the cup area on the vertical profile was determined by thresholding technique. Lastly, the vertical cup-to-disc ratio was calculated. Using seventy nine images, including twenty five glaucoma images, the sensitivity of 80% and a specificity of 85% were achieved with this method. These results indicated that this method can be useful for the analysis of the optic disc in glaucoma examinations.

  11. Estimating Oceanic Primary Production Using Vertical Irradiance and Chlorophyll Profiles from Ocean Gliders in the North Atlantic.

    PubMed

    Hemsley, Victoria S; Smyth, Timothy J; Martin, Adrian P; Frajka-Williams, Eleanor; Thompson, Andrew F; Damerell, Gillian; Painter, Stuart C

    2015-10-06

    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope ((13)C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

  12. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  13. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  14. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo

    2017-12-01

    Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

  15. Vertical profiles of wind and temperature by remote acoustical sounding

    NASA Technical Reports Server (NTRS)

    Fox, H. L.

    1969-01-01

    An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.

  16. Secondary Wing System for Use on an Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Brian E. (Inventor)

    1999-01-01

    A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight. The deployment mechanism includes a circular mounting ring and drive mechanism that connects the canard with the fuselage and permits it to rotate and to change incidence. The deployment mechanism further includes retractable fairings which serve to streamline the wing when it is retracted into the top of the fuselage.

  17. Human sensitivity to vertical self-motion.

    PubMed

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  18. Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Y.; Osato, K.; Takasugi, S.

    1995-12-31

    As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less

  19. V/STOL aircraft and method

    DOEpatents

    Owens, P.R.

    1997-11-18

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight are disclosed. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans. 10 figs.

  20. V/STOL aircraft and method

    DOEpatents

    Owens, Phillip R.

    1997-01-01

    Aircraft apparatus and method capable of V/STOL (vertical, short takeoff and landing) in addition to conventional flight. For V/STOL operation, induced lift is provided by blowing air over the upper surface of each wing through a duct installed near the leading edge. Intake air is supplied to the blowing fan through a duct installed near the trailing edge, thus providing suction as well as blowing. Two fans in series are required. The engine provides power not only to the propeller but also to a transmission which provides power to the pulleys driving the belt-driven fans.

  1. System for providing an integrated display of instantaneous information relative to aircraft attitude, heading, altitude, and horizontal situation

    NASA Technical Reports Server (NTRS)

    James, R. (Inventor)

    1981-01-01

    A display device is disclosed which is particularly suited for providing the pilot of an aircraft with combined inflight attitude, heading, altitude, and horizontal situation information previously available only by using two or three devices providing separate displays. The preferred embodiment combines a commonly used and commercially available flight director-type device for providing a display in combination with a miniature aircraft supported for angular displacement from a vertical orientation to indicate heading error, or heading offset, and an extended course deviation indicator bar which projects into juxtaposition with the miniature aircraft for providing a true picture of the aircraft's horizontal situation relative to a selective VOR, ILS, or MLS course.

  2. Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity

    NASA Astrophysics Data System (ADS)

    Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.

    2010-07-01

    The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensation trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve which empirically describes the ISS fraction in any average relative humidity pressure layer. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.

  3. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    NASA Technical Reports Server (NTRS)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  4. Primary separation between three aircraft using traffic displays

    NASA Technical Reports Server (NTRS)

    Chappell, S. L.; Palmer, E. A.

    1983-01-01

    The use of a sophisticated traffic and map display termed electronic flight rules (EFR) by general aviation pilots for primary seperation in low density airspace is studied. The experimental flights were made under four conditions: with and without sensor noise in the traffic information and with and without communications for traffic coordination. Pilots were required to maintain two miles horizontal and 500 ft vertical separation from other aircraft for 24 different traffic situations repeated randomly for each of the four experimental conditions. Of 1152 aircraft encounters 12.8 percent were in violation of separation minimums. In general, the effects of sensor noise were minimal, communications affected some of the measures, and the group effect was quite significant. When pilots were able to communicate and coordinate their maneuvers, the time to resolve conflict was reduced.

  5. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-11-17

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  6. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Image and Video Library

    2001-08-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  7. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Image and Video Library

    1998-12-18

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  8. Carbon balance of South Asia constrained by passenger aircraft CO2 measurements

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Niwa, Y.; Schuck, T. J.; Brenninkmeijer, C. A.; Machida, T.; Matsueda, H.; Sawa, Y.

    2011-12-01

    Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. The sole measurement site at Cape Rama does not constrain CO2 fluxes during the summer monsoon season. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and ACTM transport model simulations. The applicability of the model's transport parameterization is confirmed using multi-tracer (SF6, CH4, N2O) simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr-1 for the years 2007 and 2008, primarily during the summer monsoon season when the water limitation for this tropical ecosystem is relaxed. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude by the CONTRAIL program over Asia aboard Japan Airlines passenger aircraft (Patra et al., 2011). Major challenges remain the verification of the inverse model flux seasonality and annual totals by bottom-up estimations using field measurements and terrestrial ecosystem models.

  9. State Estimation for Landing Maneuver on High Performance Aircraft

    NASA Astrophysics Data System (ADS)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  10. Total column CO2 measurements at Darwin, Australia - site description and calibration against in situ aircraft profiles

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.

    2010-03-01

    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.

  11. Total column CO2 measurements at Darwin, Australia - site description and calibration against in situ aircraft profiles

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W. T.; Bryant, G. W.; Wennberg, P. O.; Toon, G. C.; Washenfelder, R. A.; Keppel-Aleks, G.; Wunch, D.; Yavin, Y.; Allen, N. T.; Blavier, J.-F.; Jiménez, R.; Daube, B. C.; Bright, A. V.; Matross, D. M.; Wofsy, S. C.; Park, S.

    2010-07-01

    An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January-February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.

  12. An AD100 implementation of a real-time STOVL aircraft propulsion system

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Drummond, Colin K.

    1990-01-01

    A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.

  13. Crash Testing and Simulation of a Cessna 172 Aircraft: Hard Landing Onto Concrete

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2016-01-01

    A full-scale crash test of a Cessna 172 aircraft was conducted at the Landing and Impact Research Facility at NASA Langley Research Center during the summer of 2015. The purpose of the test was to evaluate the performance of Emergency Locator Transmitters (ELTs) that were mounted at various locations in the aircraft and to generate impact test data for model validation. A finite element model of the aircraft was developed for execution in LSDYNA to simulate the test. Measured impact conditions were 722.4-in/s forward velocity and 276-in/s vertical velocity with a 1.5deg pitch (nose up) attitude. These conditions were intended to represent a survivable hard landing. The impact surface was concrete. During the test, the nose gear tire impacted the concrete, followed closely by impact of the main gear tires. The main landing gear spread outward, as the nose gear stroked vertically. The only fuselage contact with the impact surface was a slight impact of the rearmost portion of the lower tail. Thus, capturing the behavior of the nose and main landing gear was essential to accurately predict the response. This paper describes the model development and presents test-analysis comparisons in three categories: inertial properties, time sequence of events, and acceleration and velocity time-histories.

  14. Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan.

    PubMed

    Chen, Chih-Feng; Ju, Yun-Ru; Chen, Chiu-Wen; Dong, Cheng-Di

    2016-12-01

    Six sediment cores collected at the Kaohsiung Harbor of Taiwan were analyzed to evaluate their vertical profiles, enrichments, accumulations, and source apportionments of heavy metals. This was performed to investigate any potential ecological risks posed by heavy metals. Results indicated that the mean heavy metal content (mg kg -1 ) in the six sediment cores was as follows: Hg (0.4-6.4), Cd (<0.05-2.4), Cr (18-820), Cu (16-760), Pb (31-140), and Zn (76-1900). The patterns of heavy metal content in the sediment cores differed substantially among the four river mouths. However, the vertical profiles of metals were relatively stable, indicating that wastewater has the constant characteristics and has been discharged into the rivers for a long period of time. Results of pollution assessment of enrichment factor, geo-accumulation index, and pollution load index revealed that river mouths experience severe enrichment, strong accumulation, and high contamination from the primary heavy metals. It was not consistent in the assessment results of mean effect range median quotient, potential ecological risk index, and total toxic unit method. Potential ecological risks caused by Hg in the sediments at Canon River and Love River mouths on aquatic organisms were extremely high. The estimates derived from the receptor modeling of multiple linear regression of the absolute principal component scores indicated that the contributions of the composite heavy metals derived from the Canon River and the Love River on the potential toxicity and risks to the water environment of Kaohsiung Harbor were highest, followed by those derived from Salt River and Jen-Gen River. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Revolutionary Vertical Lift Technology (RVLT) Project

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  16. Noise of the Harrier in vertical landing and takeoff

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Foster, John D.

    1988-01-01

    The noise of the Harrier AV8C aircraft in vertical takeoff and landing was measured 100 feet to the side of the aircraft where jet noise dominates. The noise levels were quite high - up to 125 dB overall sound level at 100 feet. The increased noise due to jet impingement on the ground is presented as a function of jet height to diameter ratio. The impingement noise with the aircraft close to the ground was 14 to 17 dB greater than noise from a free jet. Results are compared with small-scale jet impingement data acquired elsewhere. The agreement between small-scale and full-scale noise increase in ground effect is fairly good except with the jet close to the ground. It is proposed that differences in the jet Reynolds numbers and the resultant character of the jets may be partially responsible for the disparity in the full-scale and small-scale jet impingement noise. The difference between single-jet impingement and multiple-jet impingement may also have been responsible for the small-scale and full-scale disagreement.

  17. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  18. An engine trade study for a supersonic STOVL fighter-attack aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Beard, B. B.; Foley, W. H.

    1982-01-01

    The best main engine for an advanced STOVL aircraft flight demonstrator was studied. The STOVL aircraft uses ejectors powered by engine bypass flow together with vectored core exhaust to achieve vertical thrust capability. Bypass flow and core flow are exhausted through separate nozzles during wingborne flight. Six near term turbofan engines were examined for suitability for this aircraft concept. Fan pressure ratio, thrust split between bypass and core flow, and total thrust level were used to compare engines. One of the six candidate engines was selected for the flight demonstrator configuration. Propulsion related to this aircraft concept was studied. A preliminary candidate for the aircraft reaction control system for hover attitude control was selected. A mathematical model of transfer of bypass thrust from ejectors to aft directed nozzle during the transition to wingborne flight was developed. An equation to predict ejector secondary air flow rate and ram drag is derived. Additional topics discussed include: nozzle area control, ejector to engine inlet reingestion, bypass/core thrust split variation, and gyroscopic behavior during hover.

  19. The Vertical Profile of Ocean Mixing

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  20. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    NASA Technical Reports Server (NTRS)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  1. Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone

    NASA Astrophysics Data System (ADS)

    Morison, J.

    2016-02-01

    The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.

  2. The Guardian: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  3. Vertical profile of 137Cs in soil.

    PubMed

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.

  4. Comparing helicopter-borne profiling radar with airborne laser scanner data for forest structure estimation.

    NASA Astrophysics Data System (ADS)

    Piermattei, Livia; Hollaus, Markus; Pfeifer, Norbert; Chen, Yuwei; Karjalainen, Mika; Hakala, Teemu; Hyyppä, Juha; Wagner, Wolfgang

    2017-04-01

    Forests are complex ecosystems that show substantial variation with respect to climate, management regime, stand history, disturbance, and needs of local communities. The dynamic processes of growth and disturbance are reflected in the structural components of forests that include the canopy vertical structure and geometry (e.g. size, height, and form), tree position and species diversity. Current remote-sensing systems to measure forest structural attributes include passive optical sensors and active sensors. The technological capabilities of active remote sensing like the ability to penetrate the vegetation and provide information about its vertical structure has promoted an extensive use of LiDAR (Light Detection And Ranging) and radar (RAdio Detection And Ranging) system over the last 20 years. LiDAR measurements from aircraft (airborne laser scanning, ALS) currently represents the primary data source for three-dimensional information on forest vertical structure. Contrary, despite the potential of radar remote sensing, their use is not yet established in forest monitoring. In order to better understand the interaction of pulsed radar with the forest canopy, and to increase the feasibility of this system, the Finnish Geospatial Research Institute has developed a helicopter-borne profiling radar system, called TomoRadar. TomoRadar is capable of recording a canopy-penetrating profile of forests. To georeference the radar measurements the system was equipped with a global navigation satellite system and an inertial measurement unit with a centimeter level accuracy of the flight trajectory. The TomoRadar operates at Ku-band, (wave lengths λ 1.5cm) with two separated parabolic antennas providing co- and cross-polarization modes. The purpose of this work is to investigate the capability of the TomoRadar system, for estimating the forest vertical profile, terrain topography and tree height. We analysed 600 m TomoRadar crosspolarized (i.e. horizontal - vertical

  5. New Insights on "Next Day" Ozone Increases in the Northeastern U.S. using Continuous Vertical Profiles of Ozone

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.

    2016-12-01

    A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.

  6. Modifying Ship Air-Wake Vortices for Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    2004-01-01

    Columnar-vortex generators (CVG) have been proposed as means to increase the safety of takeoffs and landings of aircraft on aircraft or helicopter carriers and other ships at sea. According to the proposal, CVGs would be installed at critical edge locations on ships to modify the vortices in the air wakes of the ships. The desired effects of modifications are to smooth airflows over takeoff and landing deck areas and divert vortices from takeoff and landing flight paths. With respect to aircraft operations, the wake flows of primary interest are those associated with the bow and side edges of aircraft-carrier decks and with superstructures of ships in general (see Figure 1). The bow and deck-edge vortices can adversely affect airplane and helicopter operations on carriers, while the superstructure wakes can primarily affect operations of helicopters. The concept of the CVG is not new; what is new is the proposed addition of CVGs to ship structures to effect favorable modifications of air wakes. Figure 2 depicts a basic CVG, vertical and horizontal CVGs installed on a simple superstructure, and horizontal CVGs installed on the bow and deck edges. The vertical CVGs would be closed at the deck but open at the top. Each horizontal CVG would be open at both ends. The dimensions of the CVGs installed on the aft edges of the superstructure would be chosen so that the portion of the flow modified by the vertical CVGs would interact synergistically with the portion of the flow modified by the horizontal CVG to move the air wake away from the takeoff-and-landing zone behind the superstructure. The deck-edge CVGs would be mounted flush with, and would extend slightly ahead of the bow of, the flight deck. The overall length of each tube would exceed that of the flight deck. Each deck-edge CVG would capture that portion of the airflow that generates a deck-edge vortex and would generate a columnar vortex of opposite sense to that of the unmodified vortex. The vortex generated

  7. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    NASA Astrophysics Data System (ADS)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  8. Volumetric pattern analysis of fuselage-mounted airborne antennas. Ph.D. Thesis; [prediction analysis techniques for antenna radiation patterns of microwave antennas on commercial aircraft

    NASA Technical Reports Server (NTRS)

    Yu, C. L.

    1976-01-01

    A volumetric pattern analysis of fuselage-mounted airborne antennas at high frequencies was investigated. The primary goal of the investigation was to develop a numerical solution for predicting radiation patterns of airborne antennas in an accurate and efficient manner. An analytical study of airborne antenna pattern problems is presented in which the antenna is mounted on the fuselage near the top or bottom. Since this is a study of general-type commercial aircraft, the aircraft was modeled in its most basic form. The fuselage was assumed to be an infinitely long perfectly conducting elliptic cylinder in its cross-section and a composite elliptic cylinder in its elevation profile. The wing, cockpit, stabilizers (horizontal and vertical) and landing gear are modeled by "N" sided bent or flat plates which can be arbitrarily attached to the fuselage. The volumetric solution developed utilizes two elliptic cylinders, namely, the roll plane and elevation plane models to approximate the principal surface profile (longitudinal and transverse) at the antenna location. With the belt concept and the aid of appropriate coordinate system transformations the solution can be used to predict the volumetric patterns of airborne antennas in an accurate and efficient manner. Applications of this solution to various airborne antenna problems show good agreement with scale model measurements. Extensive data are presented for a microwave landing antenna system.

  9. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    PubMed

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  12. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  13. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  14. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  15. Lockheed ER-2C #809 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-04-29

    ER-2C tail number 809, was one of two Airborne Science ER-2Cs used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2Cs were capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2C missions lasted about six hours with ranges of about 2,200 nautical miles. The aircraft typically flew at altitudes above 65,000 feet. On November 19, 1998, the ER-2C set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft was 63 feet long, with a wingspan of 104 feet. The top of the vertical tail was 16 feet above ground when the aircraft was on the bicycle-type landing gear. Cruising speeds were 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2C.

  16. Measurement and analysis of aircraft and vehicle LRCS in outfield test

    NASA Astrophysics Data System (ADS)

    Cao, Chang-Qing; Zeng, Xiao-dong; Fan, Zhao-jin; Feng, Zhe-jun; Lai, Zhi

    2015-04-01

    The measurement of aircraft and vehicle Laser Radar Cross Section (LRCS) is of crucial importance for the detection system evaluation and the characteristic research of the laser scattering. A brief introduction of the measuring theory of the laser scattering from the full-scale aircraft and vehicle targets is presented in this paper. By analyzing the measuring condition in outfield test, the laser systems and test steps are designed for full-scale aircraft and vehicle LRCS and verified by the experiment in laboratory. The processing data error 7% below is obtained of the laser radar cross section by using Gaussian compensation and elimination of sky background for original test data. The study of measurement and analysis proves that the proposed method is effective and correct to get laser radar cross section data in outfield test. The objectives of this study were: (1) to develop structural concepts for different LRCS fuselage configurations constructed of conventional materials; (2) to compare these findings with those of aircrafts or vehicles; (3) to assess the application of advanced materials for each configuration; (4) to conduct an analytical investigation of the aerodynamic loads, vertical drag and mission performance of different LRCS configurations; and (5) to compare these findings with those of the aircrafts or vehicles.

  17. Decay characteristics of wake vortices from jet transport aircraft

    DOT National Transportation Integrated Search

    1997-01-06

    For more than two decades cw doppler lidars have been used to study the decay of wake vortices generated by : jet transport aircraft. With appropriate scan and data processing strategies, the vortex tangential velocity profile can : be measured every...

  18. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  19. Results of the measurement of the vertical profile of ozone up to a height of 70 km by means of the MR-12 and M-100 sounding rockets

    NASA Technical Reports Server (NTRS)

    Brezgin, N. I.; Kuznetsov, G. I.; Chizhov, A. F.; Shtyrkov, O. V.

    1979-01-01

    The photometers used and methods of calculation of the vertical ozone concentration profile are described. The results obtained in several series of MR-12 and M-100 sounding rocket launchings are presented and discussed.

  20. 14 CFR Appendix G to Part 91 - Operations in Reduced Vertical Separation Minimum (RVSM) Airspace

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight planned route through the appropriate flight planning information sources. (b) No person may show..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT..., air traffic control (ATC) separates aircraft by a minimum of 1,000 feet vertically between flight...