Science.gov

Sample records for airi vrnik danuta

  1. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  2. Stationary nonlinear Airy beams

    SciTech Connect

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  3. Voigt Airy surface magneto plasmons.

    PubMed

    Hu, Bin; Wang, Qi Jie; Zhang, Ying

    2012-09-10

    We present a basic theory on Airy surface magneto plasmons (SMPs) at the interface between a dielectric layer and a metal layer (or a doped semiconductor layer) under an external static magnetic field in the Voigt configuration. It is shown that, in the paraxial approximation, the Airy SMPs can propagate along the surface without violating the nondiffracting characteristics, while the ballistic trajectory of the Airy SMPs can be tuned by the applied magnetic field. In addition, the self-deflection-tuning property of the Airy SMPs depends on the direction of the external magnetic field applied, owing to the nonreciprocal effect. PMID:23037243

  4. Bohmian trajectories of Airy packets

    SciTech Connect

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  5. Bohmian trajectories of Airy packets

    NASA Astrophysics Data System (ADS)

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-01

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space-time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject's theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  6. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  7. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  8. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  9. Intensity-symmetric Airy beams.

    PubMed

    Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó

    2015-03-01

    Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed. PMID:26366655

  10. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories. PMID:23426323

  11. Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media

    PubMed Central

    Shen, Ming; Gao, Jinsong; Ge, Lijuan

    2015-01-01

    We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878

  12. Acoustic non-diffracting Airy beam

    SciTech Connect

    Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  13. Spatiotemporal dynamics of counterpropagating Airy beams

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-01-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing. PMID:26315530

  14. Spatiotemporal dynamics of counterpropagating Airy beams

    NASA Astrophysics Data System (ADS)

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-08-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing.

  15. Image signal transmission with Airy beams.

    PubMed

    Liang, Yi; Hu, Yi; Song, Daohong; Lou, Cibo; Zhang, Xinzheng; Chen, Zhigang; Xu, Jingjun

    2015-12-01

    We propose and demonstrate an approach for image signal transmission based on self-accelerating Airy beams. The spatial information is encoded in the Fourier space through a 4-f telescope system, which can circumvent obstacles to realize a self-bending signal transmission. Furthermore, the information can be retrieved from the Airy beams after propagation through a disordered scattering medium. Our experimental results agree well with theoretical predictions. PMID:26625082

  16. Airy-type solitary wave in highly noninstantaneous Kerr media.

    PubMed

    Deng, Fu; Hong, Weiyi; Deng, Dongmei

    2016-07-11

    We investigate the dynamics of a decelerating Airy pulse in the highly noninstantaneous Kerr media. It is found that the deceleration of the Airy pulse can be counteracted by the highly noninstantaneous nonlinearity. When the power of the pulse is specifically chosen, the deceleration of the Airy pulse can be totally restrained, and an Airy-type solitary wave is observed within several dispersion lengths. PMID:27410868

  17. Elegant Hermite-Airy beams

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Zhang, Lijun; Ru, Guoyun

    2015-09-01

    As Ai(x)Ai(-x) can be approximated by \\text{exp}≤ft(-{{x}2}/2\\right) , a kind of elegant Hermite-Airy (EHA) beam that is similar to the elegant Hermite-Gaussian (EHG) beam is introduced in this paper. Analytical expression of the EHA beams passing through an ABCD paraxial optical system is derived. By using the method of numerical fitting, the approximate expressions of 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> for an EHA beam are presented, respectively. When the transverse mode number is larger than 2, 02> , 04> , <\\Thetaj2> , <\\Thetaj4> , and 02\\Thetaj2> of an EHA beam are all larger than those of the EHG beam. Based on the higher-order intensity moments, one can calculate the beam propagation factor, the beam half width, and the kurtosis parameter of the EHA beam passing through an ABCD paraxial optical system. As a numerical example, the propagation characteristics of the EHA beam are demonstrated in free space. Moreover, the propagation properties of the EHA beam are compared with those of the corresponding EHG beam. The evolutionary process of the EHA beam is far slower than that of the corresponding EHG beam. The research denotes that the EHA beams can be used to describe specially distributed optical beams that can not be characterized by the existing EHG beam model. The EHA beam model enriches and replenishes the existing beam model.

  18. Ultrafast Airy beam optical parametric oscillator.

    PubMed

    Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  19. Ultrafast Airy beam optical parametric oscillator

    PubMed Central

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  20. Ultrafast Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-08-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  1. Temporal Airy pulses control cell poration

    NASA Astrophysics Data System (ADS)

    Courvoisier, S.; Götte, N.; Zielinski, B.; Winkler, T.; Sarpe, C.; Senftleben, A.; Bonacina, L.; Wolf, J. P.; Baumert, T.

    2016-07-01

    We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment. The energy and peak intensity thresholds required for cell poration with single pulse in the nJ range can be significantly reduced (25% reduction in energy and 88% reduction in peak intensity) by using temporal Airy pulses, controlled by positive third order dispersion, as compared to bandwidth limited pulses. Temporal Airy pulses are also effective to control the morphology of the induced pores, with prospective applications from cellular to tissue opto-surgery and transfection.

  2. Airy, Sir George Biddell (1801-92)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A brilliant Cambridge mathematician (Senior Wrangler 1823, i.e. leader of the graduating mathematics class), Airy became the seventh Astronomer Royal in 1835 after a brief period as Lucasian Professor at Cambridge. His output was prodigious, and he published nearly 400 scientific papers and 150 reports on various scientific issues, such as the gauge of railways, spectacles to correct astigmatism,...

  3. Creating Airy beams employing a transmissive spatial light modulator.

    PubMed

    Latychevskaia, Tatiana; Schachtler, Daniel; Fink, Hans-Werner

    2016-08-01

    We present a detailed study of two novel methods for shaping the light optical wavefront by employing a transmissive spatial light modulator (SLM). Conventionally, optical Airy beams are created by employing SLMs in the so-called all-phase mode. In the first method, a numerically simulated lens phase distribution is loaded directly onto the SLM, together with the cubic phase distribution. An Airy beam is generated at the focal plane of the numerical lens. We provide for the first time, to the best of our knowledge, quantitative properties of the formed Airy beam. We derive the formula for deflection of the intensity maximum of the so-formed Airy beam, which is different from the quadratic deflection typical of Airy beams. We cross-validate the derived formula by both simulations and experiment. The second method is based on the fact that a system consisting of a transmissive SLM sandwiched between two polarizers can create a transmission function with negative values. This observation alone has the potential for various other wavefront modulations where the transmission function requires negative values. As an example for this method, we demonstrate that a wavefront can be modulated by passing the SLM system with transmission function with negative values by loading an Airy function distribution directly onto the SLM. Since the Airy function is a real-valued function but also with negative values, an Airy beam can be generated by direct transfer of the Airy function distribution onto such an SLM system. In this way, an Airy beam is generated immediately behind the SLM. As both new methods do not employ a physical lens, the two setups are more compact than conventional setups for creating Airy beams. We compare the performance of the two novel methods and the properties of the created Airy beams. PMID:27505393

  4. Accelerating Airy-Gauss-Kummer localized wave packets

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-01

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy-Gauss-Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy-Gauss-Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers.

  5. Autobiography of Sir George Biddell Airy

    NASA Astrophysics Data System (ADS)

    Airy, George Biddell; Airy, Wilfred

    2010-06-01

    Preface; 1. Personal sketch of George Biddell Airy; 2. From his birth to his taking his B.A. degree; 3. At Trinity College, Cambridge; 4. At Cambridge Observatory; 5. At Greenwich Observatory, 1836-1846; 6. At Greenwich Observatory, 1846-1856; 7. At Greenwich Observatory, 1856-1866; 8. At Greenwich Observatory, 1866-1876; 9. At Greenwich Observatory to his resignation in 1881; 10. At the White House, Greewich, to his death; Appendix: List of printed papers; Index.

  6. The structure of Airy's stress function in multiply connected regions

    NASA Technical Reports Server (NTRS)

    Grioli, Giusippe

    1951-01-01

    In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.

  7. Propagation Dynamics of Airy Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-07-17

    We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope, in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant, and are manifested by the generation of water-wave solitons. PMID:26230797

  8. Rainbows: Mie computations and the Airy approximation.

    PubMed

    Wang, R T; van de Hulst, H C

    1991-01-01

    Efficient and accurate computation of the scattered intensity pattern by the Mie formulas is now feasible for size parameters up to x = 50,000 at least, which in visual light means spherical drops with diameters up to 6 mm. We present a method for evaluating the Mie coefficients from the ratios between Riccati-Bessel and Neumann functions of successive order. We probe the applicability of the Airy approximation, which we generalize to rainbows of arbitrary p (number of internal reflections = p - 1), by comparing the Mie and Airy intensity patterns. Millimeter size water drops show a match in all details, including the position and intensity of the supernumerary maxima and the polarization. A fairly good match is still seen for drops of 0.1 mm. A small spread in sizes helps to smooth out irrelevant detail. The dark band between the rainbows is used to test more subtle features. We conclude that this band contains not only externally reflected light (p = 0) but also a sizable contribution f rom the p = 6 and p = 7 rainbows, which shift rapidly with wavelength. The higher the refractive index, the closer both theories agree on the first primary rainbow (p = 2) peak for drop diameters as small as 0.02 mm. This may be useful in supporting experimental work. PMID:20581954

  9. Airy structure in 16O+14C nuclear rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2015-08-01

    The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.

  10. Controllable circular Airy beams via dynamic linear potential

    NASA Astrophysics Data System (ADS)

    Zhong, Hua; Zhang, Yiqi; Belić, Milivoj R.; Li, Changbiao; Wen, Feng; Zhang, Zhaoyang; Zhang, Yanpeng

    2016-04-01

    We investigate controllable spatial modulation of circular autofocusing Airy beams, under action of different dynamic linear potentials, both theoretically and numerically. We introduce a novel treatment method in which the circular Airy beam is represented as a superposition of narrow azimuthally-modulated one-dimensional Airy beams that can be analytically treated. The dynamic linear potentials are appropriately designed, so that the autofocusing effect can either be weakened or even eliminated when the linear potential exerts a "pulling" effect on the beam, or if the linear potential exerts a "pushing" effect, the autofocusing effect can be greatly strengthened. Numerical simulations agree with the theoretical results very well.

  11. Accelerating Airy beams in the presence of inhomogeneities

    NASA Astrophysics Data System (ADS)

    Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel

    2016-06-01

    Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.

  12. Controllable Airy-like beams induced by tunable phase patterns

    NASA Astrophysics Data System (ADS)

    Li, D.; Qian, Y.

    2016-01-01

    We propose and experimentally observe a novel family of Airy-like beams. First, we theoretically investigate the physical generation of our proposed controllable Airy-like beams by introducing a rotation angle factor into the phase function, which can regulate and flexibly control the beam wavefront. Meanwhile we can also readily control the main lobes of these beams to follow appointed parabolic trajectories using the rotation angle factor. We also demonstrate that the controllable Airy-like beams lack the properties of being diffraction-free and self-healing. The experiments are performed and the results are in accord with the theoretical simulations. We believe that the intriguing characteristics of our proposed Airy-like beams could provide more degrees of freedom, and are likely to give rise to new applications and lend versatility to the emerging field.

  13. Quasi-Airy beams along tunable propagation trajectories and directions.

    PubMed

    Qian, Yixian; Zhang, Site

    2016-05-01

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation. PMID:27137563

  14. AiryÕs Greenwich Staff

    NASA Astrophysics Data System (ADS)

    Chapman, A.

    2012-01-01

    One major research development in the history of astronomy, pioneered in particular by the SHA, is a shift from the concern with what the ÔgiantsÕ, such as Galileo or Newton, achieved to an examination of the wider spectrum of astronomical personnel. And one rich field of inquiry here is that body of men, and later of women, who earned their livings as assistant astronomers. It is, in fact, an abundantly documented area, including figures employed in Grand Amateur, university, and civic observatories, though without doubt the richest and longest-running body of data pertaining to what might be called the ÔAstronomersÕ GentlemenÕ comes from the archives of the Royal Observatory, Greenwich, especially for the years 1835 to 1881, when Sir George Biddell Airy was Astronomer Royal.

  15. Dynamical deformed Airy beams with arbitrary angles between two wings.

    PubMed

    Liang, Yi; Hu, Yi; Ye, Zhuoyi; Song, Daohong; Lou, Cibo; Zhang, Xinzheng; Xu, Jingjun; Morandotti, Roberto; Chen, Zhigang

    2014-07-01

    We study both numerically and experimentally the acceleration and propagation dynamics of 2D Airy beams with arbitrary initial angles between their "two wings." Our results show that the acceleration of these generalized 2D Airy beams strongly depends on the initial angles and cannot be simply described by the vector superposition principle (except for the normal case of a 90° angle). However, as a result of the "Hyperbolic umbilic" catastrophe (a two-layer caustic), the main lobes of these 2D Airy beams still propagate along parabolic trajectories even though they become highly deformed. Under such conditions, the peak intensity (leading energy flow) of the 2D Airy beams cannot be confined along the main lobe, in contrast to the normal 90° case. Instead, it is found that there are two parabolic trajectories describing the beam propagation: one for the main lobe, and the other for the peak intensity. Both trajectories can be readily controlled by varying the initial wing angle. Due to their self-healing property, these beams tend to evolve into the well-known 1D or 2D Airy patterns after a certain propagation distance. The theoretical analysis corroborates our experimental observations, and explains clearly why the acceleration of deformed Airy beams increases with the opening of the initial wing angle. PMID:25121433

  16. 75 FR 43816 - Amendment of Class E Airspace; Mount Airy, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...This action amends Class E Airspace at Mount Airy, NC, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Mount Airy-Surry County...

  17. Generation and propagation dynamics of Airy beam with the tunable tail

    NASA Astrophysics Data System (ADS)

    Liu, Huilong; Lü, Yanfei; Xia, Jing; Pu, Xiaoyun; Zhang, Li

    2016-05-01

    We introduce a new kind of Airy beam called Airy beam with the tunable tail, which can be generated from the elliptical flat-topped Gaussian beam. The analytical formula of Airy beam with the tunable tail is derived. Airy beam with the single tail can be obtained by adjusting the ration of the beam width of elliptical flat-topped Gaussian beam. The tail length of Airy beam can be controlled by the order N of incident beam. The normalized intensity distributions of Airy beam with the tunable tail propagating in free space are studied, and the propagation dynamics of Airy beam with the single tail are investigated. Compared with the Airy beam generated from the fundamental Gaussian beam or the flat-topped Gaussian beam, some interesting and useful information has been found.

  18. Vessel extraction using the Buckmaster-Airy filter

    NASA Astrophysics Data System (ADS)

    Sanchez, Valentina

    2016-05-01

    A new and powerful technique for vessel extraction from biomedical images using the so called Buckmaster- Airy Filter is designed, prototyped and tested. The design, the prototyping and the testing were performed using computer algebra software, specifically the Maple package ImageTools. Some preliminary experiments were performed ant the results were excellent. Our new technique is based on partial differential equations.. Specifically two dimensional Airy diffusion equation and the two dimensional Buckmaster equation were used for designing the new Buckmaster-Airy Filter. Such new filter is able to enhance the quality of an image, producing simultaneously noise elimination, but without altering the edges of the image. The new Bukmaster-Airy filter is applied to the target image via discrete convolution. The results of some experiments of vessel extraction will be presented; and some lines for future research such as the possible implementation of the Buckmaster-Airy Filter as a new plugging for the program ImageJ, will be proposed.

  19. Airy-Kaup-Kupershmidt filters applied to digital image processing

    NASA Astrophysics Data System (ADS)

    Hoyos Yepes, Laura Cristina

    2015-09-01

    The Kaup-Kupershmidt operator is applied to the two-dimensional solution of the Airy-diffusion equation and the resulting filter is applied via convolution to image processing. The full procedure is implemented using Maple code with the package ImageTools. Some experiments were performed using a wide category of images including biomedical images generated by magnetic resonance, computarized axial tomography, positron emission tomography, infrared and photon diffusion. The Airy-Kaup-Kupershmidt filter can be used as a powerful edge detector and as powerful enhancement tool in image processing. It is expected that the Airy-Kaup-Kupershmidt could be incorporated in standard programs for image processing such as ImageJ.

  20. Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto

    2015-02-01

    We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.

  1. Optical trapping and manipulation of Mie particles with Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-02-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences.

  2. Super-resolution imaging based on virtual Airy spot

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Guo, Cheng; Cui, Junning; Wu, Qun

    2015-02-01

    Based on the theoretical model of Airy spot, a method is proposed for improving the imaging speed from confocal microscopy. The virtual Airy spot is designed for obtaining the pattern on CCD at detecting plane. Here the size of the spot is determined by the parameters of imaging system and intensity data from point detector, which can receive data quicker than CCD. The treatment can improve the speed of imaging comparing with CCD at receiving end. The virtual structured detection is also utilized for generating high-resolution image. Some numerical simulation results are provided for demonstrating the validity of the proposed method.

  3. Photorefractive and computational holography in the experimental generation of Airy beams

    NASA Astrophysics Data System (ADS)

    Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.

    2016-05-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.

  4. Experimental observation and analysis of all-fiber plasmonic double Airy beams.

    PubMed

    Guan, Chunying; Ding, Ming; Shi, Jinhui; Hua, Ping; Wang, Pengfei; Yuan, Libo; Brambilla, Gilberto

    2014-07-28

    The propagation dynamics of all-fiber plasmonic double parallel and orthogonal Airy beams are experimentally demonstrated. Two slits and groove arrays were fabricated by focused ion beam (FIB) milling on the gold coated end facet of an optical fiber to generate two Airy beams simultaneously. Sub-wavelength self-focusing of double parallel Airy beams in free space is experimentally verified. Effects of geometrical parameters on the intensity profiles of the focal spot are analyzed in detail. The characteristics at the junction of the two main lobes can be adjusted by controlling the initial phase difference of the two Airy beams. The propagation of two orthogonal Airy beams is also experimentally investigated. Multi-Airy beams are of importance to realize all-fiber optical trapping, fiber integrated devices, and laser shaping. PMID:25089455

  5. Multi-focus of modulated polarized Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyang; Lin, Jie; Tan, Jiubin; Jin, Peng

    2016-07-01

    The focusing performance of a modulated polarized Airy beam is explored by using the Richards and Wolf vectorial diffraction model in a high numerical aperture system. The multiple foca appeared on the focal plane or along the optical axis when a complex amplitude modulating function was introduced. Two focusing spots with long-focal-depth were additionally observed due to the Airy beam and complex amplitude modulation. The distance between the focuses were changed from 1.15λ to 3.56λ with FWHM of 0.9λ for one-dimensional linear polarized incident beam and from 1.15λ to 3.64λ for two-dimensional beam. The multiple focusing spots are expected to apply in the field of optical trapping and particle acceleration.

  6. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  7. Propagation of time-truncated Airy-type pulses in media with quadratic and cubic dispersion.

    PubMed

    Borda-Hernández, José A; Zamboni-Rached, Michel; Shaarawi, Amr; Besieris, Ioannis M

    2015-10-01

    In this paper, we describe analytically the propagation of Airy-type pulses truncated by a finite-time aperture when second- and third-order dispersion effects are considered. The mathematical method presented here, which is based on the superposition of exponentially truncated Airy pulses, is very effective and allows us to avoid the use of time-consuming numerical simulations. We analyze the behavior of the time-truncated ideal Airy pulse and also the interesting case of a time-truncated Airy pulse with a "defect" in its initial profile, which reveals the self-healing property of this kind of pulse solution. PMID:26479932

  8. 75 FR 14381 - Amendment of Class E Airspace; Mount Airy, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ...This action proposes to amend Class E Airspace at Mount Airy, NC, to accommodate the additional airspace needed for the Standard Instrument Approach Procedures (SIAPs) developed for Mount Airy-Surry County Airport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations at the...

  9. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system. PMID:27409692

  10. Analytical study of the self-healing property of Airy beams

    NASA Astrophysics Data System (ADS)

    Chu, Xiuxiang; Zhou, Guoquan; Chen, Ruipin

    2012-01-01

    An analytical expression for the optical field of an Airy beam partially blocked by an opaque obstacle is derived. The self-healing properties of the Airy beam are studied and discussed in detail. The study shows that the self-healing process of the Airy beam is affected by many factors such as the opaque obstacle size, propagation distance, wavelength, and parameters of the Airy beam. The self-healing process is caused by the convergence of energy from the side to the position of the opaque obstacle and is finished when the convergence of energy flow disappears. When the propagation distance is short, the main lobe of the Airy beam is affected by the obstruction located near the main lobe. When the propagation distance is long, the main lobe of the Airy beam can be affected by the obstruction located far away from the main lobe. The result agrees with the existing results and can be explained by the caustic of the Airy beam.

  11. Generalized Airy functions for use in one-dimensional quantum mechanical problems

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.

    1972-01-01

    The solution of the one dimensional, time independent, Schroedinger equation in which the energy minus the potential varies as the nth power of the distance is obtained from proper linear combinations of Bessel functions. The linear combinations called generalized Airy functions, reduce to the usual Airy functions Ai(x) and Bi(x) when n equals 1 and have the same type of simple asymptotic behavior. Expressions for the generalized Airy functions which can be evaluated by the method of generalized Gaussian quadrature are obtained.

  12. Control on the anomalous interactions of Airy beams in nematic liquid crystals.

    PubMed

    Shen, Ming; Li, Wei; Lee, Ray-Kuang

    2016-04-18

    We reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals. PMID:27137288

  13. Numerical evaluation of the incomplete airy functions and their application to high frequency scattering and diffraction

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1992-01-01

    The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals of such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. Here, a convergent series solution form for the incomplete Airy functions is derived. Asymptotic expansions involving several terms were also developed and serve as large argument approximations. The combination of the series solution form with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.

  14. AIRY: a complete tool for the simulation and the reconstruction of astronomical images

    NASA Astrophysics Data System (ADS)

    La Camera, Andrea; Carbillet, Marcel; Olivieri, Chiara; Boccacci, Patrizia; Bertero, Mario

    2012-07-01

    The Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CADS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a specific task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and Richardson-Lucy. Several modules of AIRY have been improved and, in particular, the one used for the extraction and extrapolatioThe Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CAOS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a speci_c task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and

  15. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    SciTech Connect

    Wen, Wei; Chu, Xiuxiang

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  16. Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2014-01-01

    We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.

  17. Propagation of Airy-Gaussian beams in a chiral medium

    NASA Astrophysics Data System (ADS)

    Deng, Fu; Yu, Weihao; Huang, Jiayao; Zhao, Ruihuang; Lin, Jiong; Deng, Dongmei

    2016-04-01

    We have expressed and investigated the propagation of Airy-Gaussian beams (AiGBs) in a chiral medium analytically. It is shown that AiGBs split into two components, i.e., the left circularly polarized (LCP) beams and the right circularly polarized (RCP) beams, which have a different propagation trajectory and are affected by the chiral parameter γ and the distribution factor χ0. It is found that the LCP beams accelerate faster than the RCP beams during propagation, and are influenced by the chiral parameter. With an increase in the chiral parameter, the acceleration of the LCP beams increases, but that of the RCP beams decreases. So, it is significant that we can control the self-acceleration of AiGBs by varying the chiral parameter and the distribution factor.

  18. Interaction of Airy-Gaussian beams in Kerr media

    NASA Astrophysics Data System (ADS)

    Peng, Yulian; Peng, Xi; Chen, Bo; Zhou, Meiling; Chen, Chidao; Deng, Dongmei

    2016-01-01

    We study the interaction of the Airy-Gaussian (AiG) beams by using the numerical simulations with the split-step Fourier method. The results show that the single breathers and breather pairs can be formed in the condition with interaction. The breathers can be formed with the enough intensity of interactive beams. By adjusting the parameters of amplitude, interval, phase and χ0, we find that the interaction of the two beams is the strongest with in-phase and out-of-phase cases, especially in the shorter distance. Moreover, both the interaction intensity and the location, the interaction happens, can be changed by adjusting the distribution factor χ0 of the beams. It is notable that the various propagation directions of the beams can be obtained by changing the phase, at the same situation, when the interval of the two beams becomes narrower, the phase plays an important role of controlling the direction of the accelerated spot.

  19. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  20. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    PubMed Central

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  1. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  2. Enhanced and unusual angle-dependent optical forces exerted on Mie particles by Airy surface plasmon wave

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xue, Yanli; Li, Jiafang; Li, Zhi-Yuan

    2016-08-01

    In this paper, using an angular spectrum method, we develop an analytical theory for Airy surface plasmon wave excited in a classical Kretschmann setup. It is found that the center of an Airy surface plasmon polariton (SPP) wave has a giant positive lateral shift, and the sidelobes move forward along the surface. The intensity of the Airy SPP wave is greatly enhanced, the corresponding optical forces can be enhanced by more than one order of magnitude. Importantly, we show that the sidelobes of the Airy SPP beam can lead to the splitting of optical force spectra with the variation of incident angle, which is accompanied by strong oscillations emerging at the optimal metal layer thickness. Moreover, the effects of multiple scatterings of the Airy SPP wave between the particle and the metal layer are also discussed. The theoretical analysis could open up new perspectives for the applications of Airy beam in optical manipulation and surface-enhanced Raman scattering.

  3. Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Chen, Chidao; Peng, Xi; Peng, Yulian; Zhou, Meiling; Deng, Dongmei; Guo, Hong

    2016-05-01

    Nonlinear optical phenomena are of great practical interest in optics. The evolution of ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium is investigated using the nonlinear Schrödinger equation. Numerical simulations indicate that the distribution factor b can influence the formation of the ring Airy Gaussian beams. Results show that the beams can be oscillating, and the light filament can be achieved under appropriate laser input power. On the other hand, the evolution of the ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium can be implemented, and the numerical simulations of the holographic generation of the ring Airy Gaussian vortex beams propagated in the medium demonstrate that the vortex can be preserved along the propagation. The Poynting vector shows that the energy flow of the ring Airy Gaussian beams flows in the opposite direction on both sides of the focus plane; however, for beams with a spiral phase, the flow direction remains the same; the energy flow can rotate in opposite directions on both sides of the focal plane.

  4. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  5. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.

    PubMed

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  6. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    PubMed Central

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  7. Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Jiang, Bo; Lü, Shuchao; Liu, Yongqi; Li, Shasha; Cao, Zheng; Qi, Xinyuan

    2016-03-01

    We generate various kinds of arrays of Gaussian vortex, Bessel and Airy beams, respectively, with digital phase holograms (DPH) based on the fractional-Talbot effect by using the phase-only spatial light modulator (SLM). The linear and nonlinear transmissions of these beam arrays in strontium barium niobate (SBN) crystal are investigated numerically and experimentally. Compared with Gaussian vortex arrays, Bessel and Airy beam arrays can keep their patterns unchanged in over 20 mm, realizing non-diffracting transmission. The Fourier spectra (far-field diffraction patterns) of the lattices are also studied. The experimental results are in good agreement with the numerical simulations.

  8. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam.

    PubMed

    Cheng, Hua; Zang, Weiping; Zhou, Wenyuan; Tian, Jianguo

    2010-09-13

    The radiation forces and trajectories of Rayleigh dielectric particles induced by one-dimensional Airy beam were numerically analyzed. Results show that the Airy beam drags particles into the optical intensity peaks, and guides particles vertically along parabolic trajectories. Viscosity of surrounding medium significantly affects the trajectories. Random Brownian force affects the trajectories. Meanwhile, trapping potential depths and minimum trapping particle radii in different potential wells were also discussed. The trapping stability could be improved by increasing either the input peak intensity or the particle radius. PMID:20940930

  9. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  10. Anomalous change of Airy disk with changing size of spherical particles

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen

    2016-02-01

    Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.

  11. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    PubMed

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  12. Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this paper a simple and easy to implement method that uses the Airy disk generated from a Fraunhofer diffraction pattern due to a circular aperture will be used to estimate the wavelength of the illuminating laser source. This estimation is based on the measurement of the Airy disk diameter, whose approximation is directly proportional to the wavelength of the light source and to the distance between the aperture and the image plane; and inversely proportional to the diameter of the aperture. Due to the characteristics and versatility of the present proposal, this is perfectly suitable for use in graduate or undergraduate physics laboratories, or even in classrooms for educational and/or demonstrative purposes.

  13. A compact Airy beam light sheet microscope with a tilted cylindrical lens

    PubMed Central

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J.; Ferrier, David E. K.; Vettenburg, Tom; Dholakia, Kishan

    2014-01-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  14. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    PubMed

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse. PMID:25360922

  15. Dr. Airy's "morbid affection of the eyesight": lessons from Teichopsia Circa 1870.

    PubMed

    Lepore, Frederick E

    2014-09-01

    Hubert Airy's iconic drawing of his own migraine visual aura for which he coined the term, "teichopsia," conveys important lessons for the contemporary clinician. His observations of the expansion ("build-up"), minification/magnification, and color/achromatopsia of migrainous teichopsia are consistent with (and possibly anticipatory of) the later discoveries of cortical spreading depression, cortical magnification of primary visual cortex (V1), and specialized cortical centers for color vision. PMID:24840023

  16. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    SciTech Connect

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  17. Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Wu

    2015-12-01

    We discuss a novel method for generating hyper-broadband mid-infrared (MIR) supercontinua (SC) with coherent bandwidth from ~2 μm to ~10 μm by using As2Se3 photonic crystal fiber (PCF) and a 4.1 μm pump with femtosecond (fs) Airy pulse profile. Our simulations confirm that, when pumping in the normal dispersion region, the deceleration and self-healing properties of the Airy pulse can suppress the incoherent noise in modulational instability (MI) induced SC generation and maintain the pulse coherence over a long propagation distance. We also find that fs Airy pulse can generate an MIR SC with a broader coherent bandwidth than these can be achieved with fs parabolic secant pulse.

  18. Complex Airy analysis of photoreflectance spectra for III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Estrera, J. P.; Duncan, W. M.; Glosser, R.

    1994-03-01

    We present a detailed analysis of photoreflectance (PR) spectra of semiconductors using complex Airy functions and their derivatives. We demonstrate that photoreflectance spectra can be treated in terms of a single complex Airy function with an energy-dependent broadening parameter. We show analytically and numerically that this complex Airy PR treatment is functionally equivalent within field conditions appropriate for PR to the model of R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts, and A. Aharoni [Phys. Rev. B 37, 4044 (1988)], where the effects of gradient electric field and non-flat-band modulation are treated explicitly. The equivalence occurs because the field gradient and non-flat-band modulation effects are included in our model in the energy dependence of the phenomenological broadening parameter Γ*=(Γ0/ħθ)exp[δ(ħω-Eg)], where ħω is the photon energy, Eg is the band-gap energy, Γ0 is the nominal broadening at the band-gap energy, and δ is a parameter directly proportional to the electric-field gradient and modulation between two finite fields. The major utility of our model is that a single effective layer can be treated instead of a more computationally intensive laminar model. We apply our complex Airy model to bulk semiconductors such as GaAs, InP, and InxGa1-xAs. In the photoreflectance spectra of these semiconductors, our model considers three distinct but convolved features at E0 which represent the light- and heavy-hole valence bands and an exciton-impurity feature below E0. At E0+Δ0 our model considers two features which are related to the spin-orbit-split valence band and a second state just below this critical point. For GaAs, we determined from our PR modeling that the band-gap energy for these films was 1.422+/-0.003 eV, which agreed, within experimental error, with the band-gap energy measured by room-temperature photoluminescence. A feature was found below the E0 gap in the GaAs samples with energies

  19. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-04-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  20. Generation of χ(2) solitons from the Airy wave through the parametric instability.

    PubMed

    Mayteevarunyoo, Thawatchai; Malomed, Boris A

    2015-11-01

    Spontaneous creation of solitons in quadratic media by the downconversion (i.e., parametric instability against the generation of fundamental-frequency excitations) from the truncated Airy-wave (AW) mode in the second-harmonic component is studied. Parameter regions are identified for the generation of one, two, and three solitons, with additional small-amplitude "jets." Shares of the total power carried by individual solitons are found. Also considered are soliton patterns generated by the downconversion from a pair of AWs bending in opposite directions. PMID:26512490

  1. Two-dimensional χ^2 solitons generated by the downconversion of Airy waves

    NASA Astrophysics Data System (ADS)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2016-07-01

    Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric $\\chi^{2}$ solitons is considered in the 2D system with the quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is considered too. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input.

  2. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-06-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  3. Test drilling and aquifer test in the Marburg schist near Mount Airy, Frederick County, Maryland

    USGS Publications Warehouse

    Meyer, Gerald

    1955-01-01

    This memorandum summarizes briefly the data obtained by test drilling and in an aquifer test at Mount Airy, Md. The tests were a part of the State - Federal cooperative study of the ground-water resources of Frederick County, and it is intended that a more complete analysis of the test data will be included in a future report describing the ground-water resource of Frederick County. The purpose of this memorandum is to make the test data immediately available to the general public. Mount Airy is located along the Carroll-Frederick County boundary bout 2 miles north of the intersection of U.S. Highway 40 with the county boundary. Its population is approximately 1,000. The municipal well field, consisting of two drilled wells (fig. 1) is in a valley about one-half mile west of the center of Mount Airy, within about 400 feet of a small stream, and north of Prospect Road. Well 1, about 40 feet north of Prospect Road, is 125 feet deep, 8 inches in diameter, and reportedly yielded 265 gallons per minute (gpm) in 1947 and 201 gpm in a half hour test in March 1955. The writer determined during the tests described in this memorandum that the well has about 34 feet of casing. Well 2, 85 feet north of well 1, is 96 feet deep, 8 inches in diameter, and reportedly yielded 120 gpm in 1947 and 127 gpm in a half hour test in March 1955. The wells are equipped with deep-well turbine pumps powered by electric motors. Cenorally only well 1 is used, and it is pumped for only a few short intervals each day to meet the water requirements of the town (about 75,000 - 80,000 gallons daily). The reported yields of these wells are considerably higher than the average for crystalline-rock wells in the Piedmont of Maryland. The test drilling was done under contract with Edward I. Brown, well driller, between May 3 and May 12, 1955. Water-supply facilities of the town of Mount Airy were kindly made available for the aquifer tests from May 22 to May 30, 1955. The pumping tests consisted of a

  4. Two-dimensional χ2 solitons generated by the downconversion of Airy waves.

    PubMed

    Mayteevarunyoo, Thawatchai; Malomed, Boris A

    2016-07-01

    Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric χ2 solitons is considered in a 2D system with quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is also considered. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input. PMID:27367065

  5. Bound states of breathing Airy-Gaussian beams in nonlocal nonlinear medium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    2016-05-01

    With a nonlocal model, we investigate the propagation dynamics of a single Airy-Gaussian (AiG) beam and their interaction in one-dimensional condition by means of direct numerical simulations. With the split-step Fourier method, numerical results shows that nonlocality can support periodic intensity distribution of AiG beams leading to the formation of stable bound states. Especially, by tuning the phase difference between the two beams, we can steer the center of the bound AiG beams in nonlocal nonlinear media.

  6. Diffraction by three-dimensional slit-shape curves: decomposition in terms of Airy and Pearcey functions.

    PubMed

    Martinez-Vara, P; Barranco, J Silva; De Los Santos G, S I; Munoz-Lopez, J; Torres-Rodriguez, M A; Xique, R Suarez; Martinez-Niconoff, G

    2015-08-01

    We analyze the diffraction field generated by coherent illumination of a three-dimensional transmittance characterized by a slit-shape curve. Generic features are obtained using the Frenet-Serret equations, which allow a decomposition of the optical field. The analysis is performed by describing the influence of the curvature and torsion on osculating, normal, and rectifying planes. We show that the diffracted field has a decomposition in three optical fields propagating along three optical axes that are mutually perpendicular. The decomposition is in terms of the Pearcey and Airy functions, and the generalized Airy function. Experimental results are shown. PMID:26258341

  7. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  8. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  9. Evolution of finite energy Airy pulses and soliton generation in optical fibers with cubic-quintic nonlinearity.

    PubMed

    Zhong, Xianqiong; Du, Xiantong; Cheng, Ke

    2015-11-16

    We numerically simulate the propagation of finite energy Airy pulses in optical fibers with cubic-quintic nonlinearity and analyze the effects of quintic nonlinear parameters and soliton order number on their evolution properties. The soliton pulses are observed, whose peak amplitudes and corresponding temporal positions will vary with the propagation distance. Depending on different quintic nonlinearity parameters and soliton order number, the soliton pulse temporal positions exhibit weak decayed oscillations and then nearly linearly shift to leading or trailing edge of the Airy wavepacket, or tend to fixed positions, and the peak amplitudes also exhibit decayed oscillations but with different oscillation amplitude and central values. For large soliton order number, the soliton pulses are considerably compressed. Other weak dispersive wave pulses will appear near the main soliton pulses and gradually depart from the main soliton pulses. In the case of small soliton order, despite their considerable energy attenuation, the main lobes and even minority of the neighboring side lobes of the Airy pulses can still recover from the energy transfer to the soliton pulses and the dispersive wave pulses and maintain their unique properties of self-healing and self-acceleration in time for a very long distance. In the case of large soliton order, however, the Airy wavepacket only remains its very weak background and even disappears quickly. PMID:26698430

  10. Propagation of an Airy-Gaussian vortex beam in linear and nonlinear media

    NASA Astrophysics Data System (ADS)

    Chen, Chidao; Peng, Xi; Chen, Bo; Peng, Yulian; Zhou, Meiling; Yang, Xiangbo; Deng, Dongmei

    2016-05-01

    We investigate the propagation of an Airy-Gaussian vortex (AiGV) beam in free space and Kerr media. It is interesting to see that the beam will perform self-healing and main lobe focusing both in free space and Kerr media when the vortex locates at the center of the plane. By controlling the number of the topological charge, the beam distribution factor χ 0 and the position of the vortex, we can control the intensity distribution of the AiGV beam in the out plane both in free space and Kerr media. It is found that when the vortex is close to the center of the plane, it has a strong effect on the intensity distribution of the beam. When the beam propagates in the number of the topological charge, the partial collapse will take place even with low initial input power. We find that the main lobe focusing contributes to this partial collapse.

  11. Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.

    PubMed

    Stanley, Matthew

    2012-06-01

    Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion. PMID:22908421

  12. Real-time sensor mapping display for airborne imaging sensor test with the adaptive infrared imaging spectroradiometer (AIRIS)

    NASA Astrophysics Data System (ADS)

    Burton, Megan M.; Cruger, William E.; Gittins, Christopher; Kindle, Harry; Ricks, Timothy P.

    2005-11-01

    Captive flight testing (CFT) of sensors and seekers requires accurate data collection and display for sensor performance evaluation. The U.S. Army Redstone Technical Test Center (RTTC), in support of the U.S. Army Edgewood Chemical Biological Center (ECBC), has developed a data collection suite to facilitate airborne test of hyperspectral chemical/biological sensors. The data collection suite combines global positioning system (GPS) tracking, inertial measurement unit (IMU) data, accurate timing streams, and other test scenario information. This data collection suite also contains an advanced real-time display of aircraft and sensor field-of-view information. The latest evolution of this system has been used in support of the Adaptive InfraRed Imaging Spectroradiometer (AIRIS), currently under development by Physical Sciences Incorporated for ECBC. For this test, images from the AIRIS sensor were overlaid on a digitized background of the test area, with latencies of 1 second or less. Detects of surrogate chemicals were displayed and geo-referenced. Video overlay was accurate and reliable. This software suite offers great versatility in the display of imaging sensor data; support of future tests with the AIRIS sensor are planned as the system evolves.

  13. Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data

    NASA Astrophysics Data System (ADS)

    Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.

    2006-12-01

    As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and

  14. Evidence for Mini-Magnetospheres at four Lunar Magnetic Anomalies: Reiner-Gamma, Airy, Descartes and Crozier

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Garrick-Bethell, I.; Hemingway, D.

    2014-12-01

    Lunar swirls are enigmatic high-albedo surface markings co-located with magnetic anomalies. The existence of mini-magnetospheres has been proposed as a formation mechanism, making small-scale magnetic field interactions with the solar wind of interest. Using data from the Lunar Prospector, Clementine, and Advanced Composition Explorer missions, we develop three metrics for the identification of mini-magnetospheres: 1) presence of coherent magnetism at low altitude for magnetic field measurements taken in the solar wind; 2) directional field distortions that are correlated with changes in incident solar wind azimuth; 3) intensification of total field strength. These metrics are applied to four lunar magnetic anomalies with various reflectances and magnetic field strengths, ranging from fully developed swirls (Reiner-Gamma, Airy) to diffuse albedo patches which may or may not be swirls (Descartes, Crozier). Specifically, we compare magnetic field measurements in the solar wind to source magnetization models constructed from observations in the lunar wake and Earth's magnetotail. By applying these criteria, we confirm previous findings of magnetosphere-like phenomena at Reiner-Gamma. We also find evidence of these phenomena at Descartes and Airy, and propose that mini-magnetospheres may exist here. At Airy, very large upwind distortions are observed, comparable to the length scale of the anomaly itself. At Reiner-Gamma and Descartes, this distortion is significantly smaller, yet the average field strengths are higher, implying that the scale of distortion is linked to the anomaly's field strength. Interestingly, at Crozier, the weakest anomaly considered, we do not observe this distortion. However, we do observe evidence of field intensification at high solar wind pressures (16 nPa). While Descartes and Reiner-Gamma are among the strongest anomalies on the Moon, and both exhibit magnetospheric properties, only Reiner-Gamma shows a well-developed swirl pattern

  15. Acoustic Resonance of a Two-Dimensional Isotropic Medium Studied Using Airy Stress Function

    NASA Astrophysics Data System (ADS)

    Tarumi, Ryuichi; Yamada, Shinpei; Shibutani, Yoji

    2012-07-01

    We have developed a theory that determines a complete set of stress field, σij, in a freely vibrating two-dimensional isotropic medium within the framework of the calculus of variation. Our formulation is based on the Airy stress function φ and the minimization of the complementary strain energy under the constrain condition || φ|| 2L2 =const. By the Ritz method, the constrained variational problem becomes a linear eigenvalue problem. Numerical analysis yields 36 types of the stress functions φi. Unlike the stress fields determined from the conventional resonant ultrasound spectroscopy theory, the stress fields derived from the stress functions φi explicitly satisfy the stress-free natural boundary condition and the equilibrium equation. It is also confirmed that the 36 resonant modes can be classified into four groups according to the parity of the coefficient of the basis function. Furthermore, the stress functions φi are orthogonal in the sense of the L2 inner product. These features are similar to those of the conventional resonant ultrasound spectroscopy (RUS) theory.

  16. Propagation properties of Airy-Gaussian vortex beams through the gradient-index medium.

    PubMed

    Zhao, Ruihuang; Deng, Fu; Yu, Weihao; Huang, Jiayao; Deng, Dongmei

    2016-06-01

    Propagation of Airy-Gaussian vortex (AiGV) beams through the gradient-index medium is investigated analytically and numerically with the transfer matrix method. Deriving the analytic expression of the AiGV beams based on the Huygens diffraction integral formula, we obtain the propagate path, intensity and phase distributions, and the Poynting vector of the first- and second-order AiGV beams, which propagate through the paraxial ABCD system. The ballistic trajectory is no longer conventional parabolic but trigonometric shapes in the gradient-index medium. Especially, the AiGV beams represent the singular behavior at the propagation path and the light intensity distribution. The phase distribution and the Poynting vector exhibit in reverse when the AiGV beams through the singularity. As the order increases, the main lobe of the AiGV beams is gradually overlapped by the vortex core. Further, the sidelobe weakens when the AiGV beams propagate nearly to the singularity. Additionally, the figure of the Poynting vector of the AiGV beams proves the direction of energy flow corresponding to the intensity distribution. The vortex of the second-order AiGV beams is larger, and the propagation velocity is faster than that of the first order. PMID:27409428

  17. Manipulation of Raman-induced frequency shift by use of asymmetric self-accelerating Airy pulse.

    PubMed

    Zhang, Lifu; Zhong, Haizhe; Li, Ying; Fan, Dianyuan

    2014-09-22

    We investigate the evolution of asymmetric self-accelerating finite energy Airy pulses (FEAP) in optical fibers with emphasis on the role of Raman scattering. We show that the Raman-induced frequency shift (RIFS) of soliton initiated by an asymmetric self-accelerating FEAP depends not only on the launched peak power but also on the truncation coefficient imposed on the asymmetric self-accelerating FEAP. We find that the RIFS of asymmetric self-accelerating FEAP increases with a decrease in the truncation coefficient, while the peak power and spectrum width of the outermost red shift of the shedding soliton spectrum are almost unchanged. The time and frequency shifts of the shedding soliton are found to be sensitive to the truncation coefficient when the truncation coefficient is in the range of 0 to 0.1. These excellent features would lead to the realization of a RIFS-based tunable light source by launching self-accelerating FEAP with different truncation coefficient into an optical fiber. PMID:25321729

  18. Dynamic enhancement of autofocusing property for symmetric Airy beam with exponential amplitude modulation

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Lu, Yao; Gong, Lei; Chu, Xiuxiang; Xue, Guosheng; Ren, Yuxuan; Zhong, Mincheng; Wang, Ziqiang; Zhou, Jinhua; Li, Yinmei

    2016-07-01

    A symmetric Airy beam (SAB) autofocuses during free space propagation. Such autofocusing SAB is useful in optical manipulation and biomedical imaging. However, its inherently limited autofocusing property may degrade the performance of the SAB in those applications. To enhance the autofocus, a symmetric apodization mask was proposed to regulate the SAB. In combination with the even cubic phase that shapes the SAB, this even exponential function mask with an adjustable parameter regulates the contribution of different frequency spectral components to the SAB. The propagation properties of this new amplitude modulated SAB (AMSAB) were investigated both theoretically and experimentally. Simulation shows that the energy distribution and autofocusing property of an AMSAB can be adjusted by the exponential amplitude modulation. Especially, the beam energy will be more concentrated in the central lobe once the even cubic phase is modulated by the mask with a higher proportion of high-frequency spectral components. Consequently, the autofocusing property and axial gradient force of AMSABs are efficiently enhanced. The experimental generation and characterization for AMSABs were implemented by modulating the collimated beam with a phase-only spatial light modulator. The experimental results well supported the theoretical predictions. With the ability to enhance the autofocus, the proposed exponential apodization modulation will make SAB more powerful in various applications, including optical trapping, fluorescence imaging and particle acceleration.

  19. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  20. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x) = Ax2α + Bx2

    NASA Astrophysics Data System (ADS)

    Al Sdran, N.; Maiz, F.

    2016-06-01

    The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax2α + Bx2, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It's found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  1. Engineering deceleration and acceleration of soliton emitted from Airy pulse with quadratic phase modulation in optical fibers without high-order effects

    NASA Astrophysics Data System (ADS)

    Zhang, Lifu; Liu, Kun; Zhong, Haizhe; Zhang, Jinggui; Deng, Jianqin; Li, Ying; Fan, Dianyuan

    2015-07-01

    Soliton propagation direction can be engineered in optical fibers in the presence of high-order effects (HOEs). It is well known that Raman effects can decelerate the soliton. Here we investigate the manipulation of the deceleration or acceleration of soliton emitted from Airy pulse whose spectrum is imposed an initial quadratic phase modulation (QPM) in optical fibers in the absence of HOEs. We show that, under the action of the anomalous second-order dispersion (SOD) and Kerr nonlinearity, Airy pulse with QPM is able to emit soliton with acceleration or deceleration depending on whether the QPM is negative or positive, and at a rate that is determined by the magnitude of QPM. The reason is that the acceleration behaviors of incident Airy pulse is altered depending on whether SOD and QPM have the same or opposite signs. Our study shows the possibility of controlling and manipulating the soliton propagation and interaction in optical fibers without HOEs, by purposely choosing appropriate QPM parameter of an Airy pulse.

  2. Engineering deceleration and acceleration of soliton emitted from Airy pulse with quadratic phase modulation in optical fibers without high-order effects.

    PubMed

    Zhang, Lifu; Liu, Kun; Zhong, Haizhe; Zhang, Jinggui; Deng, Jianqin; Li, Ying; Fan, Dianyuan

    2015-01-01

    Soliton propagation direction can be engineered in optical fibers in the presence of high-order effects (HOEs). It is well known that Raman effects can decelerate the soliton. Here we investigate the manipulation of the deceleration or acceleration of soliton emitted from Airy pulse whose spectrum is imposed an initial quadratic phase modulation (QPM) in optical fibers in the absence of HOEs. We show that, under the action of the anomalous second-order dispersion (SOD) and Kerr nonlinearity, Airy pulse with QPM is able to emit soliton with acceleration or deceleration depending on whether the QPM is negative or positive, and at a rate that is determined by the magnitude of QPM. The reason is that the acceleration behaviors of incident Airy pulse is altered depending on whether SOD and QPM have the same or opposite signs. Our study shows the possibility of controlling and manipulating the soliton propagation and interaction in optical fibers without HOEs, by purposely choosing appropriate QPM parameter of an Airy pulse. PMID:26173387

  3. Double scaling limits and airy functions for {ital O}({ital N}) vector sigma models with elementary catastrophes or the catastrophe {ital X}{sub 9}

    SciTech Connect

    Ruehl, W.

    1996-05-01

    One and two vector sigma models are defined that possess catastrophes in their action. Each catastrophe defines a double scaling limit at {ital N}{r_arrow}{infinity}. Critical indices are calculated and the Airy functions are shown to satisfy RG equations. Copyright {copyright} 1996 Academic Press, Inc.

  4. Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1

    NASA Astrophysics Data System (ADS)

    Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia

    2014-08-01

    We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.

  5. Energy harvesting from sea waves with consideration of airy and JONSWAP theory and optimization of energy harvester parameters

    NASA Astrophysics Data System (ADS)

    Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza

    2015-12-01

    One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.

  6. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    SciTech Connect

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-03-24

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.

  7. Can Hooke's Law and the Airy Disk First Zero Radius Formulation Predict That Education and Work Environment Visual Task Excesses Lead to Vision Impairment?

    NASA Astrophysics Data System (ADS)

    McLeod, Douglas M.; McLeod, Roger D.

    2002-10-01

    DMM found that a distant, single church steeple, which appeared "twin-like" after extended studying episodes, could then be brought into correct visual register by a conscious effort. Similar anecdotal events are repeatable by attentive students or workers in the early stages of educationally or work environmentally induced repetitive vision impairment. RDM proposes that his model for vision and its repair utilizes sequentially applied vision improvement stages that are the equivalent of DMM's experience. Such visual events involve feedback signals generated during the crystalline lens's minor dioptric oscillations that are generated by the blinking reflex, empowered by the Airy radius proportional to wavelength times focal length divided by pupil aperture. This implies some conscious control of feedback mechanisms, which can self-regulate vision protecting processes. Continued visual effort under duress invokes Hooke's "stress proportional to strain." Exceeding extrinsic eye muscles' elastic limits overrides spontaneous feedback repair mechanisms.

  8. A comparison of far-field properties of radial noncanonical vortex airy beam arrays and radial noncanonical vortex Gaussian beam arrays

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Jiao, Liyang; Zhong, Xianqiong

    2016-05-01

    Based on the vector angular spectrum representation and stationary phase method, the analytical far-field vectorial expressions of radial noncanonical vortex Airy beam arrays (NVAiBAs) and radial noncanonical vortex Gaussian beam arrays (NVGBAs) are derived, and used to investigate their far-field vectorial properties, e.g. center optical vortices and energy fluxes of these corresponding beams, where the effect of noncanonical strength, topological charge, initial phase index and the number of beamlet on far-field vectorial properties of these corresponding beams is emphasized, respectively. The results show that the topological charge of center optical vortices in the far field is equal to initial phase index for the case of the radial NVAiBAs, whereas for radial NVGBAs the topological charge not only lies on initial phase index, but also is closely related to the odevity and sign of optical vortices embedded in beamlet, where mathematical analysis is made to explain the topological charge of center optical vortices, and the limitation of the number of beamlet to the topological charge of center optical vortices is also discussed. In addition, energy fluxes of radial NVAiBAs and NVGBAs exhibit different space orientations by controlling noncancial strength and present larger dark zones by increasing topological charge of beamlet, respectively. Finally, the relationship between the center optical vortices and energy fluxes of radial NVAiBAs and NVGBAs in even or odd N beamlets is also revealed, respectively.

  9. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    PubMed

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs. PMID:26560925

  10. Evaluation of a unified regional air-quality modeling system (AURAMS) using PrAIRie2005 field study data: The effects of emissions data accuracy on particle sulphate predictions

    NASA Astrophysics Data System (ADS)

    Cho, S.; Makar, P. A.; Lee, W. S.; Herage, T.; Liggio, J.; Li, S. M.; Wiens, B.; Graham, L.

    The effects of the accuracy of major-point source emissions input data on the predictions of a regional air-quality model (AURAMS) were investigated through a series of scenario simulations. The model domain and time period were chosen to correspond to that of PrAIRie2005, an air-quality field study with airborne and ground-based mobile measurement platforms that took place between August 12th and September 7th, 2005, over the city of Edmonton, Alberta, Canada. The emissions data from standard sources for three coal-fired power-plants located west (typically upwind) of the city were compared to the continuous emissions monitoring system (CEMS) taking place at the time of the study - the latter showed that the original emissions inventory data considerably overestimated NO x, SO 2, and primary particulate emissions during the study period. Further field investigation (stack sampling) in the fall of 2006 showed that the measured primary particle size distribution and chemical speciation for the emissions were strikingly different from the distribution and speciation originally used in the model. The measured emissions were used to scale existing emissions data in accord with the CEMS and in-stack measurements. The effects of these improvements to the emissions data were examined sequentially in nested AURAMS simulations (finest horizontal resolution 3 km), and were compared to airborne aerosol mass spectrometer (Aerodyne AMS) measurements of particle sulphate, and particle distributions from an airborne passive cavity aerosol spectrometer probe (PCASP). The emissions of SO 2 had the greatest impact on predicted PM 1 sulphate, while the primary particle size distribution and chemical speciation had a smaller role. The revised emissions data greatly improved the comparisons between observations and model values, though over-predictions of fine-mode sulphate still occur near the power-plants, with the use of the revised emissions data. The modified emissions also had a

  11. Asymptotics for the Covariance of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Shinault, Gregory; Tracy, Craig A.

    2011-04-01

    In this paper we compute some of the higher order terms in the asymptotic behavior of the two point function {P}({A}2(0)≤ s1,A2(t)≤ s2), extending the previous work of Adler and van Moerbeke (arXiv:math.PR/0302329; Ann. Probab. 33, 1326-1361, 2005) and Widom (J. Stat. Phys. 115, 1129-1134, 2004). We prove that it is possible to represent any order asymptotic approximation as a polynomial and integrals of the Painlevé II function q and its derivative q'. Further, for up to tenth order we give this asymptotic approximation as a linear combination of the Tracy-Widom GUE density function f 2 and its derivatives. As a corollary to this, the asymptotic covariance is expressed up to tenth order in terms of the moments of the Tracy-Widom GUE distribution.

  12. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  13. Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...

  14. No Time for the "Airy Fairy": Teacher Perspectives on Creative Writing in High Stakes Environments

    ERIC Educational Resources Information Center

    Frawley, Emily

    2014-01-01

    This paper discusses a research project undertaken to examine teachers' perceptions of creative writing in the senior English curriculum. It was a case study undertaken in a state high school in Melbourne under the Victorian Certificate of Education (VCE). The project investigated the challenges facing English teachers as they prepare…

  15. Two new cembranoids from the leaves of Croton longissimus Airy Shaw.

    PubMed

    Kawakami, Susumu; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2013-04-01

    Two new cembrane-type diterpenoids (1 and 2) along with five known compounds (3-7) were isolated from leaves of Croton longissimus collected in Thailand. Their structures were elucidated from spectroscopic evidence and compound 4 was found by HPLC analysis to be identical to oblongionoside B-a compound isolated from Croton oblongifolius-including the absolute configuration at the C-9 position. PMID:22926346

  16. Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)

    ERIC Educational Resources Information Center

    Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin

    2009-01-01

    A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…

  17. One «Both» Sex«es»: Observations, suppositions, and airy speculations on fetal sex anatomy in British scientific literature, 1794-1871.

    PubMed

    Brooks, Ross

    2015-01-01

    The hegemony of the two-sex paradigm in the European scientific imagination and wider culture did not automatically equate to the hegemony of two discrete genders. In fact, two sexes facilitated a variety of gender choices: two singular and a number of double or otherwise intersexed (most commonly referred to as "hermaphrodite" or "bisexual" in its anatomical sense). This article explores some key British medical and allied scientific texts, with reference to associated Continental literature, as a means of illustrating the complexity of the two-sex paradigm and the unexpected transformation of gender possibilities that it helped produce through the early and middle decades of the nineteenth century. Discourses surrounding the first direct observations of the earliest development of fetal urinogenital anatomy were pivotal. The prevailing view that the incipient embryo was sexually undifferentiated (a paragon of the one-sex paradigm) was challenged by the Edinburgh anatomist Robert Knox, initially as he sought to bolster his professional reputation at the height of the Burke and Hare "body-snatching" scandal. Knox suggested that every embryo began life in an essentially dual-sexed state, an individual's sex anatomy depending on the greater or lesser development of component female and male structures. Greater clarification on the contested status of the homology-hermaphrodite distinction was achieved with the discovery of the early co-existence of the excretory duct of the Wolffian body (mesonephric duct) and the Müllerian duct (paramesonephric duct), an observation that made anatomical bisexuality difficult to ignore. The nineteenth-century's greatest champion of primordial hermaphroditism was Charles Darwin who was pivotal in phylogenizing the principle and establishing the premise that (in his own words) "Every man & woman is hermaphrodite," a foundation stone of late-nineteenth-century sexology. PMID:24150887

  18. Holographic generation of non-diffractive beams

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Choi, Dawoon; Hong, Keehoon; Lee, Kyookeun; Kim, Kyoung-Youm

    2014-11-01

    An Airy beam is a non-diffractive wave which propagates along a ballistic trajectory without any external force. Although it is impossible to implement ideal Airy beams because they carry infinite power, so-called finite Airy beams can be achieved by tailoring infinite side lobes with an aperture function and they have similar propagating characteristics with those of ideal Airy beams. The finite Airy beam can be optically generated by several ways: the optical Fourier transform system with imposing cubic phase to a broad Gaussian beam, nonlinear generation of Airy beams, curved plasma channel generation, and electron beam generation. In this presentation, a holographic generation of the finite Airy beams will be discussed. The finite Airy beams can be generated in virtue of holographic technique by `reading' a hologram which is recorded by the interference between a finite Airy beam generated by the optical Fourier transform and a reference plane wave. Moreover, this method can exploit the unique features of holography itself such as successful reconstruction with the imperfect incidence of reference beam, reconstruction of phase-conjugated signal beam, and multiplexing, which can shed more light on the characteristics of finite Airy beams. This method has an advantage in that once holograms are recorded in the photopolymer, a bulky optics such as the SLM and lenses are not necessary to generate Airy beams. In addition, multiple Airy beams can be stored and reconstructed simultaneously or individually.

  19. The two populations’ cellular automata model with predation based on the Penna model

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin

    2002-09-01

    In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.

  20. Spiders in the Crosshairs: Cobwebs, Instrument Makers, and the Search for the Perfect Line

    NASA Astrophysics Data System (ADS)

    Turner, Steven

    The the methodology of acquiring, and the use of spider webs, and other resources for creating telescope crosshairs, by early observers, such as William Herschel, David Rittenhouse, Andrew Ellicott, George Airy, as we as a variety of early manufacturers.

  1. 2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  2. 3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  3. 4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 FIREPLACE IN DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  4. 1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 DOVE COTE AND DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  5. 5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 VIEW FROM NORTH WEST - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  6. Discrete beam acceleration in uniform waveguide arrays

    SciTech Connect

    El-Ganainy, Ramy; Makris, Konstantinos G.; Miri, Mohammad Ali; Christodoulides, Demetrios N.; Chen Zhigang

    2011-08-15

    Within the framework of the tight-binding model we demonstrate that Wannier-Stark states can freely accelerate in uniform optical lattices. As opposed to accelerating Airy wave packets in free space, our analysis reveals that in this case the beam main intensity features self-bend along two opposite hyperbolic trajectories. Two-dimensional geometries are also considered and an asymptotic connection between these Wannier-Stark ladders and Airy profiles is presented.

  7. Computer program for Bessel and Hankel functions

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Saule, Arthur V.; Rice, Edward J.; Clark, Bruce J.

    1991-01-01

    A set of FORTRAN subroutines for calculating Bessel and Hankel functions is presented. The routines calculate Bessel and Hankel functions of the first and second kinds, as well as their derivatives, for wide ranges of integer order and real or complex argument in single or double precision. Depending on the order and argument, one of three evaluation methods is used: the power series definition, an Airy function expansion, or an asymptotic expansion. Routines to calculate Airy functions and their derivatives are also included.

  8. Unveiling orbital angular momentum and acceleration of light beams and electron beams

    NASA Astrophysics Data System (ADS)

    Arie, Ady

    Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science

  9. Porters, watchmen, and the crime of William Sayers: the non-scientific staff of the Royal Observatory, Greenwich, in Victorian times

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    2003-06-01

    A careful study of the detailed archives of the Victorian Royal Observatory makes it possible to build up a picture of the employment and working conditions not only of the astronomical staff who worked at Greenwich, but also of the labourers, watchmen, and gate porters. Indeed, the archives open up a window on to how the Observatory was run on a daily basis: how its non-scientific staff were recruited and paid, and what were their terms of employment. They also say a great deal about how Sir George Biddell Airy directed and controlled every aspect of the Observatory's life. Yet while Airy was a strict employer, he emerges as a man who was undoubtedly fair-minded and sometimes even generous to his non-scientific work-force. A study of the Observatory staff files also reveals the relationship between the Observatory labouring staff and the Airy family's domestic servants. And of especial interest is the robbery committed by William Sayers, the Airy family footman in 1868, bringing to light as it does Sir George and Lady Richarda Airy's views on crime and its social causes and consequences, the prison rehabilitation service in 1868, and their opinions on the reform of offenders. Though this paper is not about astronomy as such, it illuminates a fascinating interface where the world of astronomical science met and worked alongside the world of ordinary Victorian people within the walls of one of the nineteenth century's most illustrious astronomical institutions.

  10. LTE plasma reactors for materials conversion

    NASA Astrophysics Data System (ADS)

    Kolacinski, Zbigniew; Szymanski, Lukasz; Raniszewski, Grzegorz

    2013-02-01

    Plasma aided materials conversion is the use of charged particles for producing new materials with unusual and superior properties or to convert unwanted materials such as waste into environmentally friendly products. The near LTE plasma (in atmospheric or reduced pressure) is a nice tool for engineering of materials which in consequence upgrades the performance of most of the consumer goods. The paper presents a few samples of the own research results related to the design and use of some plasma reactors for synthesis of nanomaterials and hazardous materials destruction with their conversion into valuable products. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  11. Temperature measurements in arc-discharge synthesis of nanomaterials dedicated for medical applications

    NASA Astrophysics Data System (ADS)

    Raniszewski, Grzegorz

    2013-02-01

    The article presents the plasma synthesis method of carbon nanotubes using an electric arc discharge. In this method different carbon nanotubes are produced as a cathode deposit growth or are deposed on various substrates such as silicon, metals and other materials. The examples of applications of carbon nanotubes in medical applications were presented. Conditions required for the synthesis of carbon nanotubes and process parameters were mentioned. Applications of carbon nanotubes for cancer treatment were discussed. The method of temperature measurement of the arc was described. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  12. Measurement of secondary ionization coefficient of CaO film electrode

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Kashiwagi, Yasuhide; Itoh, Haruo

    2013-02-01

    The secondary ionization coefficient γ of a CaO film electrode is investigated taking into account the difference in breakdown voltage obtained by repeated voltage applications. Such measurement is performed under a sinusoidal voltage of 0.5 Hz. If the CaO film electrode acts as the cathode, breakdown voltage gradually decreases and converges to an almost constant value after several breakdowns. From the obtained results, the γ of the CaO film electrode is determined for each breakdown using Townsend's criterion. The γ in the first breakdown is lower than those in subsequent breakdowns, particularly in the steady state. The difference in γ is considered to originate from accumulated charges on the CaO film electrode. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  13. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams

    PubMed Central

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences. PMID:26279478

  14. Abruptly autofocusing terahertz waves with meta-hologram.

    PubMed

    He, Jingwen; Wang, Sen; Xie, Zhenwei; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-15

    An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. PMID:27304289

  15. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams

    NASA Astrophysics Data System (ADS)

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-08-01

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

  16. New insights into the rainbow Part 1/2: Study on the physics of the supernumerary bows

    NASA Astrophysics Data System (ADS)

    Ricard, J. L.

    2011-12-01

    We have tested the basic assumptions of the Airy's theory. Surprisingly, they are only valid in a small angle close to the minimum deviation angle (less than 2 degrees). For instance in the supernumerary area, the Airy's theory has obvious flaws. In the Airy's model, two aspects of the diffraction are taken into account. Firstly, a phenomenon of interferences discovered by Young created by rays of light with different pathes through the droplets. Secondly, "simple diffraction" such as the one appearing on the both (shadowed and lighted) side of a straight edge. In this study, we show that the "simple diffraction" alone is enough for understanding the formation of the supernumerary arcs. Interferences contribute in fact only very little.

  17. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams.

    PubMed

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences. PMID:26279478

  18. Richard Christopher Carrington: Briefly Among the Great Scientists of His Time

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.; Keer, Norman C.

    2012-09-01

    We recount the life and career of Richard Christopher Carrington (1826 - 1875) and explore his pivotal relationship with Astronomer Royal George Biddell Airy. Carrington was the pre-eminent solar astronomer of the 19th century. During a ten year span, he determined the position of the Sun's rotation axis and made the following discoveries: i) the latitude variation of sunspots over the solar cycle, ii) the Sun's differential rotation, and iii) the first solar flare (with Hodgson). Due to the combined effects of family responsibilities, failure to secure a funded position in astronomy (reflecting Airy's influence), and ill health, Carrington's productive period ended when he was at the peak of his powers.

  19. At Home with History

    ERIC Educational Resources Information Center

    Biemiller, Lawrence

    2007-01-01

    Charles Carroll Jr. would be long forgotten but for a single notable accomplishment: he built an exceedingly handsome house. Begun in 1801 with money from his wealthy father-- Charles Carroll of Carrollton, the only Roman Catholic signer of the Declaration of Independence-- the Federal-style home has near-perfect proportions and airy rooms. The…

  20. Fisher, Sir Ronald Aylmer (1890-1962)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Statistician, born in London, England. After studying astronomy using AIRY's manual on the Theory of Errors he became interested in statistics, and laid the foundation of randomization in experimental design, the analysis of variance and the use of data in estimating the properties of the parent population from which it was drawn. Invented the maximum likelihood method for estimating from random ...

  1. Tracy-Widom at High Temperature

    NASA Astrophysics Data System (ADS)

    Allez, Romain; Dumaz, Laure

    2014-09-01

    We investigate the marginal distribution of the bottom eigenvalues of the stochastic Airy operator when the inverse temperature tends to . We prove that the minimal eigenvalue, whose fluctuations are governed by the Tracy-Widom law, converges weakly, when properly centered and scaled, to the Gumbel distribution. More generally we obtain the convergence in law of the marginal distribution of any eigenvalue with given index . Those convergences are obtained after a careful analysis of the explosion times process of the Riccati diffusion associated to the stochastic Airy operator. We show that the empirical measure of the explosion times converges weakly to a Poisson point process using estimates proved in Dumaz and Virág (Ann Inst H Poincaré Probab Statist 49(4):915-933, 2013). We further compute the empirical eigenvalue density of the stochastic Airy ensemble on the macroscopic scale when . As an application, we investigate the maximal eigenvalues statistics of -ensembles when the repulsion parameter when . We study the double scaling limit and argue with heuristic and numerical arguments that the statistics of the marginal distributions can be deduced following the ideas of Edelman and Sutton (J Stat Phys 127(6):1121-1165, 2007) and Ramírez et al. (J Am Math Soc 24:919-944, 2011) from our later study of the stochastic Airy operator.

  2. Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Jia, Man; Lou, Sen-Yue

    2012-12-01

    Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.

  3. Leidos Reclaims Defelice Cup at Annual Golf Tournament | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Leidos Biomedical Research reclaimed the Defelice Cup trophy from NCI at the eighth annual Ronald H. Defelice golf tournament, held October 14. The final score was 15–7, with Leidos Biomed tying the series 4 to 4. Fourteen players on each team battled it out at Rattlewood golf course in Mount Airy, Md.

  4. FTIR-based airborne spectral imagery for target interrogation

    NASA Astrophysics Data System (ADS)

    Smithson, Tracy L.; St. Germain, Daniel; Nadeau, Denis

    2007-09-01

    DRDC Valcartier is continuing to developed infrared spectral imagery systems for a variety of military applications. Recently a hybrid airborne spectral imager / broadband imager system has been developed for ground target interrogation (AIRIS). This system employs a Fourier Transform Interferometer system coupled to two 8x8 element detector arrays to create spectral imagery in the region from 2.0 to 12 microns (830 to 5000 cm -1) at a spectral resolution of up to 1 cm -1. In addition, coupled to this sensor are three broadband imagers operating in the visible, mid-wave and long-wave infrared regions. AIRIS uses an on-board tracking capability to: dwell on a target, select multiple targets sequentially, or build a mosaic description of the environment around a specified target point. Currently AIRIS is being modified to include real-time spectral imagery calibration and application processing. In this paper the flexibility of the AIRIS system will be described, its concept of operation discussed and examples of measurements will be shown.

  5. 77 FR 66635 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Border Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... (77 FR 36292). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING CODE 4410... Robotics, Sherman Oaks, CA; Global Technical Systems, Virginia Beach, VA; Hurley IR, Mount Airy, MD; ICx Tactical Platforms, Forest Park, GA; Innovative Signal Analysis, Inc., Richardson, TX; Liquid...

  6. The Martian Prime Meridian -- Longitude 'Zero'

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site]

    On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the 'prime meridian,' or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large 'transit circle,' a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This 'International Reference Meridian' is now about 100 meters east of the Airy Transit at Greenwich.)

    For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Madler in 1830-32. They used a small circular feature, which they designated 'a,' as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ('Middle Bay') by Camille Flammarion.

    When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive 'control net' of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named 'Airy-0' (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit

  7. Geoid height versus topography for oceanic plateaus and swells

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Mackenzie, Kevin R.

    1989-01-01

    Gridded geoid height data (Marsh et al.l, 1986) and gridded bathymetry data (Van Wykhouse, 1973) are used to estimate the average compensation depths of 53 oceanic swells and plateaus. The relationship between geoid height and topography is examined using Airy and thermal compensation models. It is shown that geoid height is linearly related to topography between wavelengths of 400 and 4000 m as predicted by isostatic compensation models. The geoid/topography ratio is dependent on the average depth of compensation. The intermediate geoid/topography ratios of most thermal swells are interpreted as a linear combination of the decaying thermal swell signature and that of the persisting Airy-compensated volcanic edifice.

  8. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  9. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  10. The dynamics of diffracted rays in foams

    NASA Astrophysics Data System (ADS)

    Tufaile, A.; Tufaile, A. P. B.

    2015-12-01

    We have studied some aspects of the optics of the light scattering in foams. This paper describes the difference between rays and diffracted rays from the point of view of geometrical theory of diffraction. We have represented some bifurcations of light rays using dynamical systems. Based on our observations of foams, we created a solid optical device. The interference patterns of light scattering in foams forming Airy fringes were explored observing the pattern named as the eye of Horus. In the cases we examine, these Airy fringes are associated with light scattering in curved surfaces, while the halo formation is related to the law of edge diffraction. We are proposing a Pohl interferometer using a three-sided bubble/Plateau border system.

  11. The effect of different background beams on the optical rogue waves generated in a graded-index waveguide

    NASA Astrophysics Data System (ADS)

    Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.

    2016-04-01

    We analytically explore optical rogue waves in a nonlinear graded-index waveguide, with spatially modulated dispersion, nonlinearity, and linear refractive-index. We study the evolution of first-order rogue wave and rogue wave triplet on Airy-Bessel, sech2, and tanh background beams, and reveal that the characteristics of RWs are well maintained while the amplitude of the first-order RW gets enhanced three times the maximum value of the Airy-Bessel and sech2 background beams and five times in the case of RW triplet. These results could be of great interest in realizing the RWs in experimentally realizable situations on small-amplitude background beams in nonlinear optics.

  12. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus

    NASA Astrophysics Data System (ADS)

    Yang, An; Huang, Jinshui; Wei, Daiyun

    2016-09-01

    Assuming that the long-wavelength geoid and topography of Venus are supported by both mantle convection and Airy isostasy, we propose a method to separate the dynamic and isostatic components of the Venusian gravity and topography with the aid of the dynamic admittance from numerical models of mantle convection and the isostatic admittance from an Airy isostatic model. The global crustal thickness is then calculated based on the isostatic component of the gravity and topography. The results show that some highland plateaus such as Ishtar Terra and Ovda Regio have thick crust, which are largely supported by isostatic compensation. Other highland plateaus such as Thetis and Phoebe Regiones appear to have superimposed contributions from crustal thickening and dynamic support. Volcanic rises such as Atla and Beta Regiones have thin crust, which is consistent with the postulation that these volcanic rises are mainly the products of dynamic uplift caused by mantle plumes.

  13. Descartes glare points in scattering by icicles: color photographs and a tilted dielectric cylinder model of caustic and glare-point evolution.

    PubMed

    Marston, P L

    1998-03-20

    Glare points associated with the Airy caustics of once and twice internally reflected rays are visible in the scattering by sunlit icicles. Supporting color photographs include an image of the far-field scattering. Relevant rays are analogous to the Descartes rays of primary and secondary rainbows of drops; however, the caustic conditions for the icicle are predicted to be affected by tilt of the illumination relative to the axis of the icicle. A model for the caustic evolution, given for a circular dielectric cylinder, manifests a transition in which the Airy caustic (and associated glare points) merge in the meridional plane at a critical tilt. At this critical tilt the merged glare point is predicted to be very bright. The calculations use the Bravais effective refractive index and generalized ray tracing. PMID:18268747

  14. Polarized rainbow.

    PubMed

    Können, G P; de Boer, J H

    1979-06-15

    The Airy theory of the rainbow is extended to polarized light. For both polarization directions a simple analytic expression is obtained for the intensity distribution as a function of the scattering angle in terms of the Airy function and its derivative. This approach is valid at least down to droplet diameters of 0.3 mm in visible light. The degree of polarization of the rainbow is less than expected from geometrical optics; it increases with droplet size. For a droplet diameter >1 mm the locations of the supernumerary rainbows are equal for both polarization directions, but for a diameter <1 mm the supernumerary rainbows of the weaker polarization component are located between those in the strong component. PMID:20212586

  15. Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory.

    PubMed

    Lock, James A

    2008-12-01

    For a plane wave incident on either a Luneburg lens or a modified Luneburg lens, the magnitude and phase of the transmitted electric field are calculated as a function of the scattering angle in the context of ray theory. It is found that the ray trajectory and the scattered intensity are not uniformly convergent in the vicinity of edge ray incidence on a Luneburg lens, which corresponds to the semiclassical phenomenon of orbiting. In addition, it is found that rays transmitted through a large-focal-length modified Luneburg lens participate in a far-zone rainbow, the details of which are exactly analytically soluble in ray theory. Using these results, the Airy theory of the modified Luneburg lens is derived and compared with the Airy theory of the rainbows of a homogeneous sphere. PMID:19037388

  16. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Fourth Bionanotox and Applications Research Conference, 2009

    NASA Astrophysics Data System (ADS)

    Camp, Judy

    2010-04-01

    "Anticipating the future" seemed the common challenge for scientists attending the 4th BioNanoTox and Applications Research Conference in Little Rock, AR, October 21-22, 2009. Over 50 participants in multi-disciplines such as biology, chemistry, physics, medicine, medical diagnostics, computer science and informatics, nanotechnology, toxicology, and pharmaceutical science gathered to share their research data. From topics on water and food resources to space exploration to conservation to understanding biological activities and using instruments and computers that process enormous data, participants shared research approaches from different fields to find common themes in this integrated field. Presentations aimed at preventing the harmful effects of scientific discoveries to animals, humans, plants, and environment; at controlling infections; and at optimizing health care. The conference included addresses from Thomas Flammang, PhD, of the Food and Drug Administration, National Center for Toxicological Research in Jefferson, AR; Little Rock City Mayor Mark Stodola; and two keynote speakers. Keynote lectures by Danuta Leszczynska, PhD, from the Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, in Jackson, MS, and by Keith Cowan, PhD, from the Institute for Environmental Biotechnology in Grahamstown, South Africa, highlighted current trends and future challenges of nanoparticle research and of bioprocess technologies. Additionally, 25 graduate and undergraduate students presented research posters, resulting in valuable discussion among the varied participants; three student projects were selected for awards.

  18. Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe2O3

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Haljaste, Ants; Laan, Matti

    2013-02-01

    In the present study, Fe2O3 was used as catalyst for the removal of NO in a hybrid plasma- catalytic reactor. The catalyst was located either directly inside the hybrid plasma-catalytic reactor or in a separate catalytic reactor, which followed ozone producing and injecting plasma reactor. Ozone production in such a reactor was dependent on the state of the electrode surface. The fresh catalyst ensured an order of magnitude smaller ozone concentration in the outlet of the hybrid reactor. After a short treatment of the catalyst with NO2, its ability to destroy ozone diminished but was regained after heating of the reactor up to 100 °C. Similarly to earlier results obtained with TiO2, the removal of NO in the hybrid reactor with Fe2O3 was enhanced compared to that in an ordinary plasma reactor. In the ozone injection reactor, oxidation of NO to NO2 took place with considerably higher efficiency compared to the hybrid reactor. The use of catalyst in the ozonation stage further improved the oxidation of NO2 to N2O5. The time-dependence effects of NO removal during plasma and ozone oxidation were explained by reactions between NO2 adsorbed on surface, with surface-bound NO3 and gas phase NO as the reaction product. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  19. Free fatty acids degradation in grease trap purification using ozone bubbling and sonication

    NASA Astrophysics Data System (ADS)

    Piotr Kwiatkowski, Michal; Satoh, Saburoh; Fukuda, Shogo; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori

    2013-02-01

    The oil and fat were treated at first by only ozone bubbling and it was confirmed that the collection efficiency of them became 98.4% when the aeration was used. It showed that the aeration method in a grease trap cleared the standard value of 90% and there was no worry on the oil and fat outflow from a grease trap. The characteristics of sonication process were studied for free fatty acids degradation. The free saturated fatty acids are the most hard-degradable compounds of the fats, oils and greases (FOGs) in the grease trap. The influence of various parameters such as immersion level of an ultrasound probe in the liquid and bubbling of various gases (Ar, O2, air, O3) on the sonochemical and energy efficiency of the sonication process was investigated. The most effective degradation treatment method for saturated free fatty acids was the combination of sonication and low flow rate argon bubbling. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  20. Oxidative methane conversion in dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Krawczyk, Krzysztof; Młotek, Michał; Ulejczyk, Bogdan; Pryciak, Krzysztof; Schmidt-Szałowski, Krzysztof

    2013-02-01

    A dielectric barrier discharge was used for the oxidative coupling of methane (OCM) with oxygen at the pressure of 1.2 bar. A dielectric barrier discharge (DBD) reactor was powered at the frequency of about 6 kHz. Molar ratio CH4/O2 in the inlet gas containing 50% or 25% of argon was 3, 6 and 12. The effects of temperature (110, 150 and 340 ◦C), gas flow rate, molar ratio of methane to oxygen on the overall methane and oxygen conversion and methane conversion to methanol, ethanol, hydrocarbons, carbon oxides and water were studied. In the studied system the increase of the temperature decreases the conversion of methane to methanol. The increase of the molar ratio of methane to oxygen increased the methane conversion to hydrocarbons and strongly decreased the methane conversion to alcohols. The conversion of methane to hydrocarbons increased and the conversion of methane to methanol decreased with the decrease of the gas flow rate from 2 to 1 NL/h. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  1. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    NASA Astrophysics Data System (ADS)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  2. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko

    2013-02-01

    Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  3. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  4. Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity.

    PubMed

    Frankovský, Peter; Ostertag, Oskar; Trebuňa, František; Ostertagová, Eva; Kelemen, Michal

    2016-06-20

    The subject of this paper is the analysis of contact stresses that occur between the teeth of a gear. The analysis was carried out by means of reflection photoelasticity, which is an experimental method rarely used in this field. Contact stresses assessed in the experiment are compared with values assessed through an analytical calculation while using the Airy stress function or Hertzian relations. PMID:27409110

  5. Solving the {sup 12}C+{sup 12}C scattering puzzle: is there the '4th elephant'?

    SciTech Connect

    Demyanova, A. S.; Danilov, A. N.; Ogloblin, A. A.; Goncharov, S. A.; Bohlen, H. G.; Khlebnikov, S. V.; Tyurin, G. P.; Maslov, V. A.; Penionzkevich, Yu. E.; Sobolev, Yu. G.; Trzaska, W.

    2010-04-30

    Differential cross sections of the {sup 12}C+{sup 12}C and the {sup 13}C+{sup 12}C elastic scattering were measured at the projectile energies 240 MeV ({sup 12}C) and 250 MeV ({sup 13}C) up to the largest angles. The positions of the 1{sup st} Airy minima known from the former experiments were confirmed.

  6. Application of boundary integral method to elastic analysis of V-notched beams

    NASA Technical Reports Server (NTRS)

    Rzasnicki, W.; Mendelson, A.; Albers, L. U.

    1973-01-01

    A semidirect boundary integral method, using Airy's stress function and its derivatives in Green's boundary integral formula, is used to obtain an accurate numerical solution for elastic stress and strain fields in V-notched beams in pure bending. The proper choice of nodal spacing on the boundary is shown to be necessary to achieve an accurate stress field in the vicinity of the tip of the notch. Excellent agreement is obtained with the results of the collocation method of solution.

  7. Precise evaluation of the Helmholtz equation for optical propagation.

    PubMed

    Pond, John E; Sutton, George W

    2015-01-01

    A precise computational integration of the Helmholtz equation was performed for laser propagation of an electromagnetic wave with no approximations or linearization. This computation integration was performed using 64-bit processors. This is illustrated for a uniform monochromatic beam from a circular aperture that has a uniform intensity. It predicts many Arago spots and near-field intensity fluctuations for a large ratio of aperture size to wavelength and converges to the usual Airy pattern in the far field. PMID:25531618

  8. Padé approximation of Laplace transforms of some special functions in terms of Painlevé equations

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshimasa; Ohira, Norihiro

    2004-10-01

    Only in a limiting case has a closed form of the Laplace transforms of special functions been known (Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover)). It is shown that Padé approximations of Laplace transforms of the Airy, Hermite-Weber, Bessel functions are computed by using Bäcklund transformations of the Painlevé equations in a purely algebraic manner.

  9. Bibliography of astronomers. Books and pamphlets in English by and about astronomers. Volume I: The spirit of the nineteenth century.

    NASA Astrophysics Data System (ADS)

    Luther, P.

    In this bibliography a concise biographical chronology of the following astronomers is given: George Biddell Airy (1801 - 1892), Robert Stawell Ball (1840 - 1913), George Phillips Bond (1825 - 1865), William Cranch Bond (1789 - 1859), Agnes Mary Clerke (1842 - 1907), John Frederick William Herschel (1792 - 1871), Edward Singleton Holden (1846 - 1914), Joseph Norman Lockyer (1836 - 1920), Percival Lowell (1855 - 1916), Ormsby MacKnight Mitchel (1809 - 1862), Simon Newcomb (1835 - 1909), Richard Anthony Proctor (1837 - 1888), Mary Fairfax Greig Somerville (1780 - 1872).

  10. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  11. New insights into classical solutions of the local instability of the sandwich panels problem

    NASA Astrophysics Data System (ADS)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2016-06-01

    The paper concerns the problem of local instability of thin facings of a sandwich panel. The classic analytical solutions are compared and examined. The Airy stress function is applied in the case of the state of plane stress and the state of plane strain. Wrinkling stress values are presented. The differences between the results obtained using the differential equations method and energy method are discussed. The relations between core strain energies are presented.

  12. What Brown saw and you can too

    NASA Astrophysics Data System (ADS)

    Pearle, Philip; Collett, Brian; Bart, Kenneth; Bilderback, David; Newman, Dara; Samuels, Scott

    2010-12-01

    A discussion of Robert Brown's original observations of particles ejected by pollen of the plant Clarkia pulchella undergoing what is now called Brownian motion is given. We consider the nature of those particles and how he misinterpreted the Airy disk of the smallest particles to be universal organic building blocks. Relevant qualitative and quantitative investigations with a modern microscope and with a "homemade" single lens microscope similar to Brown's are presented.

  13. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  14. Formations of negative ions in Sf6/N2 mixtures and their transport at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Okuyama, Yui; Sabo, Martin; Itoh, Haruo; Matejčík, Štefan

    2013-02-01

    Formation of negative ions initiated by interaction of thermal electrons and in the corona discharge (CD) in N2 with small admixture of SF6; was studied using the ion mobility spectrometry- orthogonal acceleration time-of-flight mass spectrometry (IMS-oaTOF) at atmospheric pressure. The negative ions have been analyzed by the ion mobility spectrometry and mass spectrometry (IMS-MS) and two-dimensional spectra (2D IMS-MS) have been recorded. We discuss the mechanisms of the negative ion formation in the N2/SF6 mixtures (0.003-0.018%) as well as the transport parameters of the ions in these mixtures. The values of the reduced ion mobilities of negative ions formed in these mixtures were determined (2.43 cm2/V s for HF2- (HF)n, 2.32 cm2/V s for NO3- (HF)n, 2.08 cm2/V s for SF5-, 2.01 cm2/V s for SOF5-, 2.00 for SOF4- 1.99 cm2/V s for SF6-, 1.83 cm2/V s for SOF5-(H2O)n and 1.73 for SOF5-(H2O)n(HF)m). The assignment of the ion mobility peaks was performed on the basis of the 2D IMS-MS spectra. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  15. Art form as an object of cognitive modeling (towards development of Vygotsky`s semiotic model)

    SciTech Connect

    Dmitriev, V.; Perlovsky, L.I.

    1996-12-31

    We suggest a further development of Vygotsky`s esthetic-semiotic model. First, we discuss Vygotsky`s model originally developed for the analysis of Ivan Bunin`s story {open_quotes}Light Breath{close_quotes}. Vygotsky analyzes formal methods used by Bunin to achieve a specific esthetic effect of {open_quote}lightness{close_quotes} while describing {open_quotes}dirty{close_quotes} events of everyday life. According to Vygotsky, this effect is achieved by ordering of events in a non-linear fashion. Vygotsky creams an airy pattern of smooth lines connecting events of story that he first orders linearly in time. And, he insists that this airy pattern creates an impression of airy lightness. In the language of semiotics, the esthetic effect is created by a specific structural organization of signs. Second, we present our critique of Vygotsky`s model. Although, we do not agree with Vygotsky`s sometimes moralistic judgements, and we consider the dynamics between inner personal values and received moral values to be more complicated than implied in his judgements, our critique in this paper is limited to the structure of his semiotic model. We emphasize that Vygotsky`s model does not explicitly account for a hierarchy of multiple levels of semiotic analysis. His analysis regularly slips from one level to another: (1) a lever of cognitive perception by a regular reader is confused with a level of creative genius of a writer; (2) {open_quotes}open{close_quotes} time of real world is mixed up with {open_quote}closed{close_quote} time of the story; (3) events are not organized by the hierarchy of their importance, nor in real world, nor in the inner model of the personages, nor in the story.

  16. Filamentation of Beam-Shaped Femtosecond Laser Pulses

    SciTech Connect

    Polynkin, Pavel; Kolesik, Miroslav; Moloney, Jerome

    2010-10-08

    When ultra-intense and ultra-short optical pulses propagate in transparent dielectrics, the dynamic balance between multiple linear and nonlinear effects results in the generation of laser filaments. These peculiar objects have numerous interesting properties and can be potentially used in a variety of applications from remote sensing to the optical pulse compression down to few optical cycles to guiding lightning discharges away from sensitive sites. Materializing this practical potential is not straightforward owing to the complexity of the physical picture of filamentation. In this paper, we discuss recent experiments on using beam shaping as a means of control over the filament formation and dynamics. Two particular beam shapes that we have investigated so far are Bessel and Airy beams. The diffraction-free propagation of femtosecond Bessel beams allows for the creation of extended plasma channels in air. These extended filaments can be used for the generation of energetic optical pulses with the duration in the few-cycle range. In the case of filamentation of femtosecond Airy beams, the self-bending property of these beams allows for the creation of curved filaments. This is a new regime of the intense laser-pulse propagation in which the linear self-bending property of the beam competes against the nonlinear self-channeling. The bent filaments generated by ultra-intense Airy beams emit forward-propagating broadband radiation. Analysis of the spatial and spectral distribution of this emission provides for a valuable tool for analyzing the evolution of the ultra-intense optical pulse along the optical path.

  17. Isostatic compensation of equatorial highlands on Venus

    NASA Technical Reports Server (NTRS)

    Kucinskas, Algis B.; Turcotte, Donald L.

    1994-01-01

    Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.

  18. Rejoice in the hubris: useful things biologists could do for physicists

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    2014-10-01

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  19. Metrology system for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck

    2004-01-01

    The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.

  20. Application of super smooth optics to extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Ftaclas, Christ

    1989-01-01

    The observational constraints on direct detection of extrasolar planets around nearby stars are defined. The design of an instrument capable of meeting these goals requires the efficient reduction of diffracted and scattered light by about three orders of magnitude below the airy wings of the unapodized aperture. The diffraction reduction is achieved through the high-efficiency coronagraph, which uses Gaussian occulting masks in the first focus to concentrate better diffracted light in the pupil plane. Laboratory experiments confirm this high efficiency to the limits set by the experimental setup. Scattering due to midspatial scale figure error in the mirrors must also be reduced to a comparable level.

  1. An Invariance Principle to Ferrari-Spohn Diffusions

    NASA Astrophysics Data System (ADS)

    Ioffe, Dmitry; Shlosman, Senya; Velenik, Yvan

    2015-06-01

    We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in . The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm-Liouville operators. In the case of a linear area tilt, we recover the Ferrari-Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.

  2. Quantitative void characterization in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Generazio, E. R.; Baaklini, G. Y.

    1986-01-01

    The ability of scanning laser acoustic microscopy (SLAM) to characterize artificially seeded voids in sintered silicon nitride structural ceramic specimens was investigated. Using trigonometric relationships and Airy's diffraction theory, predictions of internal void depth and size were obtained from acoustic diffraction patterns produced by the voids. Agreement was observed between actual and predicted void depths. However, predicted void diameters were generally much greater than actual diameters. Precise diameter predictions are difficult to obtain due to measurement uncertainty and the limitations of 100 MHz SLAM applied to typical ceramic specimens.

  3. NCI Holds on to Defelice Cup | Poster

    Cancer.gov

    NCI kept the Defelice Cup trophy this year after beating Leidos Biomedical Research, 15 to 9, at the 10th annual Ronald H. Defelice Golf Tournament held on Columbus Day. Sixteen players on each team battled it out at the yearly contractor vs. government tournament held at Rattlewood Golf Course in Mount Airy, Md. NCI leads the series 6–4. “The score was the highest NCI margin of victory in the 10-year series,” said Denny Dougherty, retired senior subcontracts advisor at what was formerly SAIC-Frederick. “The intensity of the annual competition has increased each year and has become...

  4. Light steering of Air-Gaussian beam in Nonlocal Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Chen, Ran; Zhang, Xiaping

    2016-07-01

    With a nonlocal model, we investigate the propagation dynamics of a single Airy-Gaussian (AiG) beam and their interaction in one-dimensional condition by means of direct numerical simulations. With the split-step Fourier method, numerical results show that nonlocality can support periodic intensity distribution of AiG beams leading to the formation of stable bound states. Espesically, by tuning the phase difference between the two beams, we can steer the centre of the bound AiG beams in nonlocal nonlinear media.

  5. Passive solar commercial buildings: design assistance and demonstration program. Phase 1. Final report

    SciTech Connect

    1981-01-26

    The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)

  6. Has Vision been Universally Modeled in a Way that Predicts Damage from Improper Use, or Rapid and Safe Repair to a Normal, Dynamic, Feedback Protected State, by Patented and Trademarked Naturoptic Vision Improvement Methods?

    NASA Astrophysics Data System (ADS)

    Niemi, Paul; McLeod, Roger

    2006-03-01

    Mc Leod predicts that in visual tasks with pupil diameter changes, a longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapped interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Extended visual tasks of a type requiring shorter wavelengths, pair extrinsic eye muscles in inappropriate states, one in extension, the other in contraction, exceeding ``Hooke's law'' settings. Hysterisis prevents feedback-driven, self repair. The universal model for vision predicts myopia, hyperopia and presbyopia. Niemi can test and evaluate that model: repair needs triggering and facilitating demands of the possibly overridden feedback signals.

  7. High-resolution phase imaging of phase singularities in the focal region of a lens

    NASA Astrophysics Data System (ADS)

    Walford, J. N.; Nugent, K. A.; Roberts, A.; Scholten, R. E.

    2002-03-01

    Subwavelength-resolution phase images of phase dislocations at the focal region of a 20×, 0.4-N.A. lens have been obtained by use of an optical fiber interferometer with a tapered probe in one arm. A phase-stepping algorithm is used to determine a quantitative value of the phase at each point in the scan, clearly showing the presence of edge dislocations between the Airy rings of the diffraction pattern near the lens focus, as well as four isolated screw-type singularties caused by astigmatism in the lens.

  8. Surface-plasmon-coupled emission microscopy with a polarization converter.

    PubMed

    Chen, Yikai; Zhang, Douguo; Han, Lu; Rui, Guanghao; Wang, Xiangxian; Wang, Pei; Ming, Hai

    2013-03-01

    Although surface-plasmon-coupled emission-based fluorescence microscopy proves high sensitivity for surface imaging, its donut shape point spread function (PSF) leads to low optical resolution and inefficient signal collection. In this Letter, we experimentally demonstrate the feasibility of solving this problem by the use of a liquid-crystal plate, which could convert the polarization state of surface-plasmon-coupled fluorescence from radial to linear. After being focused by the collection lens, an Airy disk-like PSF of small size can be realized. Experimental results reveal that both the lateral resolution and the signal-to-noise ratio can be enhanced simultaneously. PMID:23455282

  9. Elastostatic bending of a bimaterial plate with a circular interface

    NASA Astrophysics Data System (ADS)

    Ogbonna, Nkem

    2015-08-01

    The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.

  10. Study of Rainbow Scattering in 16O + 14C System

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Glukhov, Yu. A.; Ogloblin, A. A.; Trzaska, W.; Bohlen, H. G.; Oertzen, W. Von; Goncharov, S. A.; Izadpanakh, A.; Maslov, V. A.; Penionzhkevich, Yu. E.; Sobolev, Yu. G.; Khlebnikov, S. V.; Tyurin, G. P.

    2005-09-01

    We carried out new measurements of the 16O+14C differential cross-sections at the 16O energy 281 MeV in the large angles interval at the Jyvaskyla University cyclotron and at the smallest angles at the cyclotron of Hahn-Meitner institute. The results of the experiment showed that clear rainbow structure in 16O + 14C scattering really takes place. The observed position of the main Airy minimum predicted but not observed in previous measurements fits well to the empirical systematization "angle - inverse energy", obtained for the system 16O + 12C.

  11. Experimental simulation of supersonic superboom in a water tank: nonlinear focusing of weak shock waves at a fold caustic.

    PubMed

    Marchiano, Régis; Thomas, Jean-Louis; Coulouvrat, François

    2003-10-31

    An accelerating supersonic aircraft produces noisy superboom due to acoustical shock wave focusing at a fold caustic. This phenomenon is modeled by the mixed-type nonlinear Tricomi equation. An innovative experimental simulation in a water tank has been carried out, with perfect similitude to sonic boom in air. In the linear regime, the canonical Airy function is reproduced using the inverse filter technique. In the nonlinear regime (weak shock waves), the experiment demonstrates the key role of nonlinear effects: they limit the field amplitude, distort the sonic line, and strongly alter the phase of the signal, in agreement with numerical simulations. PMID:14611285

  12. Structural parameters and their effects on the electronic transport properties in aperiodic superlattice profile

    NASA Astrophysics Data System (ADS)

    Bendahma, F.; Djelti, R.; Bentata, S.

    2016-08-01

    The aperiodic GaAs/AlxGa1-xAs superlattices (SL) with trimer disorder have been studied in this paper. The transfer-matrix technique and the exact Airy function formalism have been used to determine the miniband structure, the transmission coefficient, the resonance energy and resonant tunneling time (RTT). Although the disorder localizes the states on average, our numerical calculations show that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the RTT is of the order of several femtoseconds.

  13. Wave tilt sounding of a linearly inhomogeneous layered half-space

    NASA Technical Reports Server (NTRS)

    Warne, L.; Evans, D.; Elachi, C.

    1979-01-01

    The wave tilt of a transverse electric (TE) electromagnetic wave over a linearly inhomogeneous lossy layer overlying a homogeneous half-space is studied. Two approaches are used: an exact formulation using solutions of Airy's equation and an approximate numerical solution using a large number of homogeneous layers with a linearly increasing dielectric constant. The numerical results of both solutions are practically identical as long as the thickness of the layers in the approximate model are somewhat smaller than a quarter-wave length.

  14. Experimental realization of spectral shaping using nonlinear optical holograms.

    PubMed

    Leshem, Anat; Shiloh, Roy; Arie, Ady

    2014-09-15

    We experimentally demonstrate the spectral shaping of a signal generated by a three-wave mixing process using a nonlinear spectral hologram. These holograms are based on binary spatial modulation of the second-order nonlinear coefficient. Here we present the first experimental realization, to the best of our knowledge, of this concept, encoding a nonlinear hologram in a KTiOPO(4) crystal by electric field poling. Two different spectra in the form of the second-order Hermite-Gauss function and the Airy function are shown using the sum-frequency generation process. PMID:26466274

  15. Limitation on image resolution imposed by a random medium.

    PubMed

    Ishimaru, A

    1978-02-01

    In underwater photography, it was reported that clear photographs were obtained through water with large (10-15) optical distances even though the MTF rolls off at a few cycles per mrad. This paper presents an explanation of this apparent contradiction by showing that at a large optical distance where the total coherent intensity is negligibly small compared with the total incoherent intensity, it is still possible to form the Airy disk due to the coherent intensity. We present the condition under which this can take place and applied the results to an imaging system in still water and in water with particulate matter. PMID:20174413

  16. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Dole, S. H.

    1980-01-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  17. Approximate Symmetry Reduction Approach: Infinite Series Reductions to the KdV-Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoyu; Yao, Ruoxia; Zhang, Shunli; Lou, Sen Y.

    2009-11-01

    For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is investigated in terms of approximate symmetry reduction approach. The formal coherence of similarity reduction solutions and similarity reduction equations of different orders enables series reduction solutions. For the weak dissipation case, zero-order similarity solutions satisfy the Painlevé II, Painlevé I, and Jacobi elliptic function equations. For the weak dispersion case, zero-order similarity solutions are in the form of Kummer, Airy, and hyperbolic tangent functions. Higher-order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.

  18. Special modulated beams for cylindrical coordinates in anisotropic media using computer algebra

    NASA Astrophysics Data System (ADS)

    Echeverri Chacón, Santiago

    2010-04-01

    An extension of the solution for the propagation of modulated beams through homogeneous media in cylindrical coordinates which results in a wave function described by Bessel Beams is the basis for this analysis of modulated beams through non homogeneous media in cylindrical coordinates]. By solving the wave equation analytically, including functions that describe the non-homogeneity, and using computer algebra software such as MAPLE©, we formulate new kinds of beams defined by special functions such as Airy, Kummer,and Hypergeometric functions. We also present convergence issues around the axis of propagation and possible applications for these new beams in telecommunication systems.

  19. Umbral Vade Mecum

    NASA Astrophysics Data System (ADS)

    Curtright, Thomas L.; Zachos, Cosmas K.

    2013-10-01

    In recent years the umbral calculus has emerged from the shadows to provide an elegant correspondence framework that automatically gives systematic solutions of ubiquitous difference equations --- discretized versions of the differential cornerstones appearing in most areas of physics and engineering --- as maps of well-known continuous functions. This correspondence deftly sidesteps the use of more traditional methods to solve these difference equations. The umbral framework is discussed and illustrated here, with special attention given to umbral counterparts of the Airy, Kummer, and Whittaker equations, and to umbral maps of solitons for the Sine-Gordon, Korteweg--de Vries, and Toda systems.

  20. The discoveries of Neptune and Triton.

    NASA Astrophysics Data System (ADS)

    Moore, P.

    The story of the tracking-down of Neptune has been told many times, but even today there are still discrepancies in the various accounts, to say nothing of conflicting opinions. To some people, John Couch Adams is a shining hero and George Biddell Airy a black villain; to others it is Le Verrier who is the hero, and Adams an unimportant member of the supporting cast. Of course, all this is absurd. In the author's view, the true discoverers of Neptune were Johann Gottfried Galle and Heinrich D'Arrest.

  1. Experimental Simulation of Supersonic Superboom in a Water Tank: Nonlinear Focusing of Weak Shock Waves at a Fold Caustic

    NASA Astrophysics Data System (ADS)

    Marchiano, Régis; Thomas, Jean-Louis; Coulouvrat, François

    2003-10-01

    An accelerating supersonic aircraft produces noisy superboom due to acoustical shock wave focusing at a fold caustic. This phenomenon is modeled by the mixed-type nonlinear Tricomi equation. An innovative experimental simulation in a water tank has been carried out, with perfect similitude to sonic boom in air. In the linear regime, the canonical Airy function is reproduced using the inverse filter technique. In the nonlinear regime (weak shock waves), the experiment demonstrates the key role of nonlinear effects: they limit the field amplitude, distort the sonic line, and strongly alter the phase of the signal, in agreement with numerical simulations.

  2. Comparison of interpolation methods for ISAR imaging

    NASA Astrophysics Data System (ADS)

    Vargas, Ricardo A.; Flores, Benjamin C.

    1997-09-01

    The purpose of this article is to describe and compare different numerical methods to reconstruct focused ISAR imagery via interpolation in either range-Doppler or frequency domains. Parameters such as amplitude deviation, image entropy, as well as computational efficiency are used to contrast the different approaches presented. It is shown that conventional linear and cubic interpolation techniques are less accurate than other weighted integration techniques, including the unified Fourier reconstruction algorithm which uses an Airy pattern as the interpolating kernel. The appearance of artifacts in linear and cubic interpolation methods is illustrated and discussed. A point target model of a navy drone is used to compare the effectiveness of each method.

  3. Symmetry reductions, exact solutions, and conservation laws of the generalized Zakharov equations

    NASA Astrophysics Data System (ADS)

    Buhe, Eerdun; Bluman, George W.

    2015-10-01

    In this paper, the generalized Zakharov equations, which describe interactions between high- and low-frequency waves in plasma physics are studied from the perspective of Lie symmetry analysis and conservation laws. Based on some subalgebras of symmetries, several reductions and numerous new exact solutions are obtained. All of these solutions represent modified traveling waves. The obtained solutions include expressions involving Airy functions, Bessel functions, Whittaker functions, and generalized hypergeometric functions. Previously unknown conservation laws are constructed for the generalized Zakharov equations using the direct method. Profiles are presented for some of these new solutions.

  4. Prediction of noise field of a propfan at angle of attack

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1991-01-01

    A method for predicting the noise field of a propfan operating at an angle of attack to the oncoming flow is presented. The method takes advantage of the high-blade-count of the advanced propeller designs to provide an accurate and efficient formula for predicting their noise field. The formula, which is written in terms of the Airy function and its derivative, provides a very attractive alternative to the use of numerical integration. A preliminary comparison shows rather favorable agreement between the predictions from the present method and the experimental data.

  5. Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral

    NASA Astrophysics Data System (ADS)

    Tanizaki, Yuya; Nishimura, Hiromichi; Kashiwa, Kouji

    2015-05-01

    The fermion sign problem appearing in the mean-field approximation is considered, and the systematic computational scheme of the free energy is devised by using the Lefschetz-thimble method. We show that the Lefschetz-thimble method respects the reflection symmetry, which makes physical quantities manifestly real at any order of approximations using complex saddle points. The formula is demonstrated through the Airy integral as an example, and its application to the Polyakov-loop effective model of dense QCD is discussed in detail.

  6. Transient thermal stress analysis of a laminated composite beam

    SciTech Connect

    Tanigawa, Y.; Murakami, H.; Ootao, Y. California Univ., La Jolla Osaka Prefectural Industrial Technology Research Institute )

    1989-01-01

    This paper considers a transient thermal stress analysis of a laminated beam made of different materials in multilayers. To simplify the problem, the heat conduction problem is treated as a one-dimensional case in the direction of thickness; then, the transient temperature solution is evaluated using the Laplace transform method. For the thermoelastic fields, thermal stress distributions are obtained using the elementary beam theory and Airy's thermal stress function method. As an example, numerical calculations are carried out for a laminated beam made of five layers, and the numerical results are examined.

  7. Leaky modes of curved long-range surface plasmon-polariton waveguide

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Kyung; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young; Lee, Myung-Hyun; Jung, Woo-Jin

    2006-12-01

    A three-dimensional method for obtaining the bending losses and field distributions of bent surface plamon-polariton waveguides is presented. The method is based on a so called ‘method of line’, which discretises potential in the direction of the metal-widths, and leads to Airy-equations in the radial direction. From the results obtained. It is confirmed that thiner metal waveguide enable longer-ranging propagation of surface plasmon-polariton mode, but the weakened confinement requires larger bending radii on order to keep radiation loss.

  8. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  9. A phase-space approach for propagating field-field correlation functions

    NASA Astrophysics Data System (ADS)

    Gradoni, Gabriele; Creagh, Stephen C.; Tanner, Gregor; Smartt, Christopher; Thomas, David W. P.

    2015-09-01

    We show that radiation from complex and inherently random but correlated wave sources can be modelled efficiently by using an approach based on the Wigner distribution function. Our method exploits the connection between correlation functions and the Wigner function and admits in its simplest approximation a direct representation in terms of the evolution of ray densities in phase space. We show that next leading order corrections to the ray-tracing approximation lead to Airy-function type phase space propagators. By exploiting the exact Wigner function propagator, inherently wave-like effects such as evanescent decay or radiation from more heterogeneous sources as well as diffraction and reflection can be included and analysed. We discuss in particular the role of evanescent waves in the near-field of non-paraxial sources and give explicit expressions for the growth rate of the correlation length as a function of the distance from the source. The approximations are validated using full-wave simulations of model sources. In particular, results for the reflection of partially coherent sources from flat mirrors are given where the influence of Airy function corrections can be demonstrated. We focus here on electromagnetic sources at microwave frequencies and modelling efforts in the context of electromagnetic compatibility.

  10. Far fields of internal gravity waves at arbitrary movement speeds of source of disturbances

    NASA Astrophysics Data System (ADS)

    Bulatov, V. V.; Vladimirov, Yu. V.

    2015-11-01

    The problem of a far field of internal gravity waves excited by a moving source of disturbances in a stratified medium is considered. The uniform asymptotics describing the amplitude-phase structure of the wave fields for the different conditions of a source movement are constructed. The wave pattern, including the position of a front, under subcritical conditions of source movement is determined by waves with the wave numbers restricted by a certain positive value from below, whereas under supercritical conditions the wave pattern is formed by the waves of all ranges and the front is determined only by long waves. In the first case, the phase portrait represents longitudinal and transverse waves decaying as a power function; in the second case, it is formed only of longitudinal waves decaying exponentially. In the first case, the uniform asymptotics of the far field consists of two terms, one of which is represented by the Airy function and the second is represented by its derivative; in the second case, the asymptotics has only one term that is expressed through the Airy function.

  11. Time-domain model for TLP surge response in extreme sea states

    SciTech Connect

    Finnigan, T.D.; Botelho, D.L.R.; Petrauskas, C.

    1984-05-01

    A time-domain model is presented and evaluated for the prediction of the surge response of a tension leg platform (TLP) in regular and random waves, in the presence of a current. The wave force equation in the model is a modification of the Morison equation. Wave diffraction effects are incorporated in an approximate manner. The time-domain model is evaluated on the basis of experimental tests that were performed on a 1:60 scale model of a TLP. The tests were specially designed to investigate the effect of combined waves and current on surge response. The tests were conducted in regular, random and grouped waves. Current was simulated by towing the model. Two different forms of linear wave theory based on stretching and extrapolating wave particle kinematics from Airy wave theory up to the free surface are investigated. The maximum surge response is predicted well by the time-domain model provided the extrapolation of Airy wave theory is used.

  12. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  13. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal. PMID:11921807

  14. Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad

    2013-05-01

    Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.

  15. On isostatic geoid anomalies

    NASA Technical Reports Server (NTRS)

    Haxby, W. F.; Turcotte, D. L.

    1978-01-01

    In regions of slowly varying lateral density changes, the gravity and geoid anomalies may be expressed as power series expansions in topography. Geoid anomalies in isostatically compensated regions can be directly related to the local dipole moment of the density-depth distribution. This relationship is used to obtain theoretical geoid anomalies for different models of isostatic compensation. The classical Pratt and Airy models give geoid height-elevation relationships differing in functional form but predicting geoid anomalies of comparable magnitude. The thermal cooling model explaining ocean floor subsidence away from mid-ocean ridges predicts a linear age-geoid height relationship of 0.16 m/m.y. Geos 3 altimetry profiles were examined to test these theoretical relationships. A profile over the mid-Atlantic ridge is closely matched by the geoid curve derived from the thermal cooling model. The observed geoid anomaly over the Atlantic margin of North America can be explained by Airy compensation. The relation between geoid anomaly and bathymetry across the Bermuda Swell is consistent with Pratt compensation with a 100-km depth of compensation.

  16. Fabrication and testing of a silicon immersion grating for infrared spectroscopy

    SciTech Connect

    Kuzmenko, P.J.; Ciarlo, D.R.; Stevens, C.G.

    1994-07-25

    Recent advances in silicon micromachining techniques (e.g. anisotropic etching) allow the fabrication of very coarse infrared echelle gratings. When used in immersion mode, the dispersion is increased proportionally to the refractive index. This permits a very significant reduction in the overall size of a spectrometer while maintaining the same resolution. We have fabricated a right triangular prism (30{times}60{times}67 mm with a rectangular entrance face 30{times}38 mm) from silicon with a grating etched into the face of the hypotenuse. The grating covers an area of 32 mm by 64 mm and has a 97.5 PM periodicity with a blaze angle of 63.4{sup o}. The groove surfaces are very smooth with a roughness of a few manometers. Random defects in the silicon are the dominant source of grating scatter ({approx} 12% at 3.39 {mu}m). We measure a grating ghost intensity of 1.2%. The diffraction peak is quite narrow, slightly larger than the Airy disc diameter at F/12. However due to wavefront aberrations, perhaps 15--20% of the diffracted power is in the peak with the rest distributed in a diameter roughly five times the Airy disc.

  17. Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function

    PubMed Central

    Jia, Shu; Vaughan, Joshua C.; Zhuang, Xiaowei

    2014-01-01

    Airy beams maintain their intensity profiles over a large propagation distance without substantial diffraction and exhibit lateral bending during propagation1-5. This unique property has been exploited for micromanipulation of particles6, generation of plasma channels7 and guidance of plasmonic waves8, but has not been explored for high-resolution optical microscopy. Here, we introduce a self-bending point spread function (SB-PSF) based on Airy beams for three-dimensional (3D) super-resolution fluorescence imaging. We designed a side-lobe-free SB-PSF and implemented a two-channel detection scheme to enable unambiguous 3D localization of fluorescent molecules. The lack of diffraction and the propagation-dependent lateral bending make the SB-PSF well suited for precise 3D localization of molecules over a large imaging depth. Using this method, we obtained super-resolution imaging with isotropic 3D localization precision of 10-15 nm over a 3 μm imaging depth from ∼2000 photons per localization. PMID:25383090

  18. Altimetry data and the elastic stress tensor of subduction zones

    NASA Technical Reports Server (NTRS)

    Caputo, M.

    1985-01-01

    The stress field in the lithosphere caused by the distribution of density anomalies associated to the geoidal undulations observed by the GEOS-3 and SEASAT Earth satellites in the Tonga region was studied. Different models of the lithosphere were generated with different assumptions on the density distribution and geometry, all generating a geoid profile almost identical to the observed one. The first model is the Airy isostatic hypothesis which consists of a crust of density 2.85 laying on a lithosphere of density 3.35. The models obtained with different compensation depths give residual shortwavelength anomalies of the order of several tens of mgal and several tens of meters geoidal undulations. It indicates that there is no isostasy of the Airy type in the Tonga region because the observed geoid has very smooth undulation of about 25 m over a distance of 2000 km. The Pratt isostatic hypothesis is used in a model consisting of a crust of variable density laying on a lithosphere of higher density. This model gives smaller residual anomalies but still shows that there is no isostasy of the Pratt type in the Tonga region because the observed geoidal undulation are much smaller and smoother than the residual undulations associated to the Pratt model of isostasy.

  19. Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Milikh, G.; Shao, X.; Mishin, E. V.; Papadopoulos, K.

    2015-04-01

    We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10-20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.

  20. Diffraction of acoustic-gravity waves in the presence of a turning point.

    PubMed

    Godin, Oleg A

    2016-07-01

    Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed. PMID:27475153

  1. Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models

    NASA Astrophysics Data System (ADS)

    Schehr, Grégory; Majumdar, Satya N.

    2006-05-01

    We study the probability density function P(hm,L) of the maximum relative height hm in a wide class of one-dimensional solid-on-solid models of finite size L . For all these lattice models, in the large- L limit, a central limit argument shows that, for periodic boundary conditions, P(hm,L) takes a universal scaling form P(hm,L)˜(12wL)-1f(hm/(12wL)) , with wL the width of the fluctuating interface and f(x) the Airy distribution function. For one instance of these models, corresponding to the extremely anisotropic Ising model in two dimensions, this result is obtained by an exact computation using the transfer matrix technique, valid for any L>0 . These arguments and exact analytical calculations are supported by numerical simulations, which show in addition that the subleading scaling function is also universal, up to a nonuniversal amplitude, and simply given by the derivative of the Airy distribution function f'(x) .

  2. Simulation of electron transmittance and tunnel current in n{sup +} Poly-Si/HfSiO{sub x}N/Trap/SiO{sub 2}/Si(100) capacitors using analytical and numerical approaches

    SciTech Connect

    Noor, Fatimah A. Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2015-04-16

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.

  3. Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex

    NASA Astrophysics Data System (ADS)

    Torreão, José R. A.

    2016-02-01

    It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.

  4. Rainbow-shift mechanism behind discrete optical-potential ambiguities

    SciTech Connect

    Brandan, M.E. ); McVoy, K.W. )

    1991-03-01

    Some years ago, Drisko {ital et} {ital al}. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-{ital l} {ital S}-matrix elements for two equivalent'' potentials differing in phase by 2{pi}, {ital l}-by-{ital l}. We point out that the {ital absence} of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment {delta}{sub {ital l}}{r arrow}({delta}{sub {ital l}}+{pi}) for low-{ital l} phases relative to the high-{ital l} ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-{ital l} transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity.

  5. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc. PMID:26512472

  6. Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium.

    PubMed

    Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L

    2015-01-01

    On November 14, 2014, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 6th Annual Research Symposium. Dr. Danuta Skowronski, Epidemiology Lead for Influenza and Emerging Respiratory Pathogens at the British Columbia Centre for Disease Control (BCCDC), was the keynote speaker and presented a lecture entitled "Rapid response research during emerging public health crises: influenza and reflections from the five year anniversary of the 2009 pandemic". The LIM symposium provides a forum for both LIM and non-LIM medical students to present their research work, either as an oral or poster presentation. There were a total of six oral presentations and 77 posters presented. 
The oral presentations included: Swathi Damaraju, "The role of cell communication and 3D Cell-Matrix environment in a stem cell-based tissue engineering strategy for bone repair"; Menglin Yang, "The proteolytic activity of Nepenthes pitcher fluid as a therapeutic for the treatment of celiac disease"; Amelia Kellar, "Monitoring pediatric inflammatory bowel disease - a retrospective analysis of transabdominal ultrasound"; Monica M. Faria-Crowder, "The design and application of a molecular profiling strategy to identify polymicrobial acute sepsis infections"; Waleed Rahmani, "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla and modulate hair type"; and, Laura Palmer, "A novel role for amyloid beta protein during hypoxia/ischemia". 
The article on the University of Calgary Leaders in Medicine Program, "A Prescription that Addresses the Decline of Basic Science Education in Medical School," in a previous issue of CIM (2014 37(5):E292) provides more details on the program. Briefly, the LIM Research Symposium has the following objectives: (1) to showcase the impressive variety of projects undertaken by students in the LIM Program as well as University of Calgary medical students; (2) to encourage medical

  7. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  8. Caustics, catastrophes, and symmetries in curved beams

    NASA Astrophysics Data System (ADS)

    Vaveliuk, Pablo; Lencina, Alberto; Rodrigo, José A.; Matos, Oscar Martinez

    2015-09-01

    In this paper, a meaningful classification of optical caustic beams in two dimensions is presented. It is demonstrated that the phase symmetry of the beam's angular spectrum governs the optical catastrophe, which describes the wave properties of ray singularities, for cusp (symmetric phase) and fold (antisymmetric phase) caustics. In contrast to the established idea, the caustic classification arises from the phase symmetry rather than from the phase power, thus breaking the commonly accepted concept that fold and cusp caustics are related to the Airy and Pearcey functions, respectively. Nevertheless, the role played by the spectral phase power is to control the degree of caustic curvature. These findings provide straightforward engineering of caustic beams by addressing the spectral phase into a spatial light modulator or glass plate.

  9. The Propagation of Radio Waves

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    1988-08-01

    Preface; 1. The ionosphere and magnetosphere; 2. The basic equations; 3. The constitutive relations; 4. Magnetoionic theory I. Polarisation and refractive index; 5. Magnetoionic theory II. Rays and group velocity; 6. Stratified media. The booker quartic; 7. Slowly varying medium. The W.K.B. solution; 8. The Airy integral function and the Stokes phenomenon; 9. Integration by steepest descents; 10. Ray tracing in a loss-free stratified medium; 11. Reflection and transmission coefficients; 12. Ray theory results for isotropic ionosphere; 13. Ray theory results for anisotropic plasmas; 14. General ray tracing; 15. Full wave solutions for isotropic ionosphere; 16. Coupled wave eqations; 17. Coalescence of couling points; 18. Full wave methods for anisotropic stratified media; 19. Applications of full wave methods; Answers to problems; Bibliography; Index of definitions of the more important symbols; Subject and name index.

  10. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere

    NASA Astrophysics Data System (ADS)

    Budden, K. G.

    The effect of the ionized regions of the earth's atmosphere on radio wave propagation is comprehensively treated. After an introductory consideration of the terrestrial ionosphere and magnetosphere, wave propagation in ion plasmas, and their disturbances, attention is given to basic equations for the consideration of propagation effects, such constitutive relations as the Lorentz polarization term and the Debye length, the roles of polarization and refractive index in magnetoionic theory, rays and group velocity, the Booker quartic in stratified media, and the 'WKB' solutions. Further topics encompass the Airy integral function and the Stokes phenomenon, ray tracing in a loss-free stratified medium, ray theory and full wave solution results for an isotropic ionosphere, and full wave methods for anisotropic stratified media and their applications.

  11. Can Impaired Vision be Easily, Quickly and Safely Restored toward Health and Maintained Wellness, Using McLeod's Patent Pending Naturoptics Methods?

    NASA Astrophysics Data System (ADS)

    Courtmanche, Amanda; McLeod, Roger; McLeod, David

    2006-10-01

    A healthy eye has its large set of diffraction patterns, generated by the viewed scene, spread across the visible spectrum. Only the two of these simultaneously coincident with foveal cones, and rods, or with extra-foveal cones, are visually useful. This fact and pupil diameter changes with illumination, which cause proportional wavelength changes, drives the healthy visual state. A quasi-monochromatic interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval aligns with extrafoveal cones, with about twenty nanometers separation. Wavelengths follow the Airy disk radius formula. An unhealthy eye is an eyeball deformed by self- induced vision abuse. Incorrect and effectively static stresses in the large external eye muscles displace and distort the patterns. Rebalancing the proper vision and muscle state are safely, quickly and rapidly restored by mimicking natural eye and head movements with naturoptics.

  12. Semilocal density functional theory with correct surface asymptotics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  13. Electroless plating of Ni thin films using foam of electrolyte

    NASA Astrophysics Data System (ADS)

    Furuhashi, Takahiro; Yamada, Yoshiyasu; Ichihara, Shoji; Takai, Akihiro; Usui, Hiroaki

    2016-02-01

    Electroless plating of Ni thin films was achieved in foam of electroplating solution in place of electroplating liquid. Commercial hypophosphite-based solution for Ni electroless plating was added with a surfactant of sulfuric acid monododecyl ester sodium salt (SDS) and bubbled with nitrogen gas to produce airy foam. Ni thin films were deposited by immersing iron substrates in the foam. Although stationary foam was inconvenient for electrodeposition by itself, film growth was enhanced by generating a flow of foam using substrate rotation and by adding SDS to a concentration of 0.1 to 0.3 wt %. No defects attributed to pinholes were observed on the film surface. This method was effective in reducing the net amount of plating solution necessary for film deposition.

  14. Analysis of Relationship between Wavelength Selectivity and Angular Selectivity of Rugate coating

    NASA Astrophysics Data System (ADS)

    Guangwei, Zheng; yang, Wang

    2016-01-01

    Based on Bragg law, Airy's formulae, and second-order Taylor series expansion, the relationships between wavelength selectivity and angular selectivity of the ordinary and phase-shifted Rugate coatings are investigated, respectively. And their expressions of the wavelength selectivity bandwidth and the angular selectivity bandwidth of these two types of Rugate gratings are put forward. The results show that when the incidence angle is far away from 0 rad, the bandwidth of the wavelength selectivity is proportional to that of the angular selectivity. And when the incidence angle approaches or even equals 0 rad (frequently-used cases), the bandwidth of the wavelength selectivity is squarely proportional to that of the angular selectivity. The results are instructive for the design and application of Rugate coatings.

  15. Simulation of high-resolution x-ray zone plates.

    PubMed

    Kurokhtin, Alexei N; Popov, Alexei V

    2002-02-01

    A full-wave approach to quantitative characterization of x-ray zone plate lenses is proposed. Distributed focusing efficiency eta(z) of a multifocus optical element is defined as the energy flux through the Airy disk of a reference perfect lens with variable focal length z. Maxima of this function characterize diffraction efficiencies and spatial resolution of the zone plate foci. The parabolic wave equation is used to take into account diffraction effects inside the optical element. Rough and fuzzy interface models are introduced to describe realistic zone profiles. Numerical simulation reveals the limited capability of zone width reduction to improve the zone plate imaging performance. The possibilities of second-order focus enhancement by optimization of the zone plate thickness, line-to-space ratio, and zone tilt are studied numerically. PMID:11822594

  16. Tail decay for the distribution of the endpoint of a directed polymer

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas; Liechty, Karl

    2013-05-01

    We obtain an asymptotic expansion for the tails of the random variable { T}=\\arg\\max_{u\\in{R}}(A_2(u)-u^2) where A_2 is the Airy2 process. Using the formula of Schehr (2012 J. Stat. Phys. 149 385) that connects the density function of { T} to the Hastings-McLeod solution to the second Painlevé equation, we prove that as t → ∞, {P}(|{ T}|>t)=C\\rme^{-\\frac{4}{3}\\varphi(t)}t^{-145/32}(1+O(t^{-3/4})) , where φ(t) = t3 - 2t3/2 + 3t3/4, and the constant C is given explicitly.

  17. Stress distributions and stress intensity factors in ceramic roller bearing rings

    NASA Astrophysics Data System (ADS)

    Müller, W. H.

    1995-06-01

    A method is presented which allows to compute the stress intensity factors (SIFs) of a ceramic roller bearing ring with a surface flaw. First, the stresses due to mechanical loads applied to the surfaces of the undamaged ring are computed, using Michell's expression for Airy's stress function in polar coordinates ([l]). Second, the stress intensity factors of the flaw are obtained using Tada's additivity principle ([2]), namely by integration of the point force solution for the SIF of a surface crack with the aforementioned stresses as input parameter. To illustrate the procedure, the special case of a ring with a surface flaw which is loaded by six equidistantly spaced cylindrical rollers will be studied numerically.

  18. The far field diffraction pattern for corner reflectors with complex reflection coefficients

    NASA Technical Reports Server (NTRS)

    Chang, R. F.; Currie, D. G.; Alley, C. O.; Pittman, M. E.

    1970-01-01

    The far field diffraction pattern of a geometrically perfect corner reflector is examined analytically for normally incident monochromatic light. The states of polarization and the complex amplitudes of the emerging light are expressed through transformation matrices in terms of those of the original incident light for each sextant of the face in a single coordinate system. The analytic expression of the total diffraction pattern is obtained for a circular face. This expression consists of three component functions in addition to the basic Airy function. The coefficient of each function is expressed in terms of complex coefficients of reflectance of the reflecting surface. Some numerical results for different reflecting surfaces, including total internal reflection, are presented. The iso-intensity contours of the diffraction pattern evaluated from the analytical expressions for an uncoated solid corner reflector are also presented along with the photographs of the pattern.

  19. Mid-pacific mountains revisited

    NASA Astrophysics Data System (ADS)

    Kroenke, Loren W.; Kellogg, James N.; Nemoto, Kenji

    1985-06-01

    The Mid-Pacific Mountains are guyots whose volcanic pedestals have been constructed on a broad basement plateau, the flanks of which are downfaulted. Edifice construction may have been controlled by an orthogonal system of intersecting faults trending roughly ENE and NNW. Low amplitude gravity anomalies observed over the Mid-Pacific Mountains indicate complete Airy-Heiskanen isostatic compensation, crustal thickening, and eruption on thin elastic lithosphere. Tholeiites of the Mid-Pacific Mountains resemble lavas of Iceland and the Galapagos Islands. The orthogonal fault system, low gravity anomalies, and lava chemistry of the Mid-Pacific Mountains can be explained by eruption on or near a great ENE-trending rift system.

  20. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  1. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index

    NASA Astrophysics Data System (ADS)

    Zhou, Jianqin; Shen, Jun; Neill, W. Stuart

    2016-07-01

    A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes.

  2. Strehl-constrained iterative blind deconvolution for post-adaptive-optics data

    NASA Astrophysics Data System (ADS)

    Desiderà, G.; Carbillet, M.

    2009-12-01

    Aims: We aim to improve blind deconvolution applied to post-adaptive-optics (AO) data by taking into account one of their basic characteristics, resulting from the necessarily partial AO correction: the Strehl ratio. Methods: We apply a Strehl constraint in the framework of iterative blind deconvolution (IBD) of post-AO near-infrared images simulated in a detailed end-to-end manner and considering a case that is as realistic as possible. Results: The results obtained clearly show the advantage of using such a constraint, from the point of view of both performance and stability, especially for poorly AO-corrected data. The proposed algorithm has been implemented in the freely-distributed and CAOS-based Software Package AIRY.

  3. On the Mass Distribution of Animal Species

    NASA Astrophysics Data System (ADS)

    Redner, Sidney; Clauset, Aaron; Schwab, David

    2009-03-01

    We develop a simple diffusion-reaction model to account for the broad and asymmetric distribution of adult body masses for species within related taxonomic groups. The model assumes three basic evolutionary features that control body mass: (i) a fixed lower limit that is set by metabolic constraints, (ii) a species extinction risk that is a weakly increasing function of body mass, and (iii) cladogenetic diffusion, in which daughter species have a slight tendency toward larger mass. The steady-state solution for the distribution of species masses in this model can be expressed in terms of the Airy function. This solution gives mass distributions that are in good agreement with data on 4002 terrestrial mammal species from the late Quaternary and 8617 extant bird species.

  4. Controlling the spin-torque efficiency with ferroelectric barriers

    NASA Astrophysics Data System (ADS)

    Useinov, A.; Chshiev, M.; Manchon, A.

    2015-02-01

    Nonequilibrium spin-dependent transport in magnetic tunnel junctions comprising a ferroelectric barrier is theoretically investigated. The exact solutions of the free electron Schrödinger equation for electron tunneling in the presence of interfacial screening are obtained by combining Bessel and Airy functions. We demonstrate that the spin transfer torque efficiency, and more generally the bias dependence of tunneling magneto- and electroresistance, can be controlled by switching the ferroelectric polarization of the barrier. In particular, the critical voltage at which the in-plane torque changes sign can be strongly enhanced or reduced depending on the direction of the ferroelectric polarization of the barrier. This effect provides a supplementary way to electrically control the current-driven dynamic states of the magnetization and related magnetic noise in spin transfer devices.

  5. Heat trap - An optimized far infrared field optics system. [for astronomical sources

    NASA Technical Reports Server (NTRS)

    Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.

    1976-01-01

    The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-

  6. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy.

    PubMed

    Morris, C M; Valdés Aguilar, R; Ghosh, A; Koohpayeh, S M; Krizan, J; Cava, R J; Tchernyshyov, O; McQueen, T M; Armitage, N P

    2014-04-01

    Kink bound states in the one-dimensional ferromagnetic Ising chain compound CoNb2O6 have been studied using high-resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrödinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near 2 times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states--two pairs of kinks on neighboring chains. PMID:24745454

  7. Hierarchy of Bound States in the One-Dimensional Ferromagnetic Ising Chain CoNb2O6 Investigated by High-Resolution Time-Domain Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Morris, C. M.; Valdés Aguilar, R.; Ghosh, A.; Koohpayeh, S. M.; Krizan, J.; Cava, R. J.; Tchernyshyov, O.; McQueen, T. M.; Armitage, N. P.

    2014-04-01

    Kink bound states in the one-dimensional ferromagnetic Ising chain compound CoNb2O6 have been studied using high-resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrödinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near 2 times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states—two pairs of kinks on neighboring chains.

  8. Elastic interactions between two-dimensional geometric defects

    NASA Astrophysics Data System (ADS)

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects—point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells.

  9. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  10. Nondiffracting accelerating wave packets of Maxwell's equations.

    PubMed

    Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai

    2012-04-20

    We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of more than 90°. We show that these accelerating beams are self-healing, analyze their properties, and find the new class of accelerating breathers: self-bending beams of periodically oscillating shapes. Finally, we emphasize that in their scalar form, these beams are the exact solutions for nondispersive accelerating wave packets of the most common wave equation describing time-harmonic waves. As such, this work has profound implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes. PMID:22680719

  11. Elastic interactions between two-dimensional geometric defects.

    PubMed

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects-point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells. PMID:26764699

  12. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai; Lasse H., Lillevang; Götte, Nadine; Zielinski, Bastian; Balling, Peter; Senftleben, Arne; Baumert, Thomas

    2016-06-01

    In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  13. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index.

    PubMed

    Zhou, Jianqin; Shen, Jun; Neill, W Stuart

    2016-07-01

    A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes. PMID:27475545

  14. A deterministic approach toward isostatic gravity residuals: A case study from South America

    SciTech Connect

    Chapin, D.A.

    1994-12-31

    Isostatic gravity residuals are based upon geologic models, therefore they provide a reasonable basis of comparison over large areas for reconnaissance studies. To help define the best isostatic model for South America, a new deterministic methodology overcomes the deficiencies of other empirically-based methods. The basis for the model was the Airy-Heiskanen (1958) isostatic model, which assumes that surface topography is supported by crustal thickening. The three key parameters -- (a) the crustal thickness at sea-level, (b) the surface reduction density, and (c) the density contrast between the crust and the mantle -- were determined directly from the elevation, free-air gravity, and Bouguer gravity datasets. The results of this work were not only an isostatic residual map, but methodology which cross-checks the data for quality control purposes. The final isostatic residual map can be used in confidence for basin evaluation throughout the continent of South America.

  15. Approximate solution for optical measurements of the diameter and refractive index of a small and transparent fiber.

    PubMed

    Świrniak, Grzegorz; Mroczka, Janusz

    2016-04-01

    When a plane electromagnetic wave is scattered by an optically transparent object, whose size is much larger than the wavelength, a series of bright and dark fringes forms the primary rainbow, which is one of the most splendid phenomena in nature. In this work, an optical technique is discussed for simultaneous measurement of the diameter and refractive index of an axisymmetric and dielectric fiber by studying some rainbow features. This noncontact optical technique uses a beam of light exhibiting low temporal coherence, which enabled us to reduce the detrimental sensitivity of the rainbow features to variations of the fiber properties, thus allowing for high-precision estimates. Approximate mathematical formulas for the diameter and refractive index measurements were derived from the lowest-order complex angular momentum correction to Airy theory of rainbow. Furthermore, sensitivity of the measurement data to small deformation of the fiber's cross section into an ellipse was discussed. Preliminary empirical results provide a qualitative verification. PMID:27140778

  16. Generalized Jinc functions and their application to focusing and diffraction of circular apertures

    NASA Astrophysics Data System (ADS)

    Cao, Qing

    2003-04-01

    A family of generalized Jinc functions is defined and analyzed. The zero-order one is just the traditional Jinc function. In terms of these functions, series-form expressions are presented for the Fresnel diffraction of a circular aperture illuminated by converging spherical waves or plane waves. The leading term is nothing but the Airy formula for the Fraunhofer diffraction of circular apertures, and those high-order terms are directly related to those high-order Jinc functions. The truncation error of the retained terms is also analytically investigated. We show that, for the illumination of a converging spherical wave, the first 19 terms are sufficient for describing the three-dimensional field distribution in the whole focal region.

  17. Localization in supergravity and quantum AdS 4 /CFT3 holography

    NASA Astrophysics Data System (ADS)

    Dabholkar, Atish; Drukker, Nadav; Gomes, João

    2014-10-01

    We compute the quantum gravity partition function of M-theory on AdS 4 × X 7 by using localization techniques in four-dimensional gauged supergravity obtained by a consistent truncation on the Sasaki-Einstein manifold X 7. The supergravity path integral reduces to a finite dimensional integral over two collective coordinates that parametrize the localizing instanton solutions. The renormalized action of the off-shell instanton solutions depends linearly and holomorphically on the "square root" prepotential evaluated at the center of AdS 4. The partition function resembles the Laplace transform of the wave function of a topological string and with an assumption about the measure for the localization integral yields an Airy function in precise agreement with the computation from the boundary ABJM theory on a 3-sphere. Our bulk quantum gravity computation is nonperturbatively exact in four-dimensional Planck length but ignores corrections due to brane-instantons.

  18. Spheroidal droplet measurements based on generalized rainbow patterns

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Xu, Feng; Tropea, Cameron

    2013-09-01

    The character of the rainbow from a droplet is investigated experimentally and theoretically. In the experiment, light scattering from spheroidal droplets in the vicinity of the primary rainbow region has been observed to contain a variety of characteristic interference patterns which are a generalization of the rainbow from a sphere. These patterns start from being a fold rainbow, change to transverse cusp caustics and then to hyperbolic umbilic catastrophe as the aspect ratio of the droplet increases. A comparison of the observed rainbow patterns in the horizontal equatorial plane with those of Airy theory reveals that these patterns can be used for characterizing droplet, in particular for determining the refractive index and the diameter of the droplet in the equatorial plane. The absolute error of the refractive index is smaller than 1.5×10-4. The absolute relative error of the equatorial diameter is less than 5%.

  19. Laws of granular solids: geometry and topology.

    PubMed

    DeGiuli, Eric; McElwaine, Jim

    2011-10-01

    In a granular solid, mechanical equilibrium requires a delicate balance of forces at the disordered grain scale. To understand how macroscopic rigidity can emerge in this amorphous solid, it is crucial that we understand how Newton's laws pass from the disordered grain scale to the laboratory scale. In this work, we introduce an exact discrete calculus, in which Newton's laws appear as differential relations at the scale of a single grain. Using this calculus, we introduce gauge variables that describe identically force- and torque-balanced configurations. In a first, intrinsic formulation, we use the topology of the contact network, but not its geometry. In a second, extrinsic formulation, we introduce geometry with the Delaunay triangulation. These formulations show, with exact methods, how topology and geometry in a disordered medium are related by constraints. In particular, we derive Airy's expression for a divergence-free, symmetric stress tensor in two and three dimensions. PMID:22181138

  20. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  1. Curved singular beams for three-dimensional particle manipulation

    PubMed Central

    Zhao, Juanying; Chremmos, Ioannis D.; Song, Daohong; Christodoulides, Demetrios N.; Efremidis, Nikolaos K.; Chen, Zhigang

    2015-01-01

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark “hole” in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011

  2. The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling

    NASA Technical Reports Server (NTRS)

    Pavlis, N. K.; Rapp, R. H.

    1990-01-01

    Consideration is given to the possibility of combining low-degree satellite-derived geopotential models with the harmonic coefficients of the topographic-isostatic potential implied by the Airy/Heiskanen isostatic hypothesis. The compilation of a topographic database providing information pertaining to terrain type classification is discussed. The formulation for the determination of harmonic coefficients of the topographic-isostatic potential is extended beyond to cases discussed by Lachapelle (1976) to include various terrain types. This formulation and the series expansion approach of Rummel et al. (1988) are implemented for potential coefficient determinations complete to degree and order 360. The topographic-isostatic coefficients are used with satellite-derived geopotential models to estimate mean gravity anomalies. The results are compared with observations to evaluate the quality of different estimation procedures.

  3. The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling

    NASA Astrophysics Data System (ADS)

    Pavlis, N. K.; Rapp, R. H.

    1990-03-01

    Consideration is given to the possibility of combining low-degree satellite-derived geopotential models with the harmonic coefficients of the topographic-isostatic potential implied by the Airy/Heiskanen isostatic hypothesis. The compilation of a topographic database providing information pertaining to terrain type classification is discussed. The formulation for the determination of harmonic coefficients of the topographic-isostatic potential is extended beyond to cases discussed by Lachapelle (1976) to include various terrain types. This formulation and the series expansion approach of Rummel et al. (1988) are implemented for potential coefficient determinations complete to degree and order 360. The topographic-isostatic coefficients are used with satellite-derived geopotential models to estimate mean gravity anomalies. The results are compared with observations to evaluate the quality of different estimation procedures.

  4. An assessment of crustal thickness variations on the lunar near side - Models, uncertainties, and implications for crustal differentiation

    NASA Technical Reports Server (NTRS)

    Thurber, C. H.; Solomon, S. C.

    1978-01-01

    The paper presents a series of models for the structure of lunar nearside crust which are consistent with the observed gravity and topography. Each crustal model is derived subject to a specific set of constraints and assumptions. The assumptions/constraints considered include strict isostatic equilibrium, pure Airy compensation mechanism, pure Pratt compensation mechanism, assignment of assumed fixed values for mare basalt thickness, and attribution of all superisostatic mass in the maria to basalt fill. The resulting models are used to assess the degree and mechanism of isostasy, and to investigate the thickness of the mare basalt. Details of the lateral variations in crustal thickness or density and in the degree of isostatic compensation bear strongly on the mode of early crustal differentiation and on the subsequent thermal history of the moon.

  5. Structural characteristics and tectonics of northeastern Tellus Regio and Meni Tessera

    NASA Technical Reports Server (NTRS)

    Toermaenen, T.

    1992-01-01

    The Tellus Regio-Meni Tessera region is an interesting highland area characterized by large areas of complex ridged terrain or tessera terrain. The area was previously studied from the Venera 15/16 data, typical characteristics of complex tessera terrain of Tellus Regio were analyzed, and a formation mechanism was proposed. Apparent depths of compensation of approximately 30-50 km were calculated from Pioneer Venus gravity and topography data. These values indicate predominant Airy compensation for the area. Regional stresses and lithospheric structures were defined from analysis of surface structures, topography, and gravity data. In this work we concentrate on northeastern Tellus Regio and Meni Tessera, which are situated north and west of Tellus Regio. Structural features and relationships are analyzed in order to interpret tectonic history of the area. Study area was divided into three subareas: northeastern Tellus Regio, Meni Tessera, and the deformed plain between them.

  6. Degree variances of the earth's potential, topography and its isostatic compensation

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1982-01-01

    A spherical harmonic expansion of the earth's gravitational potential and equivalent rock topography to degree and order 180 is described. The potential implied by the topography considered as uncompensated and with isostatic compensation has been computed. Good agreement with the observed potential field is found when the depth of compensation in the Airy theory is assumed to be 50 km. At the higher degrees the correlation coefficient between the potential expansion and the equivalent rock topography is about 0.5. The Lachapelle equations for the topographic isostatic potential were tested using 1 x 1 deg equivalent rock topography. The degree variances agree at the lower degrees but at degree 36 the Lachapelle results using 5 deg data underestimate the potential degree variances by about one-third.

  7. Piezoelectric Franz-Keldysh effect in a GaN/InGaN/AlGaN multilayer structure

    NASA Astrophysics Data System (ADS)

    Hou, Yong T.; Teo, Kie L.; Li, Ming Fu; Uchida, Kazuo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    1999-11-01

    Contactless electroreflectance (CER) of a GaN/InGaN/AlGaN multilayer structure grown on sapphire has been measured in the temperature range of 15K and 450K. Except for the GaN exciton structures, well-defined Franz-Keldysh Oscillations are observed above the AlGaN band gap. An electomodulational model based on complex Airy functions is used to analyze the FKOs line shape. The temperature dependence of transition energies is obtained both for GaN and AlGaN. The magnitude of the built in electric field in AlGaN layer is also determined. The temperature dependence of the electric field is found to be consistent with the variation of thermal strain in the epilayer. It is demonstrated that the built-in electric field can be identified to be due to the piezoelectric effect.

  8. Common-path achromatic rotational-shearing coronagraph.

    PubMed

    Tavrov, Alexander; Korablev, Oleg; Ksanfomaliti, Leonid; Rodin, Alexander; Frolov, Pavel; Nishikwa, Jun; Tamura, Motohide; Kurokawa, Takashi; Takeda, Mitsuo

    2011-06-01

    To suppress starlight for direct exoplanet observation, we propose a common-path achromatic rotational-shearing coronagraph (CP-ARC), which is an interferocoronagraph with an angular-adjustable field rotator. The CP-ARC aims to maintain unwanted detection of stellar light, which can be suppressed incompletely by interference because of the finite diameter of the star. Compared to the previous interferocoronagraph, which had a nonadjustable 180° field rotation, the proposed CP-ARC can improve the coronagraphic contrast by several orders if the CP-ARC is combined with medium or large telescopes where the companion-star separation is optically resolved by more than a few Airy radii. The CP-ARC is made robust against mechanical disturbances due to the common-path interferometer principle. PMID:21633419

  9. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  10. Tsunami asymptotics

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2005-01-01

    By applying the technique of uniform asymptotic approximation to the oscillatory integrals representing tsunami wave profiles, the form of the travelling wave far from the source is calculated for arbitrary initial disturbances. The approximations reproduce the entire profiles very accurately, from the front to the tail, and their numerical computation is much faster than that of the oscillatory integrals. For one-dimensional propagation, the uniform asymptotics involve Airy functions and their derivatives; for two-dimensional propagation, the uniform asymptotics involve products of these functions. Separate analyses are required when the initial disturbance is specified as surface elevation or surface velocity as functions of position, and when these functions are even or odd. 'There was an awful rainbow once in heaven' (John Keats, 1820)

  11. Thermally induced optical nonlinearity during transient heating of thin films

    SciTech Connect

    Chen, G. ); Tien, C.L. )

    1994-05-01

    This work studies the temperature field and the optical response of weakly absorbing thin films with thermally induced optical nonlinearity during picosecond to nanosecond pulsed-laser heating. A one-dimensional model is presented that examines the effects of the temperature dependent optical constants and the nonuniform absorption caused by interference. The energy equation is solved numerically, coupled with the matrix method in optical multilayer theory. Both cadmium sulfide (CdS) thin films and a zinc selenide (ZnSe) interference filter are considered. The computational results compare favorably with available experimental data on the ZnSe interference filter. This study shows that the transient temperature distributions in the films are highly nonuniform. Such nonuniformity yields Airy's formulae for calculating the thin-film reflectance and transmittance inapplicable. Applications of the work include optical bistability, localized change of the film structure, and measurement of the thermal diffusivity of thin films. 31 refs., 7 figs., 1 tab.

  12. The prime meridian of Mars and the longitudes of the Viking landers

    NASA Technical Reports Server (NTRS)

    Davies, M. E.

    1977-01-01

    A planetwide control net of Mars has been computed by a single large-block analytical triangulation derived from 17,224 measurements of 3,037 control points on 928 Mariner 9 pictures. The computation incorporated the Viking-determined direction of the spin axis and rotation rate of Mars. The angle measured from the vernal equinox to the prime meridian (areocentric right ascension) of Mars was determined to be 148.368 deg + 350.891986 deg (JD - 2433282.5), where JD refers to the Julian date. The prime meridian of Mars passes through the center of the small crater Airy-O. The longitudes of the Viking landers are 47.82 + or - 0.1 deg for Lander 1 and 225.59 + or - 0.1 deg for Lander 2.

  13. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  14. Critical-current diffraction patterns of grain-boundary Josephson weak links

    SciTech Connect

    Peterson, R.L.; Ekin, J.W. )

    1990-11-01

    We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.

  15. A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies

    NASA Technical Reports Server (NTRS)

    Massman, William

    1987-01-01

    A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.

  16. Effect of water deposition on the surface dynamics of mesopores in MCM-41

    NASA Astrophysics Data System (ADS)

    Sobieszczyk, Paweł; Pajzderska, Aleksandra; Kuźma, Dominika; Majka, Marcin; Zieliński, Piotr

    2016-04-01

    The surface acoustic waves in empty cylindrical pores in the amorphous silica MCM-41 as well as in the same pores partially filled with water are studied with the use of a continuum model. The model is shown to be adequate to predict dispersion relations, cut-off wave vectors and the Airy phases for the secular surface waves of the lowest azimuthal indices n. Quantitative predictions are presented both in the liquid and in the polycrystalline solid phase of water. Two sagittal surface waves exist when water is in the liquid phase. The phase transition to the solid phase (ice) results in the disappearance of the high-frequency mode. All the effects occur in the Terahertz frequency region.

  17. Diffraction-limited 10 microns imaging with 3 meter telescopes

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Townes, C. H.; Vanderwyck, A. H. B.

    1986-01-01

    An IR imaging system that achieves diffraction-limited spatial resolution (about 0.8 arcsec) at 10 microns on 3-meter ground-based telescopes. The system uses a linear array of sensitive HgCdTe photodiodes, scanned in the direction perpendicular to the array axis, to form two-dimensional images. Scans are completed rapidly enough to freeze atmospheric fluctuations. Individual detectors are small compared to the diameter of the Airy disk, and images are oversampled heavily in the scan direction. This method has a number of advantages for studying small fields with very high spatial resolution, and has been applied successfully to the problem of directly imaging faint circumstellar dust shells.

  18. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-01-01

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011

  19. Further insight into the tunneling contribution to the vibrational relaxation of NO in Ar.

    PubMed

    Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J

    2015-04-28

    Tunneling corrections to Landau-Zener rate coefficients for the vibrational relaxation NO(X(2)Π, v = 1) + Ar → NO(X(2)Π, v = 0) + Ar between 300 and 2000 K are determined employing ab initio potential energy surfaces calculated by the code provided by Alexander [J. Chem. Phys. 111, 7426 (1999)]. The calculations use a reaction coordinate approach and lead to vibronically nonadiabatic transition probabilities within the generalized Airy approximation as extended to the WKB underbarrier Landau-Lifshitz limit. The calculations confirm experimental evidence for an onset of major tunneling contributions to the relaxation rate at temperatures below about 900 K and rationalize large tunneling contributions at 300 K. These effects increase the rate coefficients by several orders of magnitude over the uncorrected Landau-Zener values and remove the large gap between the latter and experimental results. PMID:25933767

  20. Further insight into the tunneling contribution to the vibrational relaxation of NO in Ar

    NASA Astrophysics Data System (ADS)

    Dashevskaya, E. I.; Litvin, I.; Nikitin, E. E.; Troe, J.

    2015-04-01

    Tunneling corrections to Landau-Zener rate coefficients for the vibrational relaxation NO(X2Π, v = 1) + Ar → NO(X2Π, v = 0) + Ar between 300 and 2000 K are determined employing ab initio potential energy surfaces calculated by the code provided by Alexander [J. Chem. Phys. 111, 7426 (1999)]. The calculations use a reaction coordinate approach and lead to vibronically nonadiabatic transition probabilities within the generalized Airy approximation as extended to the WKB underbarrier Landau-Lifshitz limit. The calculations confirm experimental evidence for an onset of major tunneling contributions to the relaxation rate at temperatures below about 900 K and rationalize large tunneling contributions at 300 K. These effects increase the rate coefficients by several orders of magnitude over the uncorrected Landau-Zener values and remove the large gap between the latter and experimental results.

  1. Scale-Free optics

    NASA Astrophysics Data System (ADS)

    DelRe, E.; Conti, C.

    The most fascinating images and patterns emerge when light diffracts from minute structures [1]. Even the image of an otherwise featureless hole produces enthralling ripples that spread out to invest space and form what is known as an Airy pattern. It is a basic fact that diffraction becomes dominant when the size of the feature becomes micrometric, and the transmitted wave has an angular spread Δθ that depends on the size of the aperture d measured in units of the optical wavelength λ, i.e., Δθ ≃ λ/d. From a practical perspective, diffraction represents a major obstacle to imaging of finer details, and a great research effort is continuously exerted to overcome it. In fact, diffraction spreads the optical wave and blurs the spatial information encoded in the optical beam. Consider an image composed of separate pixels of characteristic size d and spacing l.

  2. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  3. Vicarious Collecting: A Review of Some Notable Books about Books - and where to acquire them!

    NASA Astrophysics Data System (ADS)

    Koester, Jack

    Reviews on Milestones of Science, Ruth A. Sparrow, Buffalo Museum of Science, 1972, The Face of the Moon, from the Linda Hall Library, Out of this World - The Golden Age of the Celestial Atlas, Linda Hall Library, including Bayer's Uranometria, Schiller's Coelum Christianum, Hevelius' Firmamentum, Flamsteed's Atlas Coelestis, and Bode's Uranographia, as well as Argelander, Bode, Cellarius, Coronelli, Doppelmaier, Kepler, La Caille, Messier, Piccolomini, and Wollaston, Heavenly Library, Angus MacDonald and A.D. Morrison-Low from Royal Observatory Edinburgh, Library, 1994, Catalogue of the Rare Astronomical Books in the San Diego State University Library, Louis A. Kenney, 1988, and Vanity Fair, from 1869 to 1914, including caricatures of famous astronomers and scientists, such as Airy, Ball, Huggins, and Proctor.

  4. Staircase-scene-based nonuniformity correction in aerial point target detection systems.

    PubMed

    Huo, Lijun; Zhou, Dabiao; Wang, Dejiang; Liu, Rang; He, Bin

    2016-09-01

    Focal-plane arrays (FPAs) are often interfered by heavy fixed-pattern noise, which severely degrades the detection rate and increases the false alarms in airborne point target detection systems. Thus, high-precision nonuniformity correction is an essential preprocessing step. In this paper, a new nonuniformity correction method is proposed based on a staircase scene. This correction method can compensate for the nonlinear response of the detector and calibrate the entire optical system with computational efficiency and implementation simplicity. Then, a proof-of-concept point target detection system is established with a long-wave Sofradir FPA. Finally, the local standard deviation of the corrected image and the signal-to-clutter ratio of the Airy disk of a Boeing B738 are measured to evaluate the performance of the proposed nonuniformity correction method. Our experimental results demonstrate that the proposed correction method achieves high-quality corrections. PMID:27607295

  5. Quantum catastrophes and ergodicity in the dynamics of bosonic Josephson junctions.

    PubMed

    O'Dell, D H J

    2012-10-12

    We study rainbow (fold) and cusp catastrophes that form in Fock space following a quench in a Bose Josephson junction. In the Gross-Pitaevskii mean-field theory, the rainbows are singular caustics, but in the second-quantized theory a Poisson resummation of the wave function shows that they are described by well-behaved Airy functions. The structural stability of these Fock space caustics against variations in the initial conditions and Hamiltonian evolution is guaranteed by catastrophe theory. We also show that the long-time dynamics are ergodic. Our results are relevant to the question posed by Berry [M. V. Berry, Nonlinearity 21, T19 (2008)]: Are there circumstances when it is necessary to second quantize wave theory in order to avoid singularities? PMID:23102282

  6. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  7. On extreme value statistics of correlated random variables

    NASA Astrophysics Data System (ADS)

    Clusel, Maxime; Fortin, Jean-Yves

    2013-03-01

    The statistics of extreme values of a set on independent and identically distributed random variables is a well established mathematical theory that can be traced back to the late 1920s, with pioneering work by Fisher and Tippett. While efforts have been made to go beyond the uncorrelated case, little is known about the extremes of strongly correlated variables. Notable exceptions are the distribution of extreme eigenvalues of random matrices (Tracy and Widom 1994), the Airy law for one-dimensional random walks (Majumdar and Comtet 2005), and random variables with logarithmic interactions (Fyodorov and Bouchaud 2008). We propose to adapt the equivalence between extremes and sums (Bertin and Clusel 2006) to obtain asymptotic distributions of correlated random variables. We will show how this approach works in the logarithmic case, before extending it to power-law correlations and beyond. We will eventually illustrate these cases with a simple model, a one-dimensional gas of interacting particles.

  8. Bending light via adiabatic optical transition in longitudinally modulated photonic lattices

    PubMed Central

    Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan

    2015-01-01

    Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890

  9. Composition measurements of binary mixture droplets by rainbow refractometry

    SciTech Connect

    Wilms, J.; Weigand, B

    2007-04-10

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.

  10. Nuclear rainbow in elastic scattering of {sup 9}Be nuclei

    SciTech Connect

    Glukhov, Yu. A. Ogloblin, A. A.; Artemov, K. P.; Rudakov, V. P.

    2010-01-15

    A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determine unambiguously the nucleus-nucleus potential with a high probability.

  11. Generalized revival and splitting of an arbitrary optical field in GRIN media.

    PubMed

    Moya-Cessa, H M; Soto-Eguibar, F; Arrizon, V; Zúñiga-Segundo, A

    2016-05-16

    Assuming a non-paraxial propagation operator, we study the propagation of an electromagnetic field with an arbitrary initial condition in a quadratic GRIN medium. We show analytically that at certain specific periodic distances, the propagated field is given by the fractional Fourier transform of a superposition of the initial field and of a reflected version of it. We also prove that for particular wavelengths, there is a revival and a splitting of the initial field. We apply this results, first to an initial field given by a Bessel function and show that it splits into two generalized Bessel functions, and second, to an Airy function. In both cases our results are compared with the numerical ones. PMID:27409868

  12. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential.

    PubMed

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng

    2015-08-15

    We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams. PMID:26274660

  13. Toward the optical "magic carpet": reducing the divergence of a light sheet below the diffraction limit.

    PubMed

    Golub, Ilya; Chebbi, Brahim; Golub, Jonathan

    2015-11-01

    In 3D, diffraction-free or Bessel beams are well known and have found applications in diverse fields. An analog in 2D, or pseudonondiffracting (PND) beams, is a nontrivial problem, and existing methods suffer from deficiencies. For example, Airy beams are not highly localized, some PND beams have significant side lobes, and a cosine beam has to be truncated by a very narrow aperture thus discarding most of the energy. We show, both theoretically and experimentally, that it is possible to generate a quasi-nondiffracting 2D light beam in a simple and efficient fashion. This is achieved by placing a mask consisting of a pair of double slits on a cylindrical lens. The applications include light sheet microscopy/optical sectioning and particle manipulation. PMID:26512534

  14. Size distribution of ring polymers

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-06-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 ‑ d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  15. Superresolution technology applied to optical discs

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Luo, Hongxin

    2005-09-01

    Smaller focal points are essential for the development of the next-generation optical disc. The size of focal point depends on the diffraction effect that is dependant on the numerical aperture of a lens and the wavelength of light. However, increase of the numerical aperture and decrease of the light wavelength will be ultimately limited due to the technical difficulty of fabricating a too-high NA lens and the too-short wavelength laser. In this paper, we report another approach of using the superresolution technology to compress the size of the so-called Airy spot for the next-generation optical disc, which is independent on the wavelength of laser. The superresolution phase plates are designed and fabricated with a microoptics technique. When such a phase plate is inserted into the optical system, the central spot at the focal plane of a lens is decreased to be 0.8 times of the Airy pattern, implying the possibility of reading higher storage density of optical discs. The most attractive feature is that the phase plate can be mass-produced at a very low cost, compared with the high cost of the high-numerical lens and/or the short wavelength laser. The disadvantages are that the inserted phase plate will induce the slight circular sidelobes around the central sport, so that it consumes a little more laser energy. The shortcoming could be overcome with suitable amendment. We have fabricated the phase plates with the surface-relief profile on a normal glass for phase modulation. Experimental results of superresolution effect with a low numerical aperture (NA=0.1) and a high-numerical lens (NA=0.8) are reported, which are in good agreement with the theoretical prediction. Superresolution technique should be highly interesting as a novel technique of the next-generation pickup head for reading the high storage of the optical discs.

  16. Crustal-thickness variations in the central Andes

    SciTech Connect

    Beck, S.L.; Myers, S.C.; Wallace, T.C.; Zandt, G. |; Silver, P.G.; Drake, L.

    1996-05-01

    We estimated the crustal thickness along an east-west transect across the Andes at lat 20{degree}S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70-74 km under the Western Cordillera and the Eastern Cordillera thin to 32-38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20{degree}S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16{degree}S, 55-60 km) to south (20{degree}S, 70-74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton. 26 refs., 4 figs.

  17. Optical system design of solar-blind UV target simulator with long focal length

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value, especially in military fields. The application of solar-blind waveband has developed very rapidly, which is receiving more and more attention. Sometimes, to test the performance of a UV optical system, a standard solar-blind UV target simulator is needed as the UV light source. In this paper, an optical system of a solar-blind UV target simulator is designed with waveband 240nm-280nm. To simulate a far UV target, the focal length of this UV optical system needs to be long. Besides, different field of view (FOV) of the system should meet aplanatic condition. The optional materials are very few for UV optical systems, in which only CaF2 and JGS1 are commonly used. Various aberrations are difficult to be corrected. To save production cost and enhance the precision of fabrication and test, aspheric surfaces and binary elements are not adopted in the system. Moreover, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. After optimization, the system is composed of 4 lenses with focal length 500mm. MTF curves of different FOV coincide together. The maximum RMS radius of the optimized system has almost the same size as Airy disk, which proves the good image quality after system optimization. The aplanatic condition is met very well in this system. In the spot diagram, root mean square (RMS) radius changes from 3 microns to 3.6 microns, which has similar size with Airy disk and meets aplanatic condition very well. This optical system of solar-blind UV target simulator also has relatively loose tolerance data, which can prove the system is designed in an optimal state.

  18. The vibrational relaxation of NO in Ar: tunneling in a curve-crossing mechanism.

    PubMed

    Dashevskaya, E I; Nikitin, E E; Troe, J

    2015-01-01

    Experimental data for the vibrational relaxation NO(X(2)Π, v = 1) + Ar → NO(X(2)Π, v = 0) + Ar between 300 and 2000 K are analyzed. The measured rate coefficients k10 greatly exceed Landau-Teller values (LT)k10. This observation can be attributed to a mechanism involving curve-crossing of the (A'', v = 1) and (A', v = 0) vibronic states of the collision system. At high temperatures, the rate coefficients k10 are well represented by the thermally averaged Landau-Zener rate constant (LZ)k10 with an apparent Arrhenius activation energy Ea/kB near 4500 K. At intermediate temperatures, around T = 900 K, the measured k10 values are a factor of two higher than the extrapolated (LZ)k10 values. This deviation is attributed to tunneling in nonadiabatic curve-crossing transitions, which are analyzed within the Airy approximation (linear model for crossing diabatic curves) and an effective mass approach. This suggests a substantial contribution of hindered rotation of NO to the nonadiabatic perturbation. The extrapolation of the Airy probabilities to even lower temperatures (by the Landau-Lifshitz WKB tunneling expression for simple nonlinear model potentials) indicates a further marked increase of the tunneling contribution beyond the extrapolated (LZ)k10. Near 300 K, the k10 can be two to three orders of magnitude higher than the extrapolated (LZ)k10. This agrees with the limited available experimental data for NO-Ar relaxation near room temperature. PMID:25353690

  19. The 6Hankel asymptotic approximation for the uniform description of rainbows and glories in the angular scattering of state-to-state chemical reactions: derivation, properties and applications.

    PubMed

    Xiahou, Chengkui; Connor, J N L

    2014-06-01

    This paper considers the asymptotic (semiclassical) analysis of a forward glory and a rainbow in the differential cross section (DCS) of a state-to-state chemical reaction, whose scattering amplitude is given by a Legendre partial wave series (PWS). A recent paper by C. Xiahou, J. N. L. Connor and D. H. Zhang [Phys. Chem. Chem. Phys., 2011, 13, 12981] stated without proof a new asymptotic formula for the scattering amplitude, which is uniform for a glory and a rainbow in the DCS. The new formula was designated "6Hankel" because it involves six Hankel functions. This paper makes three contributions: (1) we provide a detailed derivation of the 6Hankel approximation. This is done by first generalizing a method described by G. F. Carrier [J. Fluid Mech., 1966, 24, 641] for the uniform asymptotic evaluation of an oscillating integral with two real coalescing stationary phase points, which results in the "2Hankel" approximation (it contains two Hankel functions). Application of the 2Hankel approximation to the PWS results in the 6Hankel approximation for the scattering amplitude. We also test the accuracy of the 2Hankel approximation when it is used to evaluate three oscillating integrals of the cuspoid type. (2) We investigate the properties of the 6Hankel approximation. In particular, it is shown that for angles close to the forward direction, the 6Hankel approximation reduces to the "semiclassical transitional approximation" for glory scattering derived earlier. For scattering close to the rainbow angle, the 6Hankel approximation reduces to the "transitional Airy approximation", also derived earlier. (3) Using a J-shifted Eckart parameterization for the scattering matrix, we investigate the accuracy of the 6Hankel approximation for a DCS. We also compare with angular scattering results from the "uniform Bessel", "uniform Airy" and other semiclassical approximations. PMID:24519014

  20. Committees and organizers

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Chairman:Jozef Spałek (Kraków) Program Committee:Stephen Blundell (Oxford), J Michael D Coey (Dublin), Dominique Givord (Grenoble), Dariusz Kaczorowski (Wrocław), Roman Micnas (Poznań), Marek Przybylski (Halle), Ludiwig Schultz (Dresden), Vladimir Sechovsky (Prague), Jozef Spałek (Kraków), Henryk Szymczak (Warszawa), Manuel Vázquez (Madrid) Publication Committee:Dariusz Kaczorowski, Robert Podsiadły, Jozef Spałek, Henryk Szymczak, Andrzej Szytuła Local committee:Maria Bałanda, Anna Majcher, Robert Podsiadły, Michał Rams, Andrzej Ślebarski, Krzysztof Tomala Editors of the Proceedings:Jozef Spałek, Krzysztof Tomala, Danuta Goc-Jagło, Robert Podsiadły, Michał Rams, Anna Majcher Plenary, semi-plenary and tutorial speakers:Ernst Bauer (Wien)Stephen Blundell (Oxford)J Michael D Coey (Dublin)Russell P Cowburn (London)Burkard Hillebrands (Kaiserslautern)Claudine Lacroix (Grenoble)Lluís Mañosa (Barcelona)María del Carmen Muñoz (Madrid)Bernard Raveau (Caen)Pedro Schlottmann (Tallahassee)Frank Steglich (Dresden)Oliver Waldmann (Freiburg) Invited speakers within symposia: R Ahuja (Uppsala)A Kirilyuk (Nijmegen) M Albrecht (Vienna)L Theil Kuhn (Roskilde) K Bärner (Göttingen)J Liu (Dresden) U Bovensiepen (Duisburg)G Lorusso (Modena) V Buchelnikov (Chelyabinsk)M M Maska (Katowice) B Chevalier (Bordeaux)Y Mukovskii (Moscow) O Chubykalo-Fesenko (Madrid)M Pannetier-Lecoeur (Saclay) A V Chumak (Kaiserslautern)G Papavassiliou (Athens) J M D Coey (Dublin)K R Pirota (Campinas) B Dabrowski (DeKalb)P Przyslupski (Warszawa) S Das (Aveiro)M Reiffers (Košice) A del Moral (Zaragoza)K Sandeman (London) V E Demidov (Muenster)D Sander (Halle) B Djafari-Rouhani (Lille)M Sawicki (Sendai/Warsaw) H A Dürr (Menlo Park)J Schaefer (Würzburg) J Fassbender (Dresden)H Schmidt (Wetzikon) J Fontcuberta (Barcelona)J Spałek (Kraków) V Garcia (Orsay)L Straka (Helsinki) J N Gonçalves (Aveiro)A Szewczyk (Warszawa) M E Gruner (Duisburg)Y Taguchi (Wako) G Gubbiotti (Perugia)A Thiaville

  1. Scattering and the Point Spread Function of the New Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called

  2. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    NASA Astrophysics Data System (ADS)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the

  3. Lithospheric structure and compensation mechanisms of the Galapagos Archipelago

    NASA Astrophysics Data System (ADS)

    Feighner, Mark A.; Richards, Mark A.

    1994-04-01

    Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also

  4. How predictable is the anomaly pattern of the Indian summer rainfall?

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the

  5. A Post-Pathfinder Evaluation of Areocentric Solar Coordinates with Improved Timing Recipes for Mars Seasonal/Diurnal Climate Studies

    NASA Technical Reports Server (NTRS)

    Allison, Michael; McEwen, Megan

    1999-01-01

    The accurate determination of the Mars pole vector derived from Pathfinder and Viking Lander radio data, together with the VSOP87 representation of planetary orbits, have been applied to a new evaluation of the right ascension of the "fictitious mean sun" (FMS) at Mars. With DELTA t (sub J2000) the elapsed time in days from the J2000 epoch (J.D.2451545.0 (sup TT), alpha FMS = 270 degrees.3863 + 0.52403840(degrees/d) (raised dot) DELTA T (sub j2000) - 4 x 10 (exp -13) (degrees/d (sup 2)) (raised dot) DELTA t (sup 2) (sub J2000) represents a best least-squares quadratic fit of the FMS, including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the calendar years 1874-2127. The implied tropical orbit period for Mars, 686.9726 (sup d), closely agrees with the recent evaluations. Together with the Pathfinder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or "sol") of 1.027491251 (sup d). The new FMS determination would serve to define the Mean Solar Time at Mars to the nearest tenth-second, according to historical conventions originally established for terrestrial time keeping, once the Mars prime meridian defined by the crater Airy-O is navigated to the same accuracy. For convenient reference to current epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 (sup UTC)) corresponds to a coincidence of (alpha (sub FMS)) and the rotation angle of the crater Airy-O measured with respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime meridian), to within the current uncertainty of several seconds in the locational definition of the planet's cartographic grid. As a further result of the analysis, the consistently derived Mars obliquity of date is epsilon = 25 degrees.192 + 3.45 x l0 (exp -7)(degrees/d)(raised dot) DELTA t (sub J2000). An improved analytic recipe for the calculation of the solar areocentric longitude (L (sub s)) of Mars to an

  6. New gravity maps of the Eastern Alps and significance for the crustal structures

    NASA Astrophysics Data System (ADS)

    Zanolla, Claudio; Braitenberg, Carla; Ebbing, Jörg; Bernabini, Marcello; Bram, Kurt; Gabriel, Gerald; Götze, Hans-Jürgen; Giammetti, Salvatore; Meurers, Bruno; Nicolich, Rinaldo; Palmieri, Franco

    2006-02-01

    The deep seismic profile T RANSALP crosses, from north to south, Germany, Austria and Italy. The gravity measurements for each country were made by national agencies with different reference systems and data reduction methods. Within the frame of the T RANSALP-project a comprehensive database of the Eastern Alps was compiled covering an area of 3.5° by 4° in longitude and latitude (275 by 445 km), respectively. To increase the data coverage in the south Alpine area two gravity surveys were carried out, resulting in 469 areally distributed new stations, of which 215 have been measured with the intent to improve the geoid in the area of the planned Brenner Basistunnel (BBT). The resulting gravity database is the best in terms of resolution and data quality presently available for the Eastern Alps. Here the free air, Bouguer and isostatic gravity fields are critically discussed. The spatial density of existing gravity stations in the three countries is discussed. On the Italian side of the Alps the spatial density is rather sparse compared to the Austrian side. The Bouguer-gravity field varies between - 190 * 10 - 5 m/s 2 and + 25 * 10 - 5 m/s 2, with the minimum located along the Alpine high topographic chain, but with a small offset (a few tens of km) to the greatest topographic elevation, showing that the Airy-type local isostatic equilibrium does not fully apply here. The maximum of the Bouguer anomaly has an elongated shape of 100 by 50 km located between the towns of Verona and Vicenza and covers the Venetian Tertiary Volcanic Province (VTVP), a feature not directly related to the plate collision in the Eastern Alps. The gravity high is only partly explainable by high-density magmatic rocks and requires also a deeper source, like a shallowing of the Moho. The isostatic residual anomalies (Airy model) are in the range ± 50 * 10 - 5 m/s 2, with the greatest positive anomaly corresponding to the location of the VTVP, indicating here under-compensation of masses

  7. Characterization of the Stabilized Test Bench of Nulling Interferometry PERSÉE

    NASA Astrophysics Data System (ADS)

    Lozi, Julien; Ollivier, M.; Cassaing, F.; Le Duigou, J.; CNES; Onera/Dota/HRA; IAS; LESIA; OCA; TAS

    2013-01-01

    There are two problems with the observation of exoplanets: the contrast between the planet and the star and their very low separation. One technique solving these problems is nulling interferometry: two pupils are recombined to make a destructive interference on the star, and their base is adjusted to create a constructive interference on the planet. However, to ensure a sufficient extinction of the star, the optical path difference between the beams must be around the nanometer, and the pointing must be better than one hundredth of Airy disk, despite the external disturbances.To validate the critical points of such a space mission, a laboratory demonstrator, PERSÉE, was defined by a consortium led by the french space agency CNES, including IAS, LESIA, ONERA, OCA and Thales Alenia Space and integrated in Paris Observatory. This bench simulates the entire space mission (interferometer and nanometric cophasing system). Its goal is to deliver and maintain an extinction of 10^-4 stable at better than 10^-5 over a few hours in the presence of typical injected disturbances.My thesis work consisted in integrating the bench in successive stages and to develop calibration procedures. This helped me to characterize the critical elements separately before grouping them. After having implemented the control loops of the cophasing system, their precise analysis helped me to reduce down to 0.3 nm rms the residual OPD, and 0.4 % of the Airy disk the residual tip/tilt, despite disturbances of tens of nanometers, consisting of several tens of vibrational frequencies between 1 and 100 Hz. This has been achieved by the implementation of a linear quadratic Gaussian controller, parameterized by the preliminary measurement of the disturbance to minimize. Thanks to these excellent results, I obtained on the band [1.65 - 2.45] µm a record null rate of 8.8x10^-6 stabilized at 9x10^-7 over a few hours, a decade better than the original specifications. An extrapolation of these results to

  8. The Four-Quadrant Phase-Mask Coronagraph. I. Principle

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.

    2000-11-01

    We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of

  9. Inhomogeneous field theory inside the arctic circle

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

  10. Novel Spin Maser in the Regime of Slow Diffusion

    NASA Astrophysics Data System (ADS)

    Romalis, M.; Kominis, I.; Happer, W.; Saam, B.

    1998-05-01

    We report the results of the first experimental and theoretical study of a noble gas spin maser in the regime of slow diffusion, appropriate for a high density gas or a liquid. The maser consists of a long cylindrical cell filled with 10 atm of polarized ^3He located inside a maser coil resonated with a capacitor. We study the dependence of the threshold for the onset of maser oscillations on the magnetic field gradient and the detuning of the ^3He Zeeman frequency from the resonance frequency of the maser coil. The observed dependence of the threshold on detuning is surprisingly complicated. There are edge enhancement effects as well as regions where the sign of the threshold condition is reversed. The theoretical treatment of the problem is closely related to the treatment of the magnetic resonance imaging in one dimension in the presence of slow diffusion. The masing threshold can be calculated analytically in terms of the Airy functions. Corrections have to be applied for the AC fields produced by the ^3He magnetization. Our model is in excellent semiquantitative agreement with experimental results.

  11. A 10 km-resolution synthetic Venus gravity field model based on topography

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.

    2015-02-01

    A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.

  12. Dispersion and kinematics of multi-layer non-hydrostatic models

    NASA Astrophysics Data System (ADS)

    Bai, Yefei; Cheung, Kwok Fai

    2015-08-01

    Multi-layer non-hydrostatic models are gaining popularity in studies of coastal wave processes owing to the resolution of the flow kinematics, but the linear dispersion relation remains the primary criterion for assessment of model convergence. In this paper, we reformulate the linear governing equations of an N-layer model into Boussinesq form by writing the non-hydrostatic terms as high-order derivatives of the horizontal flow velocity. The equation structure allows implementation of Fourier analysis to provide a [2 N - 2, 2N] expansion of the velocity at each layer. A variable transformation converts the governing equations into separate flux- and dispersion-dominated systems, which explicitly give an equivalent Pade´ expansion of the wave celerity for examination of the convergence and asymptotic properties. Flow continuity equates the depth-integrated horizontal velocity to the celerity and verifies the analytical solution. The surface-layer velocity, which is driven by the kinematic free surface boundary condition, shows a positive error and converges monotonically to the solution of Airy wave theory. When the depth parameter kd > 2N, flow reversal occurs in the sub-surface layers to offset overestimation of the surface velocity and to better approximate the flux. This model internal mechanism facilitates convergence of the celerity at large kd and benefits applications on wave transformation. Such non-physical flow reversal, however, might complicate studies that require detailed wave kinematics.

  13. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  14. Propagation and wavefront ambiguity of linear nondiffracting beams

    NASA Astrophysics Data System (ADS)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  15. Elastic scattering of {sup 16}O+{sup 16}O at energies E/A between 5 and 8 MeV

    SciTech Connect

    Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.

    1999-12-01

    The elastic scattering of {sup 16}O+{sup 16}O has been measured at nine energies between E{sub lab}=75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E{sub c.m.}=40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society.

  16. Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.

    2012-01-01

    A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.

  17. Detecting curvatures in digital images using filters derived from differential geometry

    NASA Astrophysics Data System (ADS)

    Toro Giraldo, Juanita

    2015-09-01

    Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.

  18. Application of iterative blind deconvolution to the reconstruction of LBT LINC-NIRVANA images

    NASA Astrophysics Data System (ADS)

    Desiderá, G.; Anconelli, B.; Bertero, M.; Boccacci, P.; Carbillet, M.

    2006-06-01

    Context: .The paper is about methods for multiple image deconvolution and their application to the reconstruction of the images acquired by the Fizeau interferometer, denoted LINC-NIRVANA, under development for the Large Binocular Telescope (LBT). The multiple images of the same target are obtained with different orientations of the baseline. Aims: .To propose and develop a blind method for dealing with cases where no knowledge or very poor knowledge of the point spread functions (PSF) is available. Methods: .The approach is an iterative one where object and PSFs are alternately updated using deconvolution methods related to the standard Richardson-Lucy method. It is basically an extension, to the multiple image case, of iterative blind deconvolution methods proposed in the case of a single image. Results: .The method is applied to simulated LBT LINC-NIRVANA images and its limitations are investigated. The algorithm has been implemented in the module BLI of the software package AIRY (Astronomical Image Reconstruction in interferometrY), available under request. The preliminary results we have obtained are promising but an extensive simulation program is still necessary for a full understanding of the applicability of the method in the practice of the reconstruction of LINC-NIRVANA images.

  19. Structure of the Flat Slab in Southern Peru

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Clayton, R. W.

    2014-12-01

    We investigate the detailed structure of the flat-subduction portion of the subduction zone in Southern Peru using converted phases recorded by the PeruSE seismic array. The migrated image along a profile above the flat subduction is shown in the figure, overlain by the receiver functions of one well-recorded event. We see that the slab descends to 100 km depth at a distance of about 100 km inland from the coast, and then it rises to 90 km depth and remains flat for the next 300 km distance before diving into the mantle. The Moho itself has about 10 km relief above the flat slab, which is anti-correlated with the surface topography indicating Airy compensation. Interestingly, the flat slab image is missing under this part of Moho. The mid-crust structure is also evident. In the west, it coincides with the Andean Low Velocity Zone (ALVZ) mapped in this region (Ma and Clayton, 2014). In the east, it is related with the underthrusting Brazilian Shield (Phillips and Clayton, 2014). In this paper, we further investigate the causes of the missing or weak flat slab signal, possibly due to anomalous attenuation of S waves in the mantle wedge (but not P wave, since Moho is well imaged). We will also extend our study to the flat-normal transition area beneath the array.

  20. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams

    PubMed Central

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2016-01-01

    It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method. PMID:27199254

  1. Alfvenic phenomena triggered by resonant absorption of an O-mode pulse

    SciTech Connect

    Tsung, F. S.; Morales, G. J.; Tonge, J.

    2007-04-15

    A simulation and modeling study is made of the nonlinear interaction of an electromagnetic pulse, in the O-mode polarization, with a magnetized plasma having a cross-field density gradient. For small amplitudes, the pulse propagates up to the cutoff layer where an Airy pattern develops. Beyond a certain power level, the ponderomotive force produced by the standing electromagnetic fields carves density cavities. The excess density piled up on the side of the cavities causes secondary, field-aligned plasma resonances to arise. Strong electron acceleration occurs due to the short scale of the secondary resonant fields. The fast electrons exiting the new resonant layers induce a return current system in the background plasma. This generates a packet of shear Alfven waves of small transverse scale and increasing frequency. The results provide insight into microscopic processes associated with a recent laboratory investigation in which large-amplitude Alfven waves have been generated upon application of high-power microwaves [B. Van Compernolle et al., Phys. Plasmas 13, 092112 (2006)].

  2. Internal resonance of axially moving laminated circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, Yan Qing; Liang, Li; Guo, Xing Hui

    2013-11-01

    The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.

  3. From the classical to the generalized von Karman and Marguerre-von Karman equations

    NASA Astrophysics Data System (ADS)

    Ciarlet, Philippe G.; Gratie, Liliana

    2006-06-01

    In this work, we describe and analyze two models that were recently proposed for modeling generalized von Karman plates and generalized Marguerre-von Karman shallow shells.First, we briefly review the "classical" von Karman and Marguerre-von Karman equations, their physical meaning, and their mathematical justification. We then consider the more general situation where only a portion of the lateral face of a nonlinearly elastic plate or shallow shell is subjected to boundary conditions of von Karman type, while the remaining portion is free. Using techniques from formal asymptotic analysis, we obtain in each case a two-dimensional boundary value problem that is analogous to, but is more general than, the classical equations.In particular, it is remarkable that the boundary conditions for the Airy function can still be determined on the entire boundary of the nonlinearly elastic plate or shallow shell solely from the data.Following recent joint works, we then reduce these more general equations to a single "cubic" operator equation, which generalizes an equation introduced by Berger and Fife, and whose sole unknown is the vertical displacement of the shell. We next adapt an elegant compactness method due to Lions for establishing the existence of a solution to this operator equation.

  4. Photographic image enhancement

    NASA Astrophysics Data System (ADS)

    Hite, Gerald E.

    1990-12-01

    Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.

  5. Accurate axial localization by conical diffraction beam shaping generating a dark-helix PSF

    NASA Astrophysics Data System (ADS)

    Fallet, Clement; Lassalle, Astrid; Dubois-Delumeau, Maxime; Sirat, Gabriel Y.

    2016-02-01

    We present here a new PSF-shaping technique using biaxial crystals to generate a highly z-dependent distribution in single molecule localization microscopy (SMLM). This distribution features two zeros of intensity that rotate together with defocus. This PSF features similarities to the double-helix introduced by Moerner and Piestun and thus has been dubbed dark-helix since we track zeros of intensity. Preliminary numerical studies based on Cramer-Rao Lower Bound (CRLB) show that this PSF has the potential to obtain up to 20nm localization precision. This PSF can be easily generated by a very simple, monolithic add-on added in front of the detection camera. Additionally, the PSF remains of the approximate size of the Airy PSF, the x-y localization precision is not substantially affected and no trade-off is required. The xy compacity of the PSF also enables theoretically a higher density of emitters than the double-helix which spreads on a larger scale. Limiting factors for SMLM such as loss of photons, complexity and robustness will be discussed and considerations about the practical implementation of such techniques will be given.

  6. Characterisation of a PERCIVAL monolithic active pixel prototype using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Correa, J.; Bayer, M.; Göttlicher, P.; Lange, S.; Marras, A.; Niemann, M.; Reza, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Xia, Q.; Viti, M.; Wunderer, C. B.; Zimmer, M.; Dipayan, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Giuressi, D.; Khromova, A.; Pinaroli, G.; Menk, R.; Stebel, L.; Fan, R.; Marchal, J.; Pedersen, U.; Rees, N.; Steadman, P.; Sussmuth, M.; Tartoni, N.; Yousef, H.; Hyun, H. J.; Kim, K.; Rah, S.; Graafsma, H.

    2016-02-01

    PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is a monolithic active pixel sensor (MAPS) based on CMOS technology. Is being developed by DESY, RAL/STFC, Elettra, DLS, and PAL to address the various requirements of detectors at synchrotron radiation sources and Free Electron Lasers (FELs) in the soft X-ray regime. These requirements include high frame rates and FELs base-rate compatibility, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency (QE), and (multi-)megapixel arrangements with good spatial resolution. Small-scale back-side-illuminated (BSI) prototype systems are undergoing detailed testing with X-rays and optical photons, in preparation of submission of a larger sensor. A first BSI processed prototype was tested in 2014 and a preliminary result—first detection of 350eV photons with some pixel types of PERCIVAL—reported at this meeting a year ago. Subsequent more detailed analysis revealed a very low QE and pointed to contamination as a possible cause. In the past year, BSI-processed chips on two more wafers were tested and their response to soft X-ray evaluated. We report here the improved charge collection efficiency (CCE) of different PERCIVAL pixel types for 400eV soft X-rays together with Airy patterns, response to a flat field, and noise performance for such a newly BSI-processed prototype sensor.

  7. Optimal structural design of the Airborne Infrared Imager

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Cerrati, Vincent J.; Forman, Steven E.; Sultana, John A.

    1995-09-01

    The airborne infrared imager (AIRI) is a dual-band IR sensor designed to study air defense issues while wing mounted in a pod. The sensor consists of an optical bench attached to a two- axis inertially stabilized gimbal structure in elevation and azimuth. The gimbal assembly operates within an 18-inch diameter globe while meeting strict pointing and tracking requirements. Design conditions for the assembly include operational and nonoperational inertial, thermal, and dynamic loads. Primary design efforts centered on limiting the line-of- sight jitter of the optical system to 50 (mu) rad under the operating environment. An MSC/NASTRAN finite element model was developed for structural response predictions and correlated to experimental data. Design changes were aided by MSC/NASTRAN's optimization routine with the goal of maximizing the fundamental frequency of the gimbal assembly. The final structural design resultsed in a first natural frequency of 79 Hz using a titanium azimuthal gimbal, a stainless steel elevation gimbal, and an aluminum optical bench which met the design and performance requirements.

  8. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    NASA Astrophysics Data System (ADS)

    Glasgow, Ben J.

    2016-02-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain sub-diffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.

  9. Completed Beltrami-Michell formulation for analyzing radially symmetrical bodies

    NASA Astrophysics Data System (ADS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-12-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  10. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  11. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media

    SciTech Connect

    Parra, J.O.; Xu, P. )

    1994-01-01

    The analysis of acoustic wave propagation in fluid-filled porous media based on Biot and homogenization theories has been adapted to calculate dispersion and attenuation of guided waves trapped in low-velocity layered media. Constitutive relations, the balance equation, and the generalized Darcy law of the modified Biot theory yield a coupled system of differential equations which governs the wave motion in each layer. The displacement and stress fields satisfy the boundary conditions of continuity of displacements and tractions across each interface, and the radiation condition at infinity. To avoid precision problems caused by the growing exponential in individual matrices for large wave numbers, the global matrix method was implemented as an alternative to the traditional propagation approach to determine the periodic equations. The complex wave numbers of the guided wave modes were determined using a combination of two-dimensional bracketing and minimization techniques. The results of this work indicate that the acoustic guided wave attenuation is sensitive to the [ital in] [ital situ] permeability. In particular, the attenuation changes significantly as the [ital in] [ital situ] permeability of the low-velocity layer is varied at the frequency corresponding to the minimum group velocity (Airy phase). Alternatively, the attenuation of the wave modes are practically unaffected by those permeability variations in the layer at the frequency corresponding to the maximum group velocity.

  12. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  13. Detection, imaging, and kinetics of sub-micron organelles of chondrocytes by multiple beam interference microscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza

    2004-07-01

    Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.

  14. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  15. On the Diffraction Limit for Lensless Imaging

    PubMed Central

    Mielenz, Klaus D.

    1999-01-01

    The diffraction limit for lensless imaging, defined as the sharpest possible point image obtainable with a pinhole aperture, is analyzed and compared to the corresponding limit for imaging with lenses by means of theoretical considerations and numerical computations using the Fresnel-Lommel diffraction theory for circular apertures. The numerical result (u = π) obtained for the best configuration parameter u which defines the optical setup is consistent with the quarter-wave criterion, and is the same as the value reported in a classical paper by Petzval but smaller than the value (u = 1.8π) found by Lord Rayleigh. The smallest discernible detail (pixel) in a composite image is defined by an expression found by Rayleigh on applying the half-wave criterion and is shown to be consistent with the Sparrow criterion of resolution. The numerical values of other measures of image size are reported and compared to equivalent parameters of the Fraunhofer-Airy profile that governs imaging with lenses.

  16. Analytical model for quantization on strained and unstrained bulk nMOSFET and its impact on quasi-ballistic current

    NASA Astrophysics Data System (ADS)

    Ferrier, M.; Clerc, R.; Ghibaudo, G.; Boeuf, F.; Skotnicki, T.

    2006-01-01

    This work presents a fully analytical model for the evaluation of quasi-ballistic transport in advanced bulk nMOS devices. Starting from the Lundstrom approach, an original analytical evaluation of energy levels advantageously replaces numerical time-consuming Poisson-Schrödinger simulations or usual analytical single subband approximations. This model allows an accurate estimation of quantum mechanical effects and their impact on quasi-ballistic performances. Based on an improved Airy method, it accounts for the non-linearity of the depletion potential, the wave function oxide penetration and a generalized concept of effective field. As it relies on subband structure, it can easily be extended to biaxially strained devices provided that the band modifications are known. Interest of strained channels is confirmed even on the base of ballistic or quasi-ballistic hypothesis. This model has been used for the evaluation of the "ballisticity" along the ITRS roadmap, showing for next generation devices a quasi-ballistic current slightly higher than that predicted with the usual drift diffusion and saturation velocity equations. However, as already reported, MOS devices still operate far from their ballistic limit down to HP45 nm node.

  17. Finite-temperature free fermions and the Kardar-Parisi-Zhang equation at finite time.

    PubMed

    Dean, David S; Le Doussal, Pierre; Majumdar, Satya N; Schehr, Grégory

    2015-03-20

    We consider the system of N one-dimensional free fermions confined by a harmonic well V(x)=mω(2)x(2)/2 at finite inverse temperature β=1/T. The average density of fermions ρ(N)(x,T) at position x is derived. For N≫1 and β∼O(1/N), ρ(N)(x,T) is given by a scaling function interpolating between a Gaussian at high temperature, for β≪1/N, and the Wigner semicircle law at low temperature, for β≫N(-1). In the latter regime, we unveil a scaling limit, for βℏω=bN(-1/3), where the fluctuations close to the edge of the support, at x∼±√[2ℏN/(mω)], are described by a limiting kernel K(b)(ff)(s,s') that depends continuously on b and is a generalization of the Airy kernel, found in the Gaussian unitary ensemble of random matrices. Remarkably, exactly the same kernel K(b)(ff)(s,s') arises in the exact solution of the Kardar-Parisi-Zhang equation in 1+1 dimensions at finite time t, with the correspondence t=b(3). PMID:25839245

  18. Engineering light-matter interaction for emerging optical manipulation applications

    NASA Astrophysics Data System (ADS)

    Qiu, Cheng-Wei; Palima, Darwin; Novitsky, Andrey; Gao, Dongliang; Ding, Weiqiang; Zhukovsky, Sergei V.; Gluckstad, Jesper

    2014-06-01

    In this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads with tightly focused beams. Novel synthesized beams, exploiting the linear and angular momentum of light, open new possibilities in optical trapping and micromanipulation. Similarly, novel structures are promising to enable new optical micromanipulation modalities. Moreover, an overview of the amazing features of the optics of tractor beams and backward-directed energy fluxes will be presented. Recently the so-called effect of negative propagation of the beams (existence of the backward energy fluxes) has been confirmed for X-waves and Airy beams. In the review, we will also discuss the negative pulling force of structured beams and negative energy fluxes in the vicinity of fibers. The effect is achieved due to the interaction of multipoles or, in another interpretation, the momentum conservation. Both backward-directed Poynting vector and backward optical forces are counter-intuitive and give an insight into new physics and technologies. Exploiting the degrees of freedom in synthesizing novel beams and designed microstructures offer attractive prospects for emerging optical manipulation applications.

  19. A UGO/EUTD Solution for the Scattering and Diffraction from Cubic Polynomial Strips

    NASA Technical Reports Server (NTRS)

    Constantinides, Evagoras D.; Marhefka, Ronald J.

    1993-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) solution is developed for the scattering and diffraction from perfectly conducting cubic polynomial strips. The new solution overcomes the difficulties of the classic GO/UTD solution near caustics and composite shadow boundaries. The approach for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the scattered field which is then reduced using a uniform asymptotic procedure. New uniform reflection, zero-curvature diffraction, and edge diffraction coefficients are derived and involve the ordinary and incomplete Airy integrals as canonical functions. Higher order effects such as double edge diffraction, edge-excited creeping waves, and whispering gallery modes are not examined in this work. The UGO/EUTD solution is very efficient and provides useful physical insight into the various scattering and diffraction processes. It is also universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave-convex boundaries containing edges. Its accuracy is confirmed via comparison with some reference moment method (MM) results.

  20. Nanoscale contact-radius determination by spectral analysis of polymer roughness images.

    PubMed

    Knoll, Armin W

    2013-11-12

    In spite of the long history of atomic force microscopy (AFM) imaging of soft materials such as polymers, little is known about the detailed effect of a finite tip size and applied force on the imaging performance on such materials. Here we exploit the defined scaling of roughness amplitudes on amorphous polymer films to determine the transfer function imposed by the imaging tip. The finite indentation of the nanometer-scale tip into the comparatively soft polymer surface leads to a finite contact area, which in turn effectively acts as a moving average filter for the surface roughness. In the power spectral density (PSD), this leads to an attenuation of the roughness amplitudes related to the Airy pattern known from light diffraction of a circular aperture. This transfer function is affected by the roughness-induced local modulation of the tip height and contact area, which is studied by performing simulations of the polymer roughness and the imaging process. We find that for typical polymer parameters and sharp tips the contact radius of the tip-sample contact can be recovered from the roughness spectrum. We experimentally verify and demonstrate the method by measuring the nanoscale contact radius as a function of applied load and travel distance on a highly cross-linked model polymer. The data are consistent with the Johnson-Kendall-Roberts (JKR) contact model and verifies its applicability at the nanometer scale. Using the model, quantitative values of the elastic sample parameters can be determined. PMID:24151855

  1. Hg-Mask Coronagraph

    NASA Astrophysics Data System (ADS)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  2. Validation of a New Rainbow Model Over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Ricard, J. L.; Adams, P. L.; Barckike, J.

    2012-12-01

    A new realistic model of the rainbow has been developed at the CNRM. It is based on the Airy theory. The main entry parameters are the droplet size distribution, the angle of the sun above the horizon, the temperature of the droplets and the wavelength. The island of Hawaii seems to be a perfect place for the validation of the rainbow model. Not only because of its famous rainbows, but also because of the convenient ring road along the coast. The older lower islands for more frequent viewing opportunities having to do with the proximity of clear sky to heavy rainfall. Both Oahu and Kauai as well as the western part of Maui have coastal roads that offer good access to rainbows. The best time to view rainbows is when the sun angle is lowest, in other words near the winter solstice. Figure 1 = Map of mean annual rainfall for the islands of Kauai and Oahu, developed from the new 2011 Rainfall Atlas of Hawaii. The base period of the statistics is 1978-2007. Figure 2 = Moisture zone map by Gon et al (1998). Blue areas are the wet ones. Green areas are the Mesic ones. Yellow areas are the dry ones.

  3. Comparison of various isostatic marine gravity disturbances

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Bagherbandi, Mohammad; Sjöberg, Lars E.

    2015-08-01

    We present and compare four types of the isostatic gravity disturbances compiled at sea level over the world oceans and marginal seas. These isostatic gravity disturbances are computed by applying the Airy-Heiskanen (AH), Pratt-Hayford (PH) and Vening Meinesz-Moritz (VMM) isostatic models. In addition, we compute the complete crust-stripped (CCS) isostatic gravity disturbances which are defined based on a principle of minimizing their spatial correlation with the Moho geometry. We demonstrate that each applied compensation scheme yields a distinctive spatial pattern in the resulting isostatic marine gravity field. The AH isostatic gravity disturbances provide the smoothest gravity field (by means of their standard deviation). The AH and VMM isostatic gravity disturbances have very similar spatial patterns due to the fact that the same isostatic principle is applied in both these definitions expect for assuming a local (in the former) instead of a global (in the latter) compensation mechanism. The PH isostatic gravity disturbances are highly spatially correlated with the ocean-floor relief. The CCS isostatic gravity disturbances reveal a signature of the ocean-floor spreading characterized by an increasing density of the oceanic lithosphere with age.

  4. High spatial resolution studies of galaxies in the far IR: Observations with the KAO, and the promise of SOFIA

    NASA Astrophysics Data System (ADS)

    Lester, Dan F.; Harvey, P. M.

    1990-07-01

    NASA, in collaboration with the West German Science Ministry (BMFT), plans a larger airborne telescope as a successor to the Kuipper Airborne Observatory (KAO) that will achieve these goals. The Stratospheric Observatory for Infrared Astronomy (SOFIA) is entering the final stages of Phase B review with targeted new start early in the next decade. SOFIA is a 2.7 m diameter telescope that is carried in a Boeing 747SP. In addition to having 3 times the spatial resolution of the KAO, and 10 times the light gathering power, it will incorporate improvements over the KAO in lower optical emissivity and better telescope tracking stability. The thin primary mirror will equilibrate quickly to ambient temperature at an altitude which, accompanied by airflow improvements across the telescope cavity, will result in better image quality. The sensitivity of SOFIA will allow us to see a large number of typical bright galactic HII regions in local group galaxies. The spatial resolution of 8 seconds (full width half maximum Airy disk) at 100 microns will allow these regions to be measured independently, if they are distributed similarly to those in our own galaxy. At this spatial resolution, the disks of normal galaxies will be easily resolved out to distances of several hundred Mpc. This portion of space includes many of the superluminous galaxies discovered by the Infrared Astronomy Satellite (IRAS), and this spatial scale is relevant for studies of the morphology of regions of interaction among the majority of these galaxies that are members of colliding pairs.

  5. Isostatic geoid anomalies over mid-plate swells in the Central North Atlantic

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo

    1999-08-01

    The relation of geoid height data from Geosat/ERM altimeter measurements to seafloor topography from recent shipborne data is investigated for eight igneous provinces located in the Central North Atlantic. The long wavelength undulations of the geoid, reflecting deep-seated density anomalies, were removed by subtracting a low degree and order spherical harmonic representation of the geoid. After converting residual geoid heights and topography to anomalies related to the thermal plate model, both maps were low-pass filtered to isolate the signal associated with local compensation from surface loading. Finally, the ratio of geoid height to topography was determined by fitting a straight line to the data. Cape Verde, Bermuda, Canary and Madeira swells exhibit high geoid/topography ratios, which signify reheating of the lower lithosphere. These features were classified as thermal swells. Geoid/topography ratios occurring over the New England, Corner, Azores and Great Meteor seamount chains can be explained by Airy compensation model of crustal thickening. This requires non-hotspot processes to be active within the Azores and Great Meteor seamounts.

  6. Radon and aldehyde concentrations in the indoor environment. Final report

    SciTech Connect

    Moschandreas, D.J.; Rector, H.E.

    1981-04-01

    Findings regarding indoor air contaminants in the energy-efficient residence (EER) in Mt. Airy, Maryland are reported. The objectives of the study were to collect and analyze relevant air quality samples (specifically radon and aldehydes), characterize the indoor air quality with respect to radon and aldehydes, and develop relationships between air infiltration rates and contaminant levels. One-fifth of the measured formaldehyde concentrations were in the range that may cause health concerns. Although indoor temperature and relative humidity affect indoor HCHO concentration, the elevated formaldehyde concentrations were measured under very low air infiltration rates. The data show that ventilation of the indoor air space is somewhat effective in reducing high HCHO concentrations. The operation of the heat exchanger led to an increase of the air infiltration rate which in turn resulted in substantial reduction of formaldehyde concentrations. A considerable number of the collected samples of indoor air displayed radon concentrations at levels higher than 1.0 to 4.0 nCim/sup -3/ (assuming an equilibrium factor of 0.5, these radon levels would correspond to working levels above the health guidelines suggested by the US EPA for homes in Florida built on land reclaimed from phosphate mining). As in the case of indoor formaldehyde concentrations, elevated indoor concentrations are substantially reduced when the infiltration rate is increased. The data base shows that the use of the air to air heat exchanger leads to reduction of indoor radon concentration by increasing the residential ventilation rate. (JGB)

  7. Antiplatelet aggregation and platelet activating factor (PAF) receptor antagonistic activities of the essential oils of five Goniothalamus species.

    PubMed

    Moharam, Bushra Abdulkarim; Jantan, Ibrahim; Ahmad, Fasihuddin bin; Jalil, Juriyati

    2010-08-01

    Nine essential oils, hydrodistilled from different parts of five Goniothalamus species (G. velutinus Airy-Shaw, G. woodii Merr., G. clemensii Ban, G. tapis Miq. and G. tapisoides Mat Salleh) were evaluated for their ability to inhibit platelet aggregation in human whole blood using an electrical impedance method and their inhibitory effects on platelet activating factor (PAF) receptor binding with rabbit platelets using 3H-PAF as a ligand. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The bark oil of G. velutinus was the most effective sample as it inhibited both arachidonic acid (AA) and ADP-induced platelet aggregation with IC(50) values of 93.6 and 87.7 microg/mL, respectively. Among the studied oils, the bark oils of G. clemensii, G. woodii, G. velutinus and the root oil of G. tapis showed significant inhibitory effects on PAF receptor binding, with IC(50 )values ranging from 3.5 to 10.5 microg/mL. The strong PAF antagonistic activity of the active oils is related to their high contents of sesquiterpenes and sesquiterpenoids, and the individual components in the oils could possibly produce a synergistic effect in the overall antiplatelet activity of the oils. PMID:20714290

  8. A hierarchy of ``meson'' bound state excitations in the 1D ferromagnetic Ising chain CoNb2O6

    NASA Astrophysics Data System (ADS)

    Morris, Christopher; Koopayeh, Seyed; Ghosh, Anirban; Tchernyshyov, Oleg; McQueen, Tyrel M.; Armitage, N. Peter; Valdés Aguilar, Rolando; Krizan, Jason; Cava, Robert J.

    2014-03-01

    The quantum magnet CoNb2O6 was recently demonstrated to be an excellent realization of the one-dimensional ferromagnetic Ising spin chain. Low energy spin-flip excitations in the chains were recently observed via inelastic neutron scattering.[2] The energy spectrum of these excitations was shown to have a interesting energy scaling governed by symmetries of the E8 exceptional Lie group. Here, time-domain terahertz spectroscopy (TDTS) is used to investigate these optically active spin flip excitations in CoNb2O6. A series of nine spin flip bound states is observed, whose energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrödinger equation. Additionally, a novel bound state of excitations on neighboring chains is observed just below the onset of a two particle continuum. Work supported by The Institute of Quantum Matter under DOE grant DE-FG02-08ER46544 and by the Gordon and Betty Moore Foundation through Grant GBMF2628.

  9. Confocal filtering in cathodoluminescence microscopy of nanostructures

    SciTech Connect

    Narváez, Angela C. E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P. E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  10. Remanent magnetization model for the broken ridge satellite magnetic anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, B. D.

    1983-01-01

    A crustal model for the interpretation of the Broken Ridge satellite magnetic anomaly was constructed from bathymetric data assuming an Airy-type isostatic compensation. An average crustal magnetization of 6 A.m is required to account for the observed anomaly amplitudes provided that the whole crust is homogeneously magnetized. In contrast, a model representing only the topographic expression of the Broken Ridge, above the surrounding sea floor, requires a magnetization of the order of 40 A.m-1. Since this latter figure is much higher than is to be expected from studies of magnetic properties of oceanic rocks, it is concluded that the majority of the crustal volume of Broken Ridge is magnetized relatively uniformly. The direction of the source magnetization is consistent with an inclination shallower than the present geomagnetic field and close to that of an axial dipole. Since a more northerly source location for Broken Ridge is contrary to the paleolatitude data it is though that the magnetization represents a magnetization obtained by averaging the geomagnetic field direction over a sufficient time to remove secular variation effects. This pattern is indicative of viscous magnetization.

  11. A heat-pipe mechanism for volcanism and tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    A heat-pipe mechanism is proposed for the transport of heat through the lithosphere of Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick basaltic crust on Venus is expected to transform eclogite at a depth of 60 to 80 km; the dense eclogite would contribute to lithospheric delamination that returns the crust to the interior of the planet completing the heat-pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Myr and this implies an upper limit of 2 cubic kilometers per year for the surface volcanic flux. If the heat-pipe mechanism was applicable on the earth in the Archean it would provide the thick lithosphere implied by isotopic data from diamonds.

  12. Physical states in the canonical tensor model from the perspective of random tensor networks

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav; Sasakura, Naoki; Sato, Yuki

    2015-01-01

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N = 2 , 3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N = 3, and comment on an extension of Airy function related to the solutions.

  13. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams.

    PubMed

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2016-01-01

    It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method. PMID:27199254

  14. Three-dimensional gravity modeling of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.

    1988-11-10

    A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A ''best fitting'' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes--Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile. copyright American Geophysical Union 1988

  15. An Approach for Characterizing and Comparing Hyperspectral Microscopy Systems

    PubMed Central

    Annamdevula, Naga S.; Sweat, Brenner; Favreau, Peter; Lindsey, Ashley S.; Alvarez, Diego F.; Rich, Thomas C.; Leavesley, Silas J.

    2013-01-01

    Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems—a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems. PMID:23877125

  16. The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    NASA Technical Reports Server (NTRS)

    Namiki, Noriyuki; Solomon, Sean C.

    1993-01-01

    The hypothesis is explored that the crust-mantle boundary of Venus is not in phase equilibrium but rather is rate-limited by the temperature-dependent volume diffusion of the slowest ionic species. The 1D thermal evolution problem is solved assuming that the mountains formed by uniform horizontal shortening of the crust and the lithospheric mantle at a constant rate. The time-dependent density structure and surface elevation are calculated by assuming a temperature-dependent reaction rate and local Airy isostatic compensation. For a horizontal strain rate of 10 exp -15/s or greater, the temperature increase at the base of the crust during mountain formation is modest to negligible, the deepening lower crust is metastable, and the surface elevation increases as the crust thickens. For strain rates less than 10 exp -16/s, crustal temperature increases with time because of internal heat production and the lower crust is more readily transformed to the dense eclogite assemblage. For such models, a maximum elevation is reached during crustal shortening.

  17. Present-day dynamic and residual topography in central Anatolia

    NASA Astrophysics Data System (ADS)

    Uluocak, Ebru Şengül; Pysklywec, Russell; Göğüş, Oğuz H.

    2016-06-01

    The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift, and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of "dynamic topography". Two-dimensional thermo-mechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along a N-S directional profile through the region (e.g. northern/Pontides, interior, and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity, and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sub-lithospheric flow driven by the seismically-inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myrs. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.

  18. Raman and the mirage revisited: confusions and a rediscovery

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2013-11-01

    Raman argued that in a continuously varying layered medium, such as air above a hot road, a ray that bends so as to become horizontal must remain so, implying that the reflection familiar in the mirage cannot be explained by geometrical optics. This is a mistake, as standard ray curvature arguments demonstrate. But a simple limiting process, in which the smoothly varying refractive index is approximated by a stack of thin discrete layers, is not quite straightforward because it involves a curious singularity, related to the level ray envisaged by Raman. In contrast to individual rays, families of rays possess caustic (focal) singularities. These can be calculated explicitly for two families of rays that are relevant to the mirage. Only exceptionally does the locus of reflection (lowest points on the rays) coincide with the caustics. Caustics correspond to the ‘vanishing line’, representing the limiting height of objects that can be seen by reflection. For these two families, the waves that decorating mirage caustics are described by the universal Airy function, and can be calculated exactly.

  19. Closed-form analysis of fiber-matrix interface stresses under thermo-mechanical loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Closed form techniques for calculating fiber matrix (FM) interface stresses, using repeating square and diamond regular arrays, were presented for a unidirectional composite under thermo-mechanical loadings. An Airy's stress function micromechanics approach from the literature, developed for calculating overall composite moduli, was extended in the present study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6) composite under thermal, longitudinal, transverse, transverse shear, and longitudinal shear loadings. Comparison with finite element results indicate excellent agreement of the FM interface stresses for the square array. Under thermal and longitudinal loading, the square array has the same FM peak stresses as the diamond array. The square array predicted higher stress concentrations under transverse normal and longitudinal shear loadings than the diamond array. Under transverse shear loading, the square array had a higher stress concentration while the diamond array had a higher radial stress concentration. Stress concentration factors under transverse shear and longitudinal shear loadings were very sensitive to fiber volume fraction. The present analysis provides a simple way to calculate accurate FM interface stresses for both the square and diamond array configurations.

  20. Effect of spatial dispersion on transient acoustic wave propagation in 3D.

    PubMed

    Every, A G

    2006-12-22

    Spatial dispersion is the variation of wave speed with wavelength. It sets in when the acoustic wavelength approaches the natural scale of length of the medium, which could, for example, be the lattice constant of a crystal, the repeat distance in a superlattice, or the grain size in a granular material. In centrosymmetric media, the first onset of dispersion is accommodated by the introduction of fourth order spatial derivatives into the wave equation. These lead to a correction to the phase velocity which is quadratic in the spatial frequency. This paper treats the effect of spatial dispersion on the point force elastodynamic Green's functions of solids. The effects of dispersion are shown to be most pronounced in the vicinity of wave arrivals. These lose their singular form, and are transformed into wave trains known as quasi-arrivals. The step and ramp function wave arrivals are treated, and it is shown that their unfolded quasi-arrival forms can be expressed in terms of integrals involving the Airy function. PMID:16828830

  1. Fine Guidance Sensing for Coronagraphic Observatories

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  2. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  3. A Kramers-Moyal Approach to the Analysis of Third-Order Noise with Applications in Option Valuation

    PubMed Central

    Popescu, Dan M.; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula’s theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option’s and its underlier’s price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a “delta-hedged” portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856

  4. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target. PMID:27411147

  5. Tectonic geomorphometrics of the western United States: Speculations on the surface expression of upper mantle processes

    NASA Astrophysics Data System (ADS)

    Coblentz, D.; Karlstrom, K. E.

    2011-11-01

    The topography of the western United States provides a classic field laboratory for investigations of the relationship between surface features and sub-crustal dynamic processes. The interpretation of recently collected, high-resolution seismic images of the upper mantle beneath the central Colorado Rocky Mountains substantiates the notion that much of the high elevation coincides with thin or attenuated continental crust (with respect to predicted Airy crustal thicknesses), necessitating topographic support by anomalously buoyant mantle. This is highly suggestive that broad-scale topographic features may be correlated with buoyancy variations in the upper mantle. In an attempt to sharpen our understanding of the underlying geodynamics, we evaluate the correlation between the surface topographic character and data sets that provide information about density variations indicative of buoyancy in the upper mantle, including the lithospheric geoid, upper mantle seismic velocity anomalies, and crustal (Lg) Q. Our general conclusion is that mantle buoyancy is driving differential surface uplift throughout the western United States and this driver of topography is manifested by measureable anomalies in the topographic roughness at short wavelengths (tens of kilometer) and elevated spectral power in the topography at longer (several hundred kilometers) wavelengths. A provocative conclusion is that the long-recognized physiographic provinces of the Colorado Plateau, Rocky Mountains, and Rio Grande rift are also neotectonic provinces that are related to convective processes and related buoyancy in the upper mantle.

  6. The relation between the spherical aberration of a lens and the spun cusp diffraction catastrophe

    NASA Astrophysics Data System (ADS)

    Nye, J. F.

    2005-01-01

    A lens with spherical aberration, illuminated with an axial plane wave, produces a rotationally-symmetric cusped caustic together with an axial caustic line. Both caustics are truncated by the finite aperture of the lens, and they are decorated by diffraction. One may pass continuously from the limit of small aperture, where the diffraction pattern consists simply of Airy rings around the focus, to the limit of infinite aperture, where the diffraction pattern is that of the three-dimensional spun cusp. This contains ring zeros both inside and outside the cusped caustic. The rings are structurally stable phase singularities (wave dislocations), whose progress out of the focal plane can be traced as the aperture is enlarged. In any axial plane the dislocations are points. Before reaching their final destinations these dislocation points invariably trace out spirals, whose detailed form may be deduced by a perturbation theory. Apart from this, their trajectories, births and deaths are different from those encountered in the analogous case of the two-dimensional Pearcey pattern.

  7. Investigations of the gravity profile below the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Shen, W. B.; Han, J. C.

    2012-04-01

    Scientists pay great attention to the structure and dynamics of the Tibetan plateau due to the fact that it is a natural experiment site for geoscience studies. The gravity profiles below the Tibetan plateau with successive high-accuracy play more and more significant role in studying the structure and evolution of the Tibetan plateau. This study focuses on determining the inner gravity field of the Tibetan plateau until to the depth of D and interpret possible mechanism of the gravity profile below the Tibetan plateau, especially reinvestigating the isostasy problem (Pratt hypothesis and Airy hypothesis). The inner gravity field below the Tibetan plateau is determined based on a simple technique (i.e. a combination of Newtonian integral, downward continuation of gravity field, and "remove-restore" scheme) and the following datasets: the external Earth gravitational model EGM2008 and the digital topographic model DTM2006.0 released by NGA (National Geospatial-Intelligence Agency, USA), and the crust density distribution model CRUST2.0 released by NGS (National Geological Survey, USA). This study is supported by Natural Science Foundation China (grant No.40974015; No.41174011).

  8. Spectral assessment of isostatic gravity models against CHAMP, GRACE, GOCE satellite-only and combined gravity models

    NASA Astrophysics Data System (ADS)

    Tsoulis, Dimitrios; Patlakis, Konstantinos

    2014-08-01

    The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model.

  9. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  10. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams

    NASA Astrophysics Data System (ADS)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2016-05-01

    It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method.

  11. Large-core tube-leaky waveguide for delivery of high-powered Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Katagiri, T.; Matsuura, Y.

    2014-02-01

    A tube-leaky fiber that consists of only dielectric thin-film tubing for delivery of Er:YAG laser light is presented. The tube-leaky fiber confines light in the airy core when the film thickness is properly chosen for target wavelength. Transmission properties of the fibers are derived by using a ray optic method and designed the optimum wall thickness for the Er:YAG laser wavelength of 2.94 micron. In fabrication of the tube leaky fiber, we use a microstructural tube made of glass to enhance mechanical strength. The central bore and surrounding glass thin layer that is held by the microstructure function as a tube-leaky fiber. We fabricate a large-core fiber for delivery of high-power medical lasers by stack-and-draw method and we use borosilicate-glass as a fiber material for low cost fabrication. Fabricated fibers have a diameter over 400 μm and from the loss measurements for Er:YAG laser, and the fibers deliver laser light with a transmission loss of 0.85 dB/m that is comparable to 0.7 dB/m of conventional hollow-optical fibers. The fibers withstand transmission of laser pulses with energy higher than 120 mJ. We confirm that these energies are enough to ablate biological tissues in surgical operations.

  12. Mach-Zehnder interferometer for piston and tip-tilt sensing in segmented telescopes: theory and analytical treatment.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe; Montoya, Luzma

    2005-06-01

    A study is presented of a Mach-Zehnder interferometer for the measurement of phasing errors of the type found in segmented telescopes. We show that with a pinhole much larger than the Airy disk and an optical path difference between the arms equal to a quarter of the wavelength, the interferometric signal is related to the second derivative of the wave front. In this condition the signal is produced mostly by the segmentation errors and is marginally sensitive to other aberrations including atmospheric turbulence. The signal has distinguishable symmetric and antisymmetric properties that are related to segment aberrations. We suggest using the antisymmetric component of the signal to retrieve piston, tip, and tilt. The symmetric component of the signal serves as an estimate of the measurement error. In this way we proceed with a study of the errors associated with the misalignment of the interferometer, the segment edge imperfections, and the nonaveraged atmospheric perturbations. The entire study is performed on a theoretical basis, and numerical simulations are used to cross check the analytical results. PMID:15984482

  13. Comparisons of global topographic/isostatic models to the Earth's observed gravity field

    NASA Technical Reports Server (NTRS)

    Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian

    1988-01-01

    The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.

  14. LC/polymer composite and its applications in photonics devices

    NASA Astrophysics Data System (ADS)

    Dai, H. T.; Liu, Y. J.; Luo, D.; Sun, X. W.

    2011-03-01

    Traditionally LC/polymer composite, such as polymer dispersed liquid crystal (PDLC), holographic PDLC (H-PDLC), and polymer stabilized liquid crystal (PSLC) etc. is primarily used as display devices. Recently, with electrical, optical and thermal tunability, easy fabrication and fast response time, they have attracted much attention in photonics devices (grating, diffractive optical elements, optical switches etc.) with potential applications in communications, imaging, and biology. The intrinsic tunable property of LC/polymer composite (by means of mechanic, electronic, magnetic, thermal stimulus) makes it an attractive material used in dynamic photonics devices. In this paper, we will first introduce the preparation of LC/polymer material for various objectives. Then two essential fabrication approaches i.e. multibeams interference lithography for periodic structures and programmable projection lithography for specific designed patterns are introduced respectively. At last, our recent results in applying LC/polymer composite in photonic devices, such as tunable 3D photonics crystals, 2D tunable lasing source, focusing elements and binary Airy beams generation etc. are reviewed.

  15. A heat-pipe mechanism for volcanism and tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    A heat-pipe mechanism is proposed for the transport of heat through the lithosphere of Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km. thick. A thick basaltic crust on Venus is expected to transform eclogite at a depth of 60 to 80 km; the dense eclogite would contribute to lithospheric delamination that returns the crust to the interior of the planet completing the heat-pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Myr and this implies an upper limit of 2 cubic kilometers per year for the surface volcanic flux. If the heat-pipe mechanism was applicable on the Earth in the Archean it would provide the thick lithosphere implied by isotopic data from diamonds.

  16. How is the artist role affected when artists are participating in projects in work life?

    PubMed Central

    Stenberg, Henrik

    2016-01-01

    In Sweden, during the last decade, the artist has come to function as a creative resource in workplaces. There are two organisations, Skiss (Contemporary Artist in the Contemporary Society) and Airis (Artist in Residence), that organise projects for artists and coworkers. These projects are intended to have a positive effect on the well-being of organisations and their employees through artistic means, and the artist often focuses on the social interaction between the employees in their work. The artists’ work involves frequent interaction with coworkers. The aim of this article was to describe how visual artists’ roles as artists are affected by their engagement in artistic and social projects at workplaces in Sweden. The focus in the article is on the social interaction between artists and employees. The study is a qualitative narrative interview study with fine artists participating in different projects in work life. Since the artist's intervention is usually directed towards social relations in the workplaces, a social perspective on well-being is from a micro-sociological point of view. The categories in the interviews were how the artists worked with the projects, how the social interaction between artists and coworkers worked out, and how the artists evaluated the projects in relation to their ambitions. The results show that, many times, the artistic projects promote well-being in organisations and to some extent benefit the artist, but that the ability of the artists to actually function as artists can be problematic. PMID:27167555

  17. Teaching, Testing, and Evaluating Roger D. Mc Leod's Models for Vision, and its Repair, by Patent-pending Naturoptics.

    NASA Astrophysics Data System (ADS)

    Niemi, Paul R.; D., O.; Mc Leod, David M.; Mc Leod, Roger D.

    2007-04-01

    RDM taught a health professional how to recover her previously impaired near vision in one session, also bringing a similar male from 20/30 to 20/10, distance vision, in about ten minutes; another health professional's improvement went from 20/300 to 20/20 in three sessions. A former athlete achieved a distance improvement from 20/800 to 20/100, again, in three sessions. RDM offers to replicate these types of improvements, using patent-pending Naturoptics under monitored conditions, and non-disclosure restraints, to protect franchising and patent-pending rights. Evening atropine use, controlled, at Singapore's National Eye Center, demonstrated an effect against myopia. Does this actually constitute an experimental verification of Mc Leod's Airy-disk radius-formula explanation of how vision works, and predicts how it can be damaged/repaired? Evaluation and documentation is to be by close and distance vision standard charts, or their equivalents, with guaranteed ``chart'' improvements of one line per session, after the beginning visit, or the session is free. Patent-pending Naturoptics differs from all vision-boosting competitors by safely re-eliciting vision's feedback control self-repairs, including astigmatism and presbyopia. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.4

  18. Space and time distribution of HF excited Langmuir turbulence in the ionosphere: Comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubois, D. F.; Hanssen, Alfred; Rose, Harvey A.; Russell, David

    1993-10-01

    The predictions of strong Langmuir turbulence (SLT) theory are compared with radar observations of HF induced turbulence at Arecibo and Tromsø. The altitude distribution of turbulence observed in the cold start experiments of Fejer et al. (1991) imply that the ionospheric electron density profile is modified by the induced turbulence. The preconditioned observations at Arecibo and the Tromsø observations also appear to require a ``disturbed'' profile with several percent density fluctuations. With such density modifications postulated we conclude that SLT theory is in, at least, qualitative agreement with a large body of observations. Specifically SLT theory predicts, as part of a unified theory, and in distinction to the weak turbulence approximation, at least four unique physical signatures which can be compared to observations: (1) A caviton continuum plus free mode peak in the plasma line power spectrum near reflection altitude for Arecibo conditions. (2) A truncated decay-cascade spectrum at lower altitudes (or densities). (3) A continuous spectrum underlying the decay-cascade spectrum. (4) A zero frequency feature in the ion line power spectrum directly related to caviton dynamics. We find that there is sufficient ponderomotive pressure due to the Airy-layered, induced Langmuir turbulence, to modify the electron density profile in a manner consistent with the time behavior of unpreconditioned Arecibo observations.

  19. A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.

    PubMed

    Popescu, Dan M; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856

  20. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  1. Use of optical spacers to enhance infrared Mueller ellipsometry sensitivity: application to the characterization of organic thin films.

    PubMed

    Ndong, Gerald; Lizana, Angel; Garcia-Caurel, Enric; Paret, Valerie; Melizzi, Géraldine; Cattelan, Denis; Pelissier, Bernard; Tortai, Jean-Hervé

    2016-04-20

    Mueller ellipsometry in the mid-infrared (IR) spectral range can be used to obtain information about chemical composition through the vibrational spectra of samples. In the case of very thin films (<100  nm), the ellipsometric spectral features due to vibrational absorption are in general quite weak, and sometimes they are hidden by the noise in the measured data. In this work, we present one method based on the use of optical spacers as a tool to enhance the sensitivity of IR Mueller ellipsometry. An optical spacer is a thin film made of a known material which is between the substrate and the layer of interest. We show that, when the thickness of the two layers fulfills a given condition, the spectral features due to vibrational absorptions are enhanced. We explain the enhancement effect in terms of the Airy formula. The theoretical discussion is illustrated with two examples. We analyzed polystyrene thin films deposited on silicon wafers. Some of the wafers were covered by a thin film of thermal silicon dioxide (SiO2), which was used as a spacer. The results show the suitability of the proposed technique to overcome the lack of sensitivity in ellipsometric measurements when it comes to working with either very thin films or materials with low absorption. PMID:27140106

  2. Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface

    NASA Astrophysics Data System (ADS)

    Khanin, Konstantin; Nechaev, Sergei; Oshanin, Gleb; Sobolevski, Andrei; Vasilyev, Oleg

    2010-12-01

    We consider a (1+1) -dimensional ballistic deposition process with next-nearest-neighbor interactions, which belongs to the Kardar-Parisi-Zhang (KPZ) universality class. The focus of our analysis is on the properties of structures appearing in the bulk of a growing aggregate: a forest of independent clusters separated by “crevices.” Competition for growth (mutual screening) between different clusters results in “thinning” of this forest, i.e., the number density c(h) of clusters decreases with the height h of the pattern. For the discrete stochastic equation describing the process we introduce a variational formulation similar to that used for the randomly forced continuous Burgers equation. This allows us to identify the “clusters” and crevices with minimizers and shocks in the Burgers turbulence. Capitalizing on the ideas developed for the latter process, we find that c(h)˜h-α with α=2/3 . We compute also scaling laws that characterize the ballistic deposition patterns in the bulk: the law of transversal fluctuations of cluster boundaries and the size distribution of clusters. It turns out that the intercluster interface is superdiffusive: the corresponding exponent is twice as large as the KPZ exponent for the surface of the aggregate. Finally we introduce a probabilistic concept of ballistic growth, dubbed the “hairy” Airy process in view of its distinctive geometric features. Its statistical properties are analyzed numerically.

  3. Weber and Beltrami integrals of squared spherical Bessel functions: finite series evaluation and high-index asymptotics

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-06-01

    Weber integrals {int_0^infty {k^{2+μ}{e}^{-ak2}j_n^{2} (pk)dk}} and Beltrami integrals {int_0^infty {k^{2+μ}{e}^{-bk}j_n^{2} (pk)dk}} are studied, which arise in the multipole expansions of spherical random fields. These integrals define spectral averages of squared spherical Bessel functions j {/n 2} with Gaussian or exponentially cut power-law densities. Finite series representations of the integrals are derived for integer power-law index μ, which admit high-precision evaluation at low and moderate Bessel index n. At high n, numerically tractable uniform asymptotic approximations are obtained, based on the Debye expansion of modified spherical Bessel functions in the case of Weber integrals. The high-n approximation of Beltrami integrals can be reduced to Legendre asymptotics. The Airy approximation of Weber and Beltrami integrals is derived as well, and numerical tests are performed over a wide range of Bessel indices, by comparing the exact finite series expansions of the integrals to their high-index asymptotics.

  4. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  5. Bessel integrals in epsilon expansion: Squared spherical Bessel functions averaged with Gaussian power-law distributions

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-12-01

    Bessel integrals of type {int_0^infty {k^{μ+2}{e}^{-ak2-(b+{i} ω)k}j_l^{2} (pk)dk}} are studied, where the squared spherical Bessel function j {/l 2} is averaged with a modulated Gaussian power-law density. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. The averages can be calculated in closed form as finite Hankel series, which allow high-precision evaluation. In the case of integer power-law exponents μ, singularities emerge in the series coefficients, which requires ɛ expansion. The pole extraction and regularization of singular Hankel series is performed, for integer Gaussian power-law densities as well as for the special case of Kummer averages (a = 0 in the exponential of the integrand). The singular ɛ residuals are used to derive combinatorial identities (sum rules) for the rational Hankel coefficients, which serve as consistency checks in precision calculations of the integrals. Numerical examples are given, and the Hankel evaluation of Gaussian and Kummer averages is compared with their high-index Airy approximation over a wide range of integer Bessel indices l.

  6. An extended UTD analysis for the scattering and diffraction from cubic polynomial strips

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.

  7. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  8. Ground-based direct detection of close-in extra-solar planets with nulling and high order adaptive optics

    NASA Astrophysics Data System (ADS)

    Langlois, M.; Burrows, A.; Hinz, P.

    2006-01-01

    Ground-based direct detection of extra-solar planets is very challenging due to high planet to star brightness contrasts. For giant close-in planets, such as have been discovered by the radial velocity method, closer than 0.1 AU, the reflected light is predicted to be fairly high yielding a contrast ratio ranging from 10-4 to 10-5 at near infra-red wavelengths. In this paper, we investigate direct detection of reflected light from such planets using nulling interferometry, and high-order adaptive optics in conjunction with large double aperture ground-based telescopes. In this configuration, at least 10-3 suppression of the entire stellar Airy pattern with small loss of planet flux as close as 0.03 arcsec is achievable. Distinguishing residual starlight from the planet signal is achieved by using the center of gravity shift method or multicolor differential imaging. Using these assumptions, we derive exposure times from a few minutes to several hours for direct detection of many of the known extra-solar planets with several short-baseline double aperture telescopes such as the Large Binocular Telescope (LBT), the Very Large Telescope (VLT) and the Keck Telescope.

  9. A Nulling Coronagraph for TPF-C

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, Bruce Martin; Wallace, James Kent; Orton, Glenn S.; Schmidtlin, Edouard; Lane, Benjamin F.; Seager, Sara; Tolls, Volker; Lyon, Richard G.; Samuele, Rocco; Tenerelli, Domenick J.; Woodruff, Robert; Ge, Jian

    2006-01-01

    The nulling coronagraph is one of 5 instrument concepts selected by NASA for study for potential use in the TPF-C mission. This concept for extreme starlight suppression has two major components, a nulling interferometer to suppress the starlight to 10(sup -10) per airy spot within 2 (lamda)/D of the star, and a calibration interferometer to measure the residual scattered starlight. The ability to work at 2 (lamda)/D dramatically improves the science throughput of a space based coronagraph like TPF-C. The calibration interferometer is an equally important part of the starlight suppression system. It measures the measures the wavefront of the scattered starlight with very high SNR, to 0.05nm in less than 5 minutes on a 5mag star. In addition, the post coronagraph wavefront sensor will be used to measure the residual scattered light after the coronagraph and subtract it in post processing to 12x10(sup -11) to enable detection of an Earthlike planet with a SNR of 510.

  10. Attractors and Long Time Behavior of von Karman Thermoelastic Plates

    SciTech Connect

    Chueshov, Igor Lasiecka, Irena

    2008-10-15

    This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation-particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter {gamma} and heat/thermal capacity {kappa}, where the former is known to change the character of dynamics from hyperbolic ({gamma}>0) to parabolic like ({gamma}=0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters {gamma} and {kappa} are also established. The main ingredients of the proofs are (i) sharp regularity of Airy's stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) 'compensated' compactness methods applicable to non-compact dynamics.

  11. Instanton effects in ABJM theory with general R-charge assignments

    NASA Astrophysics Data System (ADS)

    Nosaka, Tomoki

    2016-03-01

    We study the large N expansion of the partition function of the quiver superconformal Chern-Simons theories deformed by two continuous parameters which correspond to general R-charge assignment to the matter fields. Though the deformation breaks the conformal symmetry, we find that the partition function shares various structures with the superconformal cases, such as the Airy function expression of the perturbative expansion in 1 /N with the overall constant A(k) related to the constant map in the ABJM case through a simple rescaling of k. We also identify five kinds of the non-perturbative effects in 1 /N which correspond to the membrane instantons. The instanton exponents and the singular structure of the coefficients depend on the continuous deformation parameters, in contrast to the superconformal case where all the parameters are integers associated with the orbifold action on the moduli space. This implies that the singularity of the instanton effects would be observable also in the gravity side.

  12. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1986-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  13. Upwarp of anomalous asthenosphere beneath the Rio Grande rift

    USGS Publications Warehouse

    Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.

    1984-01-01

    Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.

  14. Semiclassical propagation of Wigner functions

    SciTech Connect

    Dittrich, T.; Gomez, E. A.; Pachon, L. A.

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schroedinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  15. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25470885

  16. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25508512

  17. A Documentary History of the Discovery of Neptune

    NASA Astrophysics Data System (ADS)

    Waff, C. B.; Kollerstrom, N.

    2001-12-01

    The discovery of the planet Neptune by Johann Gottfried Galle on 23 September 1846 near the positions predicted by Urbain Jean Joseph Le Verrier and John Couch Adams has been justly considered by many the greatest achievement of Newtonian celestial mechanics. Aside from communications to societies and journals and a selection of letters published shortly after the discovery by British Astronomer Royal George Biddell Airy, however, contemporary documents (especially letters) concerning the discovery have in large part remained unpublished and scattered in numerous archives in England, France, the United States, Germany, and elsewhere. Partially in response to the longtime disappearance and fortunate recent recovery of the Royal Greenwich Observatory file of documents on the discovery, the authors of this paper have formed the project of editing and annotating for publication a chronologically ordered collection of documents relating to the prediction, discovery, and orbit determination of Neptune. A lengthy introductory essay that would summarize research on the Neptune discovery that has been conducted by various historians would accompany such a collection. This paper will outline the criteria that have been used for selecting the documents that will be published in the edition and describe some of the preliminary associated research findings of the authors.

  18. Analytical time-domain Green’s functions for power-law media

    PubMed Central

    Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.

    2008-01-01

    Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774

  19. An approach for characterizing and comparing hyperspectral microscopy systems.

    PubMed

    Annamdevula, Naga S; Sweat, Brenner; Favreau, Peter; Lindsey, Ashley S; Alvarez, Diego F; Rich, Thomas C; Leavesley, Silas J

    2013-01-01

    Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems-a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems. PMID:23877125

  20. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    PubMed Central

    2016-01-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules. PMID:27307653

  1. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  2. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1986-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  3. Size distribution of ring polymers

    PubMed Central

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  4. Semiclassical and quasiclassical calculation of reaction probabilities for collinear X F2→XF F (X = Mu, H, D, T)

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.; Edge, C. J.; Laganà, A.

    Semiclassical calculations of reaction probabilities have been carried out for the collinear H + F2 (n = 0, 1) reaction using the best extended LEPS surface No. II of Jonathan et al. Both real and complex valued classical trajectories have been included in the calculations for an energy range where the quasiclassical total reaction probability is unity. Comparison with quantum results shows the semiclassical reaction probabilities are accurate to about ± 0·05 provided only two real or complex stationary phase points make an important contribution to the S matrix element, so that the uniform Airy or integer Bessel approximations are valid. Real semiclassical calculations are also reported for the collinear Mu, D, T + F2 (n = 0) reactions. For the D and T reactions, the semiclassical reaction probabilities are estimated to be accurate to ± 0·05, except close to the reaction threshold, but for the Mu reaction the estimated errors are much larger. In addition, quasiclassical calculations for the reaction probabilities have been carried out using half integer boxing and smooth sampling methods to quantize the product distributions. For the H + F2 reaction, there are usually systematic deviations from the quantum reaction probabilities and the same is expected to be true for the Mu, D and T reactions.

  5. Star testing: a novel evaluation of intraocular lens optical quality

    PubMed Central

    Mitchell, L; Molteno, A C B; Bevin, T H; Sanderson, G

    2006-01-01

    Background Despite the importance of optical quality of an intraocular lens (IOL) on visual outcomes following cataract surgery, objective data on their optical quality are not readily available, and manufacturing standards are industry regulated. The star test is a classic test of optical quality based on examination of the Airy disc and expanded diffraction rings of a point source of light, used mainly for telescope and microscope objectives. Methods A physical model eye cell allowed star testing of IOLs under conditions similar to the optical environment in which they operate. 18 IOLs were tested and results compared to actual images produced by these lenses in the model eye cell. Quantitative measures of star testing performance were developed. Results The optical performance of the IOLs varied, some performing very poorly. Most lenses (13/17) performed better in reverse orientation, while aberrations induced by the haptics of foldable IOLs were also detected. There was excellent correlation between actual images formed and star testing parameters. Conclusion Star testing IOLs was a novel biomedical application of a centuries old, inexpensive method. A concerning variation of optical quality was found, suggesting IOL optical performance data should be more readily available. Independent, authority mandated IOL optical quality standards should be developed, and results readily available to ophthalmologists. PMID:16622088

  6. A theoretical resonant-tunnelling approach to electric-field effects in quasiperiodic Fibonacci GaAs-(Ga,Al)As semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Reyes-Gómez, E.; Perdomo-Leiva, C. A.; Oliveira, L. E.; de Dios-Leyva, M.

    1998-04-01

    A theoretical resonant-tunnelling approach is used in a detailed study of the electronic and transmission properties of quasiperiodic Fibonacci GaAs-(Ga,Al)As semiconductor superlattices, under applied electric fields. The theoretical scheme is based upon an exact solution of the corresponding Schroedinger equations in different wells and barriers, through the use of Airy functions, and a transfer-matrix technique. The calculated quasibound resonant energies agree quite well with previous theoretical parameter-based results within a tight-binding scheme, in the particular case of isolated Fibonacci building blocks. Theoretical resonant-tunnelling results for 0953-8984/10/16/009/img6 and 0953-8984/10/16/009/img7 generations of the quasiperiodic Fibonacci superlattice reveal the occurrence of anticrossings of the resonant levels with applied electric fields, together with the conduction- and valence-level wave function localization properties and electric-field-induced migration to specific regions of the semiconductor quasiperiodic heterostructure. Finally, theoretical resonant-tunnelling calculations for the interband transition energies are shown to be in quite good quantitative agreement with previously reported experimental photocurrent measurements.

  7. Energetic pulses in exciton-phonon molecular chains and conservative numerical methods for quasilinear Hamiltonian systems.

    PubMed

    Lemesurier, Brenton

    2013-09-01

    The phenomenon of coherent energetic pulse propagation in exciton-phonon molecular chains such as α-helix protein is studied using an ODE system model of Davydov-Scott type, both with numerical studies using a new unconditionally stable fourth-order accurate energy-momentum conserving time discretization and with analytical explanation of the main numerical observations. Impulsive initial data associated with initial excitation of a single amide-I vibration by the energy released by ATP hydrolysis are used as well as the best current estimates of physical parameter values. In contrast to previous studies based on a proposed long-wave approximation by the nonlinear Schrödinger (NLS) equation and focusing on initial data resembling the soliton solutions of that equation, the results here instead lead to approximation by the third derivative nonlinear Schrödinger equation, giving a far better fit to observed behavior. A good part of the behavior is indeed explained well by the linear part of that equation, the Airy PDE, while other significant features do not fit any PDE approximation but are instead explained well by a linearized analysis of the ODE system. A convenient method is described for construction of the highly stable, accurate conservative time discretizations used, with proof of its desirable properties for a large class of Hamiltonian systems, including a variety of molecular models. PMID:24125294

  8. Optical characterization of subwavelength-scale solid immersion lenses

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Scharf, Toralf; Haq, Mohammad Tahdiul; Nakagawa, Wataru; Herzig, Hans Peter

    2012-03-01

    We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible light. The optical characterization is performed using a high-resolution interference microscope (HRIM) with illumination at 642 nm wavelength. The measurements of the 3D amplitude and phase fields provide information on the spot size and the peak intensity. In particular, the phase measurement is a more convincing proof of the Airy disc size reduction rather than the full-width at half maximum (FWHM) spot size. The focal spots produced by the nano-SILs show both spot-size reduction and enhanced optical intensity, which are consistent with the immersion effect. In this way, we experimentally confirm the immersion effect of a subwavelength-size SIL (d = 530 nm and h = 45 nm) with a spot reduction ratio of 1.35, which is less than the expected value of 1.5, most likely due to the slightly non-ideal shape of the nano-SIL.

  9. Nonlinear refractive index change and optical rectification in a GaN-based step quantum wells with strong built-in electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2015-11-01

    Based on the compact density matrix approach, the linear and nonlinear refractive index change (RIC) and optical rectification (OR) coefficients in a GaN-based step QW with strong built-in electric field (BEF) have been theoretically deduced and investigated in detail. The analytical electronic state is derived by the two airy functions. And the band nonparabolicity is taken into account by using an energy dependence effective mass (EDEM) method. Numerical calculations on a four-layer AlN/GaN/AlxGa1-xN/AlN step QW are performed, and the curves for the geometric factors, the linear, the nonlinear, the total RICs and the OR coefficients as functions of the structural parameters of the step QW are discussed. The features for these curves were specified and reasons for the features were explained reasonably. It is found that the decreasing of well width Lw, and step barrier width Lb and the doped concentration x in step barrier will result in the significant enhancement of the RICs. With the decrease of Lw, Lb and x, the resonant photon energies of RIC and OR coefficients have obvious blue-shift. Moreover, the RIC and OR coefficients behave different dependence on the structural parameters of the GaN-based step QWs. The profound physical reasons are also analyzed.

  10. Pinhole shifting lifetime imaging microscopy.

    PubMed

    Ramshesh, Venkat K; Lemasters, John J

    2008-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu(3+)), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu(3+) microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 micros was estimated for the Eu(3+) microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  11. Photographic image enhancement

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1990-01-01

    Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.

  12. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  13. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    NASA Astrophysics Data System (ADS)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  14. Further evidence for a dynamically generated secondary bow in 13C+12C rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.

    2015-11-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy EL=250 MeV with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at θ ≈70°, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple Y 2 term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond the rainbow angle of the primary rainbow.

  15. Semiclassical catastrophes and cumulative angular squeezing of a kicked quantum rotor

    SciTech Connect

    Leibscher, M.; Averbukh, I.Sh.; Rozmej, P.; Arvieu, R.

    2004-03-01

    We present a detailed theory of spectacular semiclassical catastrophes happening during the time evolution of a kicked quantum rotor [Phys. Rev. Lett. 87, 163601 (2001)]. Both two- and three-dimensional rotational systems are analyzed. It is shown that the wave function of the rotor develops a cusp at certain delay after a kick, which results in a sharply focused rotational wave packet. The cusp is followed by a fold-type catastrophe manifested in the rainbow-type moving singularities. In the three-dimensional case, the rainbows are accompanied by additional singular features similar to the glory structures known in the wave optics. These catastrophes in the time-dependent angular wave function are well described by the appropriate tools of the quasiclassical wave mechanics, i.e., by Airy and Bessel approximations and Pearcey's functions. A scenario of 'cumulative squeezing' is also presented in which a specially designed train of short kicks produces an unlimited narrowing of the rotor angular distribution. This scenario is relevant to the molecular alignment by short laser pulses, and also to the atom lithography schemes in which cold atoms are focused by an optical standing wave.

  16. Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander's dark band.

    PubMed

    Marston, P L; Kaduchak, G

    1994-07-20

    Oblate drops of water can produce caustics where, unlike a simple Airy caustic, more than two rays merge. We extend previous treatments of generalized primary rainbows based on catastrophe optics [Opt. Lett. 10, 588 (1985); Proc. R. Soc. (London) A 438, 397 (1992)] to rays having (p - 1) = 2 to 5 internal reflections. The analysis is for a horizontally illuminated ellipsoid with a vertical symmetry axis. Aspect ratios causing a vanishing of the vertical curvature at the equator for the outgoing wave front are found from generalized ray tracing. In response to infinitesimal deformation, the axial caustic of real glory rays unfolds producing cusps. Laboratory observations with laser illumination demonstrate that cusps resulting from rays with five internal reflections extend into Alexander's dark band when the drop's aspect ratio is near 1.08. The evolution of this p = 6 scattering pattern as cusps meet the quinary rainbow is suggestive of an E(6) catastrophe. For ellipsoids of varying aspect ratio and refractive index N, there is an organizing singularity associated with an exceptionally flat outgoing wave front from spheres with N = p. PMID:20935841

  17. Rainbows, Coronas and Glories

    NASA Astrophysics Data System (ADS)

    Laven, Philip

    Rainbows, coronas and glories are examples of atmospheric optical phenomena caused by the scattering of sunlight from spherical drops of water. It is surprising that the apparently simple process of scattering of light by spherical drops of water can result in this wide range of colourful effects. However, the scattering mechanisms are very complicated. Eminent scientists (such as Descartes, Newton, Young, Airy and many others) offered various explanations for the formation of rainbows—thus making major contributions to our understanding of the nature of light. The basic features of rainbows can be explained by geometrical optics but, in the early 1800s, supernumerary arcs on rainbows provided crucial supporting evidence for the wave theory of light. In 1908, Mie provided a rigorous (but very complicated) solution to the problem of scattering of light by spherical particles. More than 100 years later, Mie's solution can now be used to produce excellent full-colour simulations. Examples of such simulations show how the appearance of these phenomena vary with the size of the water drops, as well as describing the scattering mechanisms that are responsible for their formation.

  18. On Sky Validation of the Polychromatic Laser Guide Star Concept

    NASA Astrophysics Data System (ADS)

    Girard, J.

    2005-10-01

    The atmospheric turbulence affects image quality and causes angular resolution losses at the focus of large ground based optical telescopes. Real time adaptive optics (AO) corrects wave front distortions measured with at least one bright reference source located within a tiny isoplanatic angle from the science object. At visible wavelengths, the probability to find one such natural star is ridiculously small. The laser guide star (LGS) solves the problem but the overall wavefront slope (referred here as tilt) remains undetermined. The Polychromatic Laser Guide Star will allow the use of AO with full sky coverage. Based on the tilt chromaticity, a multicolor reference spot is created in the upper atmosphere and the differential tilt is measured between two wavelengths to retrieve the tilt itself. In the present thesis, I describe ATTILA, an experiment designed to prove the feasibility of the concept in astronomical conditions. Observations carried on at Observatoire de Haute Provence on natural stars allowed us to establish the proportionality law that links the tilt and the differential tilt for the first time. A temporal monitoring of the two signals shows a good correlation. The accuracy obtained on the slope (about one Airy disk ) let us be optimistic for the future full ELP-OA demonstrator with lasers. This work required an in-depth characterization of a detector featuring the novel EMCCD technology as well as the implementation and tests of pendular seismometers dedicated to measure telescope angular vibrations.

  19. Size distribution of ring polymers.

    PubMed

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 - d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  20. PSF Rotation with Changing Defocus and Applications to 3D Imaging for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Kumar, R.

    2013-09-01

    For a clear, well corrected imaging aperture in space, the point-spread function (PSF) in its Gaussian image plane has the conventional, diffraction-limited, tightly focused Airy form. Away from that plane, the PSF broadens rapidly, however, resulting in a loss of sensitivity and transverse resolution that makes such a traditional best-optics approach untenable for rapid 3D image acquisition. One must scan in focus to maintain high sensitivity and resolution as one acquires image data, slice by slice, from a 3D volume with reduced efficiency. In this paper we describe a computational-imaging approach to overcome this limitation, one that uses pupil-phase engineering to fashion a PSF that, although not as tight as the Airy spot, maintains its shape and size while rotating uniformly with changing defocus over many waves of defocus phase at the pupil edge. As one of us has shown recently [1], the subdivision of a circular pupil aperture into M Fresnel zones, with the mth zone having an outer radius proportional to m and impressing a spiral phase profile of form m? on the light wave, where ? is the azimuthal angle coordinate measured from a fixed x axis (the dislocation line), yields a PSF that rotates with defocus while keeping its shape and size. Physically speaking, a nonzero defocus of a point source means a quadratic optical phase in the pupil that, because of the square-root dependence of the zone radius on the zone number, increases on average by the same amount from one zone to the next. This uniformly incrementing phase yields, in effect, a rotation of the dislocation line, and thus a rotated PSF. Since the zone-to-zone phase increment depends linearly on defocus to first order, the PSF rotates uniformly with changing defocus. For an M-zone pupil, a complete rotation of the PSF occurs when the defocus-induced phase at the pupil edge changes by M waves. Our recent simulations of reconstructions from image data for 3D image scenes comprised of point sources at

  1. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  2. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    SciTech Connect

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    2008-04-15

    The recent Nevada Earthquake (M=6) produced an extraordinary set of crustal guided waves. In this study, we examine the three-component data at all the USArray stations in terms of how well existing models perform in predicting the various phases, Rayleigh waves, Love waves, and Pnl waves. To establish the source parameters, we applied the Cut and Paste Code up to distance of 5° for an average local crustal model which produced a normal mechanism (strike=35°,dip=41°,rake=-85°) at a depth of 9 km and Mw=5.9. Assuming this mechanism, we generated synthetics at all distances for a number of 1D and 3D models. The Pnl observations fit the synthetics for the simple models well both in timing (VPn=7.9km/s) and waveform fits out to a distance of about 5°. Beyond this distance a great deal of complexity can be seen to the northwest apparently caused by shallow subducted slab material. These paths require considerable crustal thinning and higher P-velocities. Small delays and advances outline the various tectonic province to the south, Colorado Plateau, etc. with velocities compatible with that reported on by Song et al.(1996). Five-second Rayleigh waves (Airy Phase) can be observed throughout the whole array and show a great deal of variation ( up to 30s). In general, the Love waves are better behaved than the Rayleigh waves. We are presently adding higher frequency to the source description by including source complexity. Preliminary inversions suggest rupture to northeast with a shallow asperity. We are, also, inverting the aftershocks to extend the frequencies to 2 Hz and beyond following the calibration method outlined in Tan and Helmberger (2007). This will allow accurate directivity measurements for events with magnitude larger than 3.5. Thus, we will address the energy decay with distance as s function of frequency band for the various source types.

  3. Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure

    NASA Astrophysics Data System (ADS)

    Ortiz, Alejandra C.; Ashton, Andrew D.

    2016-02-01

    Using energetics-based formulations for wave-driven sediment transport, we develop a robust methodology for estimating the morphodynamic evolution of a cross-shore sandy coastal profile. In our approach, wave-driven cross-shore sediment flux depends on three components: two onshore-directed terms (wave asymmetry and wave streaming) and an offshore-directed slope term. In contrast with previous work, which applies shallow water wave assumptions across the transitional zone of the lower shoreface, we use linear Airy wave theory. The cross-shore sediment transport formulation defines a dynamic equilibrium profile and, by perturbing about this steady state profile, we present an advection-diffusion formula for profile evolution. Morphodynamic Péclet analysis suggests that the shoreface is diffusionally dominated. Using this depth-dependent characteristic diffusivity timescale, we distinguish a morphodynamic depth of closure for a given time envelope. Even though wave-driven sediment transport can (and will) occur at depths deeper than this morphodynamic closure depth, the rate of morphologic bed changes in response to shoreline change becomes asymptotically slow. Linear wave theory suggests a shallower shoreface depth of closure and much sharper break in processes than shallow water wave assumptions. Analyzing hindcasted wave data using a weighted frequency-magnitude approach, we determine representative wave conditions for selected sites along the U.S. coastline. Computed equilibrium profiles and depths of closure demonstrate reasonable similarities, except where inheritance is strong. The methodology espoused in this paper can be used to better understand the morphodynamics at the lower shoreface transition with relative ease across a variety of sites and with varied sediment transport equations.

  4. A very small astrometry satellite mission: Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Gouda, G.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamauchi, M.; Takato, N.; Miyazaki, S.; Yamada, Y.; Sako, N.; Nakasuka, S.

    2006-08-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE--a very small satellite weighing less than 10 kg--aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90 degrees are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites--the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey-Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15um. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is [S: scheduled for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (mz< 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  5. Nano-JASMINE: a 10-kilogram satellite for space astrometry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Gouda, Naoteru; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Yamauchi, Masahiro; Takato, Naruhisa; Miyazaki, Satoshi; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    2006-06-01

    The current status of the nano-JASMINE project is presented. Nano-JASMINE - a very small satellite weighing less than 10 kg - aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90° are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites-the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey- Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15μm. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is hoped for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (m z < 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  6. A very small astrometry satellite mission: Nano-JASMINE .

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Gouda, Naoteru; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Yamauchi, Masahiro; Takato, Naruhisa; Miyazaki, Satoshi; Yamada, Yoshiyuki; Sako, Nobutada; Nakasuka, Shin'ichi

    The current status of the nano-JASMINE project is presented. Nano-JASMINE-a very small satellite weighing less than 10 kg-aims to carry out astrometry measurements of nearby bright stars. This satellite adopts the same observation technique that was used by the HIPPARCOS satellite. In this technique, simultaneous measurements in two different fields of view separated by an angle that is greater than 90 degrees are carried out; these measurements are performed in the course of continuous scanning observations of the entire sky. This technique enables us to distinguish between an irregularity in the spin velocity and the distribution of stellar positions. There is a major technical difference between the nano-JASMINE and the HIPPARCOS satellites-the utilization of a CCD sensor in nano-JASMINE that makes it possible to achieve an astrometry accuracy comparable to that achieved by HIPPARCOS by using an extremely small telescope. We have developed a prototype of the observation system and evaluated its performance. The telescope (5cm) including a beam combiner composed entirely of aluminum. The telescope is based on the standard Ritchey-Chretien optical system and has a composite f-ratio of 33 that enables the matching of the Airy disk size to three times the CCD pixel size of 15um. A full depletion CCD will be used in the time delay integration (TDI) mode in order to efficiently survey the whole sky in wavelengths including the near infrared. The nano-JASMINE satellite is being developed as a piggyback system and is scheduled for launch in 2008. We expect the satellite to measure the position and proper motion of bright stars (mz < 8.3) with an accuracy of 1 mas, this is comparable to the accuracy achieved with the HIPPARCOS satellite.

  7. Nano-JASMINE: A 10-kilogram Satellite For Space Astrometry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Gouda, N.; Yano, T.; Suganuma, M.; Yamauchi, M.; Yamada, Y.

    The current status of the nanoJASMINE project is presented Nano-JASMINE--a very small satellite weighing less than 10 kg -- aims to carry out astrometry measurements on nearby bright stars This satellite adopts the same observation technique used by the HIPPARCOS satellite In this technique simultanaeously measurements of two different fields separated by an angle that is greater than 90 degrees is carried out these measurements are carried out in the course of continuous scanning observations of the whole sky This technique enables us to distinguish between the irregularty in the spin velocity and stellar position distribution The major technical differrence between the nano-JASMINE and the HIPPARCOS satellite is the utilization of a CCD sensor device that makes it possible to achieve comparable astrometry accuracy by using an extremly smaller telescope We developed a prototype system and evaluated its performance The telescope is composed entirely of alminum A 5-cm telecsope including an aluminum beam combiner The telescope is based on the standard Richey-Chretian optical system and has a composit f ratio of 33 that enables the match of the Airy disk size to three times of the CCD pixel size of 15um The full depletion CCD will be used in the time delayed and integration TDI mode in order to efficiently survey the whole sky in the near-infrared wavelength The nano-JASMINE satellite is scheduled for launch in 2008 as a piggyback system We expected the satellite to measure the position and proper motion of bright stars mz 7 5 with an

  8. Systematic investigation of the principal and first secondary maxima of ultrashort optical pulses focused by a high numerical aperture aplanatic lens

    NASA Astrophysics Data System (ADS)

    Lindlein, Norbert; Loosen, Florian; Fries, Sebastian

    2015-09-01

    The electromagnetic field in the focus of an ideal aplanatic lens with high numerical aperture, which is illuminated by an ultrashort optical pulse and plane wave front, is simulated by taking the vectorial Debye integral and the coherent superposition of a frequency spectrum of monochromatic waves. The behavior of the principal maxima and the first secondary maxima as function of the numerical aperture (NA) and the pulse duration T is investigated systematically for light incident with linear polarization. First, one would not expect remarkable deviations from the stationary case. But also this simple system of an ideal aplanatic lens without any chromatic or monochromatic aberrations (of course only simple from the point of theory, but not at all from the point of practical realization) shows some remarkable results. If the NA (in vacuum) tends to the limiting case of 1.0 the maximum value of |E|2 increases faster than expected from the scalar theory (Airy disc) with a maximum deviation of about 13%. The second effect really comes from very short pulses, i.e. very small values T. Then, the value of |E|2 compared to the expected linear increase with 1/T decreases slightly (only less than 2%), but systematically for all NAs. Even more interesting is the dependence of the height of the first secondary maxima along the x-axis and y-axis on the NA and 1/T. It can be seen that along both axes the first secondary maxima nearly vanish for very short pulses, i.e. large values 1/T.

  9. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal

  10. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yong; Sandvol, E.; Zhu, L.; Lou, Hai; Yao, Zhixiang; Luo, Xinghua

    2014-02-01

    Crustal thicknesses and Poisson's ratios in the Ordos block and surrounding regions were estimated by the use of the H-k stacking method on teleseismic receiver functions. The data came from 353 temporary and permanent seismic stations in 2006-2011. Results show that the crustal thickness and Poisson's ratio gently vary within the Ordos block, with an average of 41.3 km and 0.265, respectively, consistent with a felsic composition of the crust. Crustal thicknesses predicted on the basis of Airy isostasy are consistent with the estimated thicknesses, implying that the topography is approximately compensated. The reactivated portion of the North China Craton that has undergone Mesozoic-Cenzoic lithospheric thinning is also characterized by the thinning crust, while the Ordos block maintains normal crustal thickness and average crustal velocity. Inferred higher densities in the lower crust and the anti-correlation between Poisson's ratio and crustal thickness in the Ordos block may be the result from underplating of mafic magmas in the Precambrian. Around the Ordos block, the Paleoproterozoic khondalite zone in the northern edge has higher Poisson's ratio and thickened crust, which is consistent with the lower crust being of more mafic composition. The Weihe-Shanxi graben in the southeastern edge has mid-high Poisson's ratio, high heat flow and thinning crust, which is consistent with the known transtensional tectonic setting. In the Liupanshan thrust belt, along the southwestern edge of the Ordos plateau, significant variations in crustal thicknesses and Poisson's ratios occur on two sides. Besides a thickened crust, a concaved Moho implies horizontal shortening of this edge of the Ordos block due to its collision with the northeastern Tibetan Plateau. The structural differences between the eastern and western edges of the Ordos block reflect that the Ordos block is in tectonic stress environment of the western compression and the eastern extension.

  11. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    SciTech Connect

    Rosfjord, Kristine Marie

    2004-07-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  12. Technology Advancement of the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  13. Upper-Mantle Flow Driven Dynamic Topography in Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Eken, Tuna; Hakan Gogus, Oguz

    2016-04-01

    Eastern Anatolia is characterized by 2 km plateau uplift -in the last 10 Myrs-, high surface heat flow distribution, shallow Curie-point depth, anomalous gravity field. Seismological observations indicate relatively high Pn and Sn attenuation and significant low seismic velocity anomalies in the region. Moreover, the surface geology is associated predominantly with volcanic rocks in which melt production through mantle upwelling (following lithospheric delamination) has been suggested. It has been long known that the topographic loading in the region cannot be supported by crustal thickness (~45 km) based on the principle of Airy isostasy. Recent global geodynamic studies carried out for evaluating the post-collisional processes imply that there is an explicit dynamic uplift in Eastern Anatolia and its adjacent regions. In this study we investigate the instantaneous dynamic topography driven by 3-D upper-mantle flow in Eastern Anatolia. For this purpose we conducted numerous thermo-mechanical models using a 2-D Arbitrary Lagrangian Eulerian (ALE) finite element method. The available P-wave tomography data extracted along 10 profiles were used to obtain depth-dependent density anomalies in the region. We present resulting dynamic topography maps and estimated 3D mantle flow velocity vectors along these 2-D cross sections for each profile. The residual topography based on crustal thickness and observed topography was calculated and compared with other independent datasets concerning geological deformation and dynamic topography predictions. The results indicate an upper mantle driven dynamic uplift correlated with the under-compensated characteristic in Eastern Anatolia. We discuss our results combined with 3D mantle flow by considering seismic anisotropy studies in the region. Initial results indicate that high dynamic uplift and the localized low Pn velocities in concurrence with Pn anisotropy structures show nearly spatial coherence in Eastern Anatolia.

  14. Imaging of single-chromophore molecules in aqueous solution near a fused-silica interface

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Parker, Wesley C.; Ball, David A.; Williams, John G.; Bashford, Greg R.; Sheaff, Pamela; Eckles, Robert D.; Lamb, Don T.; Middendorf, Lyle R.

    2001-04-01

    Single molecules of unconjugated Bodipy-Texas Red (BTR), BTR-dimer, and BTR conjugated to cysteine, in aqueous solutions are imaged using total-internal-reflection excitation and through-sample collection of fluorescence onto an intensified CCD camera, or a back-illuminated frame transfer CCD. The sample excitation is provided by the beam from a continuous-wave krypton ion laser, or a synchronously-pumped dye laser, operating at 568 nm. In order to essentially freeze molecular motion due to diffusion and thereby enhance image contrast, the laser beam is first passed through a mechanical shutter, which yields a 3-millisecond laser exposure for each camera frame. The laser beam strikes the fused-silica/sample interface at an angle exceeding the critical angle by about 1 degree. The resultant evanescent wave penetrates into the sample a depth of approximately 0.3 microns. Fluorescence from the thin plane of illumination is then imaged onto the camera by a water immersion apochromat (NA 1.2, WD 0.2mm). A Raman notch filter blocks Rayleigh and specular laser scatter and a band-pass-filter blocks most Raman light scatter that originates from the solvent. Single molecules that have diffused into the evanescent zone at the time of laser exposure yield near-diffraction-limited Airy disk images with diameters of ~5 pixels. While most molecules diffuse out of the evanescent zone before the next laser exposure, stationary or slowly moving molecules persisting over several frames, and blinking of such molecules are occasionally observed.

  15. Is there uniformitarian or catastrophic tectonics on Venus?

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1993-01-01

    The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m(exp -3) an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.

  16. The high tide of the warm Pliocene: Implications of ~20 m Peak Eustatic Sea-Levels for Antarctic Deglaciation

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Browning, J. V.; Kulpecz, A. A.; Kominz, M. A.; Naish, T.; Rosenthal, Y.; Peltier, W. R.; Sosdian, S. M.; Wright, J. D.

    2010-12-01

    The eustatic peak of the Pliocene (ca. 3 Ma) allows evaluation of sea-level response to conditions warmer than present and with atmospheric carbon dioxide levels similar to the early 21st century. We provide new eustatic estimates for the Pliocene from backstripping shallow-marine, siliciclastic sections in Virginia, U.S.A., and New Zealand, accounting for the effects of compaction, Airy loading, and thermal subsidence. We compare our backstripped eustatic estimates with previously published estimates from a carbonate atoll (Enewetak), deep sea benthic foraminiferal oxygen isotopes, Mg-Ca, and uplifted marine terraces in the Carolinas and Alaska and conclude that the peak was 19±5 m, significantly lower than previously published estimates of 30-40 m derived from uplifted terraces. The 19-m peak implies not only the loss of the total equivalent of Greenland and West Antarctic ice sheets, but suggests volume loss of the East Antarctic Ice Sheet (EAIS) of ~4 m of sea-level equivalent. Our estimates provide helps resolve the long-standing controversy of the stability of the EAIS during the warmer-than-present Pliocene climatic optimum. The sea-level fall at MIC 100 (ca. 2.7 Ma) associated with the growth of large northern hemisphere ice sheets was remarkably large (~100 m) and may have cause a glacial isotostatic adjustment the resulted in uplift of the otherwise tectonically stable New Jersey coastal plain. Despite uncertainties in pre-ice core CO2 and global temperature measurements, the Pliocene provides a critical sea level-atmospheric CO2 calibration point for climates significantly warmer than the last major interglacial, MIC 5e.

  17. 30 Doradus: The Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Brandl, B.; Brandner, W.; Moneti, A.; Hunter, D.

    We have obtained HST/NICMOS H-band images of the central 1'x1' field around the R136 starburst cluster in the 30 Doradus HII region, in an attempt to reveal the presence (or absence) of a low-mass stellar population (M < 1 Mo). We will discuss the fascinating prospect of 30 Dor/R136 being a proto-globular cluster and a template starburst unit. At the time of writing, we are still working to determine which method and photometry package is best suited to our 0.15" NICMOS images, which are characterised by extreme crowding in the cluster center and a peculiar and slightly undersampled NICMOS PSF. The main difficulty with the PSF is identifying the many "dots" that appear outside the Airy ring as PSF features and not as faint stars. Prelimininary analysis suggests that the H-band luminosity function rises at least until H = 20 (2 Mo). We have detected numerous stars with 20.0 < H < 22.5 (the latter corresponding to 0.4 Mo) beyond about 7" from the cluster centre, but we have not yet determined the completeness in that magnitude range, and we are not yet in a position to make a statement about the shape of the H-band luminosity function there. We have combined our infrared data with the optical WFPC2 images of Hunter et al. (1995) to produce a VIH 3-colour image of the central 30" x 30" area. The result clearly shows unexpected patches of extinction, with one patch only about 5" from the cluster core.

  18. Constraints on Crustal Structures, Residual Topography, and Isostasy in the Western US from Virtual Deep Seismic Sounding (VDSS)

    NASA Astrophysics Data System (ADS)

    Yu, C.; van der Hilst, R. D.; Chen, W. P.

    2015-12-01

    How surface topography is supported at depth is a long-standing question in geodynamics. Overall, the western United States (US) stands high compared to the North American craton, but it has remained a challenge to distinguish crustal and mantle support of this topography due to the complex tectonic history of the western US and inadequate knowledge of crustal structure. We provide new seismological constraints on crustal structure using virtual deep seismic sounding (VDSS). VDSS uses SV-to-P wave conversion at the free surface near each seismograph as a virtual source, which, in turn, generates a strong, post-critical reflection off the Moho. This signal remains robust even if the Moho is complex or transitional in nature. Compared to traditional receiver functions, VDSS is less prone to contamination by scattering from other crustal structures, such as thick sediments or intra-crustal discontinuities. More important, VDSS can provide simultaneous constraints on both the total thickness and the overall P-wave speed of the crust - two key parameters for estimating the crustal contribution to isostasy. Based on data from USArray (EarthScope), we estimate the residual topography (that is, the difference between observed elevation and that predicted from the Airy model given the inferred crustal structure) in the western US (Figure 1). Positive values, indicative of mantle-supported topography, are wide spread in the Great Basin, the southern Rocky Mountains, the Snake River Plain-Yellowstone system, and the High Lava Plains. The periphery of the Colorado Plateau, the Central Sierra Nevada batholith, and the Idaho batholith also show positive residual topography. In contrast, our analysis suggests that thick crust in the interior of the Colorado Plateau and the Wyoming craton provides more than enough support for the topography, consistent with a thick, cold lithospheric root below.

  19. Advances in the reconstruction of LBT LINC-NIRVANA images

    NASA Astrophysics Data System (ADS)

    La Camera, A.; Desiderá, G.; Arcidiacono, C.; Boccacci, P.; Bertero, M.

    2007-09-01

    Context: LINC-NIRVANA, the Fizeau interferometer of the Large Binocular Telescope (LBT), will require routine use of image reconstruction methods for data reduction. To this purpose our group has already developed the software package AIRY (Astronomical Image Restoration in interferometrY). Aims: Observations of a target, with different orientations of the baseline of LINC-NIRVANA, will provide images with different orientations with respect to the CCD camera. This rotation effect was not taken into account in our previous work. Therefore in this paper we propose a method able to compensate for the rotation of the field of view. Moreover we investigate acceleration techniques for reducing the computational burden of multiple image deconvolution. Methods: The basic method is a suitable modification of the Richardson-Lucy algorithm, also implementing an approach we proposed for reducing boundary effects. Acceleration techniques, proposed by Biggs & Andrews, are extended and applied to this new algorithm. Finally a method for estimating the unknown point spread function (PSF) by extracting and extrapolating the image of a reference star is developed and implemented. Results: The method introduced for compensating object rotation and reducing boundary effects, as well as its accelerated versions, are tested on simulated LINC-NIRVANA images, using the VLT image of the Crab Nebula as test object. The results are very promising. Moreover the method for PSFs extraction is tested on simulated images, derived from the LBT image of the galaxy NGC 6946 and obtained by convolving this image with PSFs computed by means of the numerical code LOST (Layer Oriented Simulation Tool).

  20. Continental rifting in the Woodlark Basin, Papua New Guinea: A comparison of different estimates of extension at the rifting-spreading transition.

    NASA Astrophysics Data System (ADS)

    Partlow, J.; Goodliffe, A. M.

    2014-12-01

    The Woodlark Basin is one of few places where it is possible to investigate an active transition from continental rifting to seafloor spreading. The Papuan Peninsula began N-S extension at 8.4 Ma, followed by seafloor spreading at 6 Ma. To date, seafloor spreading has propagated west 500 km. In the proximity of the modern rifting to spreading transition the northern margin has subsided 2-3 km with minor brittle faulting. The southern margin has subsided a similar amount but is characterized by large faults. Previous work shows that the observed continental extension is half the amount resolved by seafloor-spreading kinematics. It has been proposed that this discrepancy is due to mid-crustal decoupling, where the mantle lithosphere and lower crust are detached. The N-S profile across the current rifting to spreading transition is a natural laboratory for extensional environments. The work herein presented is a continuation of prior studies, but incorporates a new approach to extensional modeling, specifically the use of the Move software package. The profile presented includes ODP Leg 180 wells. Structural and stratigraphic interpretations originate from nearby seismic lines. Biostratigraphy and paleomagnetism data are the basis for age-depth relationships. Interpreted sedimentary packages permit backstripping and decompaction models that assume Airy Isostasy. Extension is estimated through the restoration of fault heaves and back rotation of fault blocks. From previous studies we know the width of the Papuan Peninsula to be 320 km in the vicinity of the profile presented. Furthermore, those studies estimate 220 km of extension across the margin based on Euler pole kinematics. This gives an original margin width of about 100 km, and Beta greater than 3. We present herein an extension estimate based on 2-D kinematic modeling, and contrast this with prior extension estimates of 111-115 km.

  1. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  2. The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Jinchang; Sager, William W.; Korenaga, Jun

    2016-05-01

    Oceanic plateaus are large igneous provinces formed by extraordinary eruptions that create thick oceanic crust, whose structure is poorly known owing to the lack of deep-penetration seismic data. Multichannel seismic (MCS) reflection and wide-angle refraction data allow us to show Moho structure beneath a large part of the Shatsky Rise oceanic plateau in the northwest Pacific Ocean. Moho reflectors in the two data sets can be connected to trace the interface from the adjacent abyssal plain across much of the interior. The reflectors display varied character in continuity, shape, and amplitude, similar to characteristics reported in other locations. Beneath normal crust, the Moho is observed at ∼13 km depth (∼7 km below the seafloor) in MCS data and disappears at ∼20 km depth (∼17 km below the seafloor) beneath the high plateau. Moho at the distal flanks dips downward towards the center with slopes of ∼0.5°-1°, increasing to 3°-5° at the middle flanks. Seismic Moho topography is consistent with Airy isostasy, confirming this widely-applied assumption. Data from this study show that crustal thickness between the massifs in the interior of the plateau is nearly twice normal crustal thickness, despite the fact that this crust records apparently normal seafloor spreading magnetic lineations. The Moho model allows improved estimates of plateau area (5.33 ×105 km2) and volume (6.90 ×106 km3), the latter assuming that the entire crust was formed by Shatsky Rise volcanism because the massifs formed at spreading ridges. This study is unique in showing Moho depth and structure over an extraordinarily large area beneath an oceanic plateau, giving insight to plateau structure and formation.

  3. On Certain Functionals of the Maximum of Brownian Motion and Their Applications

    NASA Astrophysics Data System (ADS)

    Perret, Anthony; Comtet, Alain; Majumdar, Satya N.; Schehr, Grégory

    2015-12-01

    We consider a Brownian motion (BM) x(τ ) and its maximal value x_{max } = max _{0 ≤ τ ≤ t} x(τ ) on a fixed time interval [0, t]. We study functionals of the maximum of the BM, of the form {O}_{max }(t)=int _0^t V(x_{max } - x(τ )) {d}τ where V( x) can be any arbitrary function and develop various analytical tools to compute their statistical properties. These tools rely in particular on (i) a "counting paths" method and (ii) a path-integral approach. In particular, we focus on the case where V(x) = δ (x-r), with r a real parameter, which is relevant to study the density of near-extreme values of the BM (the so called density of states), ρ (r,t), which is the local time of the BM spent at given distance r from the maximum. We also provide a thorough analysis of the family of functionals {T}_{α }(t)=int _0^t (x_{max } - x(τ ))^α {{d}}τ corresponding to V(x) = x^α with α real. As α is varied, T_α (t) interpolates between different interesting observables. For instance, for α =1, T_{α = 1}(t) is a random variable of the "area", or "Airy", type while for α =-1/2 it corresponds to the maximum time spent by a ballistic particle through a Brownian random potential. On the other hand, for α = -1, it corresponds to the cost of the optimal algorithm to find the maximum of a discrete random walk, proposed by Odlyzko. We revisit here, using tools of theoretical physics, the statistical properties of this algorithm which had been studied before using probabilistic methods. Finally, we extend our methods to constrained BM, including in particular the Brownian bridge, i.e., the Brownian motion starting and ending at the origin.

  4. Non-Gaussian Photon Probability Distribution

    NASA Astrophysics Data System (ADS)

    Solomon, Benjamin T.

    2010-01-01

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that

  5. Focal Molography: Coherent Microscopic Detection of Biomolecular Interaction

    NASA Astrophysics Data System (ADS)

    Fattinger, Christof

    2014-07-01

    We introduce and theoretically investigate here a novel analytical method that we have called focal molography, in which molecular interactions are made visible through scattering of coherent light by a coherent pattern of molecules. The scattered light quantifies the presence of molecules at molecular interaction sites. It is separated from noncoherent background scatter by a combination of local dark-field illumination, interference enhancement, and spatial filtering. The latter is achieved by holographic focusing of the wave field generated by the coherently assembled molecules onto an Airy disk and by subtraction of the noncoherent irradiance in the focal plane outside the disk from the irradiance in the disk. This new microscopic method allows distinct detection of low-refractive-index contrast in the nanoenvironment of biomolecules from which information on the interaction of the coherently assembled molecules with molecules in a liquid or gaseous sample may be deduced. The noncoherent surroundings of the coherently assembled molecules consist of freely diffusing solvent and solute molecules. The surroundings, as well as changes in temperature, do not contribute to the coherent signal in the diffraction focus. Interference lithography or high-resolution-imaging lithography can be used to synthesize the coherent pattern of molecules on a monolithic substrate. The coherent pattern of molecules constitutes a synthetic phase hologram that creates a diffraction-limited light wave. We suggest the term "mologram" for the coherent assembly of functional nanostructures and the term "focal molography" for label-free or labeled analysis of molecular interactions through the measurement of the properties of light in the focus of the mologram. We derive analytical formulas that express the detection signal and the sensitivity of focal molography on the surface of a high-refractive-index thin-film optical waveguide in terms of known parameters. We discuss the

  6. Scheme of 3 interfaces with local isostatic compensation on the Argentine continental margin

    NASA Astrophysics Data System (ADS)

    Pedraza De Marchi, A. C.; Ghidella, M. E.; Tocho, C.

    2013-05-01

    The segment of Argentine continental margin located between 39°S and the Malvinas platform (~49°S) is of passive type and volcanic characteristics revealed by seaward-dipping seismic reflectors sequences (SDRs). The free air gravity edge-effect associated with passive continental margins is one of the most distinctive characteristics of gravity in marine regions. This effect is in large part due to the transition between continental and oceanic crusts, because of their different thicknesses. In this presentation we investigate the Airy type isostatic compensation scheme by using three interfaces in a forward calculation with different approximations of Parker's expression to obtain the isostatic anomaly. After that we perform the inversion of the anomaly thus obtained in order to find the Moho's deflection necessary to compensate it (or minimize it) by using the same scheme of interfaces and the iterative Parker-Oldenburg method (Oldenburg, D., 1974) with more terms in the inversion. The crust-mantle interface (Moho) thus calculated represents a more realistic surface than the one calculated using one term in the inversion and the surface estimated with topographic data and sediment thickness. Even considering that the experiment constitutes a schematic assumption just to test the numerical methods involved, we find that in the comparison with the only available digitized refraction profile, the inverted Moho interface reproduces fairly well the Moho that the seismic profile yields, for the case of the iterative method. This suggests that the inverse calculation with the iterative method is sensible to the presence of the SDRS, at least for this sole profile. Keywords: isostatic anomaly, Moho, passive continental margins Oldenburg, D., 1974. The inversion and interpretation of gravity anomalíes, Geophysics, vol. 39, no. 4, p. 526-536.

  7. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  8. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  9. Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.

  10. Adaptive optics scanning ophthalmoscopy with annular pupils

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2012-01-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections. PMID:22808435

  11. Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2015-12-01

    A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.

  12. Is there uniformitarian or catastrophic tectonics on Venus?

    NASA Astrophysics Data System (ADS)

    Turcotte, Donald L.

    1993-03-01

    The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m-3 an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.

  13. Planet Formation Instrument for the Thirty Meter Telescope

    SciTech Connect

    Macintosh, B; Troy, M; Graham, J; Doyon, R

    2006-02-22

    In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. These systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.

  14. Axial analysis of cones and adjacent retinal structures using AOSLO (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Papay, Joel A.; Johnston, Kirby D.; Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.; Elsner, Ann E.

    2016-03-01

    We imaged the retina using the Indiana Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). Our system uses two deformable mirrors to provide en face, high-resolution images of retinal structures at a 28 Hz frame rate. The wavelength of the sensor light was 850 nm and the imaging wavelength was 820 nm at 50 and 120 °W respectively. The confocal pinhole was located in a position conjugate with the retina allowed us to segment one retina plane. Two different confocal apertures of 75 μm and 100 μm (1.5 and 2 times the Airy disk size) were used to provide different amounts of confocal or scattered light. The imaging area was 1.4 x 1.2 deg which corresponds roughly to 400 x 350 μm. Using the large stroke deformable mirror, which provides the focusing capability of the confocal system, we imaged the same location at different planes. We moved from superficial layers to the retinal pigment epithelium in 0.3 D increments. The range of adjustments included the subjectively best overall image, and focal planes anterior and posterior to this. We imaged 10 subjects at approximately 7.5 deg temporal from the fovea. A video of individual frames was taken, and the individual frames were dewarped, aligned, and averaged. We measured 10 bright and 10 dim cones for each subject at the 10 depths, with brightness groupings based subjectively on the most superficial location. The function for amount of light reflected differed for the two groups of cones. Reflectivity varied as a function of depth.

  15. Who discovered Mount Everest?

    NASA Astrophysics Data System (ADS)

    Dickey, Parke A.

    The discovery that Mount Everest is the highest mountain in the world was made by the officers of the Survey of India. This organization measured a network of triangulation across India between 1800 and 1870. In order to reduce the measurements to geodetic coordinates, it was necessary to determine the size and shape of the earth. This was accomplished by measuring the length of an arc of the meridian under the direction of the Surveyor General, Sir George Everest. This measurement disagreed with the observations of the stars for latitude by 5 seconds of arc (530 ft or 162 m). In 1855, Pratt and Airy pointed out that the discrepancy was due to the gravitational effect of the Himalayas. Their work was the first indication that the material of the earth's crust under the mountains is lighter than that under plains. During the course of the survey the officers made observations on the snowy Himalayas. They were excluded from Nepal; observations had to be taken from more than 100 mi (160 km) away in jungles infested by malaria. Mount Everest was observed by three different officers between November 27, 1847, and January 17, 1850. The height of the mountain had to be determined by the (human) computers in the survey headquarters in Dehra Dun. The fact that it is the highest mountain in the Himalayas, and probably in the world, was announced by Surveyor General Andrew Waugh in 1856. It is not clear whether the chief computer who made the calculations was an Indian, Radanath Sikhdar, or an Englishman born in India of an Indian mother, John B. N. Hennesy. The local name for the mountain, if it had any, was unknown, so Waugh named it Mount Everest, in honor of the great scientist who was largely responsible for the accomplishments of the Survey of India.

  16. First results of nulling interferometry with the Multiple-Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Hinz, Philip M.; Angel, J. Roger P.; Hoffmann, William F.; McCarthy, Donald W.; McGuire, Patrick C.; Cheselka, Matt; Hora, Joseph L.; Woolf, Neville J.

    1998-07-01

    We have successfully used nulling interferometry at 10 micrometers wavelength to interferometrically suppress a star's radiation. This technique was first proposed by Bracewell 20 years ago to image extra-solar planets and is now the basis for proposed space-borne instruments to search for Earth- like extra-solar planets and their spectroscopic signatures of habitability and life. In our experiment, the beams from two 1.8 m telescopes of the multiple mirror telescope were brought into registration at a semi-transparent beamsplitter, and the images made coincident on an IR array detector capable of taking rapid short exposure images. The atmospheric fluctuations caused the phase difference between the beams to fluctuate, changing the total flux of the star seen in the image plane. When the atmosphere caused the wavefronts to be exactly out of phase the entire stellar Airy pattern disappeared. For the unresolved star (alpha) Tauri the cancellation was such that a companion only 0.2 arcsec from the star and 25 times fainter would appear equal in intensity to the nulled star. The residual flux was spread into a wide halo suggesting the cause of this flux was imperfect cancellation of the aberrated wavefronts. To increase the precision of nulling beyond this first step several sources of error need to be addressed. We discuss the control of errors due to amplitude, polarization, chromatic differences, stellar leak, and sampling time. Improvements such as active phase tracking, adaptive optics, and cooled optics will increase the achievable gain of nulling interferometry and allow it to be used on fainter objects.

  17. Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Zhu, Lupei; Xu, Yixian

    2014-12-01

    Western Hubei Province is at the southern end of the 3000-km-long north-south-oriented Xing'anling-Taihangshan-Wulingshan topographic step in China, which separates high-rising plateaus and mountain ranges in the west from low-elevation plains in the east. We calculated teleseismic P receiver functions of 32 permanent broadband seismic stations in Hubei Province and estimated crustal thicknesses under them using the H-κ method. We also obtained detailed crustal structural images along three profiles using the CCP stacking method. The results show an east-west crustal thickness increase in the study area from 30-35 km to 45-50 km in less than 20 km of horizontal distance, most likely in a step-wise fashion. The thin crust beneath the Nanxiang and Jianghan basins in eastern Hubei extends into the interior of the Wuling Uplift and the Huangling Massif in western Hubei. The lack of mirror symmetry between the Moho and surface topography suggests that part of the mountain ranges in western Hubei is either compensated by non-Airy-type isostasy models or is not in isostatic equilibrium but supported by the strength of the lithosphere. The brittle or localized ductile deformation in the lower crust/uppermost mantle as indicated by the abrupt Moho steps seems to be decoupled with brittle deformation in the upper crust. The CCP images also reveal an apparent double Moho beneath the Wudang Mts. which is interpreted to be due to a partially eclogitized lower crust after the original cratonic mantle lithosphere was replaced by warm and hydrated mantle materials in eastern China in the Late Mesozoic. The Moho steps were formed when a segment of eclogitized lower crust became gravitationally unstable and foundered into the mantle.

  18. Large-Scale, Virtual Seismic Profiles: New Technique and Results from Tibet and Northern China (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yu, C.; Ning, J.; Tseng, T.

    2010-12-01

    We developed a new approach of constructing deep-penetrating seismic profiles using earthquake-sources and successfully applied this technique over distances of up to 1,000 km in two geologically important regions. Along a north-south trending profile across southern and central Tibet, there are significant, regional variations in crustal thickness under near-constant elevation (~ 5 km above sea-level) over a distance of 550 km. The crust is as thick as 75 km in southern Tibet but shoals to just over 60 km under the Qiangtang terrane in central Tibet where the deviation from Airy isostasy is equivalent to a thickness of over 10 km in missing crust. Northward thinning of crust occurs gradually over a distance of about 200 km where mechanical deformation, instead of pervasive magmatism, also seems to have disrupted the crust-mantle interface. Over a distance of nearly 1,000 km, an east-west trending profile, extending over the North China craton, across the active Shanxi rift, and over the Ordos plateau, also reveals intriguing changes in crustal thickness, almost by a factor of two over a distance of only about 100 km, which do not correlate well with topography. These examples demonstrate the power of this new approach which has some unique advantages: 1) Deep-penetration is virtually certain given the broadband nature and great power of earthquake-sources, and very large amplitude of wide-angle reflections, 2) low cost of operations, 3) negligible impact on the environment during field deployment, and 4) the same dataset is valuable for many other applications for basic research.

  19. Van Gogh's Starry Nights, Lincoln's Moon, Shakespeare's Stars, and More: Tales of Astronomy in Art, History, and Literature

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2009-01-01

    How do astronomical methods make it possible to calculate dates and times for Vincent van Gogh's night-sky paintings? Why is there a blood-red sky in Edvard Munch's The Scream? How can the 18.6-year cycle of the lunar nodes and the Moon's declination on the night of August 29-30, 1857, explain a long-standing mystery about Abraham Lincoln's honesty in the murder case known as the almanac trial? Why is a bright star described in Act 1, Scene 1, of Hamlet? There is a long tradition of astronomical methods employed to analyze works of art, to understand historical events, and to elucidate passages in literature. Both Edmond Halley and George Biddell Airy calculated lunar phases and tide tables in attempts to determine the landing beach where Julius Caesar invaded Britain in 55 B.C. Henry Norris Russell computed configurations of Jupiter and Saturn to determine a date for a 14th-century celestial event mentioned in Chaucer's Troilus and Criseyde. In this tradition, our Texas State group has published a series of articles in Sky & Telescope over the last two decades, applying astronomy to art, history, and literature. Don Osterbrock worked with us 3 years ago when my students and I calculated dates for moonrise photographs taken by Ansel Adams in Yosemite National Park. The peaks of the Sierra Nevada crest in Yosemite are more than 125 miles from Lick Observatory, but the mountains can become visible from Lick on clear winter days and were photographed from there on early infrared-sensitive plates during the 1920s and 1930s. As we tested our topographic software by identifying the peaks that appear in the Lick plates, it was a pleasure to come to know Don, a former director of Lick Observatory and the person in whose honor this talk is dedicated.

  20. Uniform asymptotic approximations for transient waves due to an initial disturbance

    NASA Astrophysics Data System (ADS)

    Madsen, Per A.; Schäffer, Hemming A.; Fuhrman, David R.; Toledo, Yaron

    2016-01-01

    In this work, we first present a semianalytical method for the evolution of linear fully dispersive transient waves generated by an initial surface displacement and propagating over a constant depth. The procedure starts from Fourier and Hankel transforms and involves a combination of the method of stationary phase, the method of uniform asymptotic approximations and various Airy integral formulations. Second, we develop efficient convolution techniques expressed as single and double summations over the source area. These formulations are flexible, extremely fast, and highly accurate even for the dispersive tail of the transient waves. To verify the accuracy of the embedded dispersion properties, we consider test cases with sharp-edged disturbances in 1-D and 2-D. Furthermore, we consider the case of a relatively blunt Gaussian disturbance in 2-D. In all cases, the agreement between the convolution results and simulations with a high-order Boussinesq model is outstanding. Finally, we make an attempt to extend the convolution methods to geophysical tsunami problems taking into account, e.g., uneven bottom effects. Unfortunately, refraction/diffraction effects cannot easily be incorporated, so instead we focus on the incorporation of linear shoaling and its effect on travel time and temporal evolution of the surface elevation. The procedure is tested on data from the 2011 Japan tsunami. Convolution results are likewise compared to model simulations based on the nonlinear shallow water equations and both are compared with field observations from 10 deep water DART buoys. The near-field results are generally satisfactory, while the far-field results leave much to be desired.

  1. Geoid, elevation and crustal thickness: Investigating the lithospheric structure of Africa

    NASA Astrophysics Data System (ADS)

    Globig, Jan; Fernandez, Manel; Torné, Montserrat; Faccenna, Claudio

    2014-05-01

    The African continent shows striking topographic features and has recently been target of numerous geophysical and seismic studies to determine its crustal structure, locally and regionally. Observation of surface tectonics coupled with knowledge of variations in crustal thickness provide a top to bottom frame to investigate sub-crustal processes, which affect the uppermost lithosphere and control today's African topography. As the significance of previous models of crustal thickness in Africa is debatable and favors premature conclusions here our motivation is to address the detailed structure of the African lithosphere revealing Moho and LAB geometry using 1D modeling of elevation, geoid and thermal data including the thermotectonic age of the crust as well as age and thickness of sediments to better account for lateral variations in crustal density. The four-layered model is composed of crust and lithospheric mantle plus sea water and asthenosphere, assuming Airy isostasy and is benchmarked against a detailed compilation of seismic Moho data from active and passive seismic experiments across the continent and its margins. Relating better surface topography with the depth of the Moho and the LAB contributes to improve knowledge on the lithospheric structure in Africa that mainly comes from global models, such as CRUST1.0, regional tomography models and gravity modeling, which unfortunately miss a proper relation between elevation, mean crustal density and crustal thickness. Our approach therefore is seen to support the discussion around the strongly debated processes responsible for the anomalous high elevation especially in the south eastern part of Africa and the observed undulations in Moho depth from about 20 km below the extended regions of the East African Rift System to 50 kilometers underneath the thickest Proterozoic belts. By linking differences in age, density and thermal state of the lithosphere with topography and geoid we want to provide new

  2. Modified Visible and Infrared Optical Design for the ITER Upper Ports

    SciTech Connect

    Lasnier, C; Seppala, L; Morris, K

    2008-04-24

    This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

  3. Evolution semigroups in supersonic flow-plate interactions

    NASA Astrophysics Data System (ADS)

    Chueshov, Igor; Lasiecka, Irena; Webster, Justin T.

    We consider the well-posedness of a model for a flow-structure interaction. This model describes the dynamics of an elastic flexible plate with clamped boundary conditions immersed in a supersonic flow. A perturbed wave equation describes the flow potential. The plate's out-of-plane displacement can be modeled by various nonlinear plate equations (including von Karman and Berger). Supersonic regimes corresponding to the flow provide for new mathematical challenge that is related to the loss of ellipticity in a stationary dynamics. This difficulty is present also in the linear model. We show that the linearized model is well-posed on the state space (as given by finite energy considerations) and generates a strongly continuous semigroup. We make use of these results along with sharp regularity of Airy's stress function (obtained by compensated compactness method) to conclude global-in-time well-posedness for the fully nonlinear model. The proof of generation has two novel features, namely: (1) we introduce a new flow potential velocity-type variable which makes it possible to cover both subsonic and supersonic cases, and to split the dynamics generating operator into a skew-adjoint component and a perturbation acting outside of the state space. Performing semigroup analysis also requires a nontrivial approximation of the domain of the generator. The latter is due to the loss of ellipticity. And (2) we make critical use of hidden trace regularity for the flow component of the model (in the abstract setup for the semigroup problem) which allows us to develop a fixed point argument and eventually conclude well-posedness. This well-posedness result for supersonic flows (in the absence of regularizing rotational inertia) has been hereto open. The use of semigroup methods to obtain well-posedness opens this model to long-time behavior considerations.

  4. On the application of quantum transport theory to electron sources.

    PubMed

    Jensen, Kevin L

    2003-01-01

    Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development. PMID:12535543

  5. Tunable filter comparator for spectral calibration of near-ambient temperature blackbodies

    NASA Astrophysics Data System (ADS)

    Khromchenko, V. B.; Mekhontsev, S. N.; Hanssen, L. M.

    2007-09-01

    The calibration of infrared (IR) radiometers, thermal imagers and electro-optical systems relies on use of extended area blackbodies (BB) operating in the ambient environment. "Flat plate" designs, typically using a thermoelectric heat pump backed with an air- or liquid-cooled radiator, allow one to adequately meet the requirements of geometrical size and temperature span. The tradeoff comes in the form of limited temperature uniformity and lower emissivity that such an approach can provide given the limitations in achievable thermal conductivity of the plate and reflectance of the black paint, respectively. The availability of spectrally resolved radiance temperature data for infrared calibrators has become especially vital in the last few years with the widespread use of multi- and hyper-spectral electro-optical systems that enable better detection and identification of targets. In an effort to increase the measurement accuracy of IR spectral radiance of near-ambient BB calibrators, NIST has recently built a dedicated capability which is a part of its new AIRI (Advanced Infrared Radiometry and Imaging) facility. The Tunable Filter Comparator (TFC) is a key new element in this setup, allowing us to perform a precise comparison of the unit under test (UUT) with two reference blackbodies of known temperatures and emissivity. The report describes the major design features of the TFC comparator, the algorithm used for signal processing, and results of a performance evaluation of the TFC. The TFC development has enabled us to achieve BB radiance temperature comparisons with a standard deviation of 5 to 15 mK at temperatures of 15-150 C across the 3 to 5 µm and 8 to 12 µm atmospheric band ranges with a relative spectral resolution of 2 to 3%.

  6. Asymptotics of bivariate generating functions with algebraic singularities

    NASA Astrophysics Data System (ADS)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  7. Tailoring complex optical fields via anisotropic microstructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Qing; Hu, Wei; Cui, Guo-Xin

    2015-10-01

    In recent years, complex optical fields with spatially inhomogeneous phases, polarizations and optical singularities have drawn many research interests. Many novel effects have been predicted and demonstrated for light beams with these unconventional states in both linear and nonlinear optics regimes. Although local optical phase could be controlled directly or through hologram structures in isotropic materials such as glasses, optical anisotropy is still required for manipulating polarization states and wavelengths. The anisotropy could be either intrinsic such as in crystals/liquid crystals (LCs) or the induced birefringence from dielectric or metallic structures. In this talk, we will briefly review some of our attempts in tailoring complex optical fields via anisotropic microstructures. We developed a micro-photo-patterning system that could generate complex micro-images then further guides the arbitrary local LC directors. Due to the electro-optically (EO) tunable anisotropy of LC, various reconfigurable complex optical fields such as optical vortices (OVs), multiplexed OVs, OV array, Airy beams and vector beams are obtained. Different LC modes such as homogeneous alignment nematic, hybrid alignment nematic and even blue phase LCs are adopted to optimize the static and dynamic beam characteristics depending on application circumstances. We are also trying to extend our approaches to new wavelength bands, such as mid-infrared and even THz ranges. Some preliminary results are obtained. In addition, based on our recently developed local poling techniques for ferroelectric crystals, we will also discuss and demonstrate the nonlinear complex optical field conversion in Lithium Niobate wafers with patterned ferroelectric domain structures.

  8. The Polychromatic Laser Guide Star for tilt measurement: progress report of the demonstrator at Observatoire de Haute Provence

    NASA Astrophysics Data System (ADS)

    Foy, Renaud; Éric, Pierre; Eysseric, Jérôme; Foy, Françoise; Fusco, Thierry; Girard, Julien; Le Van Suu, Auguste; Perruchot, Sandrine; Richaud, Pierre; Richaud, Yoann; Rondeau, Xavier; Tallon, Michel; Thiébaut, Éric; Boër, Michel

    2007-09-01

    The Polychromatic Laser Guide Star aims at providing for the tilt measurement from a LGS without any natural guide star. Thus it allows adaptive optics to provide us with a full sky coverage. This is critical in particular to extend adaptive optics to the visible range, where isoplanatism is so small that the probability is negligible to find a natural star to measure the tilt. We report new results obtained within the framework of the Polychromatic LGS programme ELP-OA. Natural stars have been used to mimic the PLGS, in order to check the feasibility of using the difference in the tilt at two wavelengths to derive the tilt itself. We report results from the ATTILA experiment obtained at the 1.52 m telescope at Observatoire de Haute-Provence. Tilts derived from the differential tilts are compared with direct tilt measurements. The accuracy of the measurements is currently ~ 1.5 Airy disk rms at 550 nm. These results prove the feasibility of the Polychromatic Laser Guide Star programme ELP-OA. New algorithms based on inverse problems under development within our programme would lead to smaller error bars by 1 magnitude, as soon as they will run fast enough. We describe the ELP-OA demonstrator which we are setting up at the same telescope, with a special emphasis on the optimization of the excitation process, which definitely has to rely on the two-photon excitation of sodium atoms in the mesosphere. We will describe the implementation at the telescope, including the projector device, the focal instrumentation and the NdYAG pumped dye lasers.

  9. The evolution and modification of continental lithosphere, dynamics of 'indentor corners' and imaging the lithosphere across the eastern syntaxis of Tibet

    NASA Astrophysics Data System (ADS)

    Zurek, Brian

    An important question in tectonics today is how the continental lithosphere evolves and is modified over time. At the Himalayan orogeny and Tibetan plateau, we have the opportunity to study the processes that deform and modify the crust and mantle lithosphere during a continent-continent collision in real-time. In this study the internal lithospheric architecture of the eastern syntaxis of Tibet is examined using broad-band seismology. For the first part of the study the thickness of the crust and the bulk Poisson's ratio of the crust are mapped using converted P- to S-waves. Across the study region, a strong correlation between Moho depth and surface topography exists. The prediction of crustal Airy isostasy is in agreement with the observed correlation between the Moho and surface topography. The Poisson's ratio indicates a crust that transitions from a felsic to mafic composition from the central plateau to the southeastern margin. For the second part of the study detailed 3-d receiver-function images are used in conjunction with finite-difference wave-form modeling to derive the velocity structure and geometry of the crust. Our two fundamental observations are a dramatic change in a high-velocity lower crust across the end of the collisional zone and an asymmetric step in the crust-mantle interface beneath the Namche Barwa/Gyala Peri massifs. The observed termination of the high velocity lower crust coincides with the transition from collisional tectonics of the central plateau to the escape tectonics of the east. This lower crustal layer is interpreted to be Indian lower crust that has subducted beneath Asian crust north of the Tsangpo suture and metamorphosed into the ecologite facies. For the third part of the study the focal depth distribution is examined from the local seismicity located on the Eastern Syntaxis Seismic Experiment and in the historical ISC/PDE catalogs for central and southeast Tibet. The primary findings are earthquakes systematically

  10. Kinematics to dynamics in the New Zealand plate-boundary zone

    NASA Astrophysics Data System (ADS)

    Lamb, S. H.

    2013-12-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific oceanic lithosphere beneath North Island, to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Active deformation must be driven by a combination of plate-boundary forces and internal buoyancy forces. I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine regional crustal and mantle structure. Integration of the vertical normal stress to the base of the deforming layer yields the buoyancy stress. Horizontal gradients of this can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of deformation. Thus, if deformation is that of a Newtonian fluid, then appropriate combinations of the horizontal gradients of vorticity and dilatation are related to gradients of buoyancy stress by the fluid viscosity. However, the short term geodetic deformation is strongly biased by elastic strain accumulation related to locking on the plate interface, and cannot be used to determine the plate-boundary velocity field averaged over many seismic cycles (see Lamb & Smith 2013). Therefore, I derive here a velocity field for the plate-boundary zone, which is representative of deformation over tens of thousands of years. This is based on an inversion of fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions, solved in a network of triangles spanning the plate-boundary, using the method of Lamb (2000). A comparison of gradients of buoyancy stress with the appropriate combinations of gradients of vorticity and dilatation shows that deformation in

  11. Kinematics to dynamics in the New Zealand plate-boundary zone

    NASA Astrophysics Data System (ADS)

    Lamb, Simon

    2014-05-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific plate oceanic lithosphere in the North, beneath North Island to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Here, I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine the regional crustal and mantle structure. The buoyancy stress in the deforming layer is calculated by integrating the vertical normal stress with depth. This, in combination with plate-boundary stresses, must drive deformation. Horizontal gradients of buoyancy stress can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of lithospheric deformation. I derive a velocity field for the New Zealand plate-boundary zone, using the method of Lamb (2000). This is representative of deformation over tens of thousands of years, based on fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions. Comparison of appropriate combinations of horizontal gradients of vorticity and dilatation with horizontal gradients of buoyancy stress shows that deformation has some of the features of a Newtonian fluid. In detail, the minima in buoyancy stress, calculated from the vertical density structure, are offset horizontally from that calculated from gradients of strain rate, suggesting strong lateral contrasts in viscosity if deformation is strongly coupled at all levels in the lithosphere, with viscosities in the range 1 - 10 x 10**21 Pa s. However, subduction of Pacific plate lithosphere along the Hikurangi margin, and evidence for underthrusting beneath the Southern Alps

  12. Regional variation in Moho depth and Poisson's ratio beneath eastern China and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Wei, Zigen; Chen, Ling; Li, Zhiwei; Ling, Yuan; Li, Jing

    2016-01-01

    Eastern China comprises a complex amalgamation of geotectonic blocks of different ages and undergone significant modification of lithosphere during the Meso-Cenozoic time. To better characterize its deep structure, we conducted H-κ stacking of receiver functions using teleseismic data collected from 1143 broadband stations and produced a unified and detailed map of Moho depth and average Poisson's ratio (σ) of eastern China. A coexistence of modified and preserved crust with generally in Airy-type isostatic equilibrium was revealed in eastern China, which correlates well with regional geological and tectonic features. Crust is obviously thicker to the west of the North-South Gravity Lineament but exhibits complex variations in σ with an overall felsic to intermediate bulk crustal composition. Moho depth and σ values show striking differences as compared to the surrounding areas in the rifts and tectonic boundary zones, where earthquakes usually occur. Systematic comparison of Moho depth and σ values demonstrated that there are both similarities and differences in the crustal structure among the Northeast China, North China Craton, South China, and the Qinling-Dabie Orogen as well as different areas within these blocks, which may result from their different evolutionary histories and strong tectonic-magma events since the Mesozoic. Using new data from dense temporary arrays, we observed a change of Moho depth by ∼3 km and of σ by ∼0.04 beneath the Tanlu Fault Zone and an alteration of Moho depth by ∼5 km and of σ by ∼0.05 beneath the Xuefeng Mountains. In addition, striking E-W difference in crustal structure occur across the Xuefeng Mountains: to the east, the Moho depth is overall <35 km and σ has values of <0.26; to the west, the Moho depth is generally >40 km and σ shows complex and large-range variation with values between 0.22 and 0.32. These, together with waveform inversion of receiver functions and SKS shear-wave splitting measurements

  13. Determining OCT structure and COB Location of the Omani Gulf of Aden Continental Margin from Gravity Inversion, Residual Depth Anomaly and Subsidence Analysis.

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto

    2013-04-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for

  14. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness

  15. Internal polarization limits coronagraph contrast

    NASA Astrophysics Data System (ADS)

    Breckinridge, James Bernard; Lam, Wai Sze T.; Chipman, Russell A.

    2015-08-01

    % encircled energy of this ghost PSF image is centered on the axis and twice as large as the Airy diffraction pattern. 6. This ~1E-5 scattered light level is to be compared to the 1E-9 scattered light level required for terrestrial exoplanet imaging coronagraphy.

  16. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  17. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff

  18. Long-term Observation of Seafloor Disturbances by Array of Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.

    2015-12-01

    We developed a seafloor array system of pressure gauges to record disturbances on both the oceanic and solid-Earth sides. The array consists of 10 high-resolution pressure gauges (PARO-8B7000-I-005) in a regular triangle configuration with site intervals of 10 km. The targeted disturbances on the oceanic side include infragravity waves, tsunamis and low-mode internal tides. Those on the solid-Earth side include P-wave families and Rayleigh waves, in particular, the Airy phase of suboceanic Rayleigh waves at periods around 10 s. We confirmed using data from the Nankai Trough seafloor network of pressure gauges (DONET) that our system should enable us to retrieve accurately the first-mode internal tides with the signal power four orders of magnitude smaller than the corresponding semidiurnal surface tides. We installed this system around (32.4N, 140.3E, 1500-2200m depths) on the upper slope of the Izu-Bonin Trench in May 2014. The system was recovered in May-June 2015 and reinstalled around (31.2N, 141.7E, 4700-5700m depths) on the lower slope of this trench in a hope to recover in June 2016 (see Figure). The already recovered data contains records of the tsunami earthquake of May 02, 2015, at epicentral distances around 90 km. Its seismic magnitude was only 5.7, yet the tsunami height was 0.5 m at the 170km-distant island. Our pressure records show P-wave families followed by dispersive tsunami wave trains with amplitudes about 200 Pa successively passing through the array. Although P-wave families of comparable amplitudes were recorded by the M5.6 near-trench low-angle thrust earthquake of May 10, 2015, at epicentral distances around 160 km, they were not followed by any visible tsunami signals. These observations imply merits of sea-bottom pressure array, including easiness of comparing amplitudes of seismic waves and tsunamis on the same record and capability of tracing two-dimensional tsunami propagation through the array as a function of period.

  19. Variations in Crustal Structure, Lithospheric Flexural Strength, and Isostatic Compensation Mechanisms of Mars

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, J.; Zuber, M. T.

    2014-12-01

    We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon

  20. Understanding the thermal and tectonic evolution of Marie Byrd Land from a reanalysis of airborne geophysical data in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Quartini, E.; Powell, E. M.; Richter, T.; Damiani, T.; Burris, S. G.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    -air disturbance. Airy isostatic corrections are applied to the Bouguer anomaly where permissible to set the foundation for the identification and discrimination of sedimentary basins and intrusive/extrusive complexes beneath the West Antarctic Ice Sheet. This analysis also provides a framework for interpreting POLENET seismic studies in the region. Successful integration of the gravity and seismic results will ultimately be necessary for understanding the thermal evolution of Marie Byrd Land and its context within the West Antarctic Rift System.

  1. Non-Gaussian Photon Probability Distribution

    SciTech Connect

    Solomon, Benjamin T.

    2010-01-28

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub

  2. Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Shum, C. K.

    2012-04-01

    Geodesy during the onset of the 21st Century is evolving into a transformative cross-disciplinary Earth science field. The pioneers before or after the discipline Geodesy was defined include Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Kant, Laplace, Airy, Kelvin, Jeffreys, Chandler, Meinesz, Kaula, and others. The complicated dynamic processes of the Earth system manifested by interactions between the solid Earth and its fluid layers, including ocean, atmosphere, cryosphere and hydrosphere, and their feedbacks are linked with scientific problems such as global sea-level rise resulting from natural and anthropogenic climate change. Advances in the precision and stability of geodetic and fundamental instrumentations, including clocks, satellite or quasar tracking sensors, altimetry and lidars, synthetic aperture radar interferometry (InSAR), InSAR altimetry, gravimetry and gradiometry, have enabled accentuate and transformative progress in cross-disciplinary Earth sciences. In particular, advances in the measurement of the gravity with modern free-fall methods have reached accuracies of 10-9 g (~1 μGal or 10 nm/s2) or better, allowing accurate measurements of height changes at ~3 mm relative to the Earth's center of mass, and mass transports within the Earth interior or its geophysical fluids, enabling global quantifications of climate-change signals. These contemporary space geodetic and in situ sensors include, but not limited to, satellite radar and laser altimetry/lidars, GNSS/SLR/VLBI/DORIS, InSAR, spaceborne gravimetry from GRACE (Gravity Recovery And Climate Experiment twin-satellite mission) and gradiometry from GOCE (Global Ocean Circulation Experiment), tide gauges, and hydrographic data (XBT/MBT/Argo). The 2007 Intergovernmental Panel for Climate Change (IPCC) study, the Fourth Assessment Report (AR4), substantially narrowed the discrepancy between observation and the known geophysical causes of sea-level rise, but significant uncertainties

  3. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  4. Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux

    NASA Astrophysics Data System (ADS)

    Wessel, Paul

    2016-02-01

    Observations of the temporal variations in the volume flux of a plume can provide useful constraints on geodynamic models of plumes and plume-plate interactions. Furthermore, they can be compared with observations at other plumes and may be analysed further to understand the nature and cause of the variations. The volume plume flux is typically derived from a sum of edifice and compensation root volumes. The former can be obtained via the application of regional-residual separation procedures that split the observed relief into regional (swell) and residual (edifice) components, while the latter is generally inferred from the former using local (Airy) or regional (flexural) compensation models. Most regional-residual techniques used in past studies give non-unique results and provide no estimates of the uncertainty in the separation, which impacts the significance of the results. Here, the optimal robust separator (ORS) method achieves a unique separation for the swell and edifice components of the Hawaiian Ridge and furthermore obtain confidence bounds on the total volume flux. A fast spectral method for plate flexure with different edifice and infill densities is used to determine compensation volumes. Although my flux estimates have assigned confidence bounds, these are much smaller than the flux estimates themselves. A comparison of my new results to published volume flux curves shows that my revised flux estimates are lower by a factor of 2-3. Reproducing the prior higher results demonstrates that these discrepancies appear to be related to shortcomings in the implementation of the methodology used in the separation. The variability in the Hawaiian plume flux occurs at two different time scales: A short (1-2 Myr) periodicity related to the spacing of islands and seamounts, which ultimately is related to plume-plate flexural interactions, and a much longer (10-15 Myr) periodicity that may be related to plate kinematic changes. Superimposed on these trends may

  5. Scattering resonance of elastic wave and low-frequency equivalent slow wave

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, H.; Hu, T.; Yang, L.

    2015-12-01

    . Using quaternion and Pfaffian(Dyson 1970) techniques, the matrix's exponential mapping solution is further solved as the hyperbolic trigonometric functions or trigonometric matrix elements. Using the Fourier transform, slow wave's Airy-like function can be obtained. This study shows that slow waves only occur in the case of strong scattering.

  6. Crustal structure, and topographic relief in the high southern Scandes, Norway

    NASA Astrophysics Data System (ADS)

    Stratford, W.; Thybo, H.; Frassetto, A.

    2010-05-01

    thickness implies that the high elevations of the southern Scandes Mountains are not entirely compensated by an Airy type of isostatic model, and other mechanisms for uplift and sustained topographic relief must be in effect. Moreover, there is an observed lateral offset between the highest mountains and the thickest crust beneath the southern Scandes indicating that the Moho topography is modulated by the flexural strength of the lithosphere. We relate new crustal thickness measurements to observed topography to quantify how much of the present elevation of the southern Scandes Mountains can be accounted for by crustal thickness alone. This new understanding of crustal structure can be used to help separate the climatic and tectonic effects on landscape evolution of the southern Scandes Mountains.

  7. Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction

    PubMed Central

    Ramasamy, Sujatha; Abdul Wahab, Norhanom; Zainal Abidin, Nurhayati; Manickam, Sugumaran; Zakaria, Zubaidah

    2012-01-01

    Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs. PMID:22536331

  8. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  9. Infrared telephoto lenses design for joint transform correlator

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Joint transform correlator (JTC) is quite useful for pattern recognition in many fields, which can realize automatic real-time recognition of target in cluttered background with high precision. For military application, JTC can also be applied for thermo target recognition especially at night. To make JTC recognize thermo targets, an infrared telephoto lens is designed in this paper. Long focal length and short tube length are required for this usage. So the structure of a positive lens group and a negative lens group are adopted. Besides, the effective focal length and relative aperture should be large enough to ensure the distant targets can be detected with adequate illumination. In this paper, the working waveband of adopted infrared CCD detector is 8-12μm. According to Nyquist law, the characteristic frequency of the system is 14lp/mm. The optional materials are very few for infrared optical systems, in which only several kinds of materials such as Germanium, ZnSe, ZnS are commonly used. Various aberrations are not easy to be corrected. So it is very difficult to design a good infrared optical system. Besides, doublet or triplet should be avoided to be used in infrared optical system considering possible cracking for different thermal expansion coefficients of different infrared materials. The original configuration is composed of three lenses. After optimization, the image quality can get limit diffraction. The root mean square (RMS) radii of three fields are 6.754μm, 7.301μm and 12.158μm respectively. They are all less than the Airy spot diameter 48.8μm. Wavefront aberration at 0.707 field of view (FOV) is only 0.1wavelength. After adjusting the radius to surface templates, setting tolerances and giving element drawings, this system has been fabricated successfully. Optical experimental results of infrared target recognition using JTC are given in this paper. The correlation peaks can be detected and located easily, which confirms the good image quality

  10. A blind deconvolution method for ground based telescopes and Fizeau interferometers

    NASA Astrophysics Data System (ADS)

    Prato, M.; La Camera, A.; Bonettini, S.; Rebegoldi, S.; Bertero, M.; Boccacci, P.

    2015-10-01

    preliminary results look promising at least in specific situations. The IDL code of the proposed method is available on request and will be included in the forthcoming version of the Software Package AIRY (v.6.1).

  11. America's First Carl Sagan: Ormsby MacKnight Mitchel, Pre-Civil War Astronomer and Lecturer on the Cosmos

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2002-12-01

    In the years before television, videos, radio. movies, or even loudspeakers, Ormsby MacKnight Mitchel (1809-1862) was the best-known popularizer of astronomy and the scientific study of the universe in nineteenth-century America. Each winter he traveled the country by railroad, steamer, and stagecoach, speaking to large paying crowds in principal cities from Boston, New York, and Philadelphia through Cincinnati to New Orleans on the cosmos and our place in it, with special attention to possible inhabitants of planers orbiting other stars. Mitchel had much the same attraction as Sagan did in our time, and awakened many people's interest in astronomy through the human angle, as Carl did. His argument was simple, and according to Frank Triplett goes back thousands of years: other stars are suns, our sun has planets with people on one of them, why should not other stars also have populated planets? But first Mitchel, like Sagan, always explained clearly the discoveries of astronomy that fleshed out this argument with facts. He emphasized the ``clockwork universe", governed by gravity, that Newton, Herschel, and Laplace had investigated and found to be stable. There were many other similarities between these two great popularizers. Mitchel's base was the Cincinnati Observatory, which he had founded, raising the funds for it himself in small contributions from hundreds of ``members", which he publicised as far more democratic than support from European kings and lords. He went abroad to get a telescope, and finally found his ``Great [12-inch] Refractor" in Munich, with help from John Quincy Adams, Astronomer Royal George Biddle Airy, and Paris Observatory Director Fracois Arago, in spite of a rebuff by President John Tyler. These episodes have similarities in Sagan's lobbying NASA for close-up images of Mars. Views of other American professional astronomers on life on other worlds will also be described briefly, from Denison Olmsted, Elias Loomis, Charles A. Young (who

  12. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  13. A non-paraxial scattering theory for specifying and analyzing fabrication errors in optical surfaces

    NASA Astrophysics Data System (ADS)

    Vernold, Cynthia Louise

    There are three fundamental mechanisms in optical systems that contribute to image degradation: aperture diffraction, geometrical aberrations caused by residual design errors, and scattering effects due to optical fabrication errors. Diffraction effects, as well as optical design errors and fabrication errors that are laterally large in nature (generally referred to as figure errors), are accurately modeled using conventional ray trace analysis codes. However, these ray-trace codes fall short of providing a complete picture of image degradation; they routinely ignore fabrication-induced errors with spatial periods that are too small to be considered figure errors. These errors are typically referred to as mid-spatial-frequency (ripple) and high- spatial-frequency (micro-roughness) surface errors. These overlooked, but relevant, fabrication-induced errors affect image quality in different ways. Mid-spatial- frequency errors produce small-angle scatter that tends to widen the diffraction-limited image core (i.e. for a system with a circular exit pupil, this is the central lobe of the Airy pattern), and in doing so, reduces the optical resolution of a system. High-spatial-frequency errors tend to scatter energy out of the image core into a wide-angle halo, causing a reduction in image contrast. Micro-roughness and ripple are inherent aspects of the less conventional, small-tool-based optical fabrication approaches. It is especially important in these cases to specify these errors accurately during the design phase of a project, and deterministically monitor and control them during the fabrication phase of a project. Surprisingly, most current approaches to this issue employ some guessing and ``gut feel'' based on past experience, because accurate theories and analysis tools are not readily available. This dissertation takes the first step towards solving this problem by describing a Fourier-based approach for classifying and quantifying surface errors that can be

  14. Ice flow velocities and elevation change at Fleming Glacier, Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wendt, A.; Wendt, J.; Bown, F.; Rivera, A.; Zamora, R.; Bravo, C.; Casassa, G.

    2009-04-01

    Glaciers in the Antarctic Peninsula have been responding to the pronounced atmospheric warming in the region (Vaughan et al. 2003) with frontal retreat (Cook et al. 2005), ice shelf collapse (Rott et al. 1996) and ice flow acceleration and thinning (Rignot et al. 2004; Shepherd et al. 2003; Pritchard & Vaughan 2007). These trends have progressively migrated southwards along the Antarctic Peninsula causing, for instance, a substantial retreat of Wilkins Ice Shelf (70.2˚ S) in 2008. At 69.3˚ S, but 300 km to the east, Wordie Ice Shelf experienced a major reduction in size in the 1980s (Doake & Vaughan 1991). Available information about this ice shelf and its feeding glaciers dates back to the 1970s when ice thickness and velocity measurements were carried out on Fleming Glacier (Doake 1975). Although initially it was thought that the post-collapse conditions of the feeding glaciers remained unchanged (Vaughan 1993), more recent evidence shows that glaciers accelerated after the ice shelf collapse and substantial glacier thinning has occurred (Rignot et al. 2005). We present data acquired during two field expeditions to Fleming Glacier. During the first season in November 2007, we installed an Automatic Weather Station (AWS) and a permanent GPS site. Additional data including a local GPS network, ground penetrating radar measurements and snow densities were collected. In December 2008, during the second field campaign, surface elevation data were acquired using an airborne laser scanner along a trajectory between Gibbs Glacier and Airy Glacier, along the ice divide between both sides of the Peninsula and on Fleming Glacier. The AWS was found protruding only 20 cm above the snow surface, demonstrating the high snow accumulation in the area, which was sufficient to cover the 4 m high tower installed in 2007 and that annual variability in the mass accumulation is significant. The station collected data for 250 days. The permanent GPS stopped collecting data after

  15. Kinematics and Dynamics of the Pamir, Central Asia

    NASA Astrophysics Data System (ADS)

    Jay, C.; Flesch, L. M.; Bendick, R. O.

    2014-12-01

    The Pamir region of the India-Eurasia collision zone is the site of a rare geological phenomenon: ongoing subduction of continental crust. We investigate the surface expression of continental subduction in the region by modeling the distribution and magnitude of strain rates and quantifying the effects of body forces (gravitational potential energy) and boundary forces in driving surface deformation. We first construct kinematic strain rate and velocity fields on a 0.25° by 0.25° grid using continuous spline interpolations of observed strain rate data in a Eurasia-fixed reference frame. Strain rate observations include India plate motion, velocities at 506 GPS stations, estimated Quaternary fault slip rates, and fault slip styles. We then calculate gravitational potential energy (GPE) using the Crust1.0 crustal thickness model and assuming Airy isostasy. Following the methods of Flesch et al. (2001), we then solve the depth averaged 3-D force balance equations to determine the vertically averaged deviatoric stress field associated with GPE. We next solve for stress field boundary conditions by minimizing the differences between a) the directions of deviatoric stress principal axes and strain rate principal axes, and b) the style of deformation predicted by the stress field and the style of deformation predicted by the strain rate field. These stress field boundary conditions are assumed to represent effects of plate motions. Our best-fit strain rate field shows regions of high strain rate along the Chaman Fault, Darvaz Fault, Zebak-Munjab Fault, Main Boundary Thrust, Main Pamir Thrust, boundaries of the western Tarim Basin and across the western Tien Shan. GPS data indicate strain along the Main Frontal Thrust. Our results confirm north-south compression and east-west extension in the central Pamir, as reported in Mohadjer et al. 2010. Despite high GPE/topography in the central Pamir and low GPE/topography in the adjacent Tarim Basin, the Pamir Mountains do not

  16. Modernisation of the Narod fluxgate electronics at Budkov Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Vlk, Michal

    2013-04-01

    From the signal point of view, fluxgate unit is a low-frequency parametric up-convertor where the output signal is picked up in bands near second harmonic of the pump frequency fp (sometimes called idler for historic reasons) and purity of idler is augmented by orthogonal construction of the pump and pick-up coil. In our concept, the pump source uses Heegner quartz oscillator near 8 MHz, synchronous divider to 16 kHz (fp) and switched current booster. Rectangular pulse is used for feeding the original ferroresonant pump source with neutralizing transformer in the case of symmetric shielded cabling. Input transformer has split primary winding for using symmetrical shielded input cabling and secondary winding tuned by polystyrol capacitor and loaded by inverting integrator bridged by capacitor. This structure behaves like resistor cooled to low temperature. Next stage is bandpass filter (derivator) with a gain tuned to 2 fp with leaky FDNRs followed by current booster. Another part of the system is low-noise peak elimination and bias circuit. Heart of the system is a 120-V precision source which uses 3.3-V Zener diode chain - thermistor bridge in the feedback. Peak elimination circuit logics consists of the envelope detector, comparators, asynchronous counter in hardwired logics, set of weighted resistor chains and discrete MOS switches in current-mode. All HV components use airy montage to prevent the ground-leak. After 200 m long coaxial line, the signal is galvanically separated by transformer and fed into A/D converter, which is ordinary HD audio (96 kHz) soundcard. Real sample rate is constructed by a-posteriori data processing when statistic properties of the incoming sample are known. The sampled signal is band-pass filtered with a 200-Hz filter centered at 2 fp. The signal is then fed through a first-order allpass centered at 2 fp. The result approximates Hilbert transform sufficiently good for detecting the envelope via square sum-root rule. The signal is

  17. Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2004-09-01

    We've generated high-quality flat-top spatial profiles from a modified Continuum Powerlite 9010 Nd:YAG laser using the Gaussian-to-flat-top refractive beam shaper available from Newport Corporation. The Powerlite is a flashlamp-pumped, Q-switched, injection-seeded Nd:YAG laser manufactured in 1993 that delivers 1.6 J at 10 Hz using an oscillator and two 9 mm diameter amplifier rods. While its pulse energy is impressive, its beam quality is typically poor, an all too common characteristic of research-grade Nd:YAG lasers manufactured in the late 1980's and early 1990's. Structure in its near-field spatial fluence profile is reminiscent of round-aperture diffraction that is superposed with additional hot spots. These characteristics are largely due to poor beam quality from the oscillator coupled with over-filled amplifier rods, and reflect a design philosophy from the era of organic dye lasers. When these older laser systems are used for tasks like pumping optical parametric oscillators (OPO's), or for other applications demanding good beam quality, their designs are simply inadequate. To improve the 9010's beam quality we spatially filter the oscillator beam and remove the resulting Airy rings with an iris, then collimate and magnify the remaining central disk so its diameter is appropriate for input to the refractive shaper. The output of the beam shaper is then double-pass amplified through two amplifier rods with thermally induced focusing compensated by a negative lens before the first pass and by a convex mirror before the second pass. Using this approach we've obtained single-pass energy exceeding 250 mJ with little degradation of the flat-top profile and 950 mJ after double pass amplification. After double-passing the two amplifier rods the beam suffers some degradation in symmetry and uniformity, but is still much improved compared to the beam obtained using the 9010's original factory configuration. We find the modified 9010's flat-top profile improves

  18. Far-zone effects for different topographic-compensation models based on a spherical harmonic expansion of the topography

    NASA Astrophysics Data System (ADS)

    Makhloof, A. A.; Ilk, K. H.

    2008-10-01

    The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9 10):491 504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and

  19. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.; Bull, J. M.; Ishizuka, O.; Scrutton, R. A.; Jaishankar, S.; Banakar, V. K.

    2014-02-01

    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80-73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80-73 Ma, close to the India-Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6-13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25-35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be

  20. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.

    2012-12-01

    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide valuable insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 m and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 31 identified over the ANS reveal that the main plateau of the ANS was formed at 80 - 73 Ma, at the same time as the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hot spot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80-73 Ma, close to the India-Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6 - 13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25-35 Myr later than the underlying oceanic crust. Therefore, we conclude that the Afanasy Nikitin seamount and the 85°E Ridge