Sample records for airplane flight deck

  1. 14 CFR 125.315 - Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...

  2. 14 CFR 125.315 - Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...

  3. 14 CFR 125.315 - Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless the...

  4. Definition of the 2005 flight deck environment

    NASA Technical Reports Server (NTRS)

    Alter, K. W.; Regal, D. M.

    1992-01-01

    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development.

  5. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  6. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  7. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  8. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  9. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  10. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  11. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  12. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  13. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  14. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  15. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  16. Human engineering analysis for the high speed civil transport flight deck

    NASA Technical Reports Server (NTRS)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  17. Flight deck benefits of integrated data link communication

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.

    1992-01-01

    A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.

  18. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  19. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  20. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  1. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  2. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door to the flight deck, each aircraft operator must restrict access to the flight deck as provided in its...

  3. Boeing flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  4. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  5. Cognitive representations of flight-deck information attributes

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.

    1994-01-01

    A large number of aviation issues are generically being called fligh-deck information management issues, underscoring the need for an organization or classification structure. One objective of this study was to empirically determine how pilots organize flight-deck information attributes and -- based upon that data -- develop a useful taxonomy (in terms of better understanding the problems and directing solutions) for classifying flight-deck information management issues. This study also empirically determined how pilots model the importance of flight-deck information attributes for managing information. The results of this analysis suggest areas in which flight-deck researchers and designers may wish to consider focusing their efforts.

  6. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  7. Functional categories for future flight deck designs

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1993-01-01

    With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.

  8. Flight deck automation: Promises and realities

    NASA Technical Reports Server (NTRS)

    Norman, Susan D. (Editor); Orlady, Harry W. (Editor)

    1989-01-01

    Issues of flight deck automation are multifaceted and complex. The rapid introduction of advanced computer-based technology onto the flight deck of transport category aircraft has had considerable impact both on aircraft operations and on the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information among members of the aviation community, a NASA/FAA/Industry workshop devoted to flight deck automation, organized by the Aerospace Human Factors Research Division of NASA Ames Research Center. Participants were invited from industry and from government organizations responsible for design, certification, operation, and accident investigation of transport category, automated aircraft. The goal of the workshop was to clarify the implications of automation, both positive and negative. Workshop panels and working groups identified issues regarding the design, training, and procedural aspects of flight deck automation, as well as the crew's ability to interact and perform effectively with the new technology. The proceedings include the invited papers and the panel and working group reports, as well as the summary and conclusions of the conference.

  9. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  10. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  11. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  12. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  13. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  14. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  15. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  16. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is directly related to the conduct or planning of flight operations or the in-flight monitoring of... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck...

  17. Commander Brand sleeps on aft flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, with hands folded in front of his chest, sleeps on aft flight deck. Brand's head is just above aft flight deck floor with his back to onorbit station panels. The back and feet of a second crewmember appear next to Brand.

  18. Crewmember activity in the flight deck

    NASA Image and Video Library

    1997-08-29

    STS085-358-005 (7 - 19 August 1997) --- Astronaut Curtis L. Brown, Jr., mission commander, floats on the flight deck of Space Shuttle Discovery. The horizon of Earth is visible through the aft flight deck windows. On Brown's left wrist is a band associated with a Detailed Supplementary Objective (DSO). Two beverage packets are just beyond the commander's left shoulder.

  19. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  20. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  1. Archambault on Flight Deck (FD)

    NASA Image and Video Library

    2009-03-17

    S119-E-006392 (17 March 2009) --- Astronaut Lee Archambault, STS-119 commander, smiles for a photo while monitoring data at the commander's station on the flight deck of Space Shuttle Discovery during flight day three activities.

  2. Gidzenko in front of flight deck windows

    NASA Image and Video Library

    2001-03-12

    STS102-E-5138 (12 March 2001) --- Cosmonaut Yuri P. Gidzenko, now a member of the STS-102 crew, on Discovery's flight deck. Lake Nasser, in Egypt, can be seen through the overhead flight deck window in the background. Gidzenko, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.

  3. On the typography of flight-deck documentation

    NASA Technical Reports Server (NTRS)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  4. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  5. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...

  6. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  7. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  8. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  9. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  10. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  11. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  12. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  13. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  14. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  15. Flight-deck automation - Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.

  16. Metcalf-Lindenburger on Discovery flight deck

    NASA Image and Video Library

    2010-04-06

    S131-E-006107 (6 April 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger, STS-131 mission specialist, reads a checklist on the aft flight deck of space shuttle Discovery during flight day two activities.

  17. Robinson on aft flight deck

    NASA Image and Video Library

    1998-10-30

    STS095-E-5065 (30 Oct. 1998) --- Astronaut Stephen K. Robinson, STS-95 mission specialist, looks toward Earth in this electronic still camera's (ESC) image of Flight Day two activity aboard the Space Shuttle Discovery. The scene was recorded on the aft flight deck at 12:02:11 GMT, Oct. 30.

  18. Flight deck task management

    DOT National Transportation Integrated Search

    2016-12-21

    This report documents the work undertaken in support of Volpe Task Order No. T0026, Flight Deck Task Management. The objectives of this work effort were to: : 1) Develop a specific and standard definition of task management (TM) : 2) Conduct a ...

  19. Tani on flight deck

    NASA Image and Video Library

    2006-10-25

    S120-E-006761 (25 Oct. 2007) --- Astronaut Daniel Tani, STS-120 mission specialist, appears to like what he sees through the viewfinder of his camera aimed through windows on the flight deck of the Space Shuttle Discovery. Shortly afterward, Discovery was docked with the International Space Station, which will be Tani's home and work place for the next several months as he switches roles to serve as Expedition 16 flight engineer.

  20. PLT Polansky on aft flight deck

    NASA Image and Video Library

    2001-02-10

    STS98-E-5084 (10 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, takes notes on the aft flight deck of the Space Shuttle Atlantis. The scene was recorded with a digital still camera during Flight Day 4 activities.

  1. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  2. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  3. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  4. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight Manual...

  5. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  6. Flight-deck automation: Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The state of the art in human factors in flight-deck automation is presented. A number of critical problem areas are identified and broad design guidelines are offered. Automation-related aircraft accidents and incidents are discussed as examples of human factors problems in automated flight.

  7. Cognitive models of pilot categorization and prioritization of flight-deck information

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon E.; Ricks, Wendell R.

    1995-01-01

    In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.

  8. Cognitive representations of flight-deck information attributes

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.

    1993-01-01

    The experiment described in this paper had two ojectives. The first objective was to empirically identify how pilots organize flight-deck information attributes. Such an organization should provide a useful nomenclature for classifying Information Management (IM) issues and problems. The second objective of this study was to empirically assess pilots' estimate of the relative importance of each attribute on managing information. Results from addressing this latter objective were intended to suggest areas on which flight-deck researchers and designers will want to focus their attention.

  9. Flight deck magnetic fields in commercial aircraft.

    PubMed

    Nicholas, J S; Butler, G C; Lackland, D T; Hood, W C; Hoel, D G; Mohr, L C

    2000-11-01

    Airline pilots are exposed to magnetic fields generated by the aircraft's electrical system. The objectives of this study were (1) to directly measure flight deck magnetic fields in terms of personal exposure to the pilots when flying on different aircraft types over a 75-hour flight-duty month, and (2) to compare magnetic field exposures across flight deck types and job titles. Measurements were taken using personal dosimeters carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. Approximately 1,008 block hours were recorded at a sampling frequency of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200. Measured flight deck magnetic field levels were substantially above the 0.8-1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure. Copyright 2000 Wiley-Liss, Inc.

  10. 123. FORWARD PORT VIEW OF THE ISLAND WITH FLIGHT DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. FORWARD PORT VIEW OF THE ISLAND WITH FLIGHT DECK GUN MOUNTS, TAKEN FROM FORWARD FLIGHT DECK. APRIL 1945, (NATIONAL ARCHIVES NO. 80-G-469299) - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  11. New STS-102 crewmembers Krikalev in the flight deck

    NASA Image and Video Library

    2001-03-12

    STS102-E-5147 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew on Discovery's flight deck. A sun setting can be seen through the flight deck windows in the background. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.

  12. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  13. Interior view of the Flight Deck looking forward, the Commander's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. Link to an..., 2010. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or...

  15. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  16. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  17. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  18. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  19. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  20. Pilot Fullerton points Hasselblad camera out forward flight deck window W6

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton, wearing communications kit assembly (ASSY) mini headset (HDST), points Hasselblad camera out forward flight deck pilots station window W6. Forward flight deck control panels F4, F8, and R1, flight mirror assy, Volume R5 Kit, and pilots ejection seat (S2) headrest appear in view.

  1. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  2. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  3. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  4. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  5. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  6. Towards a characterization of information automation systems on the flight deck

    NASA Astrophysics Data System (ADS)

    Dudley, Rachel Feddersen

    This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.

  7. View of Atlantis Flight Deck Monitors

    NASA Image and Video Library

    2009-05-17

    S125-E-009190 (17 May 2009) --- A computer monitor showing animation of an extravehicular activity (EVA) is visible in this image photographed by a STS-125 crewmember in a darkened flight deck on the Earth-orbiting Space Shuttle Atlantis.

  8. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  9. 77 FR 24643 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... airplanes. This proposed AD was prompted by a report of in-flight fracture of the right windshield (window 1..., followed by the fracture of the inner pane of the first officer's windshield (right window 1). This... (J5 terminal) at the left and right flight deck window 1 windshield, and corrective actions if...

  10. STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck

    NASA Image and Video Library

    1988-02-03

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.

  11. STS-30 Commander Walker on forward flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    On Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck between commanders and pilots seats, STS-30 Commander David M. Walker smiles while having his picture taken. Walker, wearing a mission polo shirt and light blue flight coverall pants, holds onto the commanders seat back. Forward flight control panels are visible above Walker's head and behind him.

  12. STS-29 Discovery, OV-103, crew on flight deck prepares for reentry

    NASA Image and Video Library

    1989-03-18

    STS029-24-004 (18 March 1989) --- STS-29 crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), review checklists on Discovery, Orbiter Vehicle (OV) 103, flight deck. Commander Michael L. Coats is seated at the forward flight deck commanders station with Mission Specialist (MS) James F. Buchli on aft flight deck strapped in mission specialist seat. OV-103 makes its return after five days in space. Note color in forward windows W1, W2, W3 caused by friction of entry through the Earth's atmosphere. Personal Egress Air Pack (PEAP) is visible on pilots seat back.

  13. Human Factors for Flight Deck Certification Personnel

    DOT National Transportation Integrated Search

    1993-07-01

    This document is a compilation of proceedings and lecture material on human : performance capabilities that was presented to FAA flight deck certification : personnel. A five-day series of lectures was developed to provide certification : specialists...

  14. Endeavour, OV-105, forward flight deck controls during Rockwell manufacture

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Endeavour, Orbiter Vehicle (OV) 105, forward flight deck controls are documented during manufacture, assembly, and checkout at North American Rockwell facilities Building 150, Palmdale, California. Overall view looks from aft flight deck forward showing displays and controls with panel F7 CRT screens lit and window shades in place on W2, W3, W4, W5. OV-105 is undergoing final touches prior to rollout and a scheduled flight for STS-49. View was included as part of Rockwell International (RI) Submittal No. 40 (STS 87-0342-40) with alternate number A901207 R-16/NAS9-17800.

  15. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  16. Resource management on the flight deck. [conferences

    NASA Technical Reports Server (NTRS)

    Cooper, G. E. (Editor); White, M. D. (Editor); Lauber, J. K. (Editor)

    1980-01-01

    Several approaches to the training and selection of aircrew are presented including both industry and nonindustry perspectives. Human factor aspects of the problem are also examined with specific emphasis on the psychology of the flight deck situation.

  17. Crewmember in the aft flight deck.

    NASA Image and Video Library

    1992-11-01

    STS052-24-014 (22 Oct-1 Nov 1992) --- Canadian payload specialist Steven G. MacLean tries out gymnastics in the weightlessness of space on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. MacLean, along with five NASA astronauts, spent ten days aboard Columbia for the STS-52 mission.

  18. Solar-powered airplane design for long-endurance, high-altitude flight

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.

    1982-01-01

    This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.

  19. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  20. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  1. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  2. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  3. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  4. Pilot Fullerton in ejection escape suit (EES) on aft flight deck

    NASA Image and Video Library

    1982-03-30

    STS003-31-290 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST) and ejection escape suit (EES), holds flexible hose attached to his EES vent hose fitting and second hose for commander's EES while behind pilots ejection seat (S2) seat back on the aft flight deck. Forward flight deck control panels are visible in the background. Photo credit: NASA

  5. Flight Instructor Practical Test Standards for Airplane - Single-engine, Multiengine

    DOT National Transportation Integrated Search

    1991-05-01

    The Flight Instructor - Airplane Practical Test Standards book has been : published by the Federal Aviation Administration (FAA) to establish the : standards for the flight instructor certification practical tests for the : airplane category and the ...

  6. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  7. Activity on the flight deck during EVA on Flight Day 7

    NASA Image and Video Library

    1997-02-17

    S82-E-5616 (17 Feb. 1997) --- Astronaut Steven A. Hawley, STS-82 mission specialist, controls the Remote Manipulator System (RMS) on the Space Shuttle Atlantis' aft flight deck. This view was taken with an Electronic Still Camera (ESC).

  8. Small-scale fixed wing airplane software verification flight test

    NASA Astrophysics Data System (ADS)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  9. Crewmembers in the aft flight deck.

    NASA Image and Video Library

    1992-12-09

    STS053-01-034 (2-9 Dec 1992) --- From the Space Shuttle Discovery's aft flight deck, astronaut Guion S. Bluford, mission specialist, uses a handheld 70mm Hasselblad to photograph a point on Earth. Bluford was joined by four other NASA astronauts for the eight-day mission in Earth-orbit, dedicated to the Department of Defense (DOD).

  10. Payload commander Voss on aft flight deck

    NASA Image and Video Library

    2012-09-18

    STS083-305-010 (4-8 April 1997) --- Astronaut Janice E. Voss, mission specialist, works with communications systems on the aft flight deck of the Earth-orbiting Space Shuttle Columbia. Voss, along with five other NASA astronauts and two payload specialist supporting the Microgravity Sciences Laboratory (MSL-1) mission, were less than a fourth of the way through a scheduled 16-day flight when a power problem cut short their planned stay.

  11. Detail view of the interior of the flight deck looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the interior of the flight deck looking forward showing the overhead control panels. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-19 to expand the view to include the Commander and Pilot positions during ascent and reentry and landing. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton, wearing communication kit assembly (assy) mini headset, reviews checklist and looks at remote manipulator system (RMS) closed circuit television (CCTV) views displayed on CCTV monitors at Aft Flight Deck Onorbit Station. Taken from the aft flight deck starboard side, Fullerton is seen in front of Panels A7 and A8 with remote manipulator syste (RMS) translation hand control (THC) and RMS rotation hand control (RHC) in the foreground and surrounded by University of Michigan (U of M) GO BLUE and United States Air Force - A Great Way of Life Decals.

  13. Categorization and prioritization of flight deck information

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon E.; Ricks, Wendell R.

    1993-01-01

    The paper describes an experiment whose objectives were to: (1) make initial inferences about categories into which pilots place information; and (2) empirically determine how pilots mentally represent flight deck information, and how their cognitive processes of categorization and prioritization act upon those representations.

  14. Brown on aft flight deck with microphone

    NASA Image and Video Library

    1998-10-31

    STS095-E-5177 (31 Oct. 1998) --- On Discovery's aft flight deck, astronaut Curtis L. Brown Jr., STS-95 commander, checks over notes with ground controllers in Houston. The photo was taken with an electronic still camera (ESC) at 00:41:51 GMT, Oct. 31.

  15. 77 FR 5195 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... 747-400D series airplanes; and Model 747-200B series airplanes having a stretched upper deck. The...; and Model 747-200B series airplanes having a stretched upper deck. The original NPRM was published in... having a stretched upper deck; certificated in any category; excluding airplanes that have been converted...

  16. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  17. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  18. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  19. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  20. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  1. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of

  2. STS-37 Commander Nagel in commanders seat on OV-104's flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Commander Steven R. Nagel, wearing launch and entry suit (LES), sits at commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Surrounding Nagel are the seat headrest, control panels, checklists, forward flight deck windows, and three drinking water containers with straws attached to forward panel F2.

  3. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  4. Social psychology on the flight deck

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1980-01-01

    Social psychological and personality factors that can influence resource management on the flight deck are discussed. It is argued that personality and situational factors intersect to determine crew responses and that assessment of performance under full crew and mission conditions can provide the most valuable information about relevant factors. The possibility of training procedures to improve performance on these dimensions is discussed.

  5. Flight Instructor: Airplane. Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…

  6. Field evaluation of flight deck procedures for flying CTAS descents

    DOT National Transportation Integrated Search

    1997-01-01

    Flight deck descent procedures were developed for a field evaluation of the CTAS Descent Advisor conducted in the fall of 1995. During this study, CTAS descent clearances were issued to 185 commercial flights at Denver International Airport. Data col...

  7. Certification for civil flight decks and the human-computer interface

    NASA Technical Reports Server (NTRS)

    Mcclumpha, Andrew J.; Rudisill, Marianne

    1994-01-01

    This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?

  8. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App. E Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  9. Boeing electronic flight bag

    NASA Astrophysics Data System (ADS)

    Trujillo, Eddie J.; Ellersick, Steven D.

    2006-05-01

    The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.

  10. 77 FR 47267 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... stretched upper deck. The existing AD currently requires repetitively inspecting for cracking or...; and Model 747-200B series airplanes having a stretched upper deck. The original NPRM (74 FR 33377... airplanes having a stretched upper deck; certificated in any category; excluding airplanes that have been...

  11. Walheim on Aft Flight Deck during Deorbit Preparations

    NASA Image and Video Library

    2011-07-21

    S135-E-012383 (21 July 2011) --- Astronaut Rex Walheim, STS-135 mission specialist, makes preparations on space shuttle Atlantis' aft flight deck for the mission's re-entry phase and the final landing of a NASA space shuttle. Photo credit: NASA

  12. Krikalev in front of flight deck windows

    NASA Image and Video Library

    2001-03-12

    STS102-E-5139 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew, prepares to use a camera on Discovery's flight deck. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.

  13. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  14. STS-27 crew poses for inflight portrait on forward flight deck with football

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.

  15. Detail view of the flight deck looking aft. The aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the flight deck looking aft. The aft viewing windows are uncovered in this view and look out towards the payload bay. The overhead viewing windows have exterior covers in place in this view. The aft flight deck contains displays and controls for executing maneuvers for rendezvous, docking, payload deployment and retrieval, payload monitoring and the remote manipulator arm controls. Payload bay doors are also operated from this location. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. 78 FR 21571 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ...-400, -400D, and -400F series airplanes. This proposed AD was prompted by a report of water leakage into the main deck cargo wire integration unit (WIU). The water flowed from the drip shield through... water penetration into the MEC, which could result in the loss of flight critical systems. DATES: We...

  17. Expertise and responsibility effects on pilots' reactions to flight deck alerts in a simulator.

    PubMed

    Zheng, Yiyuan; Lu, Yanyu; Yang, Zheng; Fu, Shan

    2014-11-01

    Flight deck alerts provide system malfunction information designed to lead corresponding pilot reactions aimed at guaranteeing flight safety. This study examined the roles of expertise and flight responsibility and their relationship to pilots' reactions to flight deck alerts. There were 17 pilots composing 12 flight crews that were assigned into pairs according to flight hours and responsibilities. The experiment included 9 flight scenarios and was carried out in a CRJ-200 flight simulator. Pilot performance was recorded by a wide angle video camera, and four kinds of reactions to alerts were defined for analysis. Pilots tended to have immediate reactions to uninterrupted cautions, with a turning off rate as high as 75%. However, this rate decreased sharply when pilots encountered interrupted cautions and warnings; they also exhibited many wrong reactions to warnings. Pilots with more expertise had more reactions to uninterrupted cautions than those with less expertise, both as pilot flying and pilot monitoring. Meanwhile, the pilot monitoring, regardless of level of expertise, exhibited more reactions than the pilot flying. In addition, more experienced pilots were more likely to have wrong reactions to warnings while acting as the monitoring pilot. These results suggest that both expertise and flight responsibility influence pilots' reactions to alerts. Considering crew pairing strategy, when a pilot flying is a less experienced pilot, a more experience pilot is suggested to be the monitoring pilot. The results of this study have implications for understanding pilots' behaviors to flight deck alerts, calling for specialized training and design of approach alarms on the flight deck.

  18. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  19. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  20. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  1. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  2. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the duty...

  3. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  4. Glen and Brown on aft flight deck

    NASA Image and Video Library

    1998-10-31

    STS095-E-5180 (31 Oct. 1998) --- Astronaut Curtis L. Brown Jr. (left), STS-95 commander, stands by on Discovery's aft flight deck as U.S. Sen. John H. Glenn Jr., payload specialist, talks with ground controllers in Houston. The photo was taken with an electronic still camera (ESC) at 00:48:48 GMT, Oct. 31.

  5. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  6. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  7. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  8. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  9. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  10. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  11. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Pilot Michael A. Baker, seated at the forward flight deck pilots station controls, eats a freefloating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker on Atlantis', Orbiter Vehicle (OV) 104's, flight deck are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel O9.

  12. STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.

  13. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  14. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  15. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  16. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  17. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  18. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  19. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  20. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  1. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  2. 76 FR 31451 - Special Conditions: Boeing Model 747-8 Airplanes; Stairway Between the Main Deck and Upper Deck

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... 3. With the airplane in level attitude and in each attitude resulting from the collapse of one or... during all flight phases. 14. ``No smoking'' and ``return to seat'' signs must be installed and visible...

  3. Casper points camera out of aft flight deck window

    NASA Image and Video Library

    1996-05-26

    S77-E-5109 (26 May 1996) --- Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of the Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  4. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  5. Currie on the aft flight deck

    NASA Image and Video Library

    2013-11-19

    STS088-335-031 (4-15 Dec. 1998) --- Astronaut Nancy J. Currie, mission specialist, makes a notation in a log book on Endeavour's flight deck as astronaut Jerry L. Ross, mission specialist, eyes a control display near the commander's station. The two were joined by a Russian cosmonaut and three NASA astronauts for eleven days in Earth orbit, spending the majority of their time and efforts in support of important initial links to the International Space Station (ISS).

  6. Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee

    2017-01-01

    Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.

  7. Commander Collins seated in the flight deck commander's station

    NASA Image and Video Library

    1999-07-24

    S93-E-5033 (23 July 1999) --- Astronaut Eileen M. Collins, mission commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Space Shuttle Columbia on Flight Day 1. The most important event of this day was the deployment of the Chandra X-Ray Observatory, the world's most powerful X-Ray telescope. The photo was recorded with an electronic still camera (ESC).

  8. Commander Collins seated in the flight deck commander's station

    NASA Image and Video Library

    1999-07-24

    S93-E-5031 (23 July 1999) --- Astronaut Eileen M. Collins, mission commander, looks over a procedures checklist at the commander's station on the forward flight deck of the Space Shuttle Columbia on Flight Day 1. The most important event of this day was the deployment of the Chandra X-Ray Observatory, the world's most powerful X-Ray telescope. The photo was recorded with an electronic still camera (ESC).

  9. Pilot Ashby waves from the pilot's seat in the flight deck

    NASA Image and Video Library

    1999-07-24

    S93-E-5029 (23 July 1999) --- Astronaut Jeffrey S. Ashby waves to the camera from the pilot's station on the starboard side of Columbia's forward flight deck. The photo was recorded with an electronic still camera (ESC) on Flight Day 1 of the STS-93 mission.

  10. Flight Instructor Practical Test Standards for Instrument - Airplane, Helicopter

    DOT National Transportation Integrated Search

    1990-03-01

    The Flight Instructor - Instrument (Airplane and Helicopter) Practical : Test Standards book has been published by the Federal Aviation : Administration (FAA) to establish the standards for the flight instructor : certification and instrument rating ...

  11. MS Ivins at the Atlantis aft flight deck controls

    NASA Image and Video Library

    2001-02-10

    STS98-E-5078 (10 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, monitors communications from ground controllers from her post at the aft flight deck controls on the Space Shuttle Atlantis. The scene was recorded with a digital still camera.

  12. A Flight Deck Perspective of Self-Separation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Rosekind, Mark (Technical Monitor)

    1997-01-01

    I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.

  13. Brown at RMS controls on the aft flight deck

    NASA Image and Video Library

    1998-11-24

    STS095-366-031 (29 Oct-7 Nov 1998) --- Astronaut Curtis L. Brown, Jr., mission commander, operates controls on the aft flight deck of the Space Shuttle Discovery. Brown was joined by four other NASA astronauts and two payload specialists for the nine-day mission.

  14. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  15. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  16. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  17. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  18. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  19. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  20. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...

  1. Brown at aft flight deck control during SPARTAN capture

    NASA Image and Video Library

    1998-11-03

    STS095-E-5134 (3 Nov. 1998) --- Astronaut Curtis L. Brown, STS-95 commander, on Discovery's aft flight deck during operations to retrieve the free-flying Spartan 201-05 satellite. The photograph was taken with an electronic still camera (ESC) at 3:17:38 GMT, Nov. 3.

  2. Horowitz at the aft flight deck during rendezvous ops

    NASA Image and Video Library

    2001-08-12

    STS105-E-5061 (12 August 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, looks over a checklist on the aft flight deck of the Space Shuttle Discovery during rendezvous operations with the International Space Station (ISS). The image was recorded with a digital still camera.

  3. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  4. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  5. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  6. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  7. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  8. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  9. Condensation on crew compartment aft flight deck window W10

    NASA Image and Video Library

    1982-03-30

    STS003-24-211 (22-30 March 1982) --- Crew compartment aft flight deck viewing window W10 fogged with condensation. The condensation is a result of the spacecraft's position in relation to the sun. Photo credit: NASA

  10. Pilot Fullerton sleeps on aft flight deck

    NASA Image and Video Library

    1982-03-30

    STS003-22-113 (24 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communication kit assembly mini-headset (HDST), sleeps on aft flight deck resting his back against the floor and his feet against commander's ejection seat (S1) back. On-orbit station control panel A8 and payload station panel L15 appear above Fullerton. Special clips for holding notebooks open and beverage containers are velcroed on various panels. Photo credit: NASA

  11. Krikalev on the aft flight deck with laptop computers

    NASA Image and Video Library

    1998-12-10

    S88-E-5107 (12-11-98) --- Sergei Krikalev, mission specialist representing the Russian Space Agency (RSA), surrounded by monitors and computers on the flight deck, holds a large camera lens. The photo was taken with an electronic still camera (ESC) at 09:33:22 GMT, Dec. 11.

  12. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  13. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  14. Commander Crippen at Forward Flight Deck Commanders Station

    NASA Image and Video Library

    1983-06-24

    STS007-31-1614 & S83-35775 (24 June 1983) --- Astronaut Robert L. Crippen is seen at the commander’s station of the Space Shuttle Challenger as it passes through the Earth’s atmosphere on re-entry. The friction results in a pinkish glow visible through the forward windows on the flight deck. The scene was exposed with a 35mm camera.

  15. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  16. MS Grunsfeld at commander's station on forward flight deck

    NASA Image and Video Library

    2002-03-08

    STS109-E-5720 (8 March 2002) --- Astronaut John M. Grunsfeld, STS-109 payload commander, wearing a portion of the extravehicular mobility unit (EMU) space suit, occupies the commander’s station on the forward flight deck of the Space Shuttle Columbia. The image was recorded with a digital still camera.

  17. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  18. STS-69 crewmembers on Endeavour's flight deck

    NASA Image and Video Library

    1995-09-25

    STS069-363-010 (7-18 September 1995) --- Astronaut Kenneth D. Cockrell, pilot, looks over a logbook on Space Shuttle Endeavour’s flight deck during rendezvous operations involving one of two temporarily free-flying craft. Astronaut James H. Newman (background), mission specialist, eyeballs the target. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  19. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  20. STS-79 crew on flight deck after launch

    NASA Image and Video Library

    1996-10-29

    STS079-348-004 (16 Sept. 1996) --- Soon after the space shuttle Atlantis completed its rocket mode ascent to Earth-orbit, astronaut Terrence W. Wilcutt, pilot, begins to ready the Orbiter for ten days of orbiting Earth by activating switches on the flight deck's right overhead panel. Though the launch was a nocturnal one, the crew experienced its first sunrise just after Atlantis achieved its orbital posture.

  1. Aft flight deck documentation with freefloating headset interface unit (HIU)

    NASA Image and Video Library

    1983-09-05

    STS008-18-479 (5 Sept 1983) --- Aft flight deck documentation includes on orbit station with control panel A2, aft viewing window W9, and communications kit assembly (ASSY) headset (HDST) interface unit (HIU) and cable free floating in front of it.

  2. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  3. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    NASA Image and Video Library

    1990-03-03

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  4. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  5. Commander Truly on aft flight deck holding communication kit assembly (ASSY)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    On aft flight deck, Commander Truly holds communication kit assembly (ASSY) headset (HDST) interface unit (HIU) and mini-HDST in front of the onorbit station. HASSELBLAD camera is positioned on overhead window W8.

  6. Lindsey and Boe on forward flight deck

    NASA Image and Video Library

    2011-02-26

    S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration

  7. Flight-test experience of a helicopter encountering an airplane trailing vortex

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Holbrook, G. T.; Campbell, R. L.; Van Gunst, R. W.; Mantay, W. R.

    1976-01-01

    This paper presents results of a flight-test experiment of a UH-1H helicopter encountering the vortex wake of a C-54 airplane. The helicopter was instrumented to record the pilot control inputs, determine the upset experience, and measure critical loads within the rotor system. During the flight-test program 132 penetrations of the vortex wake were made by the helicopter at separation distances from 3/8 to 6-1/2 nautical miles. Test results indicated that the helicopter upsets and the vortex induced blade loads experienced were minimal and well within safe limits. The upsets were very mild when compared to a typical response of a small airplane to the vortex wake of the C-54 airplane.

  8. A Usability and Learnability Case Study of Glass Flight Deck Interfaces and Pilot Interactions through Scenario-based Training

    NASA Astrophysics Data System (ADS)

    De Cino, Thomas J., II

    In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems. While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches. A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user

  9. STS 51-G crew photo on the flight deck

    NASA Image and Video Library

    1985-06-22

    51G-21-011 (17-24 June 1985) --- Group portrait on flight deck of all seven STS-51G crew members. Left to right (front) are John O. Creighton, Shannon W. Lucid, Daniel C. Brandenstein; and (back row) are Sultan Salman Abdelazize Al-Saud, Steven R. Nagel, John M. Fabian and Patrick Baudry. Photo credit: NASA

  10. Human Factors of Flight-deck Automation: NASA/Industry Workshop

    NASA Technical Reports Server (NTRS)

    Boehm-Davis, D. A.; Curry, R. E.; Wiener, E. L.; Harrison, R. L.

    1981-01-01

    The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented.

  11. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    DOT National Transportation Integrated Search

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  12. View of Pilot Gregory Johnson working on the Flight Deck

    NASA Image and Video Library

    2009-05-21

    S125-E-013040 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.

  13. STS-46 aft flight deck payload station 'Marsha's workstation' aboard OV-104

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 payload station nicknamed 'Marsha's (Ivins) workstation' on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104, is cluttered with food, cameras, camera gear, cassettes, flight text material, and other paraphernalia. This area is just behind the commanders station. Fellow crewmembers nicknamed the station and good-naturedly kidded Ivins about the mess.

  14. Flight Test Guide (Part 61 Revised); Private Pilot Airplane.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This guide provides an outline of the skills required to pass the flight test for a Private Pilot Certificate with Airplane Rating under part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: preflight operations, airport and traffic pattern operations,…

  15. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  16. STS 61-B crew portrait in-flight on the aft flight deck

    NASA Image and Video Library

    1985-11-26

    61B-21-008 (26 Nov-1 Dec 1985) --- A fish-eye lens allows for the seven-member STS 61-B crew to be photographed on the flight deck of the earth-orbiting Atlantis. Left to right, back row, are astronauts Jerry L. Ross, Brewster Shaw Jr., Mary L. Cleave, and Bryan D. O'Connor; and payload specialist Rodolfo Neri. Front row, left to right, payload specialist Charles D. Walker and astronaut Sherwood C. Spring.

  17. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  18. General view of the flight deck of the orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the orbiter Discovery looking forward and overhead at the overhead instrumentation and control panels. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Astronaut William Readdy on flight deck wearing sun glasses

    NASA Image and Video Library

    1993-09-15

    STS051-16-012 (12-22 Sept 1993) --- On Discovery's forward flight deck, astronaut William F. Readdy, pilot, wears shades to block out bright sunshine. Much of the sunshine that normally would be coming through forward windows is blocked by an array of portable computers. Readdy was joined by four other NASA astronauts for almost ten full days in space.

  20. MS Massimino on aft flight deck during EVA 5

    NASA Image and Video Library

    2002-03-09

    STS109-E-5761 (9 March 2002) --- Astronaut Michael J. Massimino, STS-109 mission specialist, looks through an overhead window on the aft flight deck of the Space Shuttle Columbia during the crew’s final interface with the Hubble Space Telescope (HST). The telescope was released at 4:04 a.m. (CST). The image was recorded with a digital still camera.

  1. View of Pilot Gregory Johnson working on the Flight Deck

    NASA Image and Video Library

    2009-05-21

    S125-E-013042 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth. Astronaut Scott Altman, commander, looks on.

  2. An Investigation of Flight Deck Data Link in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Lozito, Sandra; Kaneshige, John; Dulchinos, Vicki; Sharma, Shivanjli

    2013-01-01

    The Next Generation Air Transportation System (NextGen) and Europe's Single European Sky ATM Research (SESAR) concepts require an increased use of trajectory-based operations, including extensive strategic air traffic control clearances. The clearances are lengthy and complex, which necessitate data link communications to allow for message permanence and integration into the autoflight systems (i.e., autoload capability). This paper examines the use of flight deck data link communications for strategic and tactical clearance usage in the terminal area. A human-in-the-loop simulation was conducted using a high-fidelity flight deck simulator, with ten commercial flight crews as participants. Data were collected from six flight scenarios in the San Francisco terminal airspace. The variables of interest were ATC message modality (voice v. data link), temporal quality of the message (tactical v. strategic) and message length. Dependent variables were message response times, communication clarifications, communication-related errors, and pilot workload. Response time results were longer in data link compared to voice, a finding that has been consistently revealed in a number of other simulations [1]. In addition, strategic clearances and longer messages resulted in a greater number of clarifications and errors, suggesting an increase in uncertainty of message interpretation for the flight crews when compared to tactical clearances. The implications for strategic and compound clearance usage in NextGen and SESAR are discussed

  3. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  4. Flight test results for several light, canard-configured airplanes

    NASA Technical Reports Server (NTRS)

    Brown, Philip W.

    1987-01-01

    Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.

  5. STS 51-L crewmembers during training session in flight deck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.

  6. MS Reilly with laser range finder on aft flight deck

    NASA Image and Video Library

    2001-07-14

    STS104-E-5026 (14 July 2001) --- Positioned near a window on the aft flight deck of the Space Shuttle Atlantis, astronaut James F. Reilly, STS-104 mission specialist, uses a laser ranging device to hone in on the International Space Station (ISS) during pre-docking operations about 237 miles above Earth.

  7. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  8. View of Commander (CDR) Scott Altman working on the Flight Deck

    NASA Image and Video Library

    2009-05-21

    S125-E-013081 (21 May 2009) --- Occupying the commander?s station, astronaut Scott Altman, STS-125 commander, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.

  9. Commander Young reviews clipboard notes and procedures on forward flight deck

    NASA Image and Video Library

    1981-04-14

    STS001-07-540 (12-14 April 1981) --- Astronaut John W. Young, commander, is seated at his left side station in the flight deck of the space shuttle Columbia. He holds a loose-leaf book in which he recorded data during the flight. Soon after the launch phase of STS-1, astronauts Young and Robert L. Crippen, pilot, changed from their high altitude pressure garments into the light blue constant wear garment. Photo credit: NASA

  10. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  11. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  12. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  13. New Method of Determining the Polar Curve of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Yegorov, B. N.

    1945-01-01

    A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.

  14. STS-104 PLT Hobaugh and DV Cam units on Atlantis flight deck

    NASA Image and Video Library

    2001-07-15

    STS104-326-005 (12-24 July 2001) --- Astronaut Charles O. Hobaugh, STS-104 pilot, prepares to do some work at the recently-fashioned computer network station on the flight deck of the Space Shuttle Atlantis.

  15. 14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.883 Special flight authorizations for jet airplanes weighing 75,000 pounds or less. (a) After December 31, 2015, an operator of a jet airplane weighing 75,000...

  16. Fish-eye view of STS-112 CDR Ashby on forward flight deck

    NASA Image and Video Library

    2002-10-18

    STS112-347-001 (18 October 2002) --- A “fish-eye” lens on a 35mm camera records astronaut Jeffrey S. Ashby, STS-112 mission commander, at the commander’s station on the forward flight deck of the Space Shuttle Atlantis. Ashby, attired in his shuttle launch and entry suit, looks over a checklist prior to the entry phase of the flight.

  17. Astronaut Marsha Ivins with thermal imaging project on flight deck

    NASA Image and Video Library

    1994-03-05

    STS062-04-005 (4-18 March 1994) --- Astronaut Marsha S. Ivins has her hands full with a thermal imaging project on the flight deck of the Space Shuttle Columbia as astronaut Pierre J. Thuot stands by to help. The two mission specialists were joined by three other veteran NASA astronauts for almost 14 full days in Earth-orbit.

  18. Astronaut Kevin Chilton displays map of Scandinavia on flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them.

  19. View of STS-125 Crew Members working on the Flight Deck

    NASA Image and Video Library

    2009-05-21

    S125-E-013050 (21 May 2009) --- Occupying the commander?s station, astronaut Gregory C. Johnson, STS-125 pilot, uses the Portable In-Flight Landing Operations Trainer (PILOT) on the flight deck of the Earth-orbiting Space Shuttle Atlantis. PILOT consists of a laptop computer and a joystick system, which helps to maintain a high level of proficiency for the end-of-mission approach and landing tasks required to bring the shuttle safely back to Earth.

  20. 75 FR 22514 - Airworthiness Directives; The Boeing Company Model 747-200B Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... airplanes that were modified by Boeing to the stretched upper deck (SUD) configuration require inspection... airplanes that were modified by Boeing to the stretched upper deck (SUD) configuration require inspecting... modified to the stretched upper deck (SUD) configuration by Boeing require inspection for cracking of the...

  1. Lateral aerodynamic parameters extracted from flight data for the F-8C airplane in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Suit, W. T.

    1977-01-01

    Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.

  2. Commander Truly on aft flight deck holding communication kit assembly (ASSY)

    NASA Image and Video Library

    1983-09-05

    STS008-04-106 (30 Aug-5 Sept 1983) --- On aft flight deck, Richard M. Truly, STS-8 commander, holds communication kit assembly (ASSY) headset (HDST) interface unit (HIU) and mini-HDST in front of the on orbit station. Hasselblad camera is positioned on overhead window W8.

  3. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  4. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  5. Cockrell and Rominger go through de-orbit preparations in the flight deck

    NASA Image and Video Library

    1996-12-06

    STS080-360-002 (19 Nov.-7 Dec. 1996) --- From the commander's station on the port side of the space shuttle Columbia's forward flight deck, astronaut Kenneth D. Cockrell prepares for a minor firing of Reaction Control System (RCS) engines during operations with the Wake Shield Facility (WSF). The activity was recorded with a 35mm camera on flight day seven. The commander is attired in a liquid-cooled biological garment.

  6. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  7. General view of the aft Flight Deck looking at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the aft Flight Deck looking at the mission specialist seats directly behind and to the side of the commander and pilot's seats. These seats are removed, packed and stowed during on-orbit activities. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Closeup view of the aft flight deck of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft flight deck of the Orbiter Discovery looking at the aft center control panels A6, A7, A8, A12, A13, A14, A16 and A17. This View was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Diurnal rhythms of visual accommodation and blink responses - Implication for flight-deck visual standards

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1977-01-01

    Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.

  10. STS-104 CDR Lindsey on forward flight deck prior to re-entry

    NASA Image and Video Library

    2001-07-25

    STS104-345-021 (25 July 2001) --- Attired in his shuttle launch and entry suit, astronaut Steven W. Lindsey, STS-104 commander, looks over a procedures checklist at the commander’s station on the forward flight deck of the space shuttle Atlantis.

  11. Astronaut Susan Helms on aft flight deck with RMS controls

    NASA Image and Video Library

    1994-09-12

    STS064-05-028 (9-20 Sept. 1994) --- On the space shuttle Discovery's aft flight deck, astronaut Susan J. Helms handles controls for the Remote Manipulator System (RMS). The robot arm operated by Helms, who remained inside the cabin, was used to support several tasks performed by the crew during the almost 11-day mission. Those tasks included the release and retrieval of the free-flying Shuttle Pointed Autonomous Research Tool For Astronomy 201 (SPARTAN 201), a six-hour spacewalk and the Shuttle Plume Impingement Flight Experiment (SPIFEX). Photo credit: NASA or National Aeronautics and Space Administration

  12. RME 1317 - MiSDE VRCS test, flight deck activity with Collins

    NASA Image and Video Library

    1997-05-19

    STS084-310-012 (15-24 May 1997) --- Astronaut Eileen M. Collins, STS-84 pilot, occupies the commander's station on the Space Shuttle Atlantis' flight deck during rendezvous operations with Russia's Mir Space Station. She is looking over notes regarding a Risk Mitigation Experiment (RME) called the Mir Structural Dynamics Experiment (MSDE).

  13. STS-32 photographic equipment (cameras,lenses,film magazines) on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 photographic equipment is displayed on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. On the payload station are a dual camera mount with two handheld HASSELBLAD cameras, camera lenses, and film magazines. This array of equipment will be used to record onboard activities and observations of the Earth's surface.

  14. New STS-102 crewmembers Krikalev and Gidzenko in the flight deck

    NASA Image and Video Library

    2001-03-12

    STS102-E-5142 (12 March 2001) --- Cosmonaut Sergei K. Krikalev, now a member of the STS-102 crew, prepares to use a camera on Discovery's flight deck. Krikalev, representing Rosaviakosmos, had been onboard the International Space Station (ISS) since early November 2000. The photograph was taken with a digital still camera.

  15. The Small Angular Oscillations of Airplanes in Steady Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1924-01-01

    This investigation was carried out by the National Advisory Committee for Aeronautics at the request of the Army Air Service to provide data concerning the small angular oscillations of several types of airplanes in steady flight under various atmospheric conditions. The data are of use in the design of bomb sights and other aircraft instruments. The method used consisted in flying the airplane steadily in one direction for at least one minute, while recording the angle of the airplane with the sun by means of a kymograph. The results show that the oscillations differ but little for airplanes of various types, but that the condition of the atmosphere is an important factor. The average angular excursion from the mean in smooth air is 0.8 degrees in pitch, 1.4 degrees in roll, and 0.9 degrees in yaw, without special instruments to aid the pilot in holding steady conditions. In bumpy air the values given above are increased about 50 per cent. (author)

  16. STS-46 aft flight deck payload station "Marsha's workstation" aboard OV-104

    NASA Image and Video Library

    2012-11-19

    STS046-01-024 (31 July-8 Aug 1992) --- This area on the Space Shuttle Atlantis' flight deck forward port side was referred to as "Marsha's (Ivins) work station" by fellow crew members who good-naturedly kidded the mission specialist and who usually added various descriptive modifiers such as "messy" or "cluttered". Food, cameras, camera gear, cassettes, cable, flight text material and other paraphernalia can be seen in the area, just behind the commander's station.

  17. Requirements and feasibility study of flight demonstration of Active Controls Technology (ACT) on the NASA 515 airplane

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.

    1975-01-01

    A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.

  18. View of STS-134 Commander Kelly on the Flight Deck

    NASA Image and Video Library

    2011-05-16

    S134-E-005608 (16 May 2011) --- Astronaut Mark Kelly, STS-134 commander, gets down to work soon after Endeavour reaches Earth orbit. Kelly is seated at the commander's station on the shuttle's forward flight deck. Five other veteran crew members are joining the commander on a 16-day mission, much of which will be devoted to work on the International Space Station. Photo credit: NASA

  19. MS Linnehan watches EVA 2 from aft flight deck

    NASA Image and Video Library

    2002-03-05

    STS109-E-5621 (5 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, monitors the STS-109 mission's second space walk from the aft flight deck of the Space Shuttle Columbia. Astronauts James H. Newman and Michael J. Massimino were working on the Hubble Space Telescope (HST), temporarily captured in the shuttle's cargo bay. Linnehan had participated in the mission's first space walk on the previous day. This image was recorded with a digital still camera.

  20. Fish-eye view of PLT Melroy and MS Wolf on forward flight deck

    NASA Image and Video Library

    2002-10-18

    STS112-337-036 (18 October 2002) --- A “fish-eye” lens on a 35mm camera records astronauts Jeffrey S. Ashby (left), STS-112 mission commander; Pamela A. Melroy, pilot; and David A. Wolf, mission specialist, on the forward flight deck of the Space Shuttle Atlantis. Attired in their shuttle launch and entry suits, the crew prepares for the entry phase of the flight.

  1. Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Sim, A. G.; Curry, R. E.

    1984-01-01

    The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented.

  2. STS-26 Pilot Covey, wearing sleep mask, rests on aft flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Pilot Richard O. Covey, wearing sleep mask (blindfold) and a headset, props his feet under the pilots seat and rests his head and back on the aft flight deck onorbit station panels while he sleeps. At Covey's right are the mission station control panels.

  3. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  4. STS-33 MS Carter operates translation hand control (THC) on aft flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Mission Specialist (MS) Manley L. Carter, Jr operates translation hand control (THC) at the aft flight deck onorbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.

  5. In-Flight Ultraviolet Radiation on Commercial Airplanes.

    PubMed

    Cadilhac, Pascal; Bouton, Marie-Christine; Cantegril, Monique; Cardines, Catherine; Gisquet, Alain; Kaufman, Noël; Klerlein, Michel

    2017-10-01

    Epidemiological studies suggest that pilots and cabin crew have higher incidences and mortality rates of cutaneous malignant melanoma than those of the general population. Exposure to UV radiation is one of the main risk factors for this type of cancer. The aim of this study was to evaluate the level of UV radiation in an airliner in flight. Measurements were taken with a three sensor-integrated electronics UV radiometer (A, B, and C) during 14 flights from July to October 2016. They were performed during daylight hours once the airliner had reached cruising altitude. We failed to find UVC radiation. The measurements detected neither UV A nor B in any parts of the cabins of the planes tested, nor in the Airbus cockpits. UVA radiation was however found in the cockpit of Boeing 777s. But UVA levels remained well below the values found at ground level and they were also strongly reduced (more than 10 times) by cockpit sun visors. Few studies have assessed the level of UV radiation in an airplane. They suggested that the cockpit windshields reduced this type of radiation to some degree (according mainly to the wavelength of the radiation and the nature of the windshield). Our study strongly confirms these results and suggests that increased incidence of melanoma and mortality by this type of illness found among pilots and airline cabin crews may not be related to in-flight UV radiation exposure.Cadilhac P, Bouton M-C, Cantegril M, Cardines C, Gisquet A, Kaufman N, Klerlein M. In-flight ultraviolet radiation on commercial airplanes. Aerosp Med Hum Perform 2017; 88(10):947-951.

  6. 77 FR 69573 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... airplane will have a novel or unusual design feature(s) associated with an electronic flight control system... empennage and control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of... flight control design feature within the normal operational envelope in which sidestick deflection in the...

  7. 78 FR 11560 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... or unusual design feature(s) associated with an electronic flight control system with respect to... control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of 12 passengers... the pilot or copilot sidestick. The Embraer S.A. Model EMB-550 airplane has a flight control design...

  8. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  9. STS-56 Pilot Oswald uses SAREX on forward flight deck of Discovery, OV-103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Pilot Stephen S. Oswald, wearing headset, uses the Shuttle Amateur Radio Experiment II (SAREX-II) while sitting at the pilots station on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Oswald smiles from behind the microphone as he talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of Oswald. The antenna located in forward flight deck window W6 is visible in the background. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn ab

  10. STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.

  11. Flight Deck Surface Trajectory-based Operations (STBO): Results of Piloted Simulations and Implications for Concepts of Operation (ConOps)

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2013-01-01

    The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required

  12. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward from behind the commander's seat looking towards the pilot's station. Note the numerous Velcro pads located throughout the crew compartment, used to secure frequently used items when in zero gravity. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Flight Deck Interval Management Avionics: Eye-Tracking Analysis

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Harden, John W.

    2015-01-01

    Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).

  14. STS-27 Atlantis, OV-104, crewmembers on shuttle mission simulator flight deck

    NASA Image and Video Library

    1988-02-03

    S88-27505 (3 Feb. 1988) --- Astronauts William M. Shepherd (standing) and Jerry L. Ross, both STS-27 mission specialists, get in some training time on the flight deck of the Shuttle Mission Simulator in the Jake Garn Mission Simulation and Training Facility at NASA's Johnson Space Center. Photo credit: NASA

  15. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  16. The airplane: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Dauteuil, Mark; Geniesse, Pete; Hunniford, Michael; Lawler, Kathleen; Quirk, Elena; Tognarelli, Michael

    1993-01-01

    The 'Airplane' is a moderate-range, 70 passenger aircraft. It is designed to serve demands for flights up to 10,000 feet and it cruises at 32 ft/s. The major drivers for the design of the Airplane are economic competitiveness, takeoff performance, and weight minimization. The Airplane is propelled by a single Astro 15 electric motor and a Zinger 12-8 propeller. The wing section is a Spica airfoil which, because of its flat bottom, provides simplicity in manufacturing and thus helps to cut costs. The wing is constructed of a single load bearing mainspar and shape-holding ribs coated with Monokote skin, lending to a light weight structural makeup. The fuselage houses the motor, flight deck and passenger compartments as well as the fuel and control actuating systems. The wing will be attached to the top of the fuselage as will the fuel and control actuator systems for easy disassembly and maintenance. The aircraft is maneuvered about its pitch axis by means of an aft elevator on the flat plate horizontal tail. The twin vertical tail surfaces are also flat plates and each features a rudder for both directional and roll control. Along with wing dihedral, the rudders will be used to roll the aircraft. The Airplane is less costly to operate at its own maximum range and capacity as well as at its maximum range and the HB-40's maximum capacity than the HB-40.

  17. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  18. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  19. STS-46 ESA MS Nicollier and PLC Hoffman pose on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and MS and Payload Commander (PLC) Jeffrey A. Hoffman pose in front of the onorbit station controls on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The overhead windows W7 and W8 appear above their heads and the aft flight deck viewing windows W9 and W10 behind them. Hoffman and Nicollier have been training together for a dozen years at JSC. Hoffman was an astronaut candidate in 1978 and Nicollier accompanied a group of trainees in 1980. Note the partially devoured chocolate Space Shuttle floating near the two.

  20. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  1. STS-69 crew on flight deck during Wake Shield retrieval

    NASA Image and Video Library

    1995-09-22

    STS069-355-023 (7-18 September 1995) --- Astronauts David M. Walker (right), mission commander, and Michael L. Gernhardt, mission specialist, busy themselves on Space Shuttle Endeavour’s flight deck during rendezvous operations involving one of two temporarily free-flying craft. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  2. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... metal with composite empennage and control surfaces. The Model EMB-550 airplane is designed for 8...; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation... Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature(s...

  3. STS-41 crew communicates with ground controllers from OV-103's flight deck

    NASA Image and Video Library

    1990-10-10

    STS041-02-035 (6-10 Oct 1990) --- A fish-eye lens view shows two of STS-41's three mission specialists on the flight deck of Discovery. Astronaut William M. Shepherd, right, communicates with ground controllers as Astronaut Bruce E. Melnick looks on.

  4. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  5. STS-26 Pilot Covey, wearing sleep mask, rests on aft flight deck

    NASA Image and Video Library

    1988-10-03

    STS026-09-021 (3 Oct 1988) --- Astronaut Richard O. Covey, STS-26 pilot, wearing sleep mask (blindfold) and a headset, props his feet under the pilots seat and rests his head and back on the aft flight deck on orbit station panels while he sleeps. At Covey's right are the mission station control panels.

  6. Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…

  7. View of a stone age adze cutting tool floating freely in the flight deck.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View of a stone age adze cutting tool floating freely in the forward flight deck and framed by the forward and side windows. On the Earth below, the big island of Hawaii can be seen through the window.

  8. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  9. STS-33 MS Carter operates translation hand control (THC) on aft flight deck

    NASA Image and Video Library

    1989-11-27

    STS033-93-011 (27 Nov 1989) --- Astronaut Manley L. Carter, Jr., STS-33 mission specialist, operates translation hand control (THC) at the aft flight deck on orbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.

  10. 75 FR 70854 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ..., deploy speed brakes) to stop the airplane within the accelerate stop distance. It also means the minimum... flight diving speed. List of Subjects in 14 CFR Part 25 Aircraft, Aviation safety, Reporting and... transport category airplanes. This action would harmonize the requirements for takeoff speeds, static...

  11. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  12. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  13. High-speed civil transport - Advanced flight deck challenges

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.

  14. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  15. Human factors considerations in the design and evaluation of flight deck displays and controls

    DOT National Transportation Integrated Search

    2013-11-01

    The objective of this effort is to have a single source document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on human factor...

  16. MS Mastracchio operates the RMS on the flight deck of Atlantis during STS-106

    NASA Image and Video Library

    2000-09-11

    STS106-E-5099 (11 September 2000) --- Astronaut Richard A. Mastracchio, mission specialist, stands near viewing windows, video monitors and the controls for the remote manipulator system (RMS) arm (out of frame at left) on the flight deck of the Earth-orbiting Space Shuttle Atlantis during Flight Day 3 activity. Atlantis was docked with the International Space Station (ISS) when this photo was recorded with an electronic still camera (ESC).

  17. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn sits in the flight deck looking at equipment in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  18. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn enjoys a tour of the flight deck in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  19. Various views of the STS-103 crew on the flight deck

    NASA Image and Video Library

    2000-01-26

    STS103-334-002 (19-27 December 1999) ---.Astronauts Jean-Francois Clervoy (left).and Curtis L. Brown, Jr. communicate with ground controllers on Discovery's flight deck. Brown is mission commander for NASA's third servicing mission to the Hubble Space Telescope (HST) and.Clervoy is a mission specialist representing the European Space Agency (ESA). Clervoy was the prime operator of the remote manipulator system (RMS), the robotic arm on the Space Shuttle.

  20. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  2. 76 FR 58722 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ...- 200B, 747-200C, 747-200F, 747-400F, 747SR, and 747SP series airplanes, without a stretched upper deck or stretched upper deck modification. The existing AD currently requires repetitive inspections for...

  3. STS-36 Mission Specialist Hilmers with AEROLINHOF camera on aft flight deck

    NASA Image and Video Library

    1990-03-03

    STS-36 Mission Specialist (MS) David C. Hilmers points the large-format AEROLINHOF camera out overhead window W7 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Hilmers records Earth imagery using the camera. Hilmers and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  4. STS-116 crew at orbiter aft flight deck window during EVA 2

    NASA Image and Video Library

    2007-12-14

    ISS014-E-09804 (14 Dec. 2006) --- From the aft flight deck on Space Shuttle Discovery, astronauts William A. (Bill) Oefelein (left), STS-116 pilot; Nicholas J. M. Patrick, mission specialist; and Mark L. Polansky, commander, look through an overhead window toward their spacewalking crewmembers, who captured the image during the mission's second of three planned sessions of extravehicular activity (EVA).

  5. Flight deck crew coordination indices of workload and situation awareness in terminal operations

    NASA Astrophysics Data System (ADS)

    Ellis, Kyle Kent Edward

    Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.

  6. Flight deck activity during flyaround of Mir Space Station

    NASA Image and Video Library

    1996-04-19

    STS076-316-008 (23 March 1996) --- On the aft flight deck of the Space Shuttle Atlantis, astronaut Linda M. Godwin uses a hand-held laser instrument to check the range of Russia's Mir Space Station during docking operations. The two spacecraft were in the process of making their third docking in Earth-orbit. With the subsequent delivery of astronaut Shannon W. Lucid to the Mir, the Mir-21 crew grew from two to three, as the mission specialist quickly becomes a cosmonaut guest researcher. Lucid will spend approximately 140 days on Mir before returning to Earth.

  7. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  8. STS-27 crew poses for inflight portrait on forward flight deck with football

    NASA Image and Video Library

    1988-12-06

    STS027-11-012 (2-6 Dec. 1988) --- The crew members for the STS-27 space flight pose on the flight deck of the Earth-orbiting space shuttle Atlantis with a football free-floating in the foreground. Left to right are astronauts Robert L. Gibson, commander; Richard M. (Mike) Mullane, Jerry L. Ross and William M. Shepherd, mission specialists; and Guy S. Gardner, pilot. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami. Photo credit: NASA

  9. STS 51-L crewmembers during training session in flight deck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Shuttle mission simulator (SMS) scene of Astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck (46207); Left to right, Backup payload specialist Barbara R. Morgan, Teacher in Space Payload specialist Christa McAuliffe, Hughes Payload specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck portion of the Shuttle Mission Simulator at JSC (46208).

  10. STS-109 MS Linnehan on aft flight deck with laser rangefinder

    NASA Image and Video Library

    2002-03-03

    STS109-346-011 (3 March 2002) --- Astronaut Richard M. Linnehan, STS-109 mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble.

  11. Parametric study of microwave-powered high-altitude airplane platforms designed for linear flight

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    The performance of a class of remotely piloted, microwave powered, high altitude airplane platforms is studied. The first part of each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam; this is followed by gliding flight back to a minimum altitude above a microwave station and initiation of another cycle. Parametric variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the energy transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and the increase of lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  12. Commander Bloomfield works at the commander's workstation on the flight deck during STS-110

    NASA Image and Video Library

    2002-04-09

    STS110-E-5067 (9 April 2002) --- Astronaut Michael J. Bloomfield, STS-110 mission commander, occupying the commander’s station, checks data on the cockpit displays on the forward flight deck of the Space Shuttle Atlantis. The image was taken with a digital still camera.

  13. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the flight deck in the orbiter Columbia with Astronaut Stephen Oswald at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  14. STS-43 MS Adamson checks OCTW experiment on OV-104's aft flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-04-038 (2-11 Aug 1991) --- Astronaut James C. Adamson, STS-43 mission specialist, checks on an experiment on Atlantis? flight deck. Part of the experiment, Optical Communications Through the Shuttle Window (OCTW), can be seen mounted in upper right. The OCTW system consists of two modules, one inside the orbiter crew cabin (as pictured here) and one in the payload bay. The crew compartment version houses an optoelectronic transmitter/receiver pair for video and digital subsystems, test circuitry and interface circuitry. The payload bay module serves as a repeater station. During operation a signal is transmitted through the shuttle window to a bundle of optical fiber cables mounted in the payload bay near an aft window. The cables carry optical signals from the crew compartment equipment to the OCTW payload bay module. The signals are returned via optical fiber cable to the aft flight deck window, retransmitted through the window, and received by the crew compartment equipment.

  15. STS-81 pilot Jett on aft flight deck during approach to Mir

    NASA Image and Video Library

    1997-02-26

    STS081-368-011 (12-22 Jan. 1997) --- Astronaut Brent W. Jett, Jr., STS-81 pilot, appears restful and unfazed as Russia's Mir Space Station appears in the window over his shoulder on the Space Shuttle Atlantis' aft flight deck. Following docking of Mir and Atlantis, Jett and his crew mates went on to spend several days sharing experiments and supply-transfer with the Mir-22 crewmembers.

  16. Line Pilots' Attitudes about and Experience with Flight Deck Automation: Results of an International Survey and Proposed Guidelines

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    1995-01-01

    A survey of line pilots' attitudes about flight deck automation was conducted by the Royal Air Force Institute of Aviation Medicine (RAF IAM, Farnborough, UK) under the sponsorship of the United Kingdom s Civil Aviation Authority and in cooperation with IATA (the International Air Transport Association). Survey freehand comments given by pilots operating 13 types of commercial transports across five manufacturers (Airbus, Boeing, British Aerospace, Lockheed, and McDonnell-Douglas) and 57 air carriers/organizations were analyzed by NASA. These data provide a "lessons learned" knowledge base which may be used for the definition of guidelines for flight deck automation and its associated crew interface within the High Speed Research Program. The aircraft chosen for analysis represented a progression of levels of automation sophistication and complexity, from "Basic" types (e.g., B727, DC9), through "Transition" types (e.g., A300, Concorde), to two levels of glass cockpits (e.g., Glass 1: e.g., A310; Glass 2: e.g., B747-400). This paper reports the results of analyses of comments from pilots flying commercial transport types having the highest level of automation sophistication (B757/B767, B747-400, and A320). Comments were decomposed into five categories relating to: (1) general observations with regard to flight deck automation; comments concerning the (2) design and (3) crew understanding of automation and the crew interface; (4) crew operations with automation; and (5) personal factors affecting crew/automation interaction. The goal of these analyses is to contribute to the definition of guidelines which may be used during design of future aircraft flight decks.

  17. Determination of the lift and drag characteristics of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Green, Maurice W

    1925-01-01

    Flight tests to determine lift and drag characteristics are discussed. A review is given of the fundamental principles on which the tests are based and on the forces acting on an airplane in the various conditions of steady flight. Glide with and without propeller thrust and the relation between angle of attack and the indicated airspeed for different conditions of steady flight are discussed. The glide test procedure and the problem of the propeller are discussed.

  18. STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.

  19. Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Astronaut John H. Casper, commander, pauses during a photography session on the aft flight deck of the Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  20. Flight investigation of the effect of control centering springs on the apparent spiral stability of a personal-owner airplane

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Hunter, Paul A; Hewes, Donald E; Whitten, James B

    1952-01-01

    Report presents the results of a flight investigation conducted on a typical high-wing personal-owner airplane to determine the effect of control centering springs on apparent spiral stability. Apparent spiral stability is the term used to describe the spiraling tendencies of an airplane in uncontrolled flight as affected both by the true spiral stability of the perfectly trimmed airplane and by out-of-trim control settings. Centering springs were used in both the aileron and rudder control systems to provide both a positive centering action and a means of trimming the airplane. The springs were preloaded so that when they were moved through neutral they produced a nonlinear force gradient sufficient to overcome the friction in the control surface at the proper setting for trim. The ailerons and rudder control surfaces did not have trim tabs that could be adjusted in flight.

  1. 76 FR 14819 - Special Conditions: Boeing Model 747-8 Series Airplanes; Stairway Between the Main Deck and Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... essentially rectangular treads. 3. With the airplane in level attitude and in each attitude resulting from the... during all flight phases. 14. ``No smoking'' and ``return to seat'' signs must be installed and visible...

  2. Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests

    NASA Technical Reports Server (NTRS)

    Nissen, James M; Gadebero, Burnett L; Hamilton, William T

    1948-01-01

    In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane.

  3. Flight test experience with high-alpha control system techniques on the F-14 airplane

    NASA Technical Reports Server (NTRS)

    Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.

    1981-01-01

    Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.

  4. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  5. MS Currie at RMS controls on aft flight deck

    NASA Image and Video Library

    2002-03-07

    STS109-E-5685 (7 March 2002) --- Astronaut Nancy J. Currie, mission specialist, works the controls for Columbia's Remote Manipulator System (RMS) on the crew cabin's aft flight deck. On a week with one lengthy space walk per day, Currie has had her hands full with RMS duties to support the space walks of four crewmates. Astronauts James H. Newman and Michael J. Massimino had just begin EVA-4, during which the duo required the services of Currie to control the robotic arm to maneuver them around the various workstations on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.

  6. STS-99 MS Thiele and MS Kavandi work on OV-105's flight deck

    NASA Image and Video Library

    2000-04-03

    STS099-327-003 (11-22 February 2000) --- Astronauts Gerhard P.J. Thiele and Janet L. Kavandi of the Red Team check Shuttle Radar Topography Mission (SRTM) data takes on the flight deck of the Space Shuttle Endeavour. Both are mission specialists, with Thiele representing the European Space Agency (ESA).

  7. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This... type certification basis for Gulfstream GVI airplanes. If the design of the flight control system has... Control System Mode Annunciation. AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  8. The Airplane Cabin Microbiome.

    PubMed

    Weiss, Howard; Hertzberg, Vicki Stover; Dupont, Chris; Espinoza, Josh L; Levy, Shawn; Nelson, Karen; Norris, Sharon

    2018-06-06

    Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.

  9. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  10. STS-43 crewmembers perform various tasks on OV-104's aft flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-37-012 (2-11 Aug 1991) --- Three STS-43 astronauts are busy at work onboard the earth-orbiting space shuttle Atlantis. Astronaut Shannon W. Lucid is pictured performing one of several tests on Computer hardware with space station applications in mind. Sharing the aft flight deck with Lucid are Michael A. Baker (left), pilot and John E. Blaha, mission commander.

  11. Free Flight and Self-Separation from the Flight Deck Perspective

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Mackintosh, Margaret-Anne; Cashion, Patricia; Shafto, Michael G. (Technical Monitor)

    1997-01-01

    The concept of "free flight", while still being developed, is intended to emphasize more, flexibility for operators in the National Airspace System (NAS) by providing more separation responsibility to pilots, New technologies, procedures, and concepts have been suggested by the aviation community to enable this task; however, much work needs to be accomplished to help define and evaluate the concept feasibility. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in the enroute environment. A simulation demonstration was conducted in the Boeing 747-400 simulator at NASA Ames Research Center. Commercial pilots (from a U.S. domestic carrier) current on the B747-400 aircraft were the participants. Ten flight crews (10 captains, 10 first officers) flew in the Denver enroute airspace environment. A new alerting logic designed to allow for airborne self-separation was created for this demonstration. This logic assumes automatic dependent surveillance broadcast (ADS-B) capability and represented aircraft up to 120 nautical miles on the display. The new flight deck display features were designed and incorporated on the existing navigational display in the simulator to allow for increased traffic and maneuvering information to the flight crew. New tools were also provided to allow the crews to assess conflicts and potential maneuvers before implementing them. Each of the flight crews flew eight different scenarios in the Denver enroute airspace. The scenarios included eight to ten other aircraft, and each scenario was created with the intent of having one of the other aircraft become an operational conflict for our simulator aircraft. Different types of conflict geometries were represented across the eight scenarios. Also, some scenarios allowed for more time to detect a potential clearance, while others allowed for less time for'detection. Additionally, the crews were asked to a ply the

  12. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  13. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  14. STS-42 Payload Specialist Merbold with drink on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Ulf D. Merbold, wearing a lightweight headset (HDST), experiments with a grapefruit drink and straw on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Merbold watches the liquid ball of grapefruit drink he created float in the weightlessness of space. The Los Angeles Dodger cap Merbold is wearing is part of a tribute to Manley L. (Sonny) Carter, originally assigned as a mission specialist on this flight. During the eight-day flight, the crewmembers each wore the cap on a designated day. Carter, a versatile athlete and avid Dodger fan, died in the crash of a commuter airline in 1991.

  15. 76 FR 44246 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...; Special Conditions No. 25-442-SC] Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight... conditions. SUMMARY: These special conditions are issued for Boeing Model 747-8 series airplanes. These... applied for, and was granted, an extension of time for the amended type certificate, which changed the...

  16. Astronaut Apt takes photos of the Earth from the aft flight deck

    NASA Image and Video Library

    1996-10-28

    STS079-341-036 (16-26 Sept. 1996) --- Following the space shuttle Atlantis' separation from the Russian Mir Space Station, astronaut Jerome (Jay) Apt, mission specialist, eyeballs a photographic target on Earth prior to capturing it on film with a handheld 70mm camera from the aft flight deck. Scientists at the Johnson Space Center (JSC), who helped to plan the various target sites, will later analyze the film in their Houston laboratories.

  17. Astronaut Kevin Chilton displays map of Scandinavia on flight deck

    NASA Image and Video Library

    1994-04-14

    STS059-16-032 (9-20 April 1994) --- Astronaut Kevin P. Chilton, pilot, displays a map of Scandinavia on the Space Shuttle Endeavour's flight deck. Large scale maps such as this were used by the crew to locate specific sites of interest to the Space Radar Laboratory scientists. The crew then photographed the sites at the same time as the radar in the payload bay imaged them. Chilton was joined in space by five other NASA astronauts for a week and a half of support to the Space Radar Laboratory (SRL-1) mission and other tasks.

  18. 78 FR 39968 - Flight Data Recorder Airplane Parameter Specification Omissions and Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... comprise the adoption of a different standard that will affect airplanes operating under these regulations...), DOT. ACTION: Final rule; request for comments. SUMMARY: This action amends the operating regulations... technical questions concerning this action contact Chris Parfitt, Flight Standards Service, Aircraft...

  19. The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard

    1931-01-01

    This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.

  20. STS-65 Japanese Payload Specialist Mukai on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Japanese Payload Specialist Chiaki Mukai freefloats on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck in front of overhead windows W7 and W8 while holding a cassette case with bean sprouts in her left hand. Mukai, a physician, represented Japan's National Space Development Agency (NASDA) on the two week mission in support of the International Microgravity Laboratory 2 (IML-2).

  1. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  2. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  3. STS-54 Commander Casper talks to radio station from OV-105's aft flight deck

    NASA Image and Video Library

    1993-01-15

    STS054-S-015 (15 Jan 1993) --- Casper talks to a radio station from the flight deck of Endeavour while, in the background, Runco, left, and Harbaugh await their turns to communicate with other stations. The scene was recorded at 13:45:54:05 GMT, Jan. 15, 1993.

  4. Leah Robson and Bridgette Puljiz in the flight deck of NASA's 747 shuttle carrier during Take Your Children to Work Day

    NASA Image and Video Library

    2004-06-22

    Leah Robson and Bridgette Puljiz of Tehachapi in the flight deck of NASA's modified Boeing 747 space shuttle carrier aircraft during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.

  5. STS-29 Pilot Blaha displays photograph of crewmembers' wives on flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sitting in forward flight deck pilots seat and wearing t-shirt and shorts, STS-29 Pilot John E. Blaha displays group portrait of crewmembers' wives. The signed photograph was found by crewmembers upon thier ingressing Discovery, Orbiter Vehicle (OV) 103, on launch day. Surrounding Blaha are pilots station controls, forward windows W4, W5, W6, checklists, tethered pencils, and pilots seat back with orange parachute harness. Communications kit assembly freefloats below his left forearm.

  6. 78 FR 65166 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... the upper deck tension ties of the fuselage are subject to widespread fatigue damage. We are issuing this AD to prevent widespread fatigue damage of certain fuselage upper deck tension ties, which could result in reduced structural integrity of the airplane. DATES: This AD is effective December 5, 2013. The...

  7. Situational Awareness Issues in the Implementation of Datalink: Shared Situational Awareness in the Joint Flight Deck-ATC Aviation System

    NASA Technical Reports Server (NTRS)

    Hansman, Robert John, Jr.

    1999-01-01

    MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.

  8. Recurring norovirus transmission on an airplane.

    PubMed

    Thornley, Craig N; Emslie, Nicola A; Sprott, Tim W; Greening, Gail E; Rapana, Jackie P

    2011-09-01

    Previously reported outbreaks of norovirus gastroenteritis associated with aircraft have been limited to transmission during a single flight sector. During October 2009, an outbreak of diarrhea and vomiting occurred among different groups of flight attendants who had worked on separate flight sectors on the same airplane. We investigated the cause of the outbreak and whether the illnesses were attributable to work on the airplane. Information was obtained from flight attendants on demographic characteristics, symptoms, and possible transmission risk factors. Case patients were defined as flight attendants with diarrhea or vomiting <51 hours after the end of their first flight sector on the airplane during 13-18 October 2009. Stool samples were tested for norovirus RNA. A passenger had vomited on the Boeing 777-200 airplane on the 13 October flight sector. Sixty-three (82%) of 77 flight attendants who worked on the airplane during 13-18 October provided information, and 27 (43%) met the case definition. The attack rate among flight attendants decreased significantly over successive flight sectors from 13 October onward (P < .001). Working as a supervisor was independently associated with development of illness (adjusted odds ratio, 5.8; 95% confidence interval, 1.3-25.6). Norovirus genotype GI.6 was detected in stool samples from 2 case patients who worked on different flight sectors. Sustained transmission of norovirus is likely to have occurred because of exposures on this airplane during successive flight sectors. Airlines should make provision for adequate disinfection of airplanes with use of products effective against norovirus and other common infectious agents after vomiting has occurred.

  9. STS-36 Mission Specialist Mullane uses 70mm HASSELBLAD camera on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Mission Specialist Richard M. Mullane points 70mm HASSELBLAD camera out overhead window W8 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Mullane is recording Earth imagery with the camera. Mullane and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission. Note: Mullane is wearing a orange 'Tigers' t-shirt.

  10. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  11. STS-28 Columbia, OV-102, MS Brown uses ARRIFLEX camera on aft flight deck

    NASA Image and Video Library

    1989-08-13

    STS028-17-033 (August 1989) --- Astronaut Mark N. Brown, STS-28 mission specialist, pauses from a session of motion-picture photography conducted through one of the aft windows on the flight deck of the Earth-orbiting Space Shuttle Columbia. He is using an Arriflex camera. The horizon of the blue and white appearing Earth and its airglow are visible in the background.

  12. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Image and Video Library

    1991-08-11

    STS043-02-020 (2-11 Aug. 1991) --- Astronaut Michael A. Baker, STS-43 pilot, seated at the forward flight deck pilot station controls of the Space Shuttle Atlantis, eats a free-floating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel.

  13. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  14. Human factors considerations in the design and evaluation of flight deck displays and controls : version 2.0

    DOT National Transportation Integrated Search

    2016-12-01

    The objective of this effort is to have a single source reference document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on hu...

  15. STS-109 MS Linnehan with laser range finder on aft flight deck

    NASA Image and Video Library

    2002-03-02

    STS109-E-5003 (3 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble. The image was recorded with a digital still camera.

  16. STS-109 MS Linnehan with laser range finder on aft flight deck

    NASA Image and Video Library

    2002-03-02

    STS109-E-5002 (3 March 2002) --- Astronaut Richard M. Linnehan, mission specialist, uses a laser ranging device designed to measure the range between two spacecraft. Linnehan positioned himself on the cabin's aft flight deck as the Space Shuttle Columbia approached the Hubble Space Telescope. A short time later, the STS-109 crew captured and latched down the giant telescope in the vehicle's cargo bay for several days of work on the Hubble. The image was recorded with a digital still camera.

  17. Mission commander James Wetherbee on the forward flight deck

    NASA Image and Video Library

    1995-02-03

    STS063-06-027 (3-11 Feb 1995) --- Seated at the commander's station on the Space Shuttle Discovery's flight deck, astronaut James D. Wetherbee, commander, was photographed by a crew mate during early phases of the STS-63 mission. A great deal of time was spent during the first few days of the mission to check a leaky thruster, which could have had a negative influence on rendezvous operations with Russia's Mir Space Station. As it turned out, all the related problems were solved and the two spacecraft succeded in achieving close proximity operations. Others onboard the Discovery were astronauts Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; and mission specialists C. Michael Foale, Janice E. Voss, and Russian cosmonaut Vladimir G. Titov.

  18. STS-54 Pilot McMonagle talks to radio station from OV-105's aft flight deck

    NASA Image and Video Library

    1993-01-15

    STS054-S-012 (15 Jan 1993) --- McMonagle talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:54:14:13 GMT, Jan. 15, 1993.

  19. STS-54 MS1 Runco talks to radio station from OV-105's aft flight deck

    NASA Image and Video Library

    1993-01-15

    STS054-S-014 (15 Jan 1993) --- Runco talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:48:45:11 GMT, Jan. 15, 1993.

  20. STS-54 MS2 Harbaugh talks to radio station from OV-105's aft flight deck

    NASA Image and Video Library

    1993-01-15

    STS054-S-013 (15 Jan 1993) --- Harbaugh talks to a radio station from the flight deck of Endeavour while, in the background, several crewmates await their turns to communicate with other stations. The scene was recorded at 13:57:20:20 GMT, Jan. 15, 1993.

  1. STS 41-G crew photo taken on the flight deck of the Challenger during flight

    NASA Image and Video Library

    1984-10-13

    41G-19-006 (5-13 Oct. 1984) --- The seven-member 41-G crew assembles for a group shot on the flight deck of the Earth-orbiting space shuttle Challenger. Robert L. Crippen, commander, is in center of the back row. Others pictured are (front row, l.-r.) Jon A. McBride, pilot; Sally K. Ride, Kathryn D. Sullivan and David C. Leestma, all mission specialists; and Paul D. Scully-Power (left) and Marc Garneau, both payload specialists, on the back row. Garneau represents the National Research Council of Canada and Scully-Power is a civilian oceanographer with the U.S. Navy. Photo credit: NASA

  2. Flight deck human factors issues for National Airspace System (NAS) en route controller pilot data link communications (CPDLC)

    DOT National Transportation Integrated Search

    2017-05-01

    Fundamental differences exist between transmissions of Air Traffic Control clearances over voice and those transmitted via Controller Pilot Data Link Communications (CPDLC). This paper provides flight deck human factors issues that apply to processin...

  3. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  4. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  5. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  6. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  7. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  8. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  9. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  10. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  11. 76 FR 62603 - Special Conditions: The Boeing Company, Model 747-8; Upper Deck Occupancy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Conditions No. 25-446-SC] Special Conditions: The Boeing Company, Model 747-8; Upper Deck Occupancy AGENCY.... SUMMARY: These special conditions are issued for the Boeing Model 747-8 airplane. These airplanes will... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These...

  12. STS-30 aft flight deck onboard view of overhead window, Earth limb, cow photo

    NASA Image and Video Library

    1989-05-08

    STS030-10-008 (4-8 May 1989) --- Since the beginning manned space travel, astronauts have taken with them items of personal sentiment. In case of Mark C. Lee, STS-30 mission specialist, a picture of a cow testifies to his background as one reared on a Wisconsin farm. The scene, through a flight deck aft window, also shows Earth some 160 nautical miles away.

  13. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... new control architecture and a full digital flight control system which provides flight envelope... Administrator considers necessary to establish a level of safety equivalent to that established by the existing... metal with composite empennage and control surfaces. The Model EMB-550 airplane is designed for 8...

  14. MS Walheim poses with a Hasselblad camera on the flight deck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5017 (8 April 2002) --- Astronaut Rex J. Walheim, STS-110 mission specialist, holds a camera on the aft flight deck of the Space Shuttle Atlantis. A blue and white Earth is visible through the overhead windows of the orbiter. The image was taken with a digital still camera.

  15. 77 FR 41041 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... terminal ``A'' of the electrically heated flight deck window 1. This AD requires repetitive inspections for damage of the electrical connections at terminal ``A'' of the left and right flight deck window 1, and corrective actions if necessary. This AD also allows for replacing a flight deck window 1 with a new improved...

  16. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  17. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  18. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  19. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  20. Subsonic stability and control derivatives for an unpowered, remotely piloted 3/8-scale F-15 airplane model obtained from flight test

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Shafer, M. F.

    1976-01-01

    In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.

  1. View of HST as it approaches Endeavour, taken from aft flight deck window

    NASA Image and Video Library

    1993-12-04

    STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.

  2. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  3. Currie at RMS controls on the aft flight deck

    NASA Image and Video Library

    1998-12-05

    S88-E-5030 (12-05-98) --- Astronaut Nancy J. Currie gently mated the 12.8-ton Unity connecting module to Endeavour's docking system late afternoon of Dec. 5, successfully completing the first task in assembling the new International Space Station. Deftly manipulating the shuttle's 50-foot-long robot arm, Currie placed Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling astronaut Robert D. Cabana, mission commander, to fire downward maneuvering jets, locking the shuttle's docking system to one of two Pressurized Mating Adapters (PMA) attached to Unity. Turning her head to her right, Currie is using one of the TV monitors on the aft flight deck to assist in the precise maneuver. The photo was taken with an electronic still camera (ESC) at 22:31:08 GMT, Dec. 5.

  4. Investigating mode errors on automated flight decks: illustrating the problem-driven, cumulative, and interdisciplinary nature of human factors research.

    PubMed

    Sarter, Nadine

    2008-06-01

    The goal of this article is to illustrate the problem-driven, cumulative, and highly interdisciplinary nature of human factors research by providing a brief overview of the work on mode errors on modern flight decks over the past two decades. Mode errors on modem flight decks were first reported in the late 1980s. Poor feedback, inadequate mental models of the automation, and the high degree of coupling and complexity of flight deck systems were identified as main contributors to these breakdowns in human-automation interaction. Various improvements of design, training, and procedures were proposed to address these issues. The author describes when and why the problem of mode errors surfaced, summarizes complementary research activities that helped identify and understand the contributing factors to mode errors, and describes some countermeasures that have been developed in recent years. This brief review illustrates how one particular human factors problem in the aviation domain enabled various disciplines and methodological approaches to contribute to a better understanding of, as well as provide better support for, effective human-automation coordination. Converging operations and interdisciplinary collaboration over an extended period of time are hallmarks of successful human factors research. The reported body of research can serve as a model for future research and as a teaching tool for students in this field of work.

  5. 78 FR 75287 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... appropriate safety standards for the C-series airplanes because of a novel or unusual design feature, special... Features The C-series airplanes will incorporate the following novel or unusual design features: new... Series Airplanes; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation...

  6. STS-36 Pilot Casper reaches for laptop computer on OV-104's flight deck

    NASA Image and Video Library

    1990-03-03

    STS036-03-027 (3 March 1990) --- STS-36 Pilot John H. Casper reaches for the shuttle portable onboard computer (SPOC), a laptop computer, while at the pilots station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Casper, seated in the pilot’s seat, lifts the SPOC from the forward window ledge. Appearing around him are forward crew compartment windows, the head up display (HUD), the flight mirror assembly, and a checklist attached to control panel O3. Casper and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for a Department of Defense (DOD) devoted mission.

  7. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  8. STS-99 Kregel & Thiele show mapping SRTM techniques on OV-105's flight deck

    NASA Image and Video Library

    2000-02-13

    S99-E-5258 (13 February 2000) --- Astronauts Kevin R. Kregel (left), mission commander, and Gerhard P.J. Thiele demonstrate mapping techniques for the Space Radar Topography Mission (SRTM) using a payload-equipped Shuttle and a globe on Endeavour's flight deck. The two are joined by astronaut Janet L. Kavandi, mission specialist, on the SRTM's Red Team. Thiele is a mission specialist representing the European Space Agency (ESA).

  9. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  10. A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    NASA Technical Reports Server (NTRS)

    Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.

    1974-01-01

    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.

  11. 77 FR 41931 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... keyways of the number 2 windows on the flight deck; re-clocking the connector keyways to 12 o'clock, if necessary; and replacing the coil cord assemblies on both number 2 windows on the flight deck. That NPRM was prompted by reports of arcing and smoke at the left number 2 window in the flight deck. This action revises...

  12. STS-39 MS Veach monitors AFP-675 panel on OV-103's aft flight deck

    NASA Image and Video Library

    1991-05-06

    STS039-09-036 (28 April-6 May 1991) --- Astronaut Charles L. (Lacy) Veach monitors experiment data on the aft flight deck of the Earth-orbiting Discovery. The photograph was taken with a 35mm camera. Veach and six other NASA astronauts spent over eight days in space busily collecting data for this mission, dedicated to the Department of Defense.

  13. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  14. Pressure Distribution Over the Fuselage of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V; Lundquist, Eugene E

    1932-01-01

    This report presents the results obtained from pressure distribution tests on the fuselage of a PW-9 pursuit airplane in a number of conditions of flight. The investigation was made to determine the contribution of the fuselage to the total lift in conditions considered critical for the wing structure, and also to determine whether the fuselage loads acting simultaneously with the maximum tail loads were of such a character as to be of concern with respect to the structural design of other parts of the airplane. The results show that the contribution of the fuselage toward the total lift is small on this airplane. Aerodynamic loads on the fuselage are, in general, unimportant from the structural viewpoint, and in most cases they are of such character that, if neglected, a conservative design results. In spins, aerodynamic forces on the fuselage produce diving moments of appreciable magnitude and yawing moments of small magnitude, but opposing the rotation of the airplane. A table of cowling pressures for various maneuvers is included in the report.

  15. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  16. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  17. OAST-Flyer is deployed by the Remote Manipulator System (RMS) as viewed from the flight deck

    NASA Image and Video Library

    1996-01-14

    STS072-320-014 (17 Jan. 1996) --- The end effect of the Space Shuttle Endeavour's Remote Manipulator System (RMS) is about to grapple the Office of Aeronautics and Space Technology's (OAST) -- Flyer satellite. The view was recorded with a 35mm camera aimed through one of Endeavour's overheard windows on the aft flight deck.

  18. Astronaut Walz on flight deck with IMAX camera

    NASA Image and Video Library

    1996-11-04

    STS079-362-023 (16-26 Sept. 1996) --- Astronaut Carl E. Walz, mission specialist, positions the IMAX camera for a shoot on the flight deck of the Space Shuttle Atlantis. The IMAX project is a collaboration among NASA, the Smithsonian Institution's National Air and Space Museum, IMAX Systems Corporation and the Lockheed Corporation to document in motion picture format significant space activities and promote NASA's educational goals using the IMAX film medium. This system, developed by IMAX of Toronto, uses specially designed 65mm cameras and projectors to record and display very high definition color motion pictures which, accompanied by six-channel high fidelity sound, are displayed on screens in IMAX and OMNIMAX theaters that are up to ten times larger than a conventional screen, producing a feeling of "being there." The 65mm photography is transferred to 70mm motion picture films for showing in IMAX theaters. IMAX cameras have been flown on 14 previous missions.

  19. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  20. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  1. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  2. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  3. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  4. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  5. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  6. STS-46 Commander Shriver eats candy (M&Ms) on OV-104's aft flight deck

    NASA Image and Video Library

    1992-08-08

    STS046-35-013 (31 July-8 Aug. 1992) --- Astronaut Loren J. Shriver, STS-46 commander, pursues several floating chocolate candies on the flight deck of the Space Shuttle Atlantis as it makes one of its 127 total orbits for the eight-day mission. Shriver, wearing a headset for communications with ground controllers, joined four other NASA astronauts and two European scientists for the mission.

  7. Directional Stability of Towed Airplanes

    NASA Technical Reports Server (NTRS)

    Soehne, W.

    1956-01-01

    So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.

  8. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with a Fowler Flap

    NASA Technical Reports Server (NTRS)

    Dearborn, C H; Soule, H A

    1936-01-01

    Full-scale wind-tunnel and flight tests were made of a Fairchild 22 airplane equipped with a Fowler flap to determine the effect of the flap on the performance and control characteristics of the airplane. In the wind-tunnel tests of the airplane with the horizontal tail surfaces removed, the flap was found to increase the maximum lift coefficient from 1.27 to 2.41. In the flight test, the flap was found to decrease the minimum speed from 58.8 to 44.4 miles per hour. The required take-off run to attain an altitude of 50 feet was reduced from 935 feet to 700 feet by the use of the flap, the minimum distance being obtained with five-sixths full deflection. The landing run from a height of 50 feet was reduced one-third. The longitudinal and directional control was adversely affected by the flap, indicating that the design of the tail surfaces is more critical with a flapped than a plain wing.

  9. An Investigation of the Drag Characteristics of a Tailless Delta-Wing Airplane in Flight, Including Comparison with Wind-Tunnel Data

    NASA Technical Reports Server (NTRS)

    Rolls, L. Stewart; Wingrove, Rodney C.

    1958-01-01

    A series of flight tests were conducted to determine the lift and drag characteristics of an F4D-1 airplane over a Mach number range of 0.80 to 1.10 at an altitude of 40,000 feet. Apparently satisfactory agreement was obtained between the flight data and results from wind-tunnel tests of an 0.055-scale model of the airplane. Further tests show the apparent agreement was a consequence of the altitude at which the first tests were made.

  10. STS-30 aft flight deck onboard view of overhead window, Earth limb, cow photo

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Since the beginning of manned space travel, astronauts have taken onboard with them items of person sentiment. During STS-30 onboard Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist Mark C. Lee brought along a photograph of a cow. The photo testifies to his background as one reared on a Wisconsin farm and is displayed on aft flight deck alongside an overhead window. Outside the window, some 160 nautical miles away, is the cloud-covered Earth surface.

  11. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  12. The dynamic-response characteristics of a 35 degree swept-wing airplane as determined from flight measurements

    NASA Technical Reports Server (NTRS)

    Triplett, William C; Brown, Stuart C; Smith, G Allan

    1955-01-01

    The longitudinal and lateral-directional dynamic-response characteristics of a 35 degree swept-wing fighter-type airplane determined from flight measurements are presented and compared with predictions based on theoretical studies and wind-tunnel data. Flights were made at an altitude of 35,000 feet covering the Mach number range of 0.50 to 1.04. A limited amount of lateral-directional data were also obtained at 10,000 feet. The flight consisted essentially of recording transient responses to pilot-applied pulsed motions of each of the three primary control surfaces. These transient data were converted into frequency-response form by means of the Fourier transformation and compared with predicted responses calculated from the basic equations. Experimentally determined transfer functions were used for the evaluation of the stability derivatives that have the greatest effect on the dynamic response of the airplane. The values of these derivatives, in most cases, agreed favorably with predictions over the Mach number range of the test.

  13. Launch, Low-Speed, and Landing Characteristics Determined from the First Flight of the North American X-15 Research Airplane

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W.; Matranga, Gene J.

    1959-01-01

    The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.

  14. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  15. Currie at RMS controls on the aft flight deck

    NASA Image and Video Library

    1998-12-05

    S88-E-5010 (12-05-98) --- Operating at a control panel on Endeavour's aft flight deck, astronaut Nancy J. Currie works with the robot arm prior to mating the 12.8-ton Unity connecting module to Endeavour's docking system. The mating took place on late afternoon of Dec. 5. A nearby monitor provides a view of the remote manipulator system's (RMS) movements in the cargo bay. The feat marked an important step in assembling the new International Space Station. Manipulating the shuttle's 50-foot-long robot arm, Currie placed Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling Robert D. Cabana, mission commander to fire downward maneuvering jets, locking the shuttle's docking system to one of two Pressurized Mating Adapters (PMA) attached to Unity. The mating occurred at 5:45 p.m. Central time, as Endeavour sailed over eastern China.

  16. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.

    PubMed

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M; Nachon, Florian; Masson, Patrick; Furlong, Clement E; Lockridge, Oksana

    2011-11-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such "fume events". Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers

    PubMed Central

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana

    2011-01-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such “fume events”. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24–48 hours after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309

  18. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  19. Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Hardy, G. H.; Warner, D. N., Jr.

    1983-01-01

    An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings.

  20. 77 FR 40832 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ability of the flight crew to read primary displays for airplane attitude, altitude, or airspeed, and... displays for airplane attitude, altitude, or airspeed, and consequently reduce the ability of the flight...) malfunctions, which could affect the ability of the flight crew to read primary displays for airplane attitude...

  1. Stability of airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    The author attempts to correct the misconception that piloting an airplane requires extraordinary skill and balance. He also tries to show that airplanes are extremely stable in flight. Some of the major points covered in this article include: automatic pilots, airplanes designed to be stable, and the reliance on mathematics to help in designing stable aircraft.

  2. Analysis of sonic boom measurements near shock wave extremities for flight near Mach 1.0 and for airplane accelerations

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1974-01-01

    The analysis of the 14 low-altitude transonic flights showed that the prevailing meteorological consideration of the acoustic disturbances below the cutoff altitude during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid over a wide range of meteorological conditions and provides a reasonable estimate of the airplane ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed excellent agreement with observations near the caustic, but the predicted overpressure levels were significantly lower than those observed far from the caustic. The analysis of caustics produced by inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the threshold Mach number showed that folds and associated caustics were produced by slight changes in the airplane ground speed. These caustic intensities ranged from 1 to 3 time the nominal steady, level flight intensity.

  3. STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck

    NASA Image and Video Library

    1994-07-23

    STS065-44-014 (8-23 July 1994) --- Astronaut Robert D. Cabana, mission commander, is seen on the Space Shuttle Columbia's flight deck with the Shuttle Amateur Radio Experiment (SAREX). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the Shuttle.

  4. Stability and Controls Analysis and Flight Test Results of a 24-Foot Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.

    2008-01-01

    The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.

  5. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G; Koven, William

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory.

  6. MS Hadfield aims a laser range finder through a window on the aft flight deck of Endeavour

    NASA Image and Video Library

    2001-04-21

    S100-E-5141 (21 April 2001) --- Astronaut Chris A. Hadfield of the Canadian Space Agency (CSA) uses a laser ranging device to keep up with the precise location of the International Space Station (ISS) from his post on the aft flight deck of the Space Shuttle Endeavour. The image was recorded with a digital still camera.

  7. Flight-test data on the static fore-and-aft stability of various German airplanes

    NASA Technical Reports Server (NTRS)

    Hubner, Walter

    1933-01-01

    The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.

  8. STS-46 Commander Shriver eats candy (M and Ms) on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Commander Loren J. Shriver, wearing a communications kit assembly headset and with his mouth open, pursues several floating chocolate-covered peanut candies (M and Ms) on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Shriver is positioned in front of overhead window W7. Outside the window the cloud-covered surface of the Earth and the Earth's limb are visible.

  9. Agricultural Airplane Mission Time Structure Characteristics

    NASA Technical Reports Server (NTRS)

    Jewel, J. W., Jr.

    1982-01-01

    The time structure characteristics of agricultural airplane missions were studied by using records from NASA VGH flight recorders. Flight times varied from less than 3 minutes to more than 103 minutes. There was a significant reduction in turning time between spreading runs as pilot experience in the airplane type increased. Spreading runs accounted for only 25 to 29 percent of the flight time of an agricultural airplane. Lowering the longitudinal stick force appeared to reduce both the turning time between spreading runs and pilot fatigue at the end of a working day.

  10. An Apparatus for Varying Effective Dihedral in Flight with Application to a Study of Tolerable Dihedral on a Conventional Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Kauffman, William M; Liddell, Charles J , Jr; Smith, Allan; Van Dyke, Rudolph D , Jr

    1949-01-01

    An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented.

  11. Shared Situation Awareness in the Flight Deck-ATC System

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Hansman, R. John; Farley, Todd C.

    1998-01-01

    New technologies and operational concept changes have been proposed for implementation in the National Airspace System (NAS). These changes include improved datalink (CPDLC) technologies for providing improved weather, traffic, Flight Object (FO) and navigation information to the pilot and controller, and new forms of automation for both the flight deck and air traffic management system. In addition, the way business is conducted in the NAS is under consideration. Increases in the discretion provided to pilots (and dispatchers in commercial airlines) are being contemplated in an effort to increase system capacity and flexibility. New concepts of operation (e.g., Collaborative Decision Making and Free Flight) allow for more control to be given to the cockpit or airline with correspondingly greater monitoring responsibilities on the ground. In addition, new technologies and displays make possible much greater information flow between the ground and the cockpit and also dramatic changes in the type of information provided. Designing to support these changes suggests two integrally linked questions: (1) What display technologies and information are needed to support desired changes responsibilities? (2) How will the changes in information availability influence the negotiation process between the cockpit and the ground? Each of these proposed changes (both in technology and operational concept) will have a marked impact on the performance, workload, and Situation Awareness (SA) of both pilots and controllers. Typically such changes are evaluated independently in terms of the effects of the proposed change on either pilot performance or ATC performance. It is proposed here, however, that in order to fully understand the effects of such changes, the joint pilot/controller system must be considered.

  12. Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station

    NASA Image and Video Library

    1982-03-31

    S82-28906 (27 March 1982) --- Astronaut C. Gordon Fullerton, STS-3 pilot, mans the right hand aft station of the flight deck on the Earth-orbiting Columbia. The photograph was taken with a 35mm camera by astronaut Jack R. Lousma, crew commander. The "Go Blue" sticker is a University of Michigan memento of Lousma, and the Air Force sign was put up by Fullerton, a USAF colonel. Lousma, a USMC colonel, received his BS degree in aeronautical engineering in 1959 from UM. One of two aft windows for cargo bay viewing and one of two ceiling windows are visible in the photo. Fullerton and Lousma watched the activity of the remote manipulator system (RMS) arm out the lower window and they took a number of photos of Earth from the upper window. Photo credit: NASA

  13. Closeup view of the Pilot's Seat on the Flight Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Pilot's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the pilot's ingress. Control panels R1 and R2 are prominent in this view. Panel R1 has switches for control and maintenance of on-board cryogenics for the fuel cells among other functions and panel R2 has switches and controls for the Auxiliary Power Units, ET umbilical doors as well as other operational controls. Note the portable fire extinguisher in the lower right corner of the image. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Andriyich-Varda, D.; Whitmore, S. A.

    1984-01-01

    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented.

  15. Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Hootman, James A

    1938-01-01

    Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.

  16. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; hide

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  17. Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.

  18. 76 FR 27168 - Airmen Transition to Experimental or Unfamiliar Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... airplanes. The current edition of AC 90-89, Amateur-Built and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight-test program in an... airplanes and to flight instructors who teach in these airplanes. This information and guidance contains...

  19. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  20. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  1. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  2. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  3. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  4. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  5. Various view with fish-eye lens of STS-103 crew on aft flight deck

    NASA Image and Video Library

    2000-01-28

    STS103-375-019 (19-27 December 1999) ---.Six members of the STS-103 crew are seen in this "fish-eye" lens scene taken on Discovery's flight deck during the deployment of the Hubble Space Telescope (HST). From left are astronauts Jean-Francois Clervoy, C. Michael Foale, Claude Nicollier, Curtis L. Brown, Jr., John M. Grunsfeld and Scott J. Kelly. Brown and Kelly are commander and pilot, respectively. All the others are mission specialists, with international MS Nicollier and Clervoy representing the European Space Agency (ESA). Astronaut Steven L. Smith, payload commander, took the photo.

  6. Flight Deck Interval Management Display. [Elements, Information and Annunciations Database User Guide

    NASA Technical Reports Server (NTRS)

    Lancaster, Jeff; Dillard, Michael; Alves, Erin; Olofinboba, Olu

    2014-01-01

    The User Guide details the Access Database provided with the Flight Deck Interval Management (FIM) Display Elements, Information, & Annunciations program. The goal of this User Guide is to support ease of use and the ability to quickly retrieve and select items of interest from the Database. The Database includes FIM Concepts identified in a literature review preceding the publication of this document. Only items that are directly related to FIM (e.g., spacing indicators), which change or enable FIM (e.g., menu with control buttons), or which are affected by FIM (e.g., altitude reading) are included in the database. The guide has been expanded from previous versions to cover database structure, content, and search features with voiced explanations.

  7. STS-46 'blue' shift crewmembers look up from work on OV-104's flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 'blue' shift crewmembers look up from checklist procedures to have their picture taken on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Seated at the commanders station (left) is Pilot Andrew M. Allen with Italian Payload Specialist Franco Malerba positioned in front of the center console and European Space Agency (ESA) Mission Specialist seated at the pilots station (right). MS Marsha S. Ivins is in the interdeck access hatch at the right bottom corner of the photo.

  8. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    NASA Technical Reports Server (NTRS)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  9. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. STS-99 MS Kavandi works on OV-105's flight deck

    NASA Image and Video Library

    2000-04-05

    STS099-329-019 (11-22 February 2000) --- Astronaut Janet L. Kavandi, mission specialist, appears joyous over the success of the Shuttle Radar Topography Mission (SRTM) and other experiments on the flight deck of the Space Shuttle Endeavour. The Red Team member is standing beneath an electronic still camera (ESC) mounted in Endeavour's overhead windows. The camera stayed busy throughout the ll-day mission taking vertical imagery of Earth points of opportunity for the EarthKAM project. Students across the United States and in France, Germany and Japan took photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.

  11. Simulator study of flight characteristics of several large, dissimilar, cargo transport airplanes during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.

    1984-01-01

    A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.

  12. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  13. 77 FR 12158 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... limited to not more than 0.78 Mach. (6) The climb ceiling obtained from the Flight Planning and Cruise... damage to airplane structure, which could adversely affect the airplane's continued safe flight and... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...

  14. STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Commander Kenneth Cameron, wearing headset and headband equipped with penlight flashlight, uses the Shuttle Amateur Radio Experiment II (SAREX-II) on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Cameron, positioned just behind the pilots seat, talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of the pilots seat. The SAREX scan converter (a white box) is seen just above Cameron's head attached to overhead panel O9. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity

  15. 76 FR 79560 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...-1323; Directorate Identifier 2010-NM-212-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-223F and -243F airplanes; and Model A340-200, -300, -500, and -600 series airplanes... airplane flight manual. We are proposing this AD to prevent movement of the elevators to zero position...

  16. Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge Deck, Navigating Bridge, Forecastle Deck, Upper Deck, Second Deck and Hold - Saugatuck, James River Reserve Fleet, Newport News, Newport News, VA

  17. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  18. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  19. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  20. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  1. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  2. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  3. 78 FR 27015 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 and A330-300 series airplanes, and Model A340-200 and A340-300 series airplanes... seal on a solenoid. This AD requires, depending on airplane configuration, modifying three flight...

  4. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  5. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  6. Flight Tests of N.A.C.A. Nose-slot Cowlings on the BFC-1 Airplane

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1939-01-01

    The results of flight tests of four nose-slot cowling designs with several variations in each design are presented. The tests were made in the process of developing the nose-slot cowling. The results demonstrate that a nose-slot cowling may be successfully applied to an airplane and that it utilizes the increased slipstream velocity of low-speed operation to produce increased cooling pressure across the engine. A sample design calculation using results from wind-tunnel, flight, and ground tests is given in an appendix to illustrate the design procedure.

  7. 77 FR 48469 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ...-0808; Directorate Identifier 2010-NM-170-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes, and Model A340-200 and A340-300 series airplanes. This proposed AD was prompted by reports of an... require, depending on airplane configuration, modifying three flight control primary computers (FCPCs...

  8. STS-48 Pilot Reightler on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Pilot Kenneth S. Reightler, Jr, positioned under overhead window W8, poses for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  9. STS-35 MS Hoffman operates ASTRO-1 MPC on OV-102's aft flight deck

    NASA Image and Video Library

    1990-12-10

    STS035-12-015 (2-11 Dec 1990) --- Astronaut Jeffrey A. Hoffman, STS 35 mission specialist, uses a manual pointing controller (MPC) for the Astro-1 mission's Instrument Pointing System (IPS). By using the MPC, Hoffman and other crewmembers on Columbia's aft flight deck, were able to command the IPS, located in the cargo bay, to record astronomical data. Hoffman is serving the "Blue" shift which complemented the currently sleeping "Red" shift of crewmembers as the mission collected scientific data on a 24-hour basis. The scene was photographed with a 35mm camera.

  10. Flight Measurements of the Flying Qualities of a Lockheed P-80A Airplane (Army No. 44-85099) - Stalling Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.

    1947-01-01

    This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.

  11. Motion of the two-control airplane in rectilinear flight after initial disturbances with introduction of controls following an exponential law

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander

    1937-01-01

    An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.

  12. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.

    1976-01-01

    An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.

  13. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...

  14. Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1959-01-01

    The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.

  15. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  16. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  17. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  18. Pilots' monitoring strategies and performance on automated flight decks: an empirical study combining behavioral and eye-tracking data.

    PubMed

    Sarter, Nadine B; Mumaw, Randall J; Wickens, Christopher D

    2007-06-01

    The objective of the study was to examine pilots' automation monitoring strategies and performance on highly automated commercial flight decks. A considerable body of research and operational experience has documented breakdowns in pilot-automation coordination on modern flight decks. These breakdowns are often considered symptoms of monitoring failures even though, to date, only limited and mostly anecdotal data exist concerning pilots' monitoring strategies and performance. Twenty experienced B-747-400 airline pilots flew a 1-hr scenario involving challenging automation-related events on a full-mission simulator. Behavioral, mental model, and eye-tracking data were collected. The findings from this study confirm that pilots monitor basic flight parameters to a much greater extent than visual indications of the automation configuration. More specifically, they frequently fail to verify manual mode selections or notice automatic mode changes. In other cases, they do not process mode annunciations in sufficient depth to understand their implications for aircraft behavior. Low system observability and gaps in pilots' understanding of complex automation modes were shown to contribute to these problems. Our findings describe and explain shortcomings in pilot's automation monitoring strategies and performance based on converging behavioral, eye-tracking, and mental model data. They confirm that monitoring failures are one major contributor to breakdowns in pilot-automation interaction. The findings from this research can inform the design of improved training programs and automation interfaces that support more effective system monitoring.

  19. A flight investigation of the effect of mass distribution and control setting on the spinning of the XN2Y-1 airplane

    NASA Technical Reports Server (NTRS)

    Scudder, N F

    1935-01-01

    The investigation of the effect of mass distribution on the spinning of airplanes initiated with tests on the NY-1 airplane has been continued by tests on another airplane in order to increase the scope of the information and to observe particularly the behavior of an airplane that shows considerable change in sideslip angle for its various conditions of spinning. The XN2Y-1 naval training biplane was used for the present tests in which changes of ballast along the longitudinal and lateral axes and changes of aileron, stabilizer, and elevator settings were made. The effects of these changes on the steady spin were measured in flight.

  20. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  1. Flight measured and calculated exhaust jet conditions for an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Burcham, Frank W., Jr.

    1988-01-01

    The exhaust jet conditions, in terms of temperature and Mach number, were determined for a nozzle-aft end acoustic study flown on an F-15 aircraft. Jet properties for the F100 EMD engines were calculated using the engine manufacturer's specification deck. The effects of atmospheric temperature on jet Mach number, M10, were calculated. Values of turbine discharge pressure, PT6M, jet Mach number, and jet temperature were calculated as a function of aircraft Mach number, altitude, and power lever angle for the test day conditions. At a typical test point with a Mach number of 0.9, intermediate power setting, and an altitude of 20,000 ft, M10 was equal to 1.63. Flight measured and calculated values of PT6M were compared for intermediate power at altitudes of 15500, 20500, and 31000 ft. It was found that at 31000 ft, there was excellent agreement between both, but for lower altitudes the specification deck overpredicted the flight data. The calculated jet Mach numbers were believed to be accurate to within 2 percent.

  2. Hoshide in intra-deck hatch

    NASA Image and Video Library

    2008-06-01

    S124-E-005419 (1 June 2008) --- Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, STS-124 mission specialist, smiles for a photo while in the hatch which connects the flight deck and middeck of Space Shuttle Discovery.

  3. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  4. Flight performance of the TCV B-737 airplane at Kennedy Airport using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L. V.

    1979-01-01

    The terminal configured vehicle (TCV) B 737 was flown in demonstration of the time reference scanning beam/microwave landing system (TRSB/MLS). The flight performance of the TCV airplane during the demonstration automatic approaches and landings while utilizing TRSB/MLS guidance is reported. The TRSB/MLS is shown to provide the terminal area guidance necessary for flying curved automatic approaches with short finals.

  5. Leah Robson, Bridgette Puljiz and Zachary Johnson(back to camera) in the flight deck of NASA's 747 shuttle carrier during Take Your Children to Work Day

    NASA Image and Video Library

    2004-06-22

    Leah Robson and Bridgette Puljiz of Tehachapi (seated) and Zachary Johnson of Palmdale (back to camera) look over the maze of dials and switches in the flight deck of NASA's modified Boeing 747 space shuttle carrier aircraft during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.

  6. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  7. Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.

    2013-01-01

    Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute

  8. Airplane Balance

    NASA Technical Reports Server (NTRS)

    Huguet, L

    1921-01-01

    The authors argue that the center of gravity has a preponderating influence on the longitudinal stability of an airplane in flight, but that manufacturers, although aware of this influence, are still content to apply empirical rules to the balancing of their airplanes instead of conducting wind tunnel tests. The author examines the following points: 1) longitudinal stability, in flight, of a glider with coinciding centers; 2) the influence exercised on the stability of flight by the position of the axis of thrust with respect to the center of gravity and the whole of the glider; 3) the stability on the ground before taking off, and the influence of the position of the landing gear. 4) the influence of the elements of the glider on the balance, the possibility of sometimes correcting defective balance, and the valuable information given on this point by wind tunnel tests; 5) and a brief examination of the equilibrium of power in horizontal flight, where the conditions of stability peculiar to this kind of flight are added to previously existing conditions of the stability of the glider, and interfere in fixing the safety limits of certain evolutions.

  9. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  10. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  11. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  12. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  13. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  14. An analysis of life expectancy of airplane wings in normal cruising flight

    NASA Technical Reports Server (NTRS)

    Putnam, Abbott A

    1945-01-01

    In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed. The procedure selected for the analysis is believed to be simple and reasonably accurate, though slightly conservative.

  15. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  16. Super Guppy in Flight

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Super Guppy, bigger sister of the aptly named Pregnant Guppy, was the only airplane in the world capable of carrying a complete S-IVB stage. This aircraft was built by John M. Conroy of Aero Spaceliners, Incorporated, who started with the fuselages of a surplus Boeing C-97 Stratocruiser, ballooned out the upper decks enormously, and hinged the front sections so that they could be folded back 110 degrees. The Super Guppy flew smoothly at a 250-mph cruising speed, and its cargo deck provided a 25-foot clear diameter.

  17. STS-65 Pilot Halsell cleans window on the aft flight deck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the aft flight deck of Columbia, Orbiter Vehicle (OV) 102, STS-65 Pilot James D. Halsell, Jr cleans off overhead window W8. Mission Specialist (MS) Carl E. Walz looks on (photo's edge). A plastic toy dinosaur, velcroed in front of W9, also appears to be watching the housekeeping activity. A variety of onboard equipment including procedural checklists, a spotmeter, a handheld microphone, and charts are seen in the view. The two shared over fourteen days in Earth orbit with four other NASA astronauts and a Japanese payload specialist in support of the second International Microgravity Laboratory (IML-2) mission.

  18. STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  19. STS-48 Commander Creighton on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Commander John O. Creighton, positioned under overhead window W8, interrupts an out-the-window observation to display a pleasant countenance for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  20. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 deg, respectively.