Modeling unsteady forces and pressures on a rapidly pitching airfoil
NASA Astrophysics Data System (ADS)
Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.
2014-11-01
This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.
The acoustics and unsteady wall pressure of a circulation control airfoil
NASA Astrophysics Data System (ADS)
Silver, Jonathan C.
A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.
Unsteady aerodynamics of conventional and supercritical airfoils
NASA Technical Reports Server (NTRS)
Davis, S. S.; Malcolm, G. N.
1980-01-01
The unsteady aerodynamics of a conventional and a supercritical airfoil are compared by examining measured chordwise unsteady pressure time-histories from four selected flow conditions. Although an oscillating supercritical airfoil excites more harmonics, the strength of the airfoil's shock wave is the more important parameter governing the complexity of the unsteady flow. Whether they are conventional or supercritical, airfoils that support weak shock waves induce unsteady loads that are qualitatively predictable with classical theories; flows with strong shock waves are sensitive to details of the shock-wave and boundary-layer interaction and cannot be adequately predicted.
Unsteady pressure measurements on a supercritical airfoil at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Hess, R. W.
1989-01-01
Steady and unsteady pressures were measured on a 14 percent supercritical airfoil at transonic Mach numbers at Reynolds numbers from 6,000,000 to 35,000,000. Instrumentation techniques were developed to measure unsteady pressures in a cryogenic tunnel at flight Reynolds numbers. Experimental steady data, corrected for wall effects show very good agreement with calculations from a full potential code with an interacted boundary layer. The steady and unsteady pressures both show a shock position that is dependent on Reynolds number. For a supercritical pressure distribution at a chord Reynolds number of 35,000,000 laminar flow was observed between the leading edge and the shock wave at 45 percent chord.
Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade
NASA Technical Reports Server (NTRS)
Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.
1985-01-01
Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfroils were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a classical unsteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.
Unsteady pressure measurements on a biconvex airfoil in a transonic oscillating cascade
NASA Technical Reports Server (NTRS)
Shaw, L. M.; Boldman, D. R.; Buggele, A. E.; Buffum, D. H.
1986-01-01
Flush-mounted dynamic pressure transducers were installed on the center airfoil of a transonic oscillating cascade to measure the unsteady aerodynamic response as nine airfols were simultaneously driven to provide 1.2 deg of pitching motion about the midchord. Initial tests were performed at an incidence and angle of 0 deg and A Mach number of 0.65 in order to obtain results in a shock-free compressible flowfield. Subsequent tests were performed at an incidence angle of 7 deg and Mach number of 0.8 in order to observe the surface pressures with an oscillating shock near the leading edge of the airfoil. Results are presented for interblade phase angles of 90 and -90 deg and at blade oscillatory frequencies of 200 and 500 Hz (semi-chord reduced frequencies up to about 0.5 at a Mach number of 0.8). Results from the zero-incidence cascade are compared with a clasical usnteady flat-plate analysis. Flow visualization results depicting the shock motion on the airfoils in the high-incidence cascade are discussed. The airfoil pressure data are tabulated.
An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence
NASA Technical Reports Server (NTRS)
Mish, Patrick F.; Devenport, William J.
2003-01-01
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative
Unsteady Airloads on Airfoils in Reverse Flow
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2014-11-01
This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.
NASA Technical Reports Server (NTRS)
Hess, Robert W.; Seidel, David A.; Igoe, William B.; Lawing, Pierce L.
1987-01-01
Steady and unsteady pressures were measured on a 2-D supercritical airfoil in the Langley Research Center 0.3-m Transonic Cryogenic Tunnel at Reynolds numbers from 6 x 1,000,000 to 35 x 1,000,000. The airfoil was oscillated in pitch at amplitudes from plus or minus .25 degrees to plus or minus 1.0 degrees at frequencies from 5 Hz to 60 Hz. The special requirements of testing an unsteady pressure model in a pressurized cryogenic tunnel are discussed. Selected steady measured data are presented and are compared with GRUMFOIL calculations at Reynolds number of 6 x 1,000,000 and 30 x 1,000,000. Experimental unsteady results at Reynolds numbers of 6 x 1,000,000 and 30 x 1,000,000 are examined for Reynolds number effects. Measured unsteady results at two mean angles of attack at a Reynolds number of 30 x 1,000,000 are also examined.
Unsteady Pressures in a Transonic Fan Cascade Due to a Single Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Hayden, J.
2002-01-01
An extensive set of unsteady pressure data was acquired along the midspan of a modern transonic fan blade for simulated flutter conditions. The data set was acquired in a nine-blade linear cascade with an oscillating middle blade to provide a database for the influence coefficient method to calculate instantaneous blade loadings. The cascade was set for an incidence of 10 dg. The data were acquired on three stationary blades on each side of the middle blade that was oscillated at an amplitude of 0.6 dg. The matrix of test conditions covered inlet Mach numbers of 0.5, 0.8, and 1.1 and the oscillation frequencies of 200, 300, 400, and 500 Hz. A simple quasiunsteady two-dimensional computer simulation was developed to aid in the running of the experimental program. For high Mach number subsonic inlet flows the blade pressures exhibit very strong, low-frequency, self-induced oscillations even without forced blade oscillations, while for low subsonic and supersonic inlet Mach numbers the blade pressure unsteadiness is quite low. The amplitude of forced pressure fluctuations on neighboring stationary blades strongly depends on the inlet Mach number and forcing frequency. The flowfield behavior is believed to be governed by strong nonlinear effects due to a combination of viscosity, compressibility, and unsteadiness. Therefore, the validity of the quasi-unsteady simplified computer simulation is limited to conditions when the flowfield is behaving in a linear, steady manner. Finally, an extensive set of unsteady pressure data was acquired to help development and verification of computer codes for blade flutter effects.
Unsteady Newton-Busemann flow theory. I - Airfoils
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.
Computation of unsteady flows over airfoils
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Platzer, M. F.
1992-01-01
Two methods are described for calculating unsteady flows over rapidly pitching airfoils. The first method is based on an interactive scheme in which the inviscid flow is obtained by a panel method. The boundary layer flow is computed by an interactive method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier-Stokes equations. The solution of these equations is obtained with an approximately factorized numerical algorithm, and with single block or multiple grids which enable grid embedding to enhance the resolution at isolated flow regions. In addition, the attached flow region can be computed by the numerical solution of compressible boundary layer equations. Unsteady pressure distributions obtained with both methods are compared with available experimental data.
Unsteady transonic flow control around an airfoil in a channel
NASA Astrophysics Data System (ADS)
Hamid, Md. Abdul; Hasan, A. B. M. Toufique; Ali, Mohammad; Mitsutake, Yuichi; Setoguchi, Toshiaki; Yu, Shen
2016-04-01
Transonic internal flow around an airfoil is associated with self-excited unsteady shock wave oscillation. This unsteady phenomenon generates buffet, high speed impulsive noise, non-synchronous vibration, high cycle fatigue failure and so on. Present study investigates the effectiveness of perforated cavity to control this unsteady flow field. The cavity has been incorporated on the airfoil surface. The degree of perforation of the cavity is kept constant as 30%. However, the number of openings (perforation) at the cavity upper wall has been varied. Results showed that this passive control reduces the strength of shock wave compared to that of baseline airfoil. As a result, the intensity of shock wave/boundary layer interaction and the root mean square (RMS) of pressure oscillation around the airfoil have been reduced with the control method.
Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1983-01-01
A detailed analysis of dynamic stall experiments has led to a set of relatively compact analytical expressions, called synthesized unsteady airfoil data, which accurately describe in the time-domain the unsteady aerodynamic characteristics of stalled airfoils. An analytical research program was conducted to expand and improve this synthesized unsteady airfoil data method using additional available sets of unsteady airfoil data. The primary objectives were to reduce these data to synthesized form for use in rotor airload prediction analyses and to generalize the results. Unsteady drag data were synthesized which provided the basis for successful expansion of the formulation to include computation of the unsteady pressure drag of airfoils and rotor blades. Also, an improved prediction model for airfoil flow reattachment was incorporated in the method. Application of this improved unsteady aerodynamics model has resulted in an improved correlation between analytic predictions and measured full scale helicopter blade loads and stress data.
Numerical studies of unsteady transonic flow over an oscillating airfoil
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Davis, S. S.
1984-01-01
A finite-difference solution to the Navier-Stokes equations combined with a time-varying grid-generation technique was used to compute unsteady transonic flow over an oscillating airfoil. These computations were compared with experimental data (obtained at Ames Research Center) which form part of the AGARD standard configuration for aeroelastic analysis. A variety of approximations to the full Navier-Stokes equations was used to determine the effect of frequency, shock-wave motion, flow separation, and airfoil geometry on unsteady pressures and overall air loads. Good agreement is shown between experiment and theory with the limiting factor being the lack of a reliable turbulence model for high-Reynolds-number, unsteady transonic flows.
Synthesized airfoil data method for prediction of dynamic stall and unsteady airloads
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1984-01-01
The synthesized unsteady airfoil data method, which accurately describes the unsteady aerodynamic characteristics of stalled airfoils in the time domain, is expanded and improved. Nine sets of unsteady drag data are synthesized, providing a basis for the successful expansion of the method to include the computation of unsteady pressure drag of airfoils and rotor blades. An improved prediction model for airfoil flow reattachment is incorporated into the method. Application of the model results in a better correlation of analytic predictions with measured full-scale helicopter blade loads and stress data. The results show that it is feasible to generalize the empirical parameters embedded in the method over a range of angles of attack, Mach number, airfoil shape, and sweep angle.
Ice-induced unsteady flowfield effects on airfoil performance
NASA Astrophysics Data System (ADS)
Gurbacki, Holly Marie
Numerical prediction of iced-airfoil performance prior to and at maximum lift is often inaccurate due to large-scale flow unsteadiness. New computational models are being developed to improve predictions of complex separated flowfields; however, experimental data are required to improve and validate these algorithms. The objective of this investigation was to examine the unsteady flow behavior and the time-dependent performance of an iced airfoil to determine the flowfield characteristics with the most influence on airfoil performance, especially near stall. A NACA 0012 airfoil with two-dimensional and three-dimensional leading-edge simulated glaze ice shapes was tested in a wind tunnel at Reynolds numbers 1.8 x 106 and 1.0 x 106. Time-dependent surface pressure measurements were used to calculate root-mean-square lift and quarter-chord pitching-moment coefficients. Surface and flowfield visualization and wake hot-wire data were acquired. Spectral, correlation and phase-angle analyses were performed. The most significant unsteady flowfield effect on the iced-airfoil performance was a low-frequency flow phenomenon on the order of 10 Hz that resulted in Strouhal numbers of 0.0048--0.0101. The low-frequency oscillation produced large-scale pressure fluctuations nears eparation at high angles of attack and elevated lift and moment fluctuations as low as alpha = 4°. The low-frequency motion of surface pressure coefficients convected downstream at velocities 4%--34% of the freestream value and in one case, upstream at 0.18Uinfinity. The iced-airfoil flowfield exhibited a separation bubble of varying thickness and fluctuating reattachment, characteristics similar to those associated with the low-frequency shear-layer flapping and bubble growth and decay of other separated and reattached flows. Vortex structures observed in the shear layer were presumed to be the cause of large-scale pressure fluctuations upstream of reattachment at small angles of attack. Pressure
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
NASA Technical Reports Server (NTRS)
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1987-01-01
A compressible, unsteady, full Navier-Stokes, finite difference code was developed for modeling transonic flow through two-dimensional, oscillating cascades. The procedure introduces a deforming grid technique to capture the motion of the airfoils. Results using a deforming grid are presented for both isolated and cascaded airfoils. The load histories and unsteady pressure distributions are predicted for the NASA 64A010 isolated airfoil and compared with existing experimental data. Results show that the deforming grid technique can be used to successfully predict the unsteady flow properties around an oscillating airfoil. The deforming grid technique was extended for modeling unsteady flow in a cascade. The use of a deforming grid simplifies the specification of boundary conditions. Unsteady flow solutions similar to the isolated airfoil predictions are found for a NACA 0012 cascade with zero interblade phase angle and zero stagger. Experimental data for these cases are not available for code validation, but computational results are presented to show sample predictions from the code. Applications of the code to typical turbomachinery flow conditions will be presented in future work.
NASA Technical Reports Server (NTRS)
Vinci, Samuel, J.
2012-01-01
This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.
Unsteady lift forces on highly cambered airfoils moving through a gust
NASA Technical Reports Server (NTRS)
Atassi, H.; Goldstein, M.
1974-01-01
An unsteady airfoil theory in which the flow is linearized about the steady potential flow of the airfoil is presented. The theory is applied to an airfoil entering a gust. After transformation to the W-plane, the problem is formulated in terms of a Poisson's equation. The solutions are expanded in a Fourier-Bessel series. The theory is applied to a circular arc with arbitrary camber. Closed form expressions for the velocity and pressure on the surface of the airfoil are obtained. The unsteady aerodynamic forces are then calculated and shown to contain two terms. One in an explicit closed analytical form represents the contribution of the oncoming vortical disturbance, the other depends on a single quadrature and accounts for the effect of the wake.
Viscous effect on airfoils for unsteady transonic flows
NASA Technical Reports Server (NTRS)
Lee, S. C.
1982-01-01
The viscous effect on aerodynamic performance of an arbitrary airfoil executing low frequency maneuvers during transonic flight was investigated. The small disturbance code, LTRAN2, was modified by using a conventional integral method, BLAYER, for the boundary layer and an empirical relation, viscous wedge, for simulating the suddenly thickened boundary layer behind the shock. Before the shock, only the boundary layer displacement thickness was evaluated. After the shock, the empirical wedge thickness was superimposed on the boundary layer thickness along the surface as well as in the wake region. The pressure coefficients were calculated for both steady and unsteady states. The viscous solution takes fewer iterations to obtain the converged steady state solution. Comparisons made with experimental data and the inviscid solution show that the viscous solution agrees better with the experimental data with about the same (or slightly less) amount of computational time.
On the Theory of the Unsteady Motion of an Airfoil
NASA Technical Reports Server (NTRS)
Sedov, L. I.
1947-01-01
The paper presents a systematical analysis of the problem of the determination of the unsteady motion about an airfoil moving in an infinite fluid that contains a system of vortices and the determination of the hydrodynamical forces acting on the airfoil. The hydrodynamical problem is reduced to the determination of the function f (xi) which transforms conformally the external region of the airfoil into the interior of a circle. The proposed methods of determining the irrotational motion of a fluid that is produced by any motion of the airfoil are especially simple and effective if the function f (xi) is rational. As an example the flow is determined for the case of an arbitrary motion of an airfoil of the Joukowsky type. The formulas obtained for the determination of the hydrodynamical forces by means of contour integration are similar to those given by S. Chaplygin. These formulas are used to determine the force acting on the airfoil in the cases where the unsteady motion is potential throughout and the circulation about the airfoil is constant and also when the fluid contains a system of vortices. A full discussion is given of the concept of virtual masses together with practical formulas for computing the virtual mass coefficients.
Vortex scale of unsteady separation on a pitching airfoil.
Fuchiwaki, Masaki; Tanaka, Kazuhiro
2002-10-01
The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment. PMID:12495998
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
Wavelet diagnostics of the flow control of unsteady separation on a 2D Wind Turbine Airfoil
NASA Astrophysics Data System (ADS)
Bai, Zhe; Lewalle, Jacques; Wang, Guannan; Glauser, Mark
2013-11-01
We investigated the aerodynamic characteristics of a 2D wind turbine airfoil. Unsteadiness was associated with the wake of a cylinder upstream of the airfoil. The experiments were conducted in both the baseline case, and with active closed-loop control on the suction surface of the airfoil. The data consisted of surface pressure time series. Continuous wavelet analysis gave the phase, band-pass filtered signals and envelope of harmonics of the fundamental shedding frequency. Coherence of pairs of signals was also used to map the flow characteristics. For the baseline and controlled case, we will report on the relation between phase of the leading edge fluctuations, unsteady flow separation and lift and drag coefficients. Our goal is to develop a more effective controller. The experiment was funded by DoE through University of Minnesota Wind Energy Consortium. Thanks for the support from the MAE department of Syracuse University.
Steady and Unsteady Aerodynamics of Thin Airfoils with Porosity Gradients
NASA Astrophysics Data System (ADS)
Hajian, Rozhin; Jaworski, Justin W.
2015-11-01
Porous treatments have been shown in previous studies to reduce turbulence noise generation from the edges of wings and blades. However, this acoustical benefit can come at the cost of aerodynamic performance that is degraded by seepage flow through the wing. To better understand the trade-off between acoustic stealth and the desired airfoil performance, the aerodynamic loads of a thin airfoil in uniform flow with a prescribed porosity distribution are determined analytically in closed form, provided that the distribution is Hölder-continuous. The theoretical model is extended to include unsteady heaving and pitching motions of the airfoil section, which has applications to the performance estimation of biologically-inspired swimmers and fliers and to the future assessment of vortex noise production from porous airfoils.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.
1982-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady period flow field is generated by rotating flows of perforated plates and airfoil cascades, with the resulting unsteady periodic chordwise pressure response of a downstream low solidity stator row determined by miniature pressure transducers embedded within selected airfoils. When the forcing function exhibited the characteristics of a linear-theory gust, the resulting response on the downstream stator airfoils was in excellent agreement with the linear-theory models. When the forcing function did not exhibit linear-theory gust characteristics, the resulting unsteady aerodynamic response of the downstream stators was much more complex and correlated poorly with the linear-theory gust predictions. It is shown that the forcing function generator significantly affects the resulting gust response, with the complexity of the response characteristics increasing from the perforated-plate to the airfoil-cascade forcing functions.
Some examples of unsteady transonic flows over airfoils
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Magnus, R.; Yoshihara, H.
1975-01-01
A finite difference flutter analysis is presented for the NACA 64A-410 airfoil at M equals 0.72, where the incidence is abruptly changed from 2 to 4 degrees. The effect of gust loads is studied, and the unsteady flow adjusting process is displayed. The semi-implicit procedure of Ballhaus and Lomax (1974) is used to solve the small disturbance transonic potential equation. The physical aspects of the results, rather than the numerical details, are emphasized.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.
1978-01-01
The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.
Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
1999-01-01
An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.
Computational, unsteady transonic aerodynamics and aeroelasticity about airfoils and wings
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Guruswamy, Guru P.
1987-01-01
Research in the area of computational, unsteady transonic flows about airfoils and wings, including aeroelastic effects is reviewed. In the last decade, there have been extensive developments in computational methods in response to the need for computer codes with which to study fundamental aerodynamic and aeroelastic problems in the critical transonic regime. For example, large commercial aircraft cruise most effectively in the transonic flight regime and computational fluid dynamics (CDF) provides a new tool, which can be used in combination with test facilities to reduce the costs, time, and risks of aircraft development.
NASA Astrophysics Data System (ADS)
Sun, Min; Yang, Bo; Peng, Tianxiang; Lei, Mingkai
2016-06-01
Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)
Evaluation of Turbulence Models for Unsteady Flows of an Oscillating Airfoil
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ekaterinaris, J. A.; McCroskey, W. J.
1995-01-01
Unsteady flowfields of a two-dimensional oscillating airfoil are calculated using an implicit, finite-difference, Navier Stokes numerical scheme. Five widely used turbulence models are used with the numerical scheme to assess the accuracy and suitability of the models for simulating the retreating blade stall of helicopter rotor in forward flight. Three unsteady flow conditions corresponding to an essentially attached flow, light-stall, and deep-stall cases of an oscillating NACA 0015 wing experiment were chosen as test cases for computations. Results of unsteady airloads hysteresis curves, harmonics of unsteady pressures, and instantaneous flowfield patterns are presented. Some effects of grid density, time-step size, and numerical dissipation on the unsteady solutions relevant to the evaluation of turbulence models are examined. Comparison of unsteady airloads with experimental data show that all models tested are deficient in some sense and no single model predicts airloads consistently and in agreement with experiment for the three flow regimes. The chief findings are that the simple algebraic model based on the renormalization group theory (RNG) offers some improvement over the Baldwin Lomax model in all flow regimes with nearly same computational cost. The one-equation models provide significant improvement over the algebraic and the half-equation models but have their own limitations. The Baldwin-Barth model overpredicts separation and underpredicts reattachment. In contrast, the Spalart-Allmaras model underpredicts separation and overpredicts reattachment.
Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil
NASA Astrophysics Data System (ADS)
Manela, Avshalom
2013-12-01
The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, M. C.
1995-01-01
An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
NASA Technical Reports Server (NTRS)
Damodaran, Murali
1988-01-01
Unsteady inviscid transonic flow over airfoils in arbitrary rigid body motion is analyzed numerically by solving the two-dimensional unsteady Euler equations in integral form using a finite volume scheme. The solution procedure is based on an explicit Runge-Kutta time-stepping scheme wherein the spatial terms are central-differenced and a combination of second- and fourth-differences in the flow variables are used to form the numerical dissipation terms to stabilize the scheme. Unsteady calculations are started from converged steady-state solutions as initial conditions. Nonreflective boundary conditions are imposed on the far-field boundaries. Results are presented and, where possible, validated against available numerical and experimental data for airfoils subjected to a step change in angle of attack, airfoils oscillating and plunging in transonic flow, and airfoils immersed in a time-varying free stream.
Unsteady aerodynamic behavior of an airfoil with and without a slat
NASA Technical Reports Server (NTRS)
Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.
1993-01-01
Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.
Recent transonic unsteady pressure measurements at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sandford, M. C.; Ricketts, R. H.; Hess, R. W.
1985-01-01
Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included.
Im, B.J.; Oler, J.W.; Strickland, J.H.
1987-01-01
A coupled viscid-inviscid aerodynamic model ADAM2 (Advanced Dynamic Airfoil Model in 2 dimensions) is utilized to predict separated and unseparated flows over airfoils in steady and unsteady motion. Calculation results include pre- and post-stall pressure distributions, lift and drag, and trailing wake geometries for airfoils with a constant angle of attack, sinusoidally varying angle of attack, and constant rate pitching to large angles of attack. The principal difficulty yet to be overcome is the detailed representation of the viscid-inviscid interactions in the immediate vicinity of the boundary layer separation point. A persistent feed-back effect has been observed in which the presence of the separated wake surface causes the position of the boundary layer separation point to move progressively toward the leading edge. 10 refs., 10 figs.
Unsteady modes in the flowfield about an airfoil with a leading-edge horn-ice shape
NASA Astrophysics Data System (ADS)
Ansell, Phillip J.
An analysis of unsteady modes present in the flowfield of an airfoil with a leading-edge horn-ice shape was performed in the current study. An NACA 0012 airfoil was tested in a subsonic wind tunnel at Re = 1.8 x 106. In addition to the clean configuration, the airfoil model was also tested with a set of boundary-layer trips, a two-dimensional extrusion of a horn-ice shape casting, and an array of simulated icing configurations created using simple geometries. Time-averaged and unsteady static pressure measurements were acquired about the airfoil surface, along with unsteady wake velocity and surface hot-film array measurements. Additionally, surface and off-body flow visualization techniques were used to visualize the airfoil flowfield. A technique was also developed to determine the unsteady shear-layer reattachment location of the ice-induced laminar separation bubble downstream of the horn-ice shape using the surface hot-film array measurements. The maximum amount of unsteadiness in the iced-airfoil flowfield was observed to increase with increasing angle of attack. For a fixed angle of attack prior to stall, a change in the feature height of the simulated ice shape led to a change in the distribution of flowfield unsteadiness, but did not change the maximum levels of unsteadiness present in the flowfield. The iced-airfoil flowfield unsteadiness was primarily associated with three different frequencies. The first was represented by an increase in spectral energy across a broad-band frequency range, and was observed just upstream of shear-layer reattachment as well as downstream of shear-layer reattachment. This increase in spectral energy was caused by the regular mode of unsteadiness due to vortical motion in the separated shear layer and vortex shedding from the separation bubble. The average Strouhal number of this regular mode corresponded to StL = 0.60, and the average vortex convection velocity was observed to be 0.45Uinfinity. These values were highly
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Platzer, Max F.
2003-01-01
A major challenge in the design and development of turbomachine airfoils for gas turbine engines is high cycle fatigue failures due to flutter and aerodynamically induced forced vibrations. In order to predict the aeroelastic response of gas turbine airfoils early in the design phase, accurate unsteady aerodynamic models are required. However, accurate predictions of flutter and forced vibration stress at all operating conditions have remained elusive. The overall objectives of this research program are to develop a transition model suitable for unsteady separated flow and quantify the effects of transition on airfoil steady and unsteady aerodynamics for attached and separated flow using this model. Furthermore, the capability of current state-of-the-art unsteady aerodynamic models to predict the oscillating airfoil response of compressor airfoils over a range of realistic reduced frequencies, Mach numbers, and loading levels will be evaluated through correlation with benchmark data. This comprehensive evaluation will assess the assumptions used in unsteady aerodynamic models. The results of this evaluation can be used to direct improvement of current models and the development of future models. The transition modeling effort will also make strides in improving predictions of steady flow performance of fan and compressor blades at off-design conditions. This report summarizes the progress and results obtained in the first year of this program. These include: installation and verification of the operation of the parallel version of TURBO; the grid generation and initiation of steady flow simulations of the NASA/Pratt&Whitney airfoil at a Mach number of 0.5 and chordal incidence angles of 0 and 10 deg.; and the investigation of the prediction of laminar separation bubbles on a NACA 0012 airfoil.
Numerical calculations of velocity and pressure distribution around oscillating airfoils
NASA Technical Reports Server (NTRS)
Bratanow, T.; Ecer, A.; Kobiske, M.
1974-01-01
An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.
Calculation of steady and unsteady airfoil flow fields via the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Shamroth, S. J.
1985-01-01
A compressible time-dependent procedure for the two-dimensional ensemble averaged Navier-Stokes equations has been applied to the isolated airfoil problem in steady and unsteady flows. The procedure solves the governing equations via the linearized block implicit technique. Turbulence is modeled either via a mixing length or turbulence energy approach. The equations are solved in general non-orthogonal form with no-slip boundary conditions applied at the airfoil surface. Results are presented for airfoils at constant incidence, an airfoil in ramp motion and an airfoil oscillating through a dynamic stall loop. In general, steady converged solutions are obtained within 70 time steps over the range of Mach numbers considered. Comparisons with measured data show good agreement between computation and measurement.
Acoustic radiation and surface pressure characteristics of an airfoil due to incident turbulence
NASA Technical Reports Server (NTRS)
Paterson, R. W.
1976-01-01
A theoretical and experimental investigation of the noise and unsteady surface pressure characteristics of an isolated airfoil in a uniform mean velocity, homogeneous, nearly-isotropic turbulence field was conducted. Wind tunnel experiments were performed with a 23 cm chord, two dimensional NACA 0012 airfoil over a free stream Mach number range of 0.1 to 0.5. Far-field noise spectra and directivity were measured in an anechoic chamber that surrounded the tunnel open jet test section. Spanwise and chordwise distribution of unsteady airfoil surface pressure spectra and surface pressure cross-spectra were obtained. Incident turbulence intensities, length scales, spectra, and spanwise cross-spectra, required in the calculation of far-field noise and surface pressure characteristics were also measured.
Pressure Distribution Over Airfoils with Fowler Flaps
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Anderson, Walter B
1938-01-01
Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.
Study of Unsteady Flow Actuation Produced by Surface Plasma Actuator on 2-D Airfoil
NASA Astrophysics Data System (ADS)
Phan, Minh Khang; Shin, Jichul
2014-10-01
Effect of flow actuation driven by low current continuous or pulsed DC surface glow discharge plasma actuator is studied. Schlieren image of induced flow on flat plate taken at a high repetition rate reveals that the actuation is mostly initiated near the cathode. Assuming that the actuation is mostly achieved by ions in the cathode sheath region, numerical model for the source of flow actuation is obtained by analytical estimation of ion pressure force created in DC plasma sheath near the cathode and added in momentum equation as a body force term. Modeled plasma flow actuator is simulated with NACA0012 airfoil oscillating over a certain range of angle of attack (AoA) at specific reduced frequencies of airfoil. By changing actuation authority according to the change in AoA, stabilization of unsteady flow field is improved and hence steady aerodynamic performance can be maintained. Computational result shows that plasma actuation is only effective in modifying aerodynamic characteristics of separated flow. It turns out that plasma pulse frequency should be tuned for optimal performance depending on phase angle and rotating speed. The actuation authority can be parameterized by a ratio between plasma pulse frequency and reduced frequency.
Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.
1991-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.
Measurement of unsteady pressures in rotating systems
NASA Technical Reports Server (NTRS)
Kienappel, K.
1978-01-01
The principles of the experimental determination of unsteady periodic pressure distributions in rotating systems are reported. An indirect method is discussed, and the effects of the centrifugal force and the transmission behavior of the pressure measurement circuit were outlined. The required correction procedures are described and experimentally implemented in a test bench. Results show that the indirect method is suited to the measurement of unsteady nonharmonic pressure distributions in rotating systems.
NASA Astrophysics Data System (ADS)
Howe, M. S.
1981-02-01
In the preceding companion paper [1] a theoretical model for determining the influence of a slot in a thin airfoil on the unsteady lift/radiated sound caused by vortices shed into the wake was presented. The unsteady motion produces additional vorticity at the upstream edge of the slot, and it was shown that, at sufficiently low reduced frequencies based on the width of the slot, this vorticity can prevent penetration by the flow, so that the airfoil behaves as if the slot were absent. At higher frequencies, however, both the lift and the sound power were predicted to be significantly reduced relative to their respective levels for the unslotted airfoil. The analysis is extended in this paper to include the effects of displacement thickness fluctuations of the boundary layers on the "flap" downstream of the slot. These fluctuations arise as a result of the periodic ejection of vorticity from the slot. It is concluded that the earlier predictions of a reduction in the lift/sound pressure level are enhanced by the displacement thickness effects.
Computational Fluid Dynamic simulation of airfoils in unsteady low Reynolds number flows
NASA Astrophysics Data System (ADS)
Amiralaei, Mohammadreza
The inherent complexity of low Reynolds number (LRN) flows and their respective viscous vortical patterns demand an accurate solution method to achieve the desired accuracy. This complicated flow field needs even more robust methods when the flow is unsteady. The flow field of unsteady airfoils and wings in LRN regime is challenging to solve and Computational Fluid Dynamics (CFD) simulations stand out as solid solution techniques in this area. This thesis is motivated by an existing rotating-flapping mechanism, whose kinematics components can be broken into pitching, plunging and a novel figure-of-eight-like flapping motion of its blades and each blade's cross section. The focus is on two-dimensional low Reynolds number (LRN) flows using Computational Fluid Dynamics (CFD) and a Finite Volume Method (FVM). As one of the targets is to simulate a pair of blades, and consequently a pair of airfoils, a mesh motion library is developed to perform rotational and translational motions of multi-body configurations. The library and its sub-routines are tested on pairs of pitching, plunging and flapping airfoils, where the moving mesh problem is performed with a significant gain in the computational time compared to other moving mesh techniques such as Laplacian smoothing algorithm. The simulations of a single airfoil under harmonic and the novel figure-of-eight-like flapping motions, respectively, are conducted within 67% and 80% time it took to obtain a steady solution using the Laplace smoothing mesh motion algorithm, while the calculated force coefficients were in reasonably close agreement. Flow fields of single unsteady airfoils under pitching, plunging and figure-of-eight flapping motions are also simulated in this thesis accompanied with extensive parametric studies. The simulations of the considered figure-of-eight flapping pattern shows that its highly inclined asymmetrical kinematics results in higher vertical lift coefficients than the existing flapping patterns
Control of unsteady separated flow associated with the dynamic stall of airfoils
NASA Technical Reports Server (NTRS)
Wilder, M. C.
1994-01-01
A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Kaza, Krishna Rao V.
1992-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter
NASA Technical Reports Server (NTRS)
Mahajan, A. J.; Kaza, K. R. V.; Dowell, E. H.
1993-01-01
A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.
Computation of unsteady viscous flows past oscillating airfoils using the CPI method
NASA Astrophysics Data System (ADS)
Guilmineau, E.; Queutey, P.
Numerical solution of the incompressible two-dimensional Navier-Stokes equations, with the help of the CPI discretization, are presented for different airfoils. The strongly conservative equations are discretized with a finite volume method. The method uses a system of numerically generated curvilinear coordinates and re- tains the pressure and the cartesian velocity components as dependent variables on a non-staggered grid. Two flows around an airfoil are computed and compared to experimental results. First, the starting flow past a NACA 0012 airfoil oscillating at large incidences is investigated. Secondly, the turbulent flow past an AS 240 airfoil at a fixed incidence is studied.
Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil
NASA Technical Reports Server (NTRS)
Ghia, K. N.; Osswald, G. A.; Ghia, U.
1986-01-01
The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.
Unsteady transonic flow past airfoils in rigid-body motion. [UFLO5
Chang, I C
1981-03-01
With the aim of developing a fast and accurate computer code for predicting the aerodynamic forces needed for a flutter analysis, some basic concepts in computational transonics are reviewed. The unsteady transonic flow past airfoils in rigid body motion is adequately described by the potential flow equation as long as the boundary layer remains attached. The two dimensional unsteady transonic potential flow equation in quasilinear form with first order radiation boundary conditions is solved by an alternating direction implicit scheme in an airfoil attached sheared parabolic coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the higher nonlinear transonic effects for filter analysis within the context of an inviscid theory.
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
NASA Astrophysics Data System (ADS)
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
Time domain numerical calculations of unsteady vortical flows about a flat plate airfoil
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Yu, Ping; Scott, J. R.
1989-01-01
A time domain numerical scheme is developed to solve for the unsteady flow about a flat plate airfoil due to imposed upstream, small amplitude, transverse velocity perturbations. The governing equation for the resulting unsteady potential is a homogeneous, constant coefficient, convective wave equation. Accurate solution of the problem requires the development of approximate boundary conditions which correctly model the physics of the unsteady flow in the far field. A uniformly valid far field boundary condition is developed, and numerical results are presented using this condition. The stability of the scheme is discussed, and the stability restriction for the scheme is established as a function of the Mach number. Finally, comparisons are made with the frequency domain calculation by Scott and Atassi, and the relative strengths and weaknesses of each approach are assessed.
On the unsteady motion and stability of a heaving airfoil in ground effect
NASA Astrophysics Data System (ADS)
Molina, Juan; Zhang, Xin; Angland, David
2011-04-01
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizingmotion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity. However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.
Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui
2004-01-01
The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.
Pressure Distribution Over Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Dryden, H L
1927-01-01
This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.
Control of unsteady separated flow associated with the dynamic pitching of airfoils
NASA Technical Reports Server (NTRS)
Ahmed, Sajeer
1991-01-01
Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.
Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils
NASA Astrophysics Data System (ADS)
Rojratsirikul, P.; Wang, Z.; Gursul, I.
2010-04-01
Aerodynamic characteristics of two-dimensional membrane airfoils were experimentally investigated in a wind tunnel. The effects of the membrane pre-strain and excess length on the unsteady aspects of the fluid-structure interaction were studied. The deformation of the membrane as a function of angle of attack and free-stream velocity was measured using a high-speed camera. These measurements were complemented by the measurements of unsteady velocity field with a high frame-rate Particle Image Velocimetry (PIV) system as well as smoke visualization. Membrane airfoils with excess length exhibit higher vibration modes, earlier roll-up of vortices, and smaller separated flow regions, whereas the membranes with pre-strain generally behave more similarly to a rigid airfoil. Measured frequencies of the membrane vibrations suggest a possible coupling with the wake instabilities at high incidences for all airfoils.
Unsteady Pressures on a Generic Capsule Shape
NASA Technical Reports Server (NTRS)
Burnside, Nathan; Ross, James C.
2015-01-01
While developing the aerodynamic database for the Orion spacecraft, the low-speed flight regime (transonic and below) proved to be the most difficult to predict and measure accurately. The flow over the capsule heat shield in descent flight was particularly troublesome for both computational and experimental efforts due to its unsteady nature and uncertainty about the boundary layer state. The data described here were acquired as part of a study to improve the understanding of the overall flow around a generic capsule. The unsteady pressure measurements acquired on a generic capsule shape are presented along with a discussion about the effects of various flight conditions and heat-shield surface roughness on the resulting pressure fluctuations.
Measuring unsteady pressure on rotating compressor blades
NASA Technical Reports Server (NTRS)
Englund, D. R.; Grant, H. P.; Lanati, G. A.
1979-01-01
Miniature semiconductor strain gage pressure transducers mounted in several arrangements were studied. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results show no failures of transducers or mountings and indicate an uncertainty of unsteady pressure measurement of approximately + or - 6 percent + 0.1 kPa for a typical application. Two configurations were used on a rotating fan flutter program. Examples of transducer data and correction factors are presented.
Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies
NASA Technical Reports Server (NTRS)
Johnston, Patrick J.
1959-01-01
A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.
Ristau, Neil; Siden, Gunnar Leif
2015-07-21
An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.
Differential pressure sensing system for airfoils usable in turbine engines
Yang, Wen-Ching; Stampahar, Maria E.
2005-09-13
A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.
Technology for pressure-instrumented thin airfoil models
NASA Technical Reports Server (NTRS)
Wigley, David A.
1988-01-01
A novel method of airfoil model construction was developed. This Laminated Sheet technique uses 0.8 mm thick sheets of A286 containing a network of pre-formed channels which are vacuum brazed together to form the airfoil. A 6.25 percent model of the X29A canard, which has a 5 percent thick section, was built using this technique. The model contained a total of 96 pressure orifices, 56 in three chordwise rows on the upper surface and 37 in three similar rows on the lower surface. It was tested in the NASA Langley 0.3 m Transonic Cryogenic Tunnel. Unique aerodynamic data was obtained over the full range of temperature and pressure. Part of the data was at transonic Mach numbers and flight Reynolds number. A larger two dimensional model of the NACA 64a-105 airfoil section was also fabricated. Scale up presented some problems, but a testable airfoil was fabricated.
Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.
2016-05-01
Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1983-01-01
The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime.
NASA Technical Reports Server (NTRS)
Crimi, P.
1974-01-01
A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.
Estimation of unsteady lift on a pitching airfoil from wake velocity surveys
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.
1993-01-01
The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.
Non-linear unsteady wing theory, part 1. Quasi two-dimensional behavior: Airfoils and slender wings
NASA Technical Reports Server (NTRS)
Mccune, J. E.
1987-01-01
The initial phases of a study of the large-amplitude unsteady aerodynamics of wings in severe maneuver are reported. The research centers on vortex flows, their initiation at wing surfaces, their subsequent convection, and interaction dynamically with wings and control surfaces. The focus is on 2D and quasi-2D aspects of the problem and features the development of an exact nonlinear unsteady airfoil theory as well as an approach to the crossflow problem for slender wing applications including leading-edge separation. The effective use of interactive on-line computing in quantifying and visualizing the nonsteady effects of severe maneuver is demonstrated. Interactive computational work is now possible, in which a maneuver can be initiated and its effects observed and analyzed immediately.
NACA0012 benchmark model experimental flutter results with unsteady pressure distributions
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Bennett, Robert M.
1991-01-01
The Structural Dynamics Div. at NASA-Langley has started a wind tunnel activity referred to as the Benchmark Models Program. The objective is to acquire test data that will be useful for developing and evaluating aeroelastic type Computational Fluid Dynamics codes currently in use or under development. The progress is described which was achieved in testing the first model in the Benchmark Models Program. Experimental flutter boundaries are presented for a rigid semispan model (NACA 0012 airfoil section) mounted on a flexible mount system. Also, steady and unsteady pressure measurements taken at the flutter condition are presented. The pressure data were acquired over the entire model chord located at the 60 pct. span station.
Numerical Study of Unsteady Supercavitation Perturbed by a Pressure Wave
NASA Astrophysics Data System (ADS)
Zheng, J. G.; Khoo, B. C.
2016-06-01
The unsteady features of supercavitation disturbed by an introduced pressure wave are investigated numerically using a one-fluid cavitation model. The supercavitating flow is assumed to be the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. The compressibility effects of liquid water are taken into account to model the propagation of pressure wave through flow and its interaction with supercavitation bubble. The interaction between supercavity enveloping an underwater flat-nose cylinder and pressure wave is simulated and the resulting unsteady behavior of supercavitation is illustrated. It is observed that the supercavity will become unstable under the impact of the pressure wave and may collapse locally, which depends on the strength of perturbation. The huge pressure surge accompanying the collapse of supercavitation may cause the material erosion, noise, vibration and efficiency loss of operating underwater devices.
Unsteady pressure loads in a generic high speed engine model
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.
1992-01-01
Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.
NASA Technical Reports Server (NTRS)
Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)
1983-01-01
Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 of an inch (1.5 mils) despite unanticipated process variations.
Unsteady flows in a two-dimensional linear cascade with low-pressure turbine blades
NASA Astrophysics Data System (ADS)
Murawski, Christopher Gabriel
Experimental studies of unsteady flow phenomena in a low pressure turbine linear cascade are presented. Turbine engine flow passages contain numerous loss mechanisms. The loss mechanisms investigated in this study are low Reynolds number and freestream turbulence effects, secondary flows and wake interactions. Also, a method is implemented which decreases the profile losses due to low Reynolds number effects. The results are presented in three segments. First, the effects of Reynolds number and freestream turbulence intensity on the low-pressure turbine cascade blade are investigated. The condition of the blade's boundary layer is the leading factor controlling the level of profile loss. The losses from the airfoil decrease as the Reynolds number and freestream turbulence increase due to a decrease in the size of the separation zone on the suction side of the turbine airfoil. Boundary layer separation occurs on the suction surface of the turbine. Changes to this region are achieved when attaching different length tail sets to the turbine airfoils which alters the axial chord of each blade. A clear improvement on suction side boundary layer behavior at low Reynolds numbers was seen when the tail extensions were shorter than about 9% of axial chord. Finally, the effect wake disturbance frequency on the secondary flow vortex structure in a turbine cascade is studied. Cylinders are traversed across the front of the blade row to simulate turbine blade disturbances. The response of the secondary flow structure to the movement of the wake generator shuttle with zero, one and multiple wake generator rods are presented. Multiple wake disturbance frequencies are varied from 12 Hz to 52 Hz. Multiple wake disturbance frequency below the axial chord flow frequency enable the secondary flow vortex structure to re-establish itself between each wake disturbance event. Axial chord flow frequency is defined as the axial velocity in the cascade divided by the axial chord length of
Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model
NASA Technical Reports Server (NTRS)
Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.
1993-01-01
This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.
NASA Technical Reports Server (NTRS)
Kleb, William L.; Williams, Marc H.; Batina, John T.
1990-01-01
A temporal adaptive algorithm for the time-integration of the two-dimensional Euler or Navier-Stokes equations is presented. The flow solver involves an upwind flux-split spatial discretization for the convective terms and central differencing for the shear-stress and heat flux terms on an unstructured mesh of triangles. The temporal adaptive algorithm is a time-accurate integration procedure which allows flows with high spatial and temporal gradients to be computed efficiently by advancing each grid cell near its maximum allowable time step. Results indicate that an appreciable computational savings can be achieved for both inviscid and viscous unsteady airfoil problems using unstructured meshes without degrading spatial or temporal accuracy.
NASA Technical Reports Server (NTRS)
Schwind, R. G.; Allen, H. J.
1973-01-01
High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.
NASA Astrophysics Data System (ADS)
Amiralaei, M. R.; Alighanbari, H.; Hashemi, S. M.
2010-08-01
The growing applications of low Reynolds number (LRN) operating vehicles impose the need for accurate LRN flow solutions. These applications usually involve complex unsteady phenomena, which depend on the kinematics of the vehicle such as pitching, plunging, and flapping of a wing. The objective of the present study is to address the issues related to LRN aerodynamics of a harmonically pitching NACA0012 airfoil. To this end, the influence of unsteady parameters, namely, amplitude of oscillation, d, reduced frequency, k, and Reynolds number, Re, on the aerodynamic performance of the model is investigated. Computational fluid dynamics (CFD) is utilized to solve Navier-Stokes (N-S) equations discretized based on the Finite Volume Method (FVM). The resulting instantaneous lift coefficients are compared with analytical data from Theodorsen’s method. The simulation results reveal that d, k, and Re are of great importance in the aerodynamic performance of the system, as they affect the maximum lift coefficients, hysteresis loops, strength, and number of the generated vortices within the harmonic motion, and the extent of the so-called figure-of-eight phenomenon region. Thus, achieving the optimum lift coefficients demands a careful selection of these parameters.
NASA Astrophysics Data System (ADS)
Lockard, David Patrick
This thesis makes contributions towards the use of computational aeroacoustics (CAA) as a tool for noise analysis. CAA uses numerical methods to simulate acoustic phenomena. CAA algorithms have been shown to reproduce wave propagation much better than traditional computational fluid dynamics (CFD) methods. In the current approach, a finite-difference, time-domain algorithm is used to simulate unsteady, compressible flows. Dispersion-relation-preserving methodology is used to extend the range of frequencies that can be represented properly by the scheme. Since CAA algorithms are relatively inefficient at obtaining a steady-state solution, multigrid methods are applied to accelerate the convergence. All of the calculations are performed on parallel computers. Excellent speedup ratios are obtained for the explicit, time-stepping algorithm used in this research. A common problem in the area of broadband noise is the prediction of the acoustic field generated by a vortical gust impinging on a solid body. The problem is modeled initially in two-dimensions by a flat plate experiencing a uniform mean flow with a sinusoidal, vertical velocity perturbation. Good agreement is obtained with results from semi-analytic methods for several gust frequencies. Then, a cascade of plates is used to simulate a turbomachinery blade row. A new approach is used to impose the vortical disturbance inside the computational domain rather than imposing it at the computational boundary. The influence of the mean flow on the radiated noise is examined by considering NACA0012 and RAE2822 airfoils. After a steady-state is obtained from the multigrid method, the un-steady simulation is used to model the vortical gust's interaction with the airfoil. The mean loading on the airfoil is shown to have a significant effect on the directivity of the sound with the strongest influence observed for high frequencies. Camber is shown to have a similar effect as the angle of attack. A three-dimensional problem
Unsteady wing surface pressures in the wake of a propeller
NASA Technical Reports Server (NTRS)
Johnston, R. T.; Sullivan, J. P.
1992-01-01
The unsteady nature of the propeller slipstream interacting with a wing has been studied by flow visualization and unsteady wing surface pressure measurements. Flow visualization was performed by marking the propeller tip vortex with smoke. Unsteady wing surface pressures were measured by traversing a wing instrumented with a chordwise array of 16 microphones in a spanwise direction through the propeller wake. This work yielded information on the motion of the propeller wake as it passes over the wing. As the propeller wake passed over the wing: the propeller tip vortex experienced an inviscid interaction at the leading edge; viscous action at the leading edge severed the propeller tip vortex; the propeller tip vortex experienced significant spanwise and chordwise displacements and then deformed in order to reconnect at the trailing edge; axial velocity in the vortex core caused the helical vortex to thicken or stretch near the wing surface; and, the magnitude of the pressure fluctuations decreased in magnitude with distance traveled along the chord.
Technology for pressure-instrumented thin airfoil models, phase 1
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
A network of channels was chemically milled into one surface of a pair of matched plates having bond planes which were neither planar or profiled to match the contour of the trailing edge of a supercritical airfoil for testing in cryogenic wind tunnels. Vacuum brazing bonded the plates together to create a network of pressure passages without blockages or cross leaks. The greatest success was achieved with the smaller samples and planar bonding surfaces. In larger samples, problems were encountered due to warpage created by the relief of residual stresses. Successful bonds were formed by brazing A286, Nitronic 40 and 300 series stainless steels at 1065 C using AMS 4777B brazing alloy, but excessive grain growth occurred in samples of 200 grade 18 nickel maraging steels. Good bonds were obtained with maraging steel using a 47 percent Nickel-47 percent Palladium-6 percent Silicon alloy and brazing at 927 C. Electro-Discharge-Machining was an effective method of cutting profiled bond planes and airfoil contours. Orifices of good definition were obtained when the EDM wire cut passed through predrilled holes. Possible configurations for joints between small segments and the larger main wing were also studied.
Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds
NASA Technical Reports Server (NTRS)
Tracy, Maureen B.; Plentovich, E. B.
1997-01-01
An experimental investigation was conducted in the Langley 8-Foot Transonic Pressure Tunnel to determine the flow characteristics of rectangular cavities with varying relative dimensions at subsonic and transonic speeds. Cavities were tested with width-to-depth ratios of 1, 4, 8, and 16 for length-to-depth ratios l/h of 1 through 17.5. The maximum cavity depth was 2.4 in., and the turbulent boundary layer approaching the cavity was approximately 0.5 in. thick. Unsteady- and mean static-pressure measurements were made at free-stream Mach numbers from 0.20 to 0.95 at a unit Reynolds number per foot of approximately 3 x 10(exp 6); however, only unsteady-pressure results are presented in this paper. Results indicate that as l/h increases, cavity flows changed from resonant to nonresonant with resonant amplitudes decreasing gradually. Resonant spectra are obtained largely in cavities with mean static-pressure distributions characteristic of open and transitional flows. Resonance sometimes occurred for closed flow. Increasing cavity width or decreasing cavity depth while holding l/h fixed had the effect of increasing resonant amplitudes and sometimes induced resonance. The effects due to changes in width are more pronounced. Decreasing Mach number has the effect of broadening the resonances.
Determination of the pressure drag of airfoils by integration of surface pressures
NASA Technical Reports Server (NTRS)
Phillips, William H.
1990-01-01
A study was conducted of the causes of pressure drag of subsonic airfoils. In a previous paper by the author, the pressure drag is obtained by calculating the total drag from the momentum defect in the boundary layer at the trailing edge and subtracting the friction drag obtained from integration of surface friction along the chord. Herein, the pressure drag is obtained by integrating the streamwise components of surface pressure around the airfoil. Studies were made to verify the accuracy of the integration procedure. The values of pressure drag were much smaller than those obtained by the previous method. This lack of agreement is attributed to the difficulty of calculating boundary layer conditions in the vicinity of the trailing edge and to the extreme sensitivity of the circulation and lift to the trailing edge conditions. The results of these studies are compared with those of previous investigations.
Pressure distribution in unsteady sink and source flows.
Voropayev, S I
2015-05-01
Basic flow generated in a viscous incompressible fluid by a "point" sink (source) of mass is revised. In practice, such flow can be modeled by sucking (pushing) fluid from a thin tube with a small porous sphere at one end. Intuitively, by sucking (pushing) fluid, one creates low (high) pressure near the origin and a positive (negative) radial pressure gradient drives the fluid to (from) the origin. A simple analysis, however, shows that the pressure distribution for both steady flows is the same. Then a question arises: How does the fluid "know" in what direction to flow? To explain this "paradox" an unsteady flow is considered and the pressure terms responsible for the flow direction are derived. PMID:26066255
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.
2003-01-01
The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.
Pressure distribution over NACA 23012 airfoil with a slotted and a split flap
NASA Technical Reports Server (NTRS)
Harris, Thomas A; Lowry, John G
1941-01-01
A pressure-distribution investigation has been conducted in the NACA 4 by 6-foot vertical wind tunnel to determine the air loads on an NACA 23012 airfoil in combination with a 25.66-percent-chord slotted flap and a 20-percent-chord split flap. Pressures were measured on both the upper and the lower surfaces of the main airfoil and the flaps for several angles of attack and at several flap settings. The data, presented as pressure diagrams and as graphs of the section coefficients for the flap alone and for the airfoil-flap combinations, are applicable to rib and flap design for a combination of a thick airfoil and a slotted or a split flap. The results of previous tests of a NACA 23012 airfoil with a slotted flap are compared with the present results.
Fan Noise Source Diagnostic Test: Vane Unsteady Pressure Results
NASA Technical Reports Server (NTRS)
Envia, Edmane
2002-01-01
To investigate the nature of fan outlet guide vane pressure fluctuations and their link to rotor-stator interaction noise, time histories of vane fluctuating pressures were digitally acquired as part of the Fan Noise Source Diagnostic Test. Vane unsteady pressures were measured at seven fan tip speeds for both a radial and a swept vane configuration. Using time-domain averaging and spectral analysis, the blade passing frequency (BPF) harmonic and broadband contents of the vane pressures were individually analyzed. Significant Sound Pressure Level (SPL) reductions were observed for the swept vane relative to the radial vane for the BPF harmonics of vane pressure, but vane broadband reductions due to sweep turned out to be much smaller especially on an average basis. Cross-correlation analysis was used to establish the level of spatial coherence of broadband pressures between different locations on the vane and integral length scales of pressure fluctuations were estimated from these correlations. Two main results of this work are: (1) the average broadband level on the vane (in dB) increases linearly with the fan tip speed for both the radial and swept vanes, and (2) the broadband pressure distribution on the vane is nearly homogeneous and its integral length scale is a monotonically decreasing function of fan tip speed.
Initial Assesment of Space Launch System Transonic Unsteady Pressure Environment
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.; Florance, James R.; Ramey, James M.
2015-01-01
A series of wind tunnel tests were conducted at the NASA Langley Research Center Transonic Dynamics Tunnel to assess the transonic buffet environment for the Space Launch System (SLS) launch vehicle. An initial test, conducted in 2012, indicated an elevated buffet environment prompting a second test to provide further insight into the buffet phenomena and assess potential solutions to reduce the response levels of these environments. During the course of the test program, eight variants of the SLS-10000 configuration were examined. The effect of these configuration variants on the coefficient of the root-mean-square fluctuation of pressure about the mean as a function of test condition indicates that the maximum fluctuating pressure levels are extremely sensitive to the geometry of the forward attachment of the solid rocket boosters (SRBs) to the SLS Core. The addition of flow fences or changes to the SRB nose cone geometry can alleviate the unsteady pressure environment.
Some observations of surface pressures and the near wake of a blunt trailing edge airfoil
NASA Technical Reports Server (NTRS)
Digumarthi, R. V.; Koutsoyannis, S. P.; Karamcheti, K.
1981-01-01
Experiments with a truncated and untruncated airfoils of profiles NACA 640A10, were carried out in subsonic wind tunnels in a velocity range of 19m/s to 54m/s corresponding to Reynolds numbers of 200,000 to 468,000 based on the chord. Airfoil spanned the test section to achieve two dimensionality of the model. Velocity measurements, pressure measurements, and vortex shedding in the wake were measured using a hotwire and pressure transducers. The measured chordwise static pressure distribution on the smooth trailing edge airfoil along the midspan plane, agreed with the theoretical results calculated on the basis of the potential flow for that airfoil. Boundary layer profiles measured in the midspan plane, behind the maximum thickness of the airfoil show no separation of the flow. Spanwise distribution of the measured static pressure on the upper surface of the airfoil shows uniformity for both configurations with and without the boundary layer trip. This uniformity of pressure distribution and separation indicates that the flow on the airfoil was uniform and two dimensional in character.
NASA Technical Reports Server (NTRS)
Hess, Robert W.; Cazier, F. W., Jr.; Wynne, Eleanor C.
1986-01-01
Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds.
NASA Astrophysics Data System (ADS)
Park, Junshin; Bromby, William; You, Donghyun
2013-11-01
To understand turbulence characteristics of separated boundary layer flow under unsteady pressure gradients, a direct numerical simulation study is performed. Steady and unsteady blowing-suction velocity distributions are imposed along the upper boundary of the computational domain to introduce steady and unsteady adverse pressure gradients leading to steady and unsteady separated turbulent boundary layers, respectively. Time averaged and phase averaged turbulence statistics such as velocity, vorticity, kinetic energy budgets, Reynolds stress budgets, wall pressure fluctuations and skin friction distributions are examined in detail with aims of gaining understanding of flow physics for unsteady separated turbulent boundary layer and the sources of incapability of the conventional Reynolds-averaged Navier-Stokes models in predicting unsteady separation. Supported by the Army Research Office Grant W911NF1010348 and the National Research Foundation of Korea Grant NRF-2012R1A1A2003699.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
Ultrafast Time Response Pressure-Sensitive Paint for Unsteady Shock-Wave Research
NASA Astrophysics Data System (ADS)
Numata, Daiju; Asai, Keisuke
Pressure-Sensitive Paint (PSP) is an optical pressure measurement technique widely used in aerodynamic experiments, and has been applied to unsteady shock-wave phenomena [1, 2]. However, one of the largest problems to apply PSP to high-speed and unsteady phenomena is the response time of PSP.
First-stage high pressure turbine bucket airfoil
Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar
2004-05-25
The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
NASA Astrophysics Data System (ADS)
Kameda, M.; Tabei, T.; Nakakita, K.; Sakaue, H.; Asai, K.
2005-12-01
Pressure-sensitive luminescent coating on porous anodized aluminium (AA-PSP) was applied to measure non-periodic unsteady pressure distribution on a wind-tunnel model. A high-speed digital video camera was used to capture the PSP signal. The pressure-sensitive dye was tris(4,7-diphenylphenanthroline) ruthenium(II) ([Ru(dpp)3]2+). The coating has a short response time of O(10 µs), although it exhibits temperature and humidity sensitivities. A hydrophobic coating was applied on the anodized aluminium surface to suppress the humidity sensitivity. A temperature sensitive paint was used to obtain the temperature distribution instantaneously with the pressure. The temperature data were used to correct the PSP response. An appropriate data acquisition procedure as well as digital image processing algorithm was established to compensate for the error from the temperature and humidity sensitivities. The present system was applied to measure the pressure distribution on a delta wing at a high angle of attack in transonic flow, whose flow is unsteady due to the interaction between shock waves and leading edge vortices. The non-periodic unsteady pressure distribution on the delta wing was successfully measured with the sampling rate of 1 kHz and within a few per cent error in absolute pressure level.
Unsteady aerodynamics of an oscillating cascade in a compressible flow field
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford
1987-01-01
Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.
The unsteady aerodynamics of an oscillating cascade in a compressible flow field
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Boldman, Donald R.; Fleeter, Sanford
1988-01-01
Fundamental experiments were performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate and quantify the unsteady aerodynamics of a cascade of biconvex airfoils executing torsion-mode oscillations at realistic reduced frequencies. Flush-mounted, high-response miniature pressure transducers were used to measure the unsteady airfoil surface pressures. The pressures were measured for three interblade phase angles at two inlet Mach numbers, 0.65 and 0.80, and two incidence angles, 0 and 7 deg. The time-variant pressures were analyzed by means of discrete Fourier transform techniques, and these unique data were then compared with predictions from a linearized unsteady cascade model. The experimental results indicate that the interblade phase angle had a major effect on the chordwise distributions of the airfoil surface unsteady pressure, and that reduced frequency, incidence angle, and Mach number had a somewhat less significant effect.
Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump
NASA Technical Reports Server (NTRS)
Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.
1987-01-01
Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.
Broadband Noise Predictions for an Airfoil in a Turbulent Stream
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.
2003-01-01
Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.
Unsteady wake measurements of an oscillating flap at transonic speeds
NASA Technical Reports Server (NTRS)
Bodapati, S.; Lee, C.-S.
1984-01-01
The steady and unsteady wake profiles of an airfoil with an oscillating flap were measured at nominal free stream Mach number of 0.8 in the NASA Ames 11 x 11-foot wind tunnel. The instantaneous wake velocity and pressure profiles at four axial locations are presented up to one chord length from the trailing edge. Both fundamental harmonic frequency and typical time history data are presented to observe the effects of airfoil incidence and flap angle. The drag coefficient obtained from the wake pressure measurements is compared with that obtained from the airfoil pressure distribution.
NASA Technical Reports Server (NTRS)
Schuster, David M.; Scott, Robert C.; Bartels, Robert E.; Edwards, John W.; Bennett, Robert M.
2000-01-01
As computational fluid dynamics methods mature, code development is rapidly transitioning from prediction of steady flowfields to unsteady flows. This change in emphasis offers a number of new challenges to the research community, not the least of which is obtaining detailed, accurate unsteady experimental data with which to evaluate new methods. Researchers at NASA Langley Research Center (LaRC) have been actively measuring unsteady pressure distributions for nearly 40 years. Over the last 20 years, these measurements have focused on developing high-quality datasets for use in code evaluation. This paper provides a sample of unsteady pressure measurements obtained by LaRC and available for government, university, and industry researchers to evaluate new and existing unsteady aerodynamic analysis methods. A number of cases are highlighted and discussed with attention focused on the unique character of the individual datasets and their perceived usefulness for code evaluation. Ongoing LaRC research in this area is also presented.
Investigation of the unsteady pressure distribution on the blades of an axial flow fan
NASA Technical Reports Server (NTRS)
Henderson, R. E.; Franke, G. F.
1978-01-01
The unsteady response of a stator blade caused by the interaction of the stator with the wakes of an upstream rotor was investigated. Unsteady pressure distributions were measured using a blade instrumented with a series miniature pressure transducers. The influence of several geometrical and flow parameters - rotor/stator spacing, stator solidity and stator incidence angle - were studied to determine the unsteady response of the stator to these parameters. A major influence on the stator unsteady response is due to the stator solidity. At high solidities the blade-to-blade interference has a larger contribution. While the range of rotor/stator spacings investigated had a minor influence, the effect of stator incidence angle is significant. The data indicate the existence of an optimum positive incidence which minimizes the unsteady response.
Studies of friction drag and pressure drag of airfoils using the Eppler program
NASA Technical Reports Server (NTRS)
Phillips, William H.
1988-01-01
Most previous studies of the drag and two-dimensional airfoils consider only the total drag. The present report gives results of a study of three airfoils, using the Eppler program, to determine the distribution of friction drag along the chord and to obtain relative values of friction drag and pressure drag over a wide range of angle of attack and Reynolds number. The effects of boundary-layer suction in the turbulent region of the boundary layer of two of the airfoils are also investigated. The pressure drag is found to be an important component of the total drag, reaching values of 60 to 80 percent of the total drag near the stall. The use of suction producing a uniform inflow in the turbulent region of the boundary layer results in large increases in maximum lift, and increases the skin-friction drag but reduces or even changes the sign of the pressure drag.
RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD
NASA Technical Reports Server (NTRS)
Nesman, Tom; Stewart, Eric
1996-01-01
through an iterative structural and CFD analysis. The analysis domain ended just upstream of the nozzle throat. This is an acoustic boundary condition that caused the motor to behave as a closed-open organ pipe. This differs from the RSRM which behaves like a closed-closed organ pipe. The unsteady CFD solution shows RSRM chamber pressure oscillations predominately at the longitudinal acoustic mode frequencies of a closed-open organ pipe. Vortex shedding in the joint cavities and at the inhibitors contribute disturbances to the flow at the second longitudinal acoustic mode frequency. Further studies are planned using an analysis domain that extends downstream of the nozzle throat.
NASA Technical Reports Server (NTRS)
Stack, John; Lindsey, W F; Littell, Robert E
1939-01-01
Simultaneous air-flow photographs and pressure-distribution measurements were made of the NACA 4412 airfoil at high speeds to determine the physical nature of the compressibility burble. The tests were conducted in the NACA 24-inch high-speed wind tunnel. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations in the 5-inch-chord airfoil by means of a multiple-tube manometer. Following the general program, a few measurements of total-pressure loss in the wake of the airfoil at high speeds were made to illustrate the magnitude of the losses involved and the extent of the disturbed region; and, finally, in order to relate this work to earlier force-test data, a force test of a 5-inch-chord NACA 4412 airfoil was made. The results show the general nature of the phenomenon known as the compressibility burble. The source of the increased drag is shown to be a compression shock that occurs on the airfoil as its speed approaches the speed of sound. Finally, it is indicated that considerable experimentation is needed in order to understand the phenomenon completely.
NASA Technical Reports Server (NTRS)
Mcghee, Robert J.; Walker, Betty S.; Millard, Betty F.
1988-01-01
Experimental results were obtained for an Eppler 387 airfoil in the Langley Low Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.03 to 0.13 and a chord Reynolds number range for 60,000 to 460,000. Lift and pitching moment data were obtained from airfoil surface pressure measurements and drag data for wake surveys. Oil flow visualization was used to determine laminar separation and turbulent reattachment locations. Comparisons of these results with data on the Eppler 387 airfoil from two other facilities as well as the Eppler airfoil code are included.
Spatial Characteristics of the Unsteady Differential Pressures on 16 percent F/A-18 Vertical Tails
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Ashley, Holt
1998-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft at high angles of attack. For the F/A-18 at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their turbulent wake. The resulting buffeting of the vertical tails is a concern from fatigue and inspection points of view. Previous flight and wind-tunnel investigations to determine the buffet loads on the tail did not provide a complete description of the spatial characteristics of the unsteady differential pressures. Consequently, the unsteady differential pressures were considered to be fully correlated in the analyses of buffet and buffeting. The use of fully correlated pressures in estimating the generalized aerodynamic forces for the analysis of buffeting yielded responses that exceeded those measured in flight and in the wind tunnel. To learn more about the spatial characteristics of the unsteady differential pressures, an available 16%, sting-mounted, F-18 wind-tunnel model was modified and tested in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center as part of the ACROBAT (Actively Controlled Response Of Buffet-Affected Tails) program. Surface pressures were measured at high angles of attack on flexible and rigid tails. Cross-correlation and cross-spectral analyses of the pressure time histories indicate that the unsteady differential pressures are not fully correlated. In fact, the unsteady differential pressure resemble a wave that travels along the tail. At constant angle of attack, the pressure correlation varies with flight speed.
Effects of unsteady flow and real gas equations of state on high pressure ram accelerator operation
NASA Astrophysics Data System (ADS)
Bundy, Christopher Michael
2001-07-01
An experimental and theoretical investigation of the conditions which enable thermally choked ram acceleration at fill pressures greater than 5 MPa is presented. A set of experimental parameters was determined which enabled projectiles to be accelerated continuously in propellants at 20 MPa for distances up to 4 m. The operating conditions which permit thermally choked operation at 20 MPa are considerably different from those at 5 MPa and below; the effects of initial velocity, propellant composition, projectile design, and obturator design on high pressure operation were investigated. During thermally choked operation at high pressure, the velocity-distance profile is overpredicted by a quasi-steady control volume approach for thrust determination. A revision to the control volume model accounting for unsteady flow effects was developed and presented here. The unsteady model indicates that the thrust coefficient-Mach number profile obtained for high pressure conditions is consistently lower than that obtained with the quasi-steady model, due to unsteady momentum transfer to the gas in the control volume surrounding the projectile, an effect considered negligible at 5 MPa and below. This analytical deviation correlates with high pressure experimental results. When the unsteady model incorporates the heat release behavior predicted for a real gas equation of state, good agreement is obtained with experimental velocity-distance data. A model for predicting sonic diffuser unstart under unsteady flow conditions is also presented; the model predictions agree well with experimental results. Both models indicate that the mass of fluid in a control volume, when on the order of the mass of the surrounding system, has a significant effect on the body forces acting on the system under unsteady flow conditions. The unsteady models quantify this effect by showing that thrust in an unsteady flow propulsion system is not directly proportional to pressure, and that supersonic
NASA Technical Reports Server (NTRS)
Ozturk, Burak; Schobeiri, Meinhard T.
2009-01-01
The present study, which is the first of a series of investigations of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary layer flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed on a large-scale, high-subsonic unsteady turbine cascade research facility with an integrated wake generator and test section unit. Blade Pak B geometry was used in the cascade. The wakes were generated by continuously moving cylindrical bars device. Boundary layer investigations were performed using hot wire anemometry at Reynolds number of 110,000, based on the blade suction surface length and the exit velocity, for one steady and two unsteady inlet flow conditions, with the corresponding passing frequencies, wake velocities, and turbulence intensities. The reduced frequencies cover the entire operation range of LP-turbines. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re = 50,000, 75,000, 100,000, 110,000, and 125,000. For each Reynolds number, surface pressure measurements are carried out at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extension of the separation zone as well as its behavior under unsteady wake flow. The results, presented in ensemble-averaged and contour plot forms, help to understand the physics of the separation phenomenon under periodic unsteady wake flow.
NASA Astrophysics Data System (ADS)
Slaboch, Paul
2005-11-01
Predicting the far field acoustics of an airfoil tip immersed in a turbulent boundary layer over an elastic end plate is a complicated problem. The unsteady lift of the airfoil and the local end wall vibration pattern form a coupled system of hydrodynamic and acoustic pressures. An experiment has been performed, incorporating as much of the flow physics as possible while maintaining the simplest possible boundary conditions. Specifically, a stationary airfoil tip in a turbulent boundary layer over an elastic end wall was used in an anechoic wind tunnel to relate the unsteady lift of the airfoil to the vibration patterns of the end wall. The vibration patterns were acquired using a scanning laser Doppler vibrometer. This talk will present results of experiments completed with both a rigid and elastic end wall. Preliminary data suggest that the unsteady lift of the airfoil is dependent upon the vibrational characteristics of the end wall.
Theoretical Prediction of Pressure Distributions on Nonlifting Airfoils at High Subsonic Speeds
NASA Technical Reports Server (NTRS)
Spreiter, John R; Alksne, Alberta
1955-01-01
Theoretical pressure distributions on nonlifting circular-arc airfoils in two-dimensional flows with high subsonic free-stream velocity are found by determining approximate solutions, through an iteration process, of an integral equation for transonic flow proposed by Oswatitsch. The integral equation stems directly from the small-disturbance theory for transonic flow. This method of analysis possesses the advantage of remaining in the physical, rather than the hodograph, variable and can be applied in airfoils having curved surfaces. After discussion of the derivation of the integral equation and qualitative aspects of the solution, results of calculations carried out for circular-arc airfoils in flows with free-stream Mach numbers up to unity are described. These results indicate most of the principal phenomena observed in experimental studies.
NASA Technical Reports Server (NTRS)
Graham, Donald J; Nitzberg, Gerald E; Olson, Robert N
1945-01-01
Pressure distributions determined from high-speed wind-tunnel tests are presented for five NACA airfoil sections representative of both low-drag and conventional types. Section characteristics of lift, drag, and quarter-chord pitching moment are presented along with the measured pressure distributions for the NACA 65sub2-215 (a=0.5), 66sub2-215 (a=0.6), 0015, 23015, and 4415 airfoils for Mach numbers up to approximately 0.85. A critical study is made of the airfoil pressure distributions in an attempt to formulate a set of general criteria for defining the character of high speed flows over typical airfoil shapes. Comparisons are made of the relative characteristics of the low-drag and conventional airfoils investigated insofar as they would influence the high-speed performance and the high-speed stability and control characteristics of airplanes employing these wing sections.
Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils
NASA Technical Reports Server (NTRS)
Ashpis, David E.; Volino, Ralph J.
2005-01-01
Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.
Improving CAP-TSD steady pressure solutions through airfoil slope modification
NASA Technical Reports Server (NTRS)
Mitterer, Kent F.; Maughmer, Mark D.; Silva, Walter A.; Batina, John T.
1996-01-01
A modification of airfoil section geometry is examined for improvement of the leading edge pressures predicted by the Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD). Results are compared with Eppler solutions to assess improvement. Preliminary results indicate that a fading function modification of section slopes is capable of significant improvements in the pressures near the leading edge computed by CAP-TSD. Application of this modification to airfoil geometry before use in CAP-TSD is shown to reduce the nonphysical pressure peak predicted by the transonic small disturbance solver. A second advantage of the slope modification is the substantial reduction in sensitivity of CAP-TSD steady pressure solutions to the computational mesh.
NASA Technical Reports Server (NTRS)
Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.
1983-01-01
Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.
Effect of Compressibility on Pressure Distribution over an Airfoil with a Slotted Frise Aileron
NASA Technical Reports Server (NTRS)
Luoma, Avro A
1944-01-01
Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1985-01-01
A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.
NASA Astrophysics Data System (ADS)
Park, Junshin; You, Donghyun
2014-11-01
Predicitive capabilites of Reynolds-averaged Navier-Stokes (RANS) techniques for separated flow under unsteady adverse pressure gradients have been assessed using SST k - ω model and Spalart-Allmaras model by comparing their results with direct numerical simulation (DNS) results. Both DNS and RANS have been conducted with a zero pressure gradient, a steady adverse pressure gradient, and an unsteady adverse pressure gradient, respectively. Comparative studies show that both RANS models predict earlier separation and fuller velocity profiles at the reattachment zone than DNS in the unsteady case, while reasonable agreements with DNS are observed for steady counterparts. Causes for differences in the predictive capability of RANS for steady and unsteady cases, are explained by examining the Reynolds stress term and eddy viscosity term in detail. The Reynolds stress and eddy viscosity are under-predicted by both RANS models in the unsteady case. The origin of the under-prediction of the Reynolds stress with both RANS models is revealed by investigating Reynolds stress budget terms obtained from DNS. Supported by the National Research Foundation of Korea Grant NRF-2012R1A1A2003699 and the Brain Korea 21+ program.
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
NASA Astrophysics Data System (ADS)
Wolf, William R.; Azevedo, João L. F.; Lele, Sanjiva K.
2013-12-01
This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness.
An Overview of Unsteady Pressure Measurements in the Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.; Edwards, John W.; Bennett, Robert M.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel has served as a unique national facility for aeroelastic testing for over forty years. A significant portion of this testing has been to measure unsteady pressures on models undergoing flutter, forced oscillations, or buffet. These tests have ranged from early launch vehicle buffet to flutter of a generic high-speed transport. This paper will highlight some of the test techniques, model design approaches, and the many unsteady pressure tests conducted in the TDT. The objectives and results of the data acquired during these tests will be summarized for each case and a brief discussion of ongoing research involving unsteady pressure measurements and new TDT capabilities will be presented.
Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mehmed, Oral
2003-01-01
Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
NASA Astrophysics Data System (ADS)
Ragni, D.; Ashok, A.; van Oudheusden, B. W.; Scarano, F.
2009-07-01
The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988-92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°.
Unsteady blade pressure measurements for the SR-7A propeller at cruise conditions
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Nallasamy, M.
1990-01-01
The unsteady blade surface pressures were measured on the SR-7A propeller. The freestream Mach number, inflow angle, and advance ratio were varied while measurements were made at nine blade stations. At a freestream Mach number of 0.8, the data in terms of unsteady pressure coefficient versus azimuth angle are compared to an unsteady three-dimensional Euler solution, yielding very encouraging results. The code predicts the shape (phase) of the waveform very well, while the magnitude is over-predicted in many cases. At tunnel Mach numbers below 0.6, an unusually large response on the suction surface at 0.15 chord and 0.88 radius was observed. The behavior of this response suggests the presence of a leading-edge vortex.
Unsteady blade pressure measurements for the SR-7A propeller at cruise conditions
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Nallasamy, M.
1990-01-01
The unsteady blade surface pressures were measured on the SR-7A propeller. The freestream Mach no., inflow angle, and advance ratio were varied while measurements were made at nine blade stations. At a freestream Mach no. of 0.8, the data in terms of unsteady pressure coefficient vs. azimuth angle are compared to an unsteady 3-D Euler solution, yielding very encouraging results. The code predicts the shape (phase) of the waveform very well, while the magnitude is over-predicted in many cases. At tunnel Mach nos. below 0.6, an unusually large response on the suction surface at 0.15 chord and 0.88 radius was observed. The behavior of this response suggests the presence of a leading edge vortex. The midchord measuring stations on the suction surface exhibit a response that leads the forcing function while most other locations show a phase lag.
Computation of viscous transonic flow about a lifting airfoil
NASA Technical Reports Server (NTRS)
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Simulation Of Unsteady, Inviscid, Rotational, Transonic Flow
NASA Technical Reports Server (NTRS)
Damodaran, Murali
1992-01-01
Report describes numerical simulation of two-dimensional, unsteady, inviscid rotational, transonic flow about rigid airfoil in such motions as pitching or plunging oscillations. Study demonstrates potential utility of computation in analyses of aeroelasticity of airfoils.
A fast approach to designing airfoils from given pressure distribution in compressible flows
NASA Technical Reports Server (NTRS)
Daripa, Prabir
1987-01-01
A new inverse method for aerodynamic design of airfols is presented for subcritical flows. The pressure distribution in this method can be prescribed as a function of the arc length of the as-yet unknown body. This inverse problem is shown to be mathematically equivalent to solving only one nonlinear boundary value problem subject to known Dirichlet data on the boundary. The solution to this problem determines the airfoil, the freestream Mach number, and the upstream flow direction. The existence of a solution to a given pressure distribution is discussed. The method is easy to implement and extremely efficient. A series of results for which comparisons are made with the known airfoils is presented.
Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Danny H.
2012-01-01
In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.
NASA Astrophysics Data System (ADS)
Yu, Wen-Sheng
This thesis is aimed at improved understanding of unsteady turbomachinery flow physics using time-accurate computational fluid dynamics (CFD) techniques. Two pressure-based algorithms have been adapted for the numerical computation of turbulent, two and three-dimensional, steady and unsteady flows through turbomachinery. The differential model employed is the incompressible Reynolds averaged Navier-Stokes equations. In this work, several new and/or modern techniques have been adapted, implemented, and applied. These include higher order accurate structured and hybrid unstructured discretization, an inlet wake passing strategy, an interface sliding technique for the computation of rotor-stator interactions, parallel processing capability and full-two-fluid modeling for multiphase flow analysis. The methods are employed in the analysis of several unsteady turbomachinery flows. These results are presented, compared with experimental data and interpreted, elucidating several important intrinsically unsteady physics in these machines. Details of the physical and numerical modeling strategies of these algorithms are presented, with emphasis placed on new contributions. Specifically, details of the wake passing and rotor-stator interaction schemes are treated, as are details of the discretization practices, structured and unstructured grid generation strategies, multiphase flow analysis treatments, and parallel processing implementation. Several unsteady turbomachinery test cases are computed and compared with available experimental data. These results illustrate the effectiveness and generality of the schemes developed, and elucidate important, unsteady physics in the machines considered: First, the unsteady flow field through a second stage stator of a two-stage compressor is carried out with the inlet wake passing strategy. The effects of rotor-stator blade row spacing and the rotor/stator blade count ratio on the turbomachinery unsteady flows are investigated. It is
The variation with Reynolds number of pressure distribution over an airfoil section
NASA Technical Reports Server (NTRS)
Pinkerton, Robert M
1938-01-01
Pressures were simultaneously measured at 54 orifices distributed over the midspan section of a 5 by 30-inch rectangular model of the NACA 4412 airfoil in the variable-density tunnel. These measurements were made at 17 angles of attack from -20 degrees to 30 degrees for eight values of the effective Reynolds number form approximately 100,000 to 8,200,000. Accurate data were thus obtained for studying the variation of pressure distribution with Reynolds number. These results on the NACA 4412 section indicated that the pressure distribution is practically unaffected by changes in Reynolds number except where separation is involved.
NASA Technical Reports Server (NTRS)
Dolling, David S.; Barter, John W.
1995-01-01
The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.
Preliminary results of unsteady blade surface pressure measurements for the SR-3 propeller
NASA Technical Reports Server (NTRS)
Heidelberg, L. J.; Clark, B. J.
1986-01-01
Unsteady blade surface pressures were measured on an advanced, highly swept propeller known as SR-3. These measurements were obtained because the unsteady aerodynamics of these highly loaded transonic blades is important to noise generation and aeroelastic response. Specifically, the response to periodic angle-of-attack change was measured for both two- and eight-bladed configurations over a range of flight Mach numbers from 0.4 to 0.85. The periodic angle-of-attack change was obtained by placing the propeller axis at angles up to 4 deg to the flow. Most of the results are presented in terms of the unsteady pressure coefficient variation with Mach number. Both cascade and Mach number effects were largest on the suction surface near the leading edge. The results of a three-dimensional Euler code applied in a quasi-steady fashion were compared to measured data at the reduced frequency of 0.1 and showed relatively poor agreement. Pressure waveforms are shown that suggest shock phenomena may play an important part in the unsteady pressure response at some blade locations.
Development of a nonlinear unsteady transonic flow theory
NASA Technical Reports Server (NTRS)
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
NASA Technical Reports Server (NTRS)
Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.
2003-01-01
The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flowconditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
NASA Technical Reports Server (NTRS)
Schobeiri, Meinhard T.; Ozturk, Burak; Ashpis, David E.
2005-01-01
The present study, which is the first of a series of investigations dealing with specific issues of low pressure turbine (LPT) boundary layer aerodynamics, is aimed at providing detailed unsteady boundary flow information to understand the underlying physics of the inception, onset, and extent of the separation zone. A detailed experimental study on the behavior of the separation zone on the suction surface of a highly loaded LPT-blade under periodic unsteady wake flow is presented. Experimental investigations were performed at Texas A&M Turbomachinery Performance and Flow Research Laboratory using a large-scale unsteady turbine cascade research facility with an integrated wake generator and test section unit. To account for a high flow deflection of LPT-cascades at design and off-design operating points, the entire wake generator and test section unit including the traversing system is designed to allow a precise angle adjustment of the cascade relative to the incoming flow. This is done by a hydraulic platform, which simultaneously lifts and rotates the wake generator and test section unit. The unit is then attached to the tunnel exit nozzle with an angular accuracy of better than 0.05 , which is measured electronically. Utilizing a Reynolds number of 110,000 based on the blade suction surface length and the exit velocity, one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities and turbulence intensities are investigated using hot-wire anemometry. In addition to the unsteady boundary layer measurements, blade surface pressure measurements were performed at Re=50,000, 75,000, 100,000, and 125,000 at one steady and two periodic unsteady inlet flow conditions. Detailed unsteady boundary layer measurement identifies the onset and extent of the separation zone as well as its behavior under unsteady wake flow. The results presented in ensemble-averaged and contour plot forms contribute to understanding the
The Influence of Unsteadiness on the Analysis of Pressure Gain Combustion Devices
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Kaemming, Tom
2013-01-01
Pressure gain combustion (PGC) has been the object of scientific study for over a century due to its promise of improved thermodynamic efficiency. In many recent application concepts PGC is utilized as a component in an otherwise continuous, normally steady flow system, such as a gas turbine or ram jet engine. However, PGC is inherently unsteady. Failure to account for the effects of this periodic unsteadiness can lead to misunderstanding and errors in performance calculations. This paper seeks to provide some clarity by presenting a consistent method of thermodynamic cycle analysis for a device utilizing PGC technology. The incorporation of the unsteady PGC process into the conservation equations for a continuous flow device is presented. Most importantly, the appropriate method for computing the conservation of momentum is presented. It will be shown that proper, consistent analysis of cyclic conservation principles produces representative performance predictions.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Davidson, Lars; Olsson, Erik
This paper presents computations of transonic aerodynamic flow simulations using a pressure-based Euler/Navier-Stokes solver. In this work emphasis is focused on the implementation of higher-order schemes such as QUICK, LUDS and MUSCL. A new scheme CHARM is proposed for convection approximation. Inviscid flow simulations are carried out for the airfoil NACA 0012. The CHARM scheme gives better resolution for the present inviscid case. The turbulent flow computations are carried out for the airfoil RAE 2822. Good results were obtained using QUICK scheme for mean motion equation combined with the MUSCL scheme for k and ɛ equations. No unphysical oscillations were observed. The results also show that the second-order and thir-dorder schemes yielded a comparable accuracy compared with the experimental data.
The investigation of parachute fabric permeability under an unsteady pressure differential
NASA Astrophysics Data System (ADS)
Rondeau, Nichole C.
An apparatus for assessing permeability of textiles subjected to time-varying pressure differentials is presented. A Computer Numerically Controlled Piston Permeability Apparatus (CNC-PPA) that can control the volume flow rate through a fabric has been designed and built. This test device has been developed in an effort to improve the understanding and design choices for aerodynamic decelerators. Preliminary results for a low permeability fabric (PIA-C-44378, Type IV) under both steady and unsteady loads are presented. The results from this investigation do indicate a small effect of unsteady pressure differential on the fabric permeability. The fabric permeability is slightly higher than the static permeability when the pressure differential is increasing with respect to time and the opposite is true when the pressure differential is decreasing. This change in permeability is more pronounced as the pressure is higher and the pressure changes more rapidly with respect to time, suggesting dynamic permeability likely affects highly unsteady phenomena such as parachute opening.
NASA Astrophysics Data System (ADS)
Bozinoski, Radoslav
Significant research has been performed over the last several years on understanding the unsteady aerodynamics of various fluid flows. Much of this work has focused on quantifying the unsteady, three-dimensional flow field effects which have proven vital to the accurate prediction of many fluid and aerodynamic problems. Up until recently, engineers have predominantly relied on steady-state simulations to analyze the inherently three-dimensional ow structures that are prevalent in many of today's "real-world" problems. Increases in computational capacity and the development of efficient numerical methods can change this and allow for the solution of the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations for practical three-dimensional aerodynamic applications. An integral part of this capability has been the performance and accuracy of the turbulence models coupled with advanced parallel computing techniques. This report begins with a brief literature survey of the role fully three-dimensional, unsteady, Navier-Stokes solvers have on the current state of numerical analysis. Next, the process of creating a baseline three-dimensional Multi-Block FLOw procedure called MBFLO3 is presented. Solutions for an inviscid circular arc bump, laminar at plate, laminar cylinder, and turbulent at plate are then presented. Results show good agreement with available experimental, numerical, and theoretical data. Scalability data for the parallel version of MBFLO3 is presented and shows efficiencies of 90% and higher for processes of no less than 100,000 computational grid points. Next, the description and implementation techniques used for several turbulence models are presented. Following the successful implementation of the URANS and DES procedures, the validation data for separated, non-reattaching flows over a NACA 0012 airfoil, wall-mounted hump, and a wing-body junction geometry are presented. Results for the NACA 0012 showed significant improvement in flow predictions
Spectral analysis of unsteady surface pressure on a pusher propeller
NASA Technical Reports Server (NTRS)
Farokhi, Saeed
1992-01-01
A propeller of an advanced turboprop testbed aircraft in pusher configuration is instrumented with 22 miniature blade-mounted transducers (BMTs) at two radii. Upstream pylon wake interaction with the propeller is the source of a one-per-cycle excitation for the blades in flight. The time history of fluctuating pressure signals over 26 flight conditions is statistically analyzed in the frequency domain. The rms amplitude of fluctuating pressure signals measured by suction surface BMTs indicates a very strong presence of the fundamental frequency over most of the upper surface. The pylon wake pressure signature on the propeller trailing edge, i.e., x/c not less than 0.80, shows predominantly random turbulence; hence, the amplitude of the fundamental frequency wave is fairly small. The resurgence of a large amplitude fundamental harmonic with coherent pylon wake signature further downstream, say at 90 percent chord, is unexpected behavior. The appearance of a dominating second propeller shaft order in the spectra of the rms pressure in transonic flight conditions identifies the presence of a two-per-cycle excitation source in the azimuthal direction. This is due to the presence of a shock wave, as evidenced by the pressure-time history plots.
Application of the pressure sensitive paint technique to steady and unsteady flow
NASA Technical Reports Server (NTRS)
Shimbo, Y.; Mehta, R.; Cantwell, B.
1996-01-01
Pressure sensitive paint is a newly-developed optical measurement technique with which one can get a continuous pressure distribution in much shorter time and lower cost than a conventional pressure tap measurement. However, most of the current pressure sensitive paint applications are restricted to steady pressure measurement at high speeds because of the small signal-to-noise ratio at low speed and a slow response to pressure changes. In the present study, three phases of work have been completed to extend the application of the pressure sensitive paint technique to low-speed testing and to investigate the applicability of the paint technique to unsteady flow. First the measurement system using a commercially available PtOEP/GP-197 pressure sensitive paint was established and applied to impinging jet measurements. An in-situ calibration using only five pressure tap data points was applied and the results showed good repeatability and good agreement with conventional pressure tap measurements on the whole painted area. The overall measurement accuracy in these experiments was found to be within 0.1 psi. The pressure sensitive paint technique was then applied to low-speed wind tunnel tests using a 60 deg delta wing model with leading edge blowing slots. The technical problems encountered in low-speed testing were resolved by using a high grade CCD camera and applying corrections to improve the measurement accuracy. Even at 35 m/s, the paint data not only agreed well with conventional pressure tap measurements but also clearly showed the suction region generated by the leading edge vortices. The vortex breakdown was also detected at alpha=30 deg. It was found that a pressure difference of 0.2 psi was required for a quantitative pressure measurement in this experiment and that temperature control or a parallel temperature measurement is necessary if thermal uniformity does not hold on the model. Finally, the pressure sensitive paint was applied to a periodically
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Numerical Simulations of Steady and Unsteady Transition in Low-Pressure Turbine Blade Rows
NASA Technical Reports Server (NTRS)
Dorney, Daniel
1998-01-01
Transition plays an important role in the prediction of losses and performance in low-pressure turbines. The transition location on a turbine blade may vary significantly because of the wakes from upstream blade rows, and intermittent flow separation can also affect the transition process in an unsteady flow environment. In the present investigation, an unsteady Navier-Stokes analysis is used to predict transition in a low-pressure turbine cascade and a low-pressure turbine stage. The numerical flow analysis is third-order spatially accurate and second-order temporally accurate, and the equations of motion are integrated using an implicit time-marching procedure. The Baldwin-Lomax and k-epsilon turbulence models, in conjunction with several algebraic transition models, have been used to predict the location of transition. Predicted results include unsteady blade loadings, time-histories of the pressure, transition locations and boundary layer quantities, as well as performance quantities and comparisons with the available experimental/design data.
Unsteady Cascade Aerodynamic Response Using a Multiphysics Simulation Code
NASA Technical Reports Server (NTRS)
Lawrence, C.; Reddy, T. S. R.; Spyropoulos, E.
2000-01-01
The multiphysics code Spectrum(TM) is applied to calculate the unsteady aerodynamic pressures of oscillating cascade of airfoils representing a blade row of a turbomachinery component. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena, in the present case being between fluids and structures. Interaction constraints are enforced in a fully coupled manner using the augmented-Lagrangian method. The arbitrary Lagrangian-Eulerian method is utilized to account for deformable fluid domains resulting from blade motions. Unsteady pressures are calculated for a cascade designated as the tenth standard, and undergoing plunging and pitching oscillations. The predicted unsteady pressures are compared with those obtained from an unsteady Euler co-de refer-red in the literature. The Spectrum(TM) code predictions showed good correlation for the cases considered.
Two-dimensional unsteady lift problems in supersonic flight
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1949-01-01
The variation of pressure distribution is calculated for a two-dimensional supersonic airfoil either experiencing a sudden angle-of-attack change or entering a sharp-edge gust. From these pressure distributions the indicial lift functions applicable to unsteady lift problems are determined for two cases. Results are presented which permit the determination of maximum increment in lift coefficient attained by an unrestrained airfoil during its flight through a gust. As an application of these results, the minimum altitude for safe flight through a specific gust is calculated for a particular supersonic wing of given strength and wing loading.
Experience with transonic unsteady aerodynamic calculations
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Bland, S. R.; Seidel, D. A.
1984-01-01
Comparisons of calculated and experimental transonic unsteady pressures and airloads for four of the AGARD Two Dimensional Aeroelastic Configurations and for a rectangular supercritical wing are presented. The two dimensional computer code, XTRAN2L, implementing the transonic small perturbation equation was used to obtain results for: (1) pitching oscillations of the NACA 64A010A; NLR 7301 and NACA 0012 airfoils; (2) flap oscillations for the NACA 64A006 and NRL 7301 airfoils; and (3) transient ramping motions for the NACA 0012 airfoils. Results from the three dimensional code XTRAN3S are compared with data from a rectangular supercritical wing oscillating in pitch. These cases illustrate the conditions under which the transonic inviscid small perturbation equation provides reasonable predictions.
Evaluation of the constant pressure panel method (CPM) for unsteady air loads prediction
NASA Technical Reports Server (NTRS)
Appa, Kari; Smith, Michael J. C.
1988-01-01
This paper evaluates the capability of the constant pressure panel method (CPM) code to predict unsteady aerodynamic pressures, lift and moment distributions, and generalized forces for general wing-body configurations in supersonic flow. Stability derivatives are computed and correlated for the X-29 and an Oblique Wing Research Aircraft, and a flutter analysis is carried out for a wing wind tunnel test example. Most results are shown to correlate well with test or published data. Although the emphasis of this paper is on evaluation, an improvement in the CPM code's handling of intersecting lifting surfaces is briefly discussed. An attractive feature of the CPM code is that it shares the basic data requirements and computational arrangements of the doublet lattice method. A unified code to predict unsteady subsonic or supersonic airloads is therefore possible.
Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.
2002-01-01
In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.
The Grid Density Dependence of the Unsteady Pressures of the J-2X Turbines
NASA Technical Reports Server (NTRS)
Schmauch, Preston B.
2011-01-01
The J-2X engine was originally designed for the upper stage of the cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. As part of the design requirements, the turbine blades must meet minimum high cycle fatigue factors of safety for various vibrational modes that have resonant frequencies in the engine's operating range. The unsteady blade loading is calculated directly from CFD simulations. A grid density study was performed to understand the sensitivity of the spatial loading and the magnitude of the on blade loading due to changes in grid density. Given that the unsteady blade loading has a first order effect on the high cycle fatigue factors of safety, it is important to understand the level of convergence when applying the unsteady loads. The convergence of the unsteady pressures of several grid densities will be presented for various frequencies in the engine's operating range.
Advanced turboprop wing installation effects measured by unsteady blade pressure and noise
NASA Technical Reports Server (NTRS)
Heidelberg, Laurence J.; Woodward, Richard P.
1987-01-01
A single rotation model propeller (SR-7A) was tested at simulated takeoff/approach conditions (Mach 0.2), in the NASA Lewis 9- by 15-Ft Anechoic Wind Tunnel. Both unsteady blade surface pressures and noise measurements were made for a tractor configuration with propeller/straight wing and propeller alone configurations. The angle between the wing chord and propeller axis (droop angle) was varied along with the wing angle of attack to determine the effects on noise and unsteady loading. A method was developed that uses unsteady blade pressure measurements to provide a quantitative indication of propeller inflow conditions, at least for a uniform (across the propeller disk) inflow angle. The wing installation caused a nearly uniform upwash at the propeller inlet as evidenced by the domination of the pressure spectra by the first shaft order. This inflow angle increased at a rate of almost 150 percent of that of the wing angle-of-attack for a propeller-wing spacing of 0.54 wing chords at a constant droop angle. The flyover noise, as measured by the maximum blade passing frequency level, correlates closely with the propeller inflow angle (approx. 0.6 dB per degree of inflow angle) for all droop angles and wing angles of attack tested, including the propeller alone data. Large changes in the unsteady pressure responses on the suction surface of the blade were observed as the advance ratio was varied. The presence of a leading edge vortex may explain this behavior since changes in the location of this vortex would change with loading (advance ratio).
Nearfield Unsteady Pressures at Cruise Mach Numbers for a Model Scale Counter-Rotation Open Rotor
NASA Technical Reports Server (NTRS)
Stephens, David B.
2012-01-01
An open rotor experiment was conducted at cruise Mach numbers and the unsteady pressure in the nearfield was measured. The system included extensive performance measurements, which can help provide insight into the noise generating mechanisms in the absence of flow measurements. A set of data acquired at a constant blade pitch angle but various rotor speeds was examined. The tone levels generated by the front and rear rotor were found to be nearly equal when the thrust was evenly balanced between rotors.
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Hultgren, Lennart .
2000-01-01
Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.
Single-shot temperature- and pressure-sensitive paint measurements on an unsteady helicopter blade
NASA Astrophysics Data System (ADS)
Disotell, Kevin J.; Peng, Di; Juliano, Thomas J.; Gregory, James W.; Crafton, Jim W.; Komerath, Narayanan M.
2014-02-01
Unsteady pressure-sensitive paint (PSP) measurements were acquired on an articulated model helicopter rotor of 0.26 m diameter in edgewise flow to simulate forward flight conditions. The rotor was operated at advance ratios (free stream velocity normalized by hover tip speed) of 0.15 and 0.30 at a cycle-averaged tip chord Reynolds number of 1.1 × 105, with collective and longitudinal cyclic pitch inputs of 10° and 2.5°, respectively. A single-shot data acquisition technique allowed a camera to record the paint luminescence after a single pulse of high-energy laser excitation, yielding sufficient signal-to-noise ratio to avoid image averaging. Platinum tetra(pentafluorophenyl) porphyrin (PtTFPP) in a porous polymer/ceramic binder served as the PSP. To address errors caused by image blurring and temperature sensitivity, a previously reported motion deblurring algorithm was implemented and the temperature correction was made using temperature-sensitive paint measurements on a second rotor blade. Instantaneous, unsteady surface pressure maps at a rotation rate of 82 Hz captured different aerodynamic responses between the two sides of the rotor disk and were compared to the nominally steady hover case. Cycle-to-cycle variations in tip unsteadiness on the retreating blade were also observed, causing oblique pressure features which may be linked to three-dimensional stall.
NASA Astrophysics Data System (ADS)
Gardner, A. D.; Klein, C.; Sachs, W. E.; Henne, U.; Mai, H.; Richter, K.
2014-09-01
Dynamic stall on a pitching OA209 airfoil in a wind tunnel is investigated at Mach 0.3 and 0.5 using high-speed pressure-sensitive paint (PSP) and pressure measurements. At Mach 0.3, the dynamic stall vortex was observed to propagate faster at the airfoil midline than at the wind-tunnel wall, resulting in a "bowed" vortex shape. At Mach 0.5, shock-induced stall was observed, with initial separation under the shock foot and subsequent expansion of the separated region upstream, downstream and along the breadth of the airfoil. No dynamic stall vortex could be observed at Mach 0.5. The investigation of flow control by blowing showed the potential advantages of PSP over pressure transducers for a complex three-dimensional flow.
NASA Technical Reports Server (NTRS)
Torres, Francisco J.
1987-01-01
Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.
NASA Technical Reports Server (NTRS)
Bauer, F.; Garabedian, P.; Korn, D.
1980-01-01
Program aids in design of shockless airfoils, assists development of fuel-conserving, supercritical wings. Algorithm calculates approximate airfoil shape given prescribed pressure distribution. This allows design of families of transonic airfoils for use in aircraft wings or turbine and compressor blades. Program is written in FORTRAN IV for batch execution on CDC-6000.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.
1959-01-01
A two-dimensional wind-tunnel investigation of the pressure distributions over several NACA 16-series airfoils with thicknesses of 4, 6, 9, and 12 percent of the chord and design lift coefficients of 0, 0.2, 1 and 0.5 has been conducted in the Langley airfoil test apparatus at transonic Mach numbers from 0.7 to 1.25. The tests ranged in Reynolds number from 2.4 x 10(exp 6) to 2.8 x l0(exp 6) and in angle of attack from -10 to 12 deg. Chordwise pressure distributions and schlieren flow photographs are presented without analysis.
NASA Technical Reports Server (NTRS)
Riffel, R. E.; Rothrock, M. D.
1980-01-01
A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.
Wangher, Athena; Searby, Geoff; Quinard, Joel
2008-07-15
Using OH{sup *} chemiluminescence, we measure the experimental unsteady response of a 1-D premixed flame to an acoustic pressure wave for a range of frequencies below and above the inverse of the flame transit time. We find that the response is positive and, at low frequency, the order of magnitude is comparable with existing theoretical analyses. However, if it is assumed that the chemiluminescence is proportional to the mass consumption rate, despite some uncertainty in the interpretation of the chemiluminescence signal we find that the frequency dependence of the measured response is not compatible with the predictions of the standard flame model for one-step Arrhenius kinetics. A better, but not perfect, correlation is obtained for the heat release rate. We conclude that the standard model does not provide an adequate description of the unsteady response of real flames and that it is necessary to investigate more realistic chemical models. (author)
NASA Technical Reports Server (NTRS)
Jones, Gregory; Balakrishna, Sundareswara; DeMoss, Joshua; Goodliff, Scott; Bailey, Matthew
2015-01-01
Pressure fluctuations have been measured over the course of several tests in the National Transonic Facility to study unsteady phenomenon both with and without the influence of a model. Broadband spectral analysis will be used to characterize the length scales of the tunnel. Special attention will be given to the large-scale, low frequency data that influences the Mach number and force and moment variability. This paper will also discuss the significance of the vorticity and sound fields that can be related to the Common Research Model and will also highlight the comparisons to an empty tunnel configuration. The effectiveness of vortex generators placed at the interface of the test section and wind tunnel diffuser showed promise in reducing the empty tunnel unsteadiness, however, the vortex generators were ineffective in the presence of a model.
NASA Astrophysics Data System (ADS)
Fang, Shuo; Disotell, Kevin J.; Long, Samuel R.; Gregory, James W.; Semmelmayer, Frank C.; Guyton, Robert W.
2011-06-01
The current work focuses on the development and application of fast-responding polymer/ceramic pressure-sensitive paint (PSP) as an advanced surface pressure measurement technique for unsteady flow fields in large-scale wind tunnels. To demonstrate the unsteady PSP technique, the unsteady surface pressure distribution over a hemispherical dome placed in the United States Air Force Research Laboratory's Trisonic Gasdynamics Facility (TGF) was studied by phase-locking to the characteristic frequency in the flow caused by an unsteady separated shear layer shed from the dome. The wind tunnel was operated at stagnation pressures of 23.92 and 71.84 kPa, with the test section flow at Mach 0.6. Under the two operating conditions, the predominant shear layer frequency was measured to be 272 and 400 Hz, respectively. The quasi-periodic shear layer frequency enabled a phase-averaged method to be employed for capturing the unsteady shock motion on the hemisphere. Unsteady pressure data resulting from this technique are shown to correlate well with measurements acquired by conventional measurement techniques. Measurement uncertainty in the phase-averaging technique will be discussed. To address measurement uncertainties from temperature sensitivity and model movement, a new implementation of an AC-coupled data representation is offered.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in realtime, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Real-Time Unsteady Loads Measurements Using Hot-Film Sensors
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Moes, Timothy R.
2004-01-01
Several flight-critical aerodynamic problems such as buffet, flutter, stall, and wing rock are strongly affected or caused by abrupt changes in unsteady aerodynamic loads and moments. Advanced sensing and flow diagnostic techniques have made possible simultaneous identification and tracking, in real-time, of the critical surface, viscosity-related aerodynamic phenomena under both steady and unsteady flight conditions. The wind tunnel study reported here correlates surface hot-film measurements of leading edge stagnation point and separation point, with unsteady aerodynamic loads on a NACA 0015 airfoil. Lift predicted from the correlation model matches lift obtained from pressure sensors for an airfoil undergoing harmonic pitchup and pitchdown motions. An analytical model was developed that demonstrates expected stall trends for pitchup and pitchdown motions. This report demonstrates an ability to obtain unsteady aerodynamic loads in real-time, which could lead to advances in air vehicle safety, performance, ride-quality, control, and health management.
Acoustic radiation from lifting airfoils in compressible subsonic flow
NASA Technical Reports Server (NTRS)
Atassi, Hafiz M.; Subramaniam, Shankar; Scott, James R.
1990-01-01
The far field acoustic radiation from a lifting airfoil in a three-dimensional gust is studied. The acoustic pressure is calculated using the Kirchhoff method, instead of using the classical acoustic analogy approach due to Lighthill. The pressure on the Kirchhoff surface is calculated using an existing numerical solution of the unsteady flow field. The far field acoustic pressure is calculated in terms of these values using Kirchhoff's formula. The method is validated against existing semi-analytical results for a flat plate. The method is then used to study the problem of an airfoil in a harmonic three-dimensional gust, for a wide range of Mach numbers. The effect of variation of the airfoil thickness and angle of attack on the acoustic far field is studied. The changes in the mechanism of sound generation and propagation due to the presence of steady loading and nonuniform mean flow are also studied.
Acoustic radiation from lifting airfoils in compressible subsonic flow
NASA Technical Reports Server (NTRS)
Atassi, Hafiz M.; Subramaniam, Shankar; Scott, James R.
1990-01-01
The far field acoustic radiation from a lifting airfoil in a three-dimensional gust is studied. The acoustic pressure is calculated using the Kirchhoff method, instead of using the classical acoustic analogy approach due to Lighthill. The pressure on the Kirchhoff surface is calculated using an existing numerical solution of the unsteady flow field. The far field acoustic pressure is calculated in terms of these values using Kirchhoff's formula. The method is validated against existing semi-analytical results for a flat plate. The method is then used to study the problem of an airfoil in a harmonic three-dimensional gust, for a wide range of Mach numbers. The effect of variation of the airfoil thickness and angle of attack on the acoustic far field is studied. The changes in the mechanism of sound generation and propagation due to the presence of steady loading and non-uniform mean flow are also studied.
Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane
1999-01-01
Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.
Heat transfer coefficient measurements on the pressure surface of a transonic airfoil
NASA Astrophysics Data System (ADS)
Kodzwa, Paul M.; Eaton, John K.
2010-02-01
This paper presents steady-state recovery temperature and heat transfer coefficient measurements on the pressure surface of a modern, highly cambered transonic airfoil. These measurements were collected with a peak Mach number of 1.5 and a maximum turbulence intensity of 30%. We used a single passage model to simulate the idealized two-dimensional flow path between rotor blades in a modern transonic turbine. This set up offered a simpler construction than a linear cascade, yet produced an equivalent flow condition. We performed validated high accuracy (±0.2°C) surface temperature measurements using wide-band thermochromic liquid crystals allowing separate measurements of the previously listed parameters with the same heat transfer surface. We achieved maximum heat transfer coefficient uncertainties that were equivalent to similar investigations (±10%). Two key observations are the heat transfer coefficient along the aft portion of the airfoil is sensitive to the surface heat flux and is highly insensitive to the level of freestream turbulence. Possible explanations for these observations are discussed.
Calculation of steady and unsteady pressures at supersonic speeds with CAP-TSD
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Bland, Samuel R.; Batina, John T.; Gibbons, Michael D.; Mabey, Dennis G.
1989-01-01
A finite difference technique is used to solve the transonic small disturbance flow equation making use of shock capturing to treat wave discontinuities. Thus the nonlinear effects of thickness and angle of attack are considered. Such an approach is made feasible by the development of a new code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance), and is based on a fully implicit approximate factorization (AF) finite difference method to solve the time dependent transonic small disturbance equation. The application of the CAP-TSD code to the calculation of low to moderate supersonic steady and unsteady flows is presented. In particular, comparisons with exact linear theory solutions are made for steady and unsteady cases to evaluate shock capturing and other features of the current method. In addition, steady solutions obtained from an Euler code are used to evaluate the small disturbance aspects of the code. Steady and unsteady pressure comparisons are made with measurements for an F-15 wing model and for the RAE tailplane model.
Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements
NASA Astrophysics Data System (ADS)
Davis, Timothy; Edstrand, Adam; Alvi, Farrukh; Cattafesta, Louis; Yorita, Daisuke; Asai, Keisuke
2015-05-01
At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of . The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.
NASA Astrophysics Data System (ADS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-07-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-01-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.; Nelson, Robert C.
1991-01-01
An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.
2015-01-01
A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.
Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2006-01-01
Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.
Unsteady blade pressures on a propfan at takeoff: Euler analysis and flight data
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1991-01-01
The unsteady blade pressures due to the operation of the propfan at an angle to the direction of the mean flow are obtained by solving the unsteady three dimensional Euler equations. The configuration considered is the eight bladed SR7L propfan at takeoff conditions and the inflow angles considered are 6.3 deg, 8.3 deg, 11.3 deg. The predicted blade pressure waveforms are compared with inflight measurements. At the inboard radial station (r/R = 0.68) the phase of the predicted waveforms show reasonable agreement with the measurements while the amplitudes are over predicted in the leading edge region of the blade. At the outboard radial station (r/R = 0.95), the predicted amplitudes of the waveforms on the pressure surface are in good agreement with flight data for all inflow angles. The measured (installed propfan) waveforms show a relative phase lag compared to the computed (propfan alone) waveforms. The phase lag depends on the axial location of the transducer and the surface of the blade. On the suction surface, in addition to the relative phase lag, the measurements show distortion (widening and steepening) of the waveforms. The extent of distortion increases with increase in inflow angle. This distortion seems to be due to viscous separation effects which depend on the azimuthal location of the blade and the axial location of the transducer.
The Numerical Simulation of Unsteady Cavitation Evolution Induced by Pressure Wave
NASA Astrophysics Data System (ADS)
Khoo, B. C.; Zheng, J. G.
2014-11-01
The present study is focused on the numerical simulation of pressure wave propagation through the cavitating compressible liquid flow, its interaction with cavitation bubble and the resulting unsteady cavitation evolution. The compressibility effects of liquid water are taken into account and the cavitating flow is governed by one-fluid cavitation model which is based on the compressible Euler equations with the assumption that the cavitation is the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. Several aspects of the method employed to solve the governing equations are outlined. The unsteady features of cavitating flow due to the external perturbation, such as the cavitation deformation and collapse and consequent pressure increase are resolved numerically and discussed in detail. It is observed that the cavitation bubble collapse is accompanied by the huge pressure surge of order of 100 bar, which is thought to be responsible for the material erosion, noise, vibration and loss of efficiency of operating underwater devices.
Numerical solution of periodic vortical flows about a thin airfoil
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1989-01-01
A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.
Ghodoosian, N.
1984-05-01
An analytical model leading to the pressure distribution on the cross section of a Darrieus Rotor Blade (airfoil) has veen constructed. The model is based on the inviscid flow theory and the contribution of the nonsteady wake vortices was neglected. The analytical model was translated into a computer code in order to study a variety of boundary conditions encountered by the rotating blades of the Darrieus Rotor. Results indicate that, for a pitching airfoil, lift can be adequately approximated by the Kutta-Joukowski forces, despite notable deviations in the pressure distribution on the airfoil. These deviations are most significant at the upwind half of the Darrieus Rotor where higher life is accompanied by increased adverse pressure gradients. The effect of pitching on lift can be approximated by a linear shift in the angle of attack proportional to the blade angular velocity. Tabulation of the fluid velocity about the pitching-only NACA 0015 allowed the principle of superposition to be used to determine the fluid velocity about a translating and pitching airfoil.
Unsteady blade surface pressures on a large-scale advanced propeller - Prediction and data
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1990-01-01
An unsteady three dimensional Euler analysis technique is employed to compute the flowfield of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (take-off) the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.
Unsteady blade-surface pressures on a large-scale advanced propeller: Prediction and data
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1990-01-01
An unsteady 3-D Euler analysis technique is employed to compute the flow field of an advanced propeller operating at an angle of attack. The predicted blade pressure waveforms are compared with wind tunnel data at two Mach numbers, 0.5 and 0.2. The inflow angle is three degrees. For an inflow Mach number of 0.5, the predicted pressure response is in fair agreement with data: the predicted phases of the waveforms are in close agreement with data while the magnitudes are underpredicted. At the low Mach number of 0.2 (takeoff), the numerical solution shows the formation of a leading edge vortex which is in qualitative agreement with measurements. However, the highly nonlinear pressure response measured on the blade suction surface is not captured in the present inviscid analysis.
Characterization of dynamic stall on 9-15 % thick airfoils using experiment and computation
NASA Astrophysics Data System (ADS)
Davidson, Phillip B.
In recent years, the blade geometry on wind turbines and helicopters has been optimized for a particular span location. Unsteady flow phenomena like dynamic stall limit these designs and need to be better understood and correctly simulated. Currently, empirical and computational fluid dynamics (CFD) methods are used to simulate rotating wind turbine or helicopter blades, but each of these methods has limitations in predicting unsteady separated flows. To address these needs, the present work investigated oscillating airfoils over a range of conditions with an approach that provided fast, low-cost unsteady pressure data combined with a highly resolved flow field to better understand the physics of dynamic stall. An additional objective was to show how such data may be used to assess CFD simulations. This research has yielded interesting results showing characteristics of thin airfoil stall, leading edge stall, and trailing edge stall that were sorted and classified. Classification of the oscillating airfoil behavior with or without dynamic stall was performed using previous definitions for stall regime, separation characteristics, and other qualitative differences in stall pattern. After classifying the unsteady flow for each of the cases, comparison of experimental results and results obtained using an unsteady Reynolds Averaged Navier-Stokes (URANS) solver was performed to assess the ability of the solver to produce the same unsteady effects. Although both experiment and computation produced similar flow features, the timing and magnitude of the features in the dynamic stall and re-attachment process of the pitching cycle exhibited some significant differences.
Compressibility and Turbulence Effects Due to Airfoil Clocking in Axial Compressors
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Sharma, Om P.; GundyBurlet, Karen L.; George, Michael W. (Technical Monitor)
1998-01-01
Axial compressors have inherently unsteady flow fields because of relative motion between rotor and stator airfoils. This relative motion leads to viscous and inviscid (potential) interactions between blade rows. As the number of stages increases in a turbomachine, the buildup of convected wakes can lead to progressively more complex wake/wake and wake/airfoil interactions. Variations in the relative circumferential positions of stators or rotors can change these interactions, leading to different unsteady forcing functions on airfoils and different compressor efficiencies. In addition, as the Mach number increases the interaction between blade rows is intensified due to potential effects. The current study uses an unsteady, two-dimensional Navier-Stokes approach to investigate the unsteady aerodynamics of stator clocking in a 1-1/2 stage compressor, typical of high-pressure compressors used in advanced commercial jet engines. The effects of turbulence are modeled with both algebraic and two-equation models. Results include surface pressures, efficiencies, boundary layer quantities and turbulence quantities. In addition, the growth of turbulence and the effects of compressibility on airfoil are discussed.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.
2015-01-01
Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.
NASA Astrophysics Data System (ADS)
Izmaylov, R.; Lebedev, A.
2015-08-01
Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.
Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2015-11-01
This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
Measurement of airfoil heat transfer coefficients on a turbine stage
NASA Astrophysics Data System (ADS)
Dring, Robert P.; Blair, Michael F.; Joslyn, H. David
1987-10-01
A combined experimental and analytical program was conducted to examine the impact of a number of variables on the midspan heat transfer coefficients of the three airfoil rows in a one and one-half stage large scale turbine model. Variables included stator/rotor axial spacing, Reynolds number, turbine inlet turbulence, flow coefficient, relevant stator 1/stator 2 circumferential position, and rotation. Heat transfer data were acquired on the suction and pressure surfaces of the three airfoils. High density data were also acquired in the leading edge stagnation regions. Extensive documentation of the steady and unsteady aerodynamics was acquired. Finally, heat transfer data were compared with both a steady and an unsteady boundary layer analysis.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.; Okuno, A. F.
1985-01-01
The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr
1945-01-01
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)
NASA Technical Reports Server (NTRS)
Piette, Douglas S.; Cazier, Frank W., Jr.
1989-01-01
Present flutter analysis methods do not accurately predict the flutter speeds in the transonic flow region for wings with supercritical airfoils. Aerodynamic programs using computational fluid dynamic (CFD) methods are being developed, but these programs need to be verified before they can be used with confidence. A wind tunnel test was performed to obtain all types of data necessary for correlating with CFD programs to validate them for use on high aspect ratio wings. The data include steady state and unsteady aerodynamic measurements on a nominal stiffness wing and a wing four times that stiffness. There is data during forced oscillations and during flutter at several angles of attack, Mach numbers, and tunnel densities.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.
1976-01-01
An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Seetharam, H. C.; Fiscko, K. A.
1977-01-01
Wind tunnel force and pressure tests were conducted for the GA(W)-1 airfoil equipped with a 20% aileron, and pressure tests were conducted with a 30% Fowler flap. All tests were conducted at a Reynolds number of 2.2 and a Mach number of 0.13. The aileron provides control effectiveness similar to ailerons applied to more conventional airfoils. Effects of aileron gaps from 0% to 2% chord were evaluated, as well as hinge moment characteristics. The aft camber of the GA(W)-1 section results in a substantial up-aileron moment, but the hinge moments associated with aileron deflection are similar to other configurations. Fowler flap pressure distributions indicate that unseparated flow is achieved for flap settings up to 40 deg., over a limited angle of attack range. Theoretical pressure distributions compare favorably with experiments for low flap deflections, but show substantial errors at large deflections.
Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1989-01-01
The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.
Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Groeneweg, J. F.
1989-01-01
The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.
Computational and Experimental Unsteady Pressures for Alternate SLS Booster Nose Shapes
NASA Technical Reports Server (NTRS)
Braukmann, Gregory J.; Streett, Craig L.; Kleb, William L.; Alter, Stephen J.; Murphy, Kelly J.; Glass, Christopher E.
2015-01-01
Delayed Detached Eddy Simulation (DDES) predictions of the unsteady transonic flow about a Space Launch System (SLS) configuration were made with the Fully UNstructured Three-Dimensional (FUN3D) flow solver. The computational predictions were validated against results from a 2.5% model tested in the NASA Ames 11-Foot Transonic Unitary Plan Facility. The peak C(sub p,rms) value was under-predicted for the baseline, Mach 0.9 case, but the general trends of high C(sub p,rms) levels behind the forward attach hardware, reducing as one moves away both streamwise and circumferentially, were captured. Frequency of the peak power in power spectral density estimates was consistently under-predicted. Five alternate booster nose shapes were assessed, and several were shown to reduce the surface pressure fluctuations, both as predicted by the computations and verified by the wind tunnel results.
Causal mechanisms in airfoil-circulation formation
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Liu, T. S.; Liu, L. Q.; Zou, S. F.; Wu, J. Z.
2015-12-01
In this paper, we trace the dynamic origin, rather than any kinematic interpretations, of lift in two-dimensional flow to the physical root of airfoil circulation. We show that the key causal process is the vorticity creation by tangent pressure gradient at the airfoil surface via no-slip condition, of which the theoretical basis has been given by Lighthill ["Introduction: Boundary layer theory," in Laminar Boundary Layers, edited by L. Rosenhead (Clarendon Press, 1963), pp. 46-113], which we further elaborate. This mechanism can be clearly revealed in terms of vorticity formulation but is hidden in conventional momentum formulation, and hence has long been missing in the history of one's efforts to understand lift. By a careful numerical simulation of the flow around a NACA-0012 airfoil, and using both Eulerian and Lagrangian descriptions, we illustrate the detailed transient process by which the airfoil gains its circulation and demonstrate the dominating role of relevant dynamical causal mechanisms at the boundary. In so doing, we find that the various statements for the establishment of Kutta condition in steady inviscid flow actually correspond to a sequence of events in unsteady viscous flow.
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H
2014-02-01
We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data. PMID:24115059
Sting-free Unsteady Flowfield, Base Pressure and Force Measurements on Axisymmetric Bluff-Body
NASA Astrophysics Data System (ADS)
Higuchi, Hiroshi; Sawada, Hideo; Kato, Hiroyuki; Kunimasu, Tetsuya
2006-11-01
To avoid interference of model support, flowfields as well as aerodynamic force and base pressure on blunt short cylinders in axial flow were measured at Re=100,000 with the JAXA 60cm magnetic suspension and balance system. The fineness ratio ranged from 1.27 to 1.79. A digital telemeter system was developed for the base pressure measurement, and the velocity field was obtained using a PIV system. Vortices along separating shear layer and shear layer flappings with or without reattachment on the wall were observed. Downstream the cylinder in the azimuthal plane, PIV snapshots showed large-scale motion of longitudinal vortices. These instantaneous flowfields presented excellent axisymmetry when they were ensemble-averaged. Mean base pressure agreed with the drag variation at different fineness ratios. The present magnetic suspension and balance system allowed evaluation of low frequency unsteady aerodynamic force vector from feedback current to the coils and the detected small model movement. Base pressure fluctuations were compared with the drag fluctuations and discussed in light of overall flowfield phenomena.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.
1979-01-01
The design and usage of a pilot program for calculating the pressure distributions over harmonically oscillating airfoils in transonic flow are described. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equations for small disturbances. The steady velocity potential which must be obtained from some other program, was required for input. The unsteady equation, as solved, is linear with spatially varying coefficients. Since sinusoidal motion was assumed, time was not a variable. The numerical solution was obtained through a finite difference formulation and either a line relaxation or an out of core direct solution method.
NASA Astrophysics Data System (ADS)
Bosioc, A. I.; Tanasa, C.; Muntean, S.; Susan-Resiga, R. F.
2010-08-01
The paper presents our numerical results and experimental measurements for swirling flow with precessing vortex rope into a conical diffuser with water jet control. A test rig was designed and developed at Politehnica University of Timisoara in order to investigate different flow control techniques. Consequently, a vortex rope like in Francis turbine cone at 70% partial discharge is generated into the test rig section. The jet control method is experimentally investigated in order to mitigate the vortex rope and its associated pressure fluctuations. The unsteady pressure is recorded in 8 transducers flush mounted on the wall of the test section at different values of the jet discharge. The amplitude and frequency of the vortex rope is obtained based on unsteady pressure measurements using Fourier analysis. The 3D computational domain corresponds to the test rig section. The three-dimensional full unsteady turbulent computation is performed with jet control for different values of discharge. In numerical simulation, the unsteady pressures are obtained on the cone wall at the same positions as those in experimental investigation. Consequently, the amplitude and frequency of the vortex rope are computed and validated with experimental data. As a result, the amplitude and frequency are diminished if the water jet discharge is increased.
On the attenuating effect of permeability on the low frequency sound of an airfoil
NASA Astrophysics Data System (ADS)
Weidenfeld, M.; Manela, A.
2016-08-01
The effect of structure permeability on the far-field radiation of a thin airfoil is studied. Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and acoustic fields, respectively. Airfoil porosity is modeled via Darcy's law, governed by prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied to describe airfoil wake evolution. To assess the impact of penetrability, results are compared to counterpart predictions for the sound of an impermeable airfoil. Considering the finite-chord airfoil as "acoustically transparent", the leading-order contribution of surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow conditions considered, porosity causes attenuation in outcome sound level. This is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of fluid flow with airfoil edge points. To the extent that thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results indicate on a decrease of ~ 10 percent and more in the total energy radiated by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law to model the effect of material porosity is discussed in light of existing literature.
NASA Technical Reports Server (NTRS)
Jenkins, Renaldo V.; Hill, Acquilla S.; Ray, Edward J.
1988-01-01
This report presents in graphic and tabular forms the aerodynamic coefficient and surface pressure distribution data for a NASA SC(2)-0714 airfoil tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. The test was another in a series of tests involved in the joint NASA/U.S. Industry Advanced Technology Airfoil Tests program. This 14% thick supercritical airfoil was tested at Mach numbers from 0.6 to 0.76 and angles of attack from -2.0 to 6.0 degrees. The test Reynolds numbers were 4 million, 6 million, 10 million, 15 million, 30 million, 40 million, and 45 million.
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.
2002-01-01
This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.
Reduction of airfoil trailing edge noise by trailing edge blowing
NASA Astrophysics Data System (ADS)
Gerhard, T.; Erbslöh, S.; Carolus, T.
2014-06-01
The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.
Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions
NASA Technical Reports Server (NTRS)
Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)
2000-01-01
This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.
Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer
NASA Technical Reports Server (NTRS)
Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas
2011-01-01
The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and
Self-sustained shock oscillations on airfoils at transonic speeds
NASA Astrophysics Data System (ADS)
Lee, B. H. K.
2001-02-01
Self-sustained shock wave oscillations on airfoils at transonic flow conditions are associated with the phenomenon of buffeting. The physical mechanisms of the periodic shock motion are not yet fully understood even though experiments performed over fifty years ago have demonstrated the presence of oscillatory shock waves on the airfoil surfaces at high subsonic speeds. The unsteady pressure fluctuations generated by the low-frequency large-amplitude shock motions are highly undesirable from the structural integrity and aircraft maneuverability point of view. For modern supercritical wing design with thick profiles, the shock-induced fluctuations are particularly severe and methods to reduce the shock wave amplitudes to lower values or even to delay the oscillations to higher Mach numbers or incidence angles will result in expanding the buffet boundary of the airfoil. This review begins with a recapitulation of the classical work on shock-induced bubble separation and trailing edge separation of a turbulent boundary layer. The characteristics of the unsteady pressure fluctuations are used to classify the types of shock-boundary layer interaction. The various modes of shock wave motion for different flow conditions and airfoil configurations are described. The buffet boundaries obtained using the standard trailing edge pressure divergence technique and an alternative approach of measuring the divergence of normal fluctuating forces are compared to show the equivalence. The mechanisms of self-sustained shock oscillations are discussed for symmetrical circular-arc airfoils at zero incidence and for supercritical airfoils at high incidence angles with fully separated flows. The properties of disturbances in the wake are examined from linear stability analysis of two-dimensional compressible flows. The advances in high-speed computing make predictions of buffeting flows possible. Navier-Stokes solvers and approximate boundary layer-inviscid flow interaction methods are
An experimental study of airfoil-spoiler aerodynamics
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Karamcheti, K.
1985-01-01
The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.
Measurement of Unsteady Pressure Data on a Large HSCT Semispan Wing and Comparison with Analysis
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Silva, Walter A.; Florance, James R.; Keller, Donald F.
2002-01-01
Experimental data from wind-tunnel tests of the Rigid Semispan Model (RSM) performed at NASA Langley's Transonic Dynamics Tunnel (TDT) are presented. The primary focus of the paper is on data obtained from testing of the RSM on the Oscillating Turntable (OTT). The OTT is capable of oscillating models in pitch at various amplitudes and frequencies about mean angles of attack. Steady and unsteady pressure data obtained during testing of the RSM on the OTT is presented and compared to data obtained from previous tests of the RSM on a load balance and on a Pitch and Plunge Apparatus (PAPA). Testing of the RSM on the PAPA resulted in utter boundaries that were strongly dependent on angle of attack across the Mach number range. Pressure data from all three tests indicates the existence of vortical flows at moderate angles of attack. The correlation between the vortical flows and the unusual utter boundaries from the RSM/PAPA test is discussed. Comparisons of experimental data with analyses using the CFL3Dv6 computational fluid dynamics code are presented.
NASA Technical Reports Server (NTRS)
Morrow, John D; Katz, Ellis
1955-01-01
Results of an exploratory free-flight investigation at zero lift of several rocket-powered drag-research models having rectangular 6-percent-thick wings are presented for a Mach number range of 0.6 to 1.7. Wings having diamond, circular-arc, and blunt-trailing-edge airfoil sections were tested. Pressures over the base of the blunt-trailing-edge airfoil were measured. The drags of all the models were measured and are compared with theory in this paper.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.
1985-01-01
A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.50 to 0.80. This investigation was designed to: (1) test a NASA advanced-technology airfoil from low to flight equivalent Reynolds numbers, (2) provide experience in cryogenic wind-tunnel model design and testing techniques, and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the test objectives were met. The pressure data are presented without analysis in tabulated format and as plots of pressure coefficient versus position on the airfoil. This report was prepared for use in conjunction with the aerodynamic coefficient data published in NASA-TM-86371. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design and fabrication.
State variable model for unsteady two dimensional axial vortex flow with pressure relaxation
NASA Astrophysics Data System (ADS)
Abuharaz, Mazin Mohammed Elbakri
This research has utilized a state variable model for unsteady two dimensional axial vortex flows experiencing non-equilibrium pressure gradient forces. The model was developed successfully using perturbed radial and azimuthal momentum equations and a pressure Poisson's equations. Three main regions of the axial vortex flow were highlighted in this study including: a laminar core region, a non-equilibrium pressure envelope, and an outer potential vortex. Linear stability theory was utilized to formulate the model and the perturbation functions were assumed to be of the Fourier type. The flow parameters considered were the Reynolds numbers, ranging between 6,000 and 14,000, and a new non-equilibrium swirl parameter, Np determining the area of significant non-equilibrium pressure forces. Two other state variable parameters were imposed-complex frequency and associated azimuthal mode number. Perturbation outputs included primary Reynolds stress, radial and azimuthal velocity amplitudes, and radial pressure gradient amplitudes. Maximum perturbation growth occurred inside the non-equilibrium pressure zone between one and five core radii from the rotational axis, while the inner core remained laminar. The maximum amplitudes and critical radii depended on the four physical and state variable parameters. Increases in Np resulted in lower perturbation pressure gradient amplitudes, moving the critical radius closer to the vortex core, and expanding the non-equilibrium pressure zone. Increasing the frequency resulted in steady increases in the perturbation amplitudes until a particular dimensionless frequency was reached. Beyond that frequency, additional perturbation growth was insignificant or the amplitude decayed because of a high damping factor. Two types of azimuthal modes were unstable, the +/-½ modes inside the non-equilibrium pressure zone, causing the pressure gradient amplitudes to peak even though the azimuthal velocity profile remained stable, and +/- 1 helical
NASA Technical Reports Server (NTRS)
Carta, F. O.
1981-01-01
Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge.
An inexpensive pressure transducer for the measurement of low amplitude unsteady pressure signals
NASA Astrophysics Data System (ADS)
Johnston, R. T.; Sullivan, J. P.
1994-04-01
Electret microphones were evaluated for use in an experiment to investigate the surface pressures of a wing immersed in a propeller slipstream. Calibration of a typical electret microphone over a range of 50 to 6000 hz showed that at each individual frequency there is less than 1.1% error in linearity for low pressures, but some variation of sensitivity occurs over the range of frequencies tested. This variation of sensitivity with frequency can be corrected using standard signal processing techniques.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1983-01-01
The analysis of the chordwise load distribution and its sensitivity to the various system parameters represents the next phase of the overall study and is the subject of the present two volume report. The present volume is a compilation of all of the time history response data obtained during the test program previously described. The data have been tabulated in the form of Fourier coefficients for reasons of compactness and for ease by the user to reproduce the unsteady component of the individual pressures and the complete (unsteady plus steady state components) integrated load results. This data volume contains the individual pressure response time histories along the chord followed by the corresponding integrated load results. A further description of these data tables can be found in the text that follows.
A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.; Ferris, James C.; Mcghee, Robert J.
1987-01-01
An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given.
NASA Technical Reports Server (NTRS)
Bereketab, Semere; Wang, Hong-Wei; Mish, Patrick; Devenport, William J.
2000-01-01
Two grids have been developed for the Virginia Tech 6 ft x 6 ft Stability wind tunnel for the purpose of generating homogeneous isotropic turbulent flows for the study of unsteady airfoil response. The first, a square bi-planar grid with a 12" mesh size and an open area ratio of 69.4%, was mounted in the wind tunnel contraction. The second grid, a metal weave with a 1.2 in. mesh size and an open area ratio of 68.2% was mounted in the tunnel test section. Detailed statistical and spectral measurements of the turbulence generated by the two grids are presented for wind tunnel free stream speeds of 10, 20, 30 and 40 m/s. These measurements show the flows to be closely homogeneous and isotropic. Both grids produce flows with a turbulence intensity of about 4% at the location planned for the airfoil leading edge. Turbulence produced by the large grid has an integral scale of some 3.2 inches here. Turbulence produced by the small grid is an order of magnitude smaller. For wavenumbers below the upper limit of the inertial subrange, the spectra and correlations measured with both grids at all speeds can be represented using the von Karman interpolation formula with a single velocity and length scale. The spectra maybe accurately represented over the entire wavenumber range by a modification of the von Karman interpolation formula that includes the effects of dissipation. These models are most accurate at the higher speeds (30 and 40 m/s).
NASA Technical Reports Server (NTRS)
Ramsey, John K.; Erwin, Dan
2004-01-01
An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.
Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9
NASA Technical Reports Server (NTRS)
Hess, R. W.; Wynne, E. C.; Cazier, F. W.
1982-01-01
Static and unsteady pressures were measured on a 50.45 degree clipped delta wing in the Langley Transonic Dynamics Tunnel with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code.
NASA Technical Reports Server (NTRS)
Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.
1945-01-01
Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from
Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
Venturelli, Roberto; Akanyeti, Otar; Visentin, Francesco; Ježov, Jaas; Chambers, Lily D; Toming, Gert; Brown, Jennifer; Kruusmaa, Maarja; Megill, William M; Fiorini, Paolo
2012-09-01
With the overall goal being a better understanding of the sensing environment from the local perspective of a situated agent, we studied uniform flows and Kármán vortex streets in a frame of reference relevant to a fish or swimming robot. We visualized each flow regime with digital particle image velocimetry and then took local measurements using a rigid body with laterally distributed parallel pressure sensor arrays. Time and frequency domain methods were used to characterize hydrodynamically relevant scenarios in steady and unsteady flows for control applications. Here we report that a distributed pressure sensing mechanism has the capability to discriminate Kármán vortex streets from uniform flows, and determine the orientation and position of the platform with respect to the incoming flow and the centre axis of the Kármán vortex street. It also enables the computation of hydrodynamic features which may be relevant for a robot while interacting with the flow, such as vortex shedding frequency, vortex travelling speed and downstream distance between vortices. A Kármán vortex street was distinguished in this study from uniform flows by analysing the magnitude of fluctuations present in the sensor measurements and the number of sensors detecting the same dominant frequency. In the Kármán vortex street the turbulence intensity was 30% higher than that in the uniform flow and the sensors collectively sensed the vortex shedding frequency as the dominant frequency. The position and orientation of the sensor platform were determined via a comparative analysis between laterally distributed sensor arrays; the vortex travelling speed was estimated via a cross-correlation analysis among the sensors. PMID:22498729
Forcing function effects on unsteady aerodynamic gust response. I - Forcing functions
NASA Technical Reports Server (NTRS)
Henderson, Gregory H.; Fleeter, Sanford
1992-01-01
The paper investigates the fundamental gust modeling assumption on the basis of a series of experiments performed in the Purdue Annular Cascade Research Facility. The measured unsteady flow fields are compared to linear-theory gust requirements. The perforated plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. The airfoil forcing functions exhibit characteristics far from linear-theory gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. It is shown that airfoil wakes, both compressor and turbine, cannot be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Sewall, William G.
1995-01-01
Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.
Control of Vortex Shedding on an Airfoil using Mini Flaps at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Oshiyama, Daisuke; Numata, Daiju; Asai, Keisuke
2015-11-01
In this study, the effects of mini flaps (MFs) on a NACA0012 airfoil were investigated experimentally at low Reynolds number. MFs are small flat plates attached to the trailing edge of an airfoil perpendicularly. All the tests were conducted at the Tohoku-University Basic Aerodynamic Research Tunnel at the chord Reynolds number of 25,000. Aerodynamic forces were measured using a 3-component balance and the surface flow was visualized by luminescent oil film technique. The results of force measurement show that attachment of MFs enhances lift and the enhanced lift increases with MF height. On the other hand, the results of oil flow visualization show that attachment of MFs enlarges the separated region on the airfoil rather than diminishes it. To understand the physical mechanism of MFs for lift enhancement, the flow around the airfoil was visualized by the smoke-wire method and the wake profile behind the airfoil was measured using a hot wire anemometer. It was found that vortices shed periodically from the tip of the MFs and interact with the separated shear layer from the upper surface. This unsteady vortex shedding forms a low-pressure region on the upper surface, generating higher lift. These results suggest that the height of MFs controls the frequency of vortex shedding behind the MF, forcing the separated shear layer on the upper surface flow in unsteady manner.
Transonic airfoil design for helicopter rotor applications
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Fiscko, K. A.
1979-01-01
Force and surface pressure distributions were measured for the 21% LS(1)-0421 modified airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. The lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions are included in the results. Incremental performance of flap and aileron are discussed and compared to the GA(W)-2 airfoil. Spoiler control which shows a slight reversal tendency at high alpha, is examined.
NASA Technical Reports Server (NTRS)
Hicks, R. M.
1982-01-01
Wind-tunnel test data for two closely related supercritical airfoils were compared with calculations obtained from a nonconservative, potential flow code over a Mach number range from 0.20 to 0.80. The potential flow code includes an iterated, integral boundary-layer correction. The theoretical pressure distributions correlated more closely with the experimental pressure distributions when the flow was entirely subsonic or subsonic with a small supersonic zone than when the flow contained a large supersonic zone. The predicted drag level was below the experimental values at nearly all test conditions and the difference in drag level for the two airfoils was not accurately predicted.
Unsteady potential flow past a propeller blade section
NASA Technical Reports Server (NTRS)
Takallu, M. A.
1990-01-01
An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.
NASA Technical Reports Server (NTRS)
Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2003-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
NASA Technical Reports Server (NTRS)
Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.
2001-01-01
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
NASA Technical Reports Server (NTRS)
Dussauge, J. P.; Debieve, J. F.
1980-01-01
The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.
Gregorek, G.M.; Kuniega, R.J.; Nyland, T.W.
1988-04-01
The aerodynamic similarity between a small (4-in. chord) wind tunnel model and a full-scale wind turbine blade (24-ft tip section with a 36-in. chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-In. High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-Ft Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the three-dimensional effects of blade twist and downwash in the blade tip section. Good correlation was obtained between the results of the two different experimental methods for angles of attack from -4/degree/ to 36/degree/ and aileron deflections from 0/degree/ to 90/degree/. 4 refs., 11 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.
1988-01-01
The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.
Supercritical flow about a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.
1979-01-01
The supercritical flow about a biconvex circular-arc airfoil is being thoroughly documented at Ames Research Center in order to provide experimental test cases suitable for guiding and evaluating current and future computer codes. The effects of angle of attack, effects of leading and trailing-edge splitter plates, additional unsteady pressure fluctuation (buffeting) measurements and glow-field shadowgraphs, and application of an oil-film technique to display separated-wake streamlines were studied. Computed and measured pressure distributions for steady and unsteady flows, using a recent computer code representative of current methodology, are compared. It was found that the numerical solutions are often fundamentally incorrect in that only strong (shock-polar terminology) shocks are captured, whereas experimentally, both strong and weak shock waves appear.
Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1993-01-01
A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.
Three-dimensional unsteady flow calculations in an advanced gas generator turbine
NASA Technical Reports Server (NTRS)
Rangwalla, Akil A.
1993-01-01
This paper deals with the application of a three-dimensional, unsteady Navier-Stokes code for predicting the unsteady flow in a single stage of an advanced gas generator turbine. The numerical method solves the three-dimensional thin-layer Navier-Stokes equations, using a system of overlaid grids, which allow for relative motion between the rotor and stator airfoils. Results in the form of time averaged pressures and pressure amplitudes on the airfoil surfaces will be shown. In addition, instantaneous contours of pressure, Mach number, etc. will be presented in order to provide a greater understanding of the inviscid as well as the viscous aspects of the flowfield. Also, relevant secondary flow features such as cross-plane velocity vectors and total pressure contours will be presented. Prior work in two-dimensions has indicated that for the advanced designs, the unsteady interactions can play a significant role in turbine performance. These interactions affect not only the stage efficiency but can substantially alter the time-averaged features of the flow. This work is a natural extension of the work done in two-dimensions and hopes to address some of the issues raised by the two-dimensional calculations. These calculations are being performed as an integral part of an actual design process and demonstrate the value of unsteady rotor-stator interaction calculations in the design of turbomachines.