Science.gov

Sample records for airport ground support

  1. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    SciTech Connect

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  2. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  3. English for Airport Ground Staff

    ERIC Educational Resources Information Center

    Cutting, Joan

    2012-01-01

    This article describes part of a European Commission Leonardo project that aimed to design a multimedia course for English language learners seeking work as ground staff in European airports. The structural-functional analysis of the dialogues written from the course showed that, across the four trades explored (security guards, ground handlers,…

  4. Surveillance of ground vehicles for airport security

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Wang, Zhonghai; Shen, Dan; Ling, Haibin; Chen, Genshe

    2014-06-01

    Future surveillance systems will work in complex and cluttered environments which require systems engineering solutions for such applications such as airport ground surface management. In this paper, we highlight the use of a L1 video tracker for monitoring activities at an airport. We present methods of information fusion, entity detection, and activity analysis using airport videos for runway detection and airport terminal events. For coordinated airport security, automated ground surveillance enhances efficient and safe maneuvers for aircraft, unmanned air vehicles (UAVs) and unmanned ground vehicles (UGVs) operating within airport environments.

  5. Radar returns from ground clutter in vicinity of airports

    NASA Technical Reports Server (NTRS)

    Raemer, H. R.; Rahgavan, R.; Bhattacharya, A.

    1988-01-01

    The objective of this project is to develop a dynamic simulation of the received signals from natural and man-made ground features in the vicinity of airports. The simulation is run during landing and takeoff stages of a flight. Vugraphs of noteworthy features of the simulation, ground clutter data bases, the development of algorithms for terrain features, typical wave theory results, and a gravity wave height profile are given.

  6. Airports, Hotel, and Ground Transportation Information | Division of Cancer Prevention

    Cancer.gov

    Airports in and near Washington, DC Reagan National Approximate 30 minute drive from Rockville* Has its own Metro stop on the blue and yellow lines in Virginia NOTE: This airport may be the closest and easiest option if not renting a car or do not want to pay for an airport cab/shuttle.   Dulles International Approximate 1 hour drive from Rockville* |

  7. Analysis and Modeling of Ground Operations at Hub Airports

    NASA Technical Reports Server (NTRS)

    Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.

    2000-01-01

    Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.

  8. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-94

    USGS Publications Warehouse

    Claar, D.V.; Lilly, M.R.

    1995-01-01

    Ground-water and surface-water elevation data were collected at 52 sites from 1990 to 1994 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water elevations were measured in 32 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1994, the data-collection area was expanded to include the entire airport area.

  9. Software Tools to Support Research on Airport Departure Planning

    NASA Technical Reports Server (NTRS)

    Carr, Francis; Evans, Antony; Feron, Eric; Clarke, John-Paul

    2003-01-01

    A simple, portable and useful collection of software tools has been developed for the analysis of airport surface traffic. The tools are based on a flexible and robust traffic-flow model, and include calibration, validation and simulation functionality for this model. Several different interfaces have been developed to help promote usage of these tools, including a portable Matlab(TM) implementation of the basic algorithms; a web-based interface which provides online access to automated analyses of airport traffic based on a database of real-world operations data which covers over 250 U.S. airports over a 5-year period; and an interactive simulation-based tool currently in use as part of a college-level educational module. More advanced applications for airport departure traffic include taxi-time prediction and evaluation of "windowing" congestion control.

  10. Grimsvotn ash plume detection by ground-based elastic Lidar at Dublin Airport on May 2011

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Martucci, G.; O'Dowd, C.; sauvage, L.; Nolan, P.

    2011-12-01

    Volcanic emissions comprising steam, ash, and gases are injected into the atmosphere and produce effects affecting Earth's climate. Volcanic ash is composed of non-spherical mineral and metal (particles spanning a large size range. The largest ones are likely to sediment quickly close to the eruption site. The ash component, and sulphate formed by subsequent oxidation of the SO2 occurring in clouds, poses a variety of hazards to humans and machinery on the ground, as well as damage to the aircrafts which fly through the ash layers. To mitigate such hazards the Irish Aviation Authority (IAA) equipped with an ALS Lidar, produced by LEOSPHERE, deployed at Dublin Airport, which provides real-time range-corrected backscatter signal and depolarization ratio profiles allowing the detection and monitoring of ash plumes. On May, 21st 2011, the Grimsvotn Icelandic volcano erupted, sending a plume of ash, smoke and steam 12 km into the air and causing flights to be disrupted at Iceland's main Keflavik airport and at a number of North European airports. Due to upper level global circulation, the ash plume moved from Iceland towards Ireland and North of Scotland, and was detected a number of times by the ALS Lidar above Dublin Airport between May, 21st and 25th. A preliminary analysis of the detected volcanic plume is presented here as well as a preliminary intercomparison of the microphysical and optical characteristics with the Eyjafjallajökull eruption in 2010.

  11. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  12. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  13. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    NASA Technical Reports Server (NTRS)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  14. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This year's project, like the previous Aerospace Group's project, involves a lunar transportation system. The basic time line will be the years 2010-2030 and will be referred to as a second generation system, as lunar bases would be present. The project design completed this year is referred to as the Lunar Lander Ground Support System (LLGSS). The area chosen for analysis encompasses a great number of vehicles and personnel. The design of certain elements of the overall lunar mission are complete projects in themselves. For this reason the project chosen for the Senior Aerospace Design is the design of specific servicing vehicles and additions or modifications to existing vehicles for the area of concern involving servicing and maintenance of the lunar lander while on the surface.

  15. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  16. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  17. Lunar lander ground support system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design of the Lunar Lander Ground Support System (LLGSS) is examined. The basic design time line is around 2010 to 2030 and is referred to as a second generation system, as lunar bases and equipment would have been present. Present plans for lunar colonization call for a phased return of personnel and materials to the moons's surface. During settlement of lunar bases, the lunar lander is stationary in a very hostile environment and would have to be in a state of readiness for use in case of an emergency. Cargo and personnel would have to be removed from the lander and transported to a safe environment at the lunar base. An integrated system is required to perform these functions. These needs are addressed which center around the design of a lunar lander servicing system. The servicing system could perform several servicing functions to the lander in addition to cargo servicing. The following were considered: (1) reliquify hydrogen boiloff; (2) supply power; and (3) remove or add heat as necessary. The final design incorporates both original designs and existing vehicles and equipment on the surface of the moon at the time considered. The importance of commonality is foremost in the design of any lunar machinery.

  18. Evaluation of Pushback Decision-Support Tool Concept for Charlotte Douglas International Airport Ramp Operations

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.

    2015-01-01

    This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.

  19. ECRB ALCOVE AND NICHE GROUND SUPPORT ANALYSIS

    SciTech Connect

    J.W. Keifer

    1999-05-09

    The purpose of the analysis is to provide design bases for Enhanced Characterization of the Repository Block (ECRB) alcove and niche ground support drawings. The objective is to evaluate the ESF Alcove Ground Support Analysis (Ref 5.1) to determine if the calculations technically bound the ECRB alcoves and to address specific differences in the conditions and constraints.

  20. Ground-water and surface-water elevations in the Fairbanks International Airport area, Alaska, 1990-96, and selected geohydrologic report references

    USGS Publications Warehouse

    Claar, David V.; Lilly, Michael R.

    1997-01-01

    Ground-water and surface-water elevation data were collected at 61 sites from 1990 to 1996 by the U.S. Geological Survey in cooperation with the Alaska Department of Transportation and Public Facilities, Fairbanks International Airport. Water-surface elevations were measured in 41 ground-water observation wells and at 20 surface-water sites to help characterize the geohydrology of the Fairbanks International Airport area. From 1990 to 1993, data were collected in the vicinity of the former fire-training area at the airport. From 1993 to 1996, the data-collection area was expanded to include the entire airport area. The total number of data-collection sites varied each year because of changing project objectives and increased understanding of the geohydrology in the area.

  1. Longevity of emplacement drift ground support materials

    SciTech Connect

    Tang, David

    2000-04-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials.

  2. Ground Deformation Analysis of Blast-Induced Liquefaction at a Simulated Airport Infrastructure Using High Resolution 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Minasian, D.; Kayen, R.; Ashford, S.; Kawamata, Y.; Sugano, T.

    2008-12-01

    In October 2007, the Port and Airport Research Institute (PARI) of the Japan Ministry of Land, Infrastructure and Transportation conducted a large-scale blast-induced liquefaction experiment in Ishikari, Hokkaido, Japan. Approximately 24,000 m2 of ground was liquefied using controlled blasting techniques to investigate the performance of airport infrastructure. The USGS and Oregon State University participated in the study and measured topographic changes in ground level using 3D laser scanning techniques (terrestrial lidar), as well as changes in shear wave velocity of the between the pre- and post-liquefied soil. This poster focuses on the lidar results. The overall objective of the PARI experiment is to assess the performance of airport infrastructure subjected to liquefaction. Specifically, the performance of pipelines and large concrete utility raceways located beneath runway pavements is of interest, as well as the performance of pavements and embankments with and without soil improvement techniques. At the site, 5-7 m of loose silty sand was placed as hydraulic fill on natural alluvial sand as an expansion of the Ishikari port facility. On a portion of the liquefied site, three 20 m by 50 m test sections were constructed to investigate the performance of improved ground beneath asphalt runways, concrete runway aprons, and open areas. Pipelines and concrete utility conduits were also buried in each section. The three ground improvement techniques investigated were sand-cement mixing, vertical drains, and colloidal silica injection. The PARI experiment provided an excellent opportunity to conduct terrestrial lidar measurements - a revolutionary tool for accurate characterization of fine-scale changes of topography and identification of subtle deformations. Lidar was used for characterizing post-blast deformations both immediately after the charges were used, and subsequently over time at intervals of 2 days, 4 days, and 5 months after blasting. Settlement

  3. QA CLASSIFICATION ANALYSIS OF GROUND SUPPORT SYSTEMS

    SciTech Connect

    D. W. Gwyn

    1996-10-29

    The purpose and objective of this analysis is to determine if the permanent function Ground Support Systems (CI: BABEEOOOO) are quality-affecting items and if so, to establish the appropriate Quality Assurance (QA) classification.

  4. Electrical Ground Support Equipment Fabrication, Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  5. Surface Operations Systems Improve Airport Efficiency

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  6. Ground clutter measurements using the NASA airborne doppler radar: Description of clutter at the Denver and Philadelphia airports

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delnore, Victor E.; Goodrich, Michael S.; Vonhagel, Chris

    1992-01-01

    Detection of hazardous wind shears from an airborne platform, using commercial sized radar hardware, has been debated and researched for several years. The primary concern has been the requirement for 'look-down' capability in a Doppler radar during the approach and landing phases of flight. During 'look-down' operation, the received signal (weather signature) will be corrupted by ground clutter returns. Ground clutter at and around urban airports can have large values of Normalized Radar Cross Section (NRCS) producing clutter returns which could saturate the radar's receiver, thus disabling the radar entirely, or at least from its intended function. The purpose of this research was to investigate the NRCS levels in an airport environment (scene), and to characterize the NRCS distribution across a variety of radar parameters. These results are also compared to results of a similar study using Synthetic Aperture Radar (SAR) images of the same scenes. This was necessary in order to quantify and characterize the differences and similarities between results derived from the real-aperature system flown on the NASA 737 aircraft and parametric studies which have previously been performed using the NASA airborne radar simulation program.

  7. Longevity of Emplacement Drift Ground Support Materials

    SciTech Connect

    D. Tang

    2000-01-07

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for selection of materials for ground support that will function throughout the preclosure period. The Development Plan (DP) for this analysis is given in CRWMS M&O (Civilian Radioactive Waste Management System Management and Operating Contractor) (1999a). The candidate materials for ground support are steel (carbon steel, ductile cast iron, galvanized steel, and stainless steel, etc.) and cement. Steel will mainly be used for steel sets, lagging, channels, rock bolts, and wire mesh. Cement usage is only considered in the case of grouted rock bolts. The candidate materials for the invert structure are steel and crushed rock ballast. The materials shall be evaluated for the repository emplacement drift environment under a specific thermal loading condition based on the proposed License Application Design Selection (LADS) design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground control materials for use in emplacement drifts. (2) Review existing documents concerning behavior of candidate ground control materials during the preclosure period. The major criteria to be considered for steel are mechanical and thermal properties, and durability, of which corrosion is the most important concern. (3) Evaluate the available results and develop recommendations for material(s) to be used.

  8. Integration of a satellite ground support system based on analysis of the satellite ground support domain

    NASA Technical Reports Server (NTRS)

    Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.

    1994-01-01

    This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.

  9. Longevity of Emplacement Drift Ground Support Materials

    SciTech Connect

    Tang, David H.

    2001-05-30

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M&O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M&O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4) Evaluate factors

  10. Ground Station support for small scientific satellites

    NASA Technical Reports Server (NTRS)

    Holdaway, R.; Dunford, E.; Mcpherson, P. H.

    1994-01-01

    In order to keep the cost of a complete small satellite program low, it is necessary to minimize the cost of the ground station operations and support. This is required not only for the operations and support per se, but also in the development of ground station hardware and the mission associated software. Recent experiences at the Rutherford Appleton Laboratory (RAL) on two international projects, IRAS and AMPTE, have shown that the low cost objectives of operations using smaller national facilities can be achieved. This paper describes the facilities at RAL, and the methods by which low cost support are provided by considering the differing implications of hardware/software system modularity, reliability, and small numbers of dedicated and highly skilled operations staff.

  11. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  12. Wartime paediatric extremity injuries: experience from the Kabul International Airport Combat support hospital.

    PubMed

    Mathieu, Laurent; Bertani, Antoine; Rongiéras, Frédéric; Chaudier, Philippe; Mary, Pierre; Versier, Gilbert

    2015-05-01

    Since the beginning of Operation Enduring Freedom, management of Afghan military or civilian casualties including children is a priority of the battlefield medical support. The aim of this study is to describe the features of paediatric wartime extremities injuries and to analyse their management in the Kabul International Airport Combat Support Hospital. A retrospective review was carried out using the French surgical database OPEX (Service de Santé des Armées) from June 2009 to January 2013. Paediatric patients were defined as those younger than 16 years old. Of the 220 injured children operated on, 155 (70%) sustained an extremity injury and were included. The mean age of the children was 9.1 ± 3.8 years. Among these children, 77 sustained combat-related injuries (CRIs) and 78 sustained noncombat-related injuries (NCRIs), with a total of 212 extremities injuries analysed. All CRIs were open injuries, whereas NCRIs were dominated by blunt injuries. Multiple extremities injuries and associated injuries were significantly more frequent in children with CRIs, whose median Injury Severity Score was higher than those with NCRIs. Debridement and irrigation was significantly predominant in the CRIs group, as well as internal fracture fixation in the NCRIs group. There were four deaths, yielding a global mortality rate of 2.6%. This study is the first to analyse specifically paediatric extremities trauma and their management at level 3 of battlefield medical facilities in recent conflicts. Except for severe burns and polytrauma, treatment of paediatric extremities injuries can be readily performed in Combat Support Hospitals by orthopaedic surgeons trained in paediatric trauma. PMID:25811919

  13. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where...

  14. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where...

  15. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where...

  16. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where...

  17. 30 CFR 57.3360 - Ground support use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ground support use. 57.3360 Section 57.3360... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling and Support-Underground Only § 57.3360 Ground support use. Ground support shall be used where...

  18. ESF GROUND SUPPORT - STRUCTURAL STEEL ANALYSIS

    SciTech Connect

    T. Misiak

    1996-06-26

    The purpose and objective of this analysis are to expand the level of detail and confirm member sizes for steel sets included in the Ground Support Design Analysis, Reference 5.20. This analysis also provides bounding values and details and defines critical design attributes for alternative configurations of the steel set. One possible configuration for the steel set is presented. This analysis covers the steel set design for the Exploratory Studies Facility (ESF) entire Main Loop 25-foot diameter tunnel.

  19. Spatial Differences and Costs of Emissions at U.S. Airport Hubs.

    PubMed

    Nahlik, Matthew J; Chester, Mikhail V; Ryerson, Megan S; Fraser, Andrew M

    2016-04-19

    As local governments plan to expand airport infrastructure and build air service, monetized estimates of damages from air pollution are important for balancing environmental impacts. While it is well-known that aircraft emissions near airports directly affect nearby populations, it is less clear how the airport-specific aircraft operations and impacts result in monetized damages to human health and the environment. We model aircraft and ground support equipment emissions at major U.S. airports and estimate the monetized human health and environmental damages of near airport (within 60 miles) emissions. County-specific unit damage costs for PM, SOx, NOx, and VOCs and damage valuations for CO and CO2 are used along with aircraft emissions estimations at airports to determine impacts. We find that near-airport emissions at major U.S. airports caused a total of $1.9 billion in damages in 2013, with airports contributing between $720 thousand and $190 million each. These damages vary by airport from $1 to $9 per seat per one-way flight and costs per passenger are often greater than airport charges levied on airlines for infrastructure use. As the U.S. aviation system grows, it is possible to minimize human and environmental costs by shifting aircraft technologies and expanding service into airports where fewer impacts are likely to occur. PMID:27007187

  20. Effects of Airport Tower Controller Decision Support Tool on Controllers Head-Up Time

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Cruz Lopez, Jose M.

    2013-01-01

    Despite that aircraft positions and movements can be easily monitored on the radar displays at major airports nowadays, it is still important for the air traffic control tower (ATCT) controllers to look outside the window as much as possible to assure safe operations of traffic management. The present paper investigates whether an introduction of the NASA's proposed Spot and Runway Departure Advisor (SARDA), a decision support tool for the ATCT controller, would increase or decrease the controllers' head-up time. SARDA provides the controller departure-release schedule advisories, i.e., when to release each departure aircraft in order to minimize individual aircraft's fuel consumption on taxiways and simultaneously maximize the overall runway throughput. The SARDA advisories were presented on electronic flight strips (EFS). To investigate effects on the head-up time, a human-in-the-loop simulation experiment with two retired ATCT controller participants was conducted in a high-fidelity ATCT cab simulator with 360-degree computer-generated out-the-window view. Each controller participant wore a wearable video camera on a side of their head with the camera facing forward. The video data were later used to calculate their line of sight at each moment and eventually identify their head-up times. Four sessions were run with the SARDA advisories, and four sessions were run without (baseline). Traffic-load levels were varied in each session. The same set of user interface - EFS and the radar displays - were used in both the advisory and baseline sessions to make them directly comparable. The paper reports the findings and discusses their implications.

  1. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  2. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  3. JPSS Common Ground System Multimission Support

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2013-12-01

    NOAA & NASA jointly acquire the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). JPSS contributes the afternoon orbit & restructured NPOESS ground system (GS) to replace the current Polar-orbiting Operational Environmental Satellite (POES) system run by NOAA. JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical observations of the earth, atmosphere & space. The JPSS GS is the Common Ground System (CGS), consisting of Command, Control, & Communications (C3S) and Interface Data Processing (IDPS) segments, both developed by Raytheon Intelligence, Information & Services (IIS). CGS now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers its mission data between ground facilities and processes its data into Environmental Data Records for NOAA & Defense (DoD) weather centers. CGS will expand to support JPSS-1 in 2017. The JPSS CGS currently does data processing (DP) for S-NPP, creating multiple TBs/day across over two dozen environmental data products (EDPs). The workload doubles after JPSS-1 launch. But CGS goes well beyond S-NPP & JPSS mission management & DP by providing data routing support to operational centers & missions worldwide. The CGS supports several other missions: It also provides raw data acquisition, routing & some DP for GCOM-W1. The CGS does data routing for numerous other missions & systems, including USN's Coriolis/Windsat, NASA's SCaN network (including EOS), NSF's McMurdo Station communications, Defense Meteorological Satellite Program (DMSP), and NOAA's POES & EUMETSAT's MetOp satellites. Each of these satellite systems orbits the Earth 14 times/day, downlinking data once or twice/orbit at up to 100s of MBs/second, to support the creation of 10s of TBs of data/day across 100s of EDPs. Raytheon and the US government invested much in Raytheon's mission-management, command & control and data-processing products & capabilities. CGS's flexible

  4. Ground Support Software for Spaceborne Instrumentation

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent; Thorpe, rob; Fletcher, Greg; Waite, Hunter; Xu, Hykua; Walter, Erin; Frick, Kristie; Farris, Greg; Gell, Dave; Furman, Jufy; Carruth, Butch; Parejko, John

    2004-01-01

    ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.

  5. Central airport energy systems using alternate energy sources

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  6. Mission Operations Support Area (MOSA) for ground network support

    NASA Technical Reports Server (NTRS)

    Woods, Robert D.; Moser, Susan A.

    1993-01-01

    The Mission Operations Support Area (MOSA) has been designed utilizing numerous commercial off the shelf items allowing for easy maintenance and upgrades. At its inception, all equipment was at the forefront of technology. The system was created to provide the operator with a 'State of the Art' replacement for equipment that was becoming antiquated and virtually impossible to repair because new parts were no longer available. Although the Mini-NOCC provided adequate support to the Network for a number of years, it was quickly becoming ineffectual for higher data rate and non-standard missions. The MOSA will prove to be invaluable in the future as more and more missions require Ground Network support.

  7. Airport Screening

    MedlinePlus

    ... 2011 Photo courtesy of Dan Paluska/Flickr Denver Airport Security Screening Introduction With air travel regaining popularity and increased secu- rity measures, airport security screening has become an area of interest for ...

  8. LH2 airport requirements study

    NASA Technical Reports Server (NTRS)

    Brewer, G. D. (Editor)

    1976-01-01

    A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.

  9. Airport Careers. Aviation Careers Series. Revised.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in airports. The first part of the booklet provides general information about careers at airports, while the main part of the booklet outlines the following nine job categories: airport director, assistant airport director, engineers, support personnel,…

  10. CO2, NOx, and particle emissions from aircraft and support activities at a regional airport.

    PubMed

    Klapmeyer, Michael E; Marr, Linsey C

    2012-10-16

    The goal of this research was to quantify emissions of carbon dioxide (CO(2)), nitrogen oxides (NO(x)), particle number, and black carbon (BC) from in-use aircraft and related activity at a regional airport. Pollutant concentrations were measured adjacent to the airfield and passenger terminal at the Roanoke Regional Airport in Virginia. Observed NO(x) emission indices (EIs) for jet-powered, commuter aircraft were generally lower than those contained in the International Civil Aviation Organization databank for both taxi (same as idle) and takeoff engine settings. NO(x) EIs ranged from 1.9 to 3.7 g (kg fuel)(-1) across five types of aircraft during taxiing, whereas EIs were consistently higher, 8.8-20.6 g (kg fuel)(-1), during takeoff. Particle number EIs ranged from 1.4 × 10(16) to 7.1 × 10(16) (kg fuel)(-1) and were slightly higher in taxi mode than in takeoff mode for four of the five types of aircraft. Diurnal patterns in CO(2) and NO(x) concentrations were influenced mainly by atmospheric conditions, while patterns in particle number concentrations were attributable mainly to patterns in aircraft activity. CO(2) and NO(x) fluxes measured by eddy covariance were higher at the terminal than at the airfield and were lower than found in urban areas. PMID:22963581

  11. Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia

    SciTech Connect

    Dennis, C.B.

    1993-09-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

  12. THERMAL TEST ALCOVE HEATED DRIFT GROUND SUPPORT ANALYSIS

    SciTech Connect

    S. Bonabian

    1996-10-03

    The main purpose and objective of this analysis is to analyze the stability of the Thermal Test Facility Heated Drift and to design a ground support system. The stability of the Heated Drift is analyzed considering in situ, seismic, and thermal loading conditions. A ground support system is recommended to provide a stable opening for the Heated Drift. This report summarizes the results of the analyses and provides the details of the recommended ground support system for the Heated Drift. The details of the ground support system are then incorporated into the design output documents for implementation in the field.

  13. Support for researchers on shaky ground

    NASA Astrophysics Data System (ADS)

    Lazarus, Max

    2010-08-01

    I was appalled to read in Physics World (July p9) of the prosecution of seven Italian scientists and technicians for manslaughter on the grounds that they did not predict the 2009 L'Aquila earthquake, which killed 308 people.

  14. Artificial supports for coal mine ground control

    SciTech Connect

    1996-12-31

    The report is a discussion of four types of support systems developed by the U.S. Bureau of Mines for use in both room-and-pillar retreat and longwall mining systems. These are: Mobile Roof Support System; Steel-Fiber-Reinforced Concrete Cribbing; Yielding Steel Posts; and Lightweight Hydraulic Supports.

  15. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An...

  16. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An...

  17. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An...

  18. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An...

  19. 14 CFR 198.17 - Ground support and other coverage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Ground support and other coverage. 198.17 Section 198.17 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) WAR RISK INSURANCE AVIATION INSURANCE § 198.17 Ground support and other coverage. An...

  20. CONNECTICUT AIRPORTS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer that includes all of the airports that appear on the U.S. Geological Survey (USGS) 7½ minute topographic quadrangle maps that cover the State of Connecticut. It includes the perimeter of airport, heliport, and seaplane landing areas as depicted...

  1. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  2. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  3. The Interaction Between Shield, Ground and Tunnel Support in TBM Tunnelling Through Squeezing Ground

    NASA Astrophysics Data System (ADS)

    Ramoni, M.; Anagnostou, G.

    2011-01-01

    When planning a TBM drive in squeezing ground, the tunnelling engineer faces a complex problem involving a number of conflicting factors. In this respect, numerical analyses represent a helpful decision aid as they provide a quantitative assessment of the effects of key parameters. The present paper investigates the interaction between the shield, ground and tunnel support by means of computational analysis. Emphasis is placed on the boundary condition, which is applied to model the interface between the ground and the shield or tunnel support. The paper also discusses two cases, which illustrate different methodical approaches applied to the assessment of a TBM drive in squeezing ground. The first case history—the Uluabat Tunnel (Turkey)—mainly involves the investigation of TBM design measures aimed at reducing the risk of shield jamming. The second case history—the Faido Section of the Gotthard Base Tunnel (Switzerland)—deals with different types of tunnel support installed behind a gripper TBM.

  4. Application of a method for the automatic detection and Ground-Based Velocity Track Display (GBVTD) analysis of a tornado crossing the Hong Kong International Airport

    NASA Astrophysics Data System (ADS)

    Chan, P. W.; Wurman, J.; Shun, C. M.; Robinson, P.; Kosiba, K.

    2012-03-01

    A weak tornado with a maximum Doppler velocity shear of about 40 m s - 1 moved across the Hong Kong International Airport (HKIA) during the evening of 20 May 2002. The tornado caused damage equivalent to F0 on the Fujita Scale, based on a damage survey. The Doppler velocity data from the Hong Kong Terminal Doppler Weather Radar (TDWR) are studied using the Ground-Based Velocity Track Display (GBVTD) method of single Doppler analysis. The GBVTD analysis is able to clearly depict the development and decay of the tornado though it appears to underestimate its magnitude. In the pre-tornadic state, the wind field is characterized by inflow toward the center near the ground and upward motion near the center. When the tornado attains its maximum strength, an eye-like structure with a downdraft appears to form in the center. Several minutes later the tornado begins to decay and outflow dominates at low levels. Assuming cyclostrophic balance, the pressure drop 200 m from the center of the tornado at its maximum strength is calculated to be about 6 hPa. To estimate the maximum ground-relative wind speed of the tornado, the TDWR's Doppler velocities are adjusted for the ratio of the sample-volume size of the radar and the radius of the tornado, resulting in a peak wind speed of 28 m s - 1 , consistent with the readings from a nearby ground-based anemometers and the F0 damage observed. An automatic tornado detection algorithm based on Doppler velocity difference (delta-V) and temporal and spatial continuity is applied to this event. The locations and the core flow radii of the tornado as determined by the automatic method and by subjective analysis agree closely.

  5. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  6. Airport surface operations requirements analysis

    NASA Technical Reports Server (NTRS)

    Groce, John L.; Vonbokern, Greg J.; Wray, Rick L.

    1993-01-01

    This report documents the results of the Airport Surface Operations Requirements Analysis (ASORA) study. This study was conducted in response to task 24 of NASA Contract NAS1-18027. This study is part of NASA LaRC's Low Visibility Surface Operations program, which is designed to eliminate the constraints on all-weather arrival/departure operations due to the airport/aircraft ground system. The goal of this program is to provide the capability for safe and efficient aircraft operations on the airport surface during low visibility conditions down to zero. The ASORA study objectives were to (1) develop requirements for operation on the airport surface in visibilities down to zero; (2) survey and evaluate likely technologies; (3) develop candidate concepts to meet the requirements; and (4) select the most suitable concept based on cost/benefit factors.

  7. Installation and Assembly, Electrical Ground Support Equipment (GSE), Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This specification covers the general workmanship requirements and procedures for the complete installation and assembly of electrical ground support equipment (EGSE) such as terminal distributors, junction boxes, conduit and fittings, cable trays and accessories, interconnecting cables (including routing requirements), motor-control equipment, and necessary hardware as specified by the applicable contract and drawings.

  8. Solar Constant (SOLCON) Experiment: Ground Support Equipment (GSE) software development

    NASA Technical Reports Server (NTRS)

    Gibson, M. Alan; Thomas, Susan; Wilson, Robert

    1991-01-01

    The Solar Constant (SOLCON) Experiment, the objective of which is to determine the solar constant value and its variability, is scheduled for launch as part of the Space Shuttle/Atmospheric Laboratory for Application and Science (ATLAS) spacelab mission. The Ground Support Equipment (GSE) software was developed to monitor and analyze the SOLCON telemetry data during flight and to test the instrument on the ground. The design and development of the GSE software are discussed. The SOLCON instrument was tested during Davos International Solar Intercomparison, 1989 and the SOLCON data collected during the tests are analyzed to study the behavior of the instrument.

  9. Components of the airport access system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The organizations and agencies which make up or influence the airport access system are examined. These include the airport, the airline industry, the public and private transit agencies which provide ground access to the airport, and the regulatory agencies which affect all of these organizations and their actions. Each component, with the exception of the regulatory agencies is described in terms of its legal status, its sources of funds, and the nature of its relationship with the other components. Conclusions regarding the system components' effects on airport access and recommendations for changes which appear practical are presented.

  10. Flight Demonstration of Integrated Airport Surface Movement Technologies

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    1998-01-01

    This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.

  11. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  12. CATIA V5 Virtual Environment Support for Constellation Ground Operations

    NASA Technical Reports Server (NTRS)

    Kelley, Andrew

    2009-01-01

    This summer internship primarily involved using CATIA V5 modeling software to design and model parts to support ground operations for the Constellation program. I learned several new CATIA features, including the Imagine and Shape workbench and the Tubing Design workbench, and presented brief workbench lessons to my co-workers. Most modeling tasks involved visualizing design options for Launch Pad 39B operations, including Mobile Launcher Platform (MLP) access and internal access to the Ares I rocket. Other ground support equipment, including a hydrazine servicing cart, a mobile fuel vapor scrubber, a hypergolic propellant tank cart, and a SCAPE (Self Contained Atmospheric Protective Ensemble) suit, was created to aid in the visualization of pad operations.

  13. Evaluation and abatement of noise from aircraft auxiliary power units and airport ground power units. Technical report (final)

    SciTech Connect

    Staiano, M.A.; Samis, R.A.; Toth, S.

    1980-10-07

    APUs and GPUs provide essential service to aircraft during ground operations. Sound levels near these devices range from 80 to 87 dBA at 30 m for APUs, 83 to 103 dBA at 10 m for turbine-engined GPUs, and 71 to 80 dBA at 10 m for piston-engined GPUs. Procedures are provided for: (1) estimating community sound levels due to APUs and GPUs, (2) estimating their exposures in terms of day-night sound levels, and (3) assessing the desirability of noise abatement by comparison to recommended levels for acceptability. Noise abatement options include: operational changes, equipment movement, equipment substitution, equipment quieting, and sound barrier usage.

  14. Ground equipment for the support of packet telemetry and telecommand

    NASA Technical Reports Server (NTRS)

    Hell, Wolfgang

    1994-01-01

    This paper describes ground equipment for packet telemetry and telecommand which has been recently developed by industry for the European Space Agency. The architectural concept for this type of equipment is outlined and the actual implementation is presented. Focus is put on issues related to cross support and telescience as far as they affect the design of the interfaces to the users of the services provided by the equipment and to the management entities in charge of equipment control and monitoring.

  15. Qualification of Electrical Ground Support Equipment for New Space Programs

    NASA Technical Reports Server (NTRS)

    SotoToro, Felix A.; Vu, Bruce T.; Hamilton, Mark S.

    2011-01-01

    With the Space Shuttle program coming to an end, the National Aeronautics and Space Administration (NASA) is moving to a new space flight program that will allow expeditions beyond low earth orbit. The space vehicles required to comply with these missions will be carrying heavy payloads. This implies that the Earth departure stage capabilities must be of higher magnitudes, given the current propulsion technology. The engineering design of the new flight hardware comes with some structural, thermal, propulsion and other subsystems' challenges. Meanwhile, the necessary ground support equipment (GSE) used to test, validate, verify and process the flight hardware must withstand the new program specifications. This paper intends to provide the qualification considerations during implementation of new electrical GSE for space programs. A team of engineers was formed to embark on this task, and facilitate the logistics process and ensure that the electrical, mechanical and fluids subsystems conduct the proper level of testing. Ultimately, each subsystem must certify that each piece of ground support equipment used in the field is capable of withstanding the strenuous vibration, acoustics, environmental, thermal and Electromagnetic Interference (EMf) levels experienced during pre-launch, launch and post-launch activities. The benefits of capturing and sharing these findings will provide technical, cost savings and schedule impacts infon11ation to both the technical and management community. Keywords: Qualification; Testing; Ground Support Equipment; Electromagnetic Interference Testing; Vibration Testing; Acoustic Testing; Power Spectral Density.

  16. Flight Testing of an Airport Surface Guidance, Navigation, and Control System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    1998-01-01

    This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.

  17. Human in the Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Seaman, Calvin H.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chambers) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere capable of 14.7 to 8 psi total pressure and 21 to 32% oxygen concentration, life support systems (food, air, and water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon, Mars). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international, industrial and academic partners.

  18. Attitude ground support system for the solar maximum mission spacecraft

    NASA Technical Reports Server (NTRS)

    Nair, G.

    1980-01-01

    The SMM attitude ground support system (AGSS) supports the acquisition of spacecraft roll attitude reference, performs the in-flight calibration of the attitude sensor complement, supports onboard control autonomy via onboard computer data base updates, and monitors onboard computer (OBC) performance. Initial roll attitude acquisition is accomplished by obtaining a coarse 3 axis attitude estimate from magnetometer and Sun sensor data and subsequently refining it by processing data from the fixed head star trackers. In-flight calibration of the attitude sensor complement is achieved by processing data from a series of slew maneuvers designed to maximize the observability and accuracy of the appropriate alignments and biases. To ensure autonomy of spacecraft operation, the AGSS selects guide stars and computes sensor occultation information for uplink to the OBC. The onboard attitude control performance is monitored on the ground through periodic attitude determination and processing of OBC data in downlink telemetry. In general, the control performance has met mission requirements. However, software and hardware problems have resulted in sporadic attitude reference losses.

  19. Whiffing the Airport Interview

    ERIC Educational Resources Information Center

    Williamson, David

    2008-01-01

    An airport interview is an initial interview for a senior administrative position conducted at an airport hotel not too far from the campus in question. Meeting at an airport enables a search committee to interview a large number of candidates in a short period of time with a degree of confidentiality. At the conclusion of the airport interviews,…

  20. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network

  1. Ground Transportation of a Pediatric Patient on ECMO Support

    PubMed Central

    Machin, David; Scott, Richard; Hurst, Aimee

    2007-01-01

    Abstract: Extracorporeal membrane oxygenation (ECMO) is a technique for providing cardiac and/or pulmonary support. Many hospitals worldwide practice ECMO at some time, yet few centers are able to offer a portable ECMO service, with the United Kingdom being of no exception. We describe the first reported successful ground transfer of a 22-kg girl with suspected myocarditis, supported by veno-arterial ECMO between two hospitals within the United Kingdom (UK). A modified Falcon series 2 patient stretcher was used to transport the patient and house the ECMO hardware, consisting of a Levitronix CentriMag pump system, a Hico-variotherm 550 heater/cooler unit, and an oxygen supply. Design limitations and future technical recommendations of the portable ECMO system subsequent to clinical experience are discussed. PMID:17672192

  2. Ground transportation of a pediatric patient on ECMO support.

    PubMed

    Machin, David; Scott, Richard; Hurst, Aimee

    2007-06-01

    Extracorporeal membrane oxygenation (ECMO) is a technique for providing cardiac and/or pulmonary support. Many hospitals worldwide practice ECMO at some time, yet few centers are able to offer a portable ECMO service, with the United Kingdom being of no exception. We describe the first reported successful ground transfer of a 22-kg girl with suspected myocarditis, supported by veno-arterial ECMO between two hospitals within the United Kingdom (U.K.). A modified Falcon series 2 patient stretcher was used to transport the patient and house the ECMO hardware, consisting of a Levitronix Centri-Mag pump system, a Hico-variotherm 550 heater/cooler unit, and an oxygen supply. Design limitations and future technical recommendations of the portable ECMO system subsequent to clinical experience are discussed. PMID:17672192

  3. Containerless Processing on ISS: Ground Support Program for EML

    NASA Technical Reports Server (NTRS)

    Diefenbach, Angelika; Schneider, Stephan; Willnecker, Rainer

    2012-01-01

    EML is an electromagnetic levitation facility planned for the ISS aiming at processing and investigating liquid metals or semiconductors by using electromagnetic levitation technique under microgravity with reduced electromagnetic fields and convection conditions. Its diagnostics and processing methods allow to measure thermophysical properties in the liquid state over an extended temperature range and to investigate solidification phenomena in undercooled melts. The EML project is a common effort of The European Space Agency (ESA) and the German Space Agency DLR. The Microgravity User Support Centre MUSC at Cologne, Germany, has been assigned the responsibility for EML operations. For the EML experiment preparation an extensive scientific ground support program is established at MUSC, providing scientific and technical services in the preparation, performance and evaluation of the experiments. Its final output is the transcription of the scientific goals and requirements into validated facility control parameters for the experiment execution onboard the ISS.

  4. Ground Support Strategies at the Turquoise Ridge Joint Venture, Nevada

    NASA Astrophysics Data System (ADS)

    Sandbak, L. A.; Rai, A. R.

    2013-05-01

    Weak rock masses of high grade Carlin-trend gold mineralization are encountered in the Turquoise Ridge Joint Venture underground mine. The sediments consist of very weak and altered limestone, mudstone, and carbon-rich clays. The rock mass ratings are described as very poor to poor (Bieniawski in Proceedings of the symposium on exploration for rock engineering, Johannesburg, South Africa, pp. 97-106, 1976). The undercut and fill or boxes stoping mining methods are used because of the low dipping ore body geometry, complex geology, and weak rock mass. Design criteria are chosen to keep openings in weak rock as small as possible to prevent unraveling and to minimize supplementary support. Typical ground support for drifting includes the use of bolts, mesh, spiling, and shotcrete. Quality control of cemented rock fill (CRF) through sampling and aggregate sieve testing is necessary to insure high support strength. Specific support may include shotcrete arches with steel ring sets and CRF "arches" as a replacement of weak rock masses around long-term mine openings. Movement monitoring is utilized in problem areas and is needed to quantify and validate computer modeling.

  5. Surface Development and Test Facility (SDTF) New R&D Simulator for Airport Operations

    NASA Technical Reports Server (NTRS)

    Dorighi, Nancy S.

    1997-01-01

    A new simulator, the Surface Development and Test Facility (SDTF) is under construction at the NASA Ames Research Center in Mountain View, California. Jointly funded by the FAA (Federal Aviation Administration) and NASA, the SDTF will be a testbed for airport surface automation technologies of the future. The SDTF will be operational in the third quarter of 1998. The SDTF will combine a virtual tower with simulated ground operations to allow evaluation of new technologies for safety, effectiveness, reliability, and cost benefit. The full-scale level V tower will provide a seamless 360 degree high resolution out-the-window view, and a full complement of ATC (air traffic control) controller positions. The imaging system will be generated by two fully-configured Silicon Graphics Onyx Infinite Reality computers, and will support surface movement of up to 200 aircraft and ground vehicles. The controller positions, displays and consoles can be completely reconfigured to match the unique layout of any individual airport tower. Dedicated areas will accommodate pseudo-airport ramp controllers, pseudo-airport operators, and pseudo-pilots. Up to 33 total personnel positions will be able to participate in simultaneous operational scenarios. A realistic voice communication infrastructure will emulate the intercom and telephone communications of a real airport tower. Multi-channel audio and video recording and a sophisticated data acquisition system will support a wide variety of research and development areas, such as evaluation of automation tools for surface operations, human factors studies, integration of terminal area and airport technologies, and studies of potential airport physical and procedural modifications.

  6. Precise Ortho Imagery as the Source for Authoritative Airport Mapping

    NASA Astrophysics Data System (ADS)

    Howard, H.; Hummel, P.

    2016-06-01

    As the aviation industry moves from paper maps and charts to the digital cockpit and electronic flight bag, producers of these products need current and accurate data to ensure flight safety. FAA (Federal Aviation Administration) and ICAO (International Civil Aviation Organization) require certified suppliers to follow a defined protocol to produce authoritative map data for the aerodrome. Typical airport maps have been produced to meet 5 m accuracy requirements. The new digital aviation world is moving to 1 m accuracy maps to provide better situational awareness on the aerodrome. The commercial availability of 0.5 m satellite imagery combined with accurate ground control is enabling the production of avionics certified .85 m orthophotos of airports around the globe. CompassData maintains an archive of over 400+ airports as source data to support producers of 1 m certified Aerodrome Mapping Database (AMDB) critical to flight safety and automated situational awareness. CompassData is a DO200A certified supplier of authoritative orthoimagery and attendees will learn how to utilize current airport imagery to build digital aviation mapping products.

  7. Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment

    NASA Astrophysics Data System (ADS)

    Yim, Steve H. L.; Stettler, Marc E. J.; Barrett, Steven R. H.

    2013-03-01

    The potential adverse human health impacts of emissions from UK airports have become a significant issue of public concern. We produce an inventory of UK airport emissions - including emissions from aircraft landing and takeoff operations, aircraft auxiliary power units (APUs) and ground support equipment (GSE) - with quantified uncertainty. Emissions due to more than 95% of UK passenger enplanements are accounted for. We apply a multi-scale air quality modelling approach to assess the air quality impacts of UK airports. Using a concentration-response function we estimate that 110 (90% CI: 72-160) early deaths occur in the UK each year (based on 2005 data) due to UK airport emissions. We estimate that up to 65% of the health impacts of UK airports could be mitigated by desulphurising jet fuel, electrifying GSE, avoiding use of APUs and use of single engine taxiing. Two plans for the expansion of UK airport capacity are examined - expansion of London Heathrow and new hub airport in the Thames Estuary. Even if capacity is constrained, we find that the health impacts of UK airports still increases by 170% in 2030 due to an increasing and aging population, increasing emissions, and a changing atmosphere. We estimate that if Heathrow were to be expanded as per previous UK Government plans, UK-wide health impacts in 2030 would increase by 4% relative to the 2030 constrained case, but this increase could become a 48% reduction if emissions mitigation measures were employed. We calculate that 24% of UK-wide aviation-attributable early deaths could be avoided in 2030 if Heathrow were replaced by a new airport in Thames Estuary because the location is downwind of London, where this reduction occurs notwithstanding the increase in aircraft emissions. A Thames hub airport would (isolated from knock-on effects at other airports) cause 60-70% fewer early deaths than an expanded Heathrow, or 55-63% fewer early deaths than an unexpanded Heathrow. Finally, replacing Heathrow by a

  8. Cold Season Ground Validation Activities in support of GPM

    NASA Astrophysics Data System (ADS)

    Hudak, D. R.; Petersen, W. A.

    2012-12-01

    A fundamental component of the next-generation global precipitation data products that will be addressed by the GPM mission is the hydrologic cycle at higher latitudes. In this respect, falling snow represents a primary contribution to regional atmospheric and terrestrial water budgets. The current study provides provide information on the precipitation microphysics and processes associated with cold season precipitation and precipitating cloud systems across multiple scales. It also addresses the ability of in-situ ground-based sensors as well as multi-frequency active and passive microwave sensors to detect and estimate falling snow, and more generally to contribute to our knowledge and understanding of the complete global water cycle. The work supports the incorporation of appropriate physics into GPM snowfall retrieval algorithms and the development of improved ground validation techniques for GPM product evaluation. Important information for developing GPM falling snow retrieval algorithms will be provided by a field campaign that took place in the winter of 2011/12 in the Great Lakes area of North America, termed the GPM Cold Season Precipitation Experiment (GCPEx). GCPEx represented a collaboration among the NASA, Environment Canada (EC), the Canadian Space Agency and several US, Canadian and European universities. The data collection strategy for GCPEx was coordinated, stacked high-altitude and in-situ cloud aircraft missions sampling within a broader network of ground-based volumetric observations and measurements. The NASA DSC-8 research aircraft provided a platform for the downward-viewing dual-frequency radar and multi-frequency radiometer observations. The University of North Dakota Citation and the Canadian NRC Convair-580 aircraft provided in-situ profiles of cloud and precipitation microphysics using a suite of optical array probes and bulk measurement instrumentation. Ground sampling was focused about a densely-instrumented central location that is

  9. The Aviation System Analysis Capability Airport Capacity and Delay Models

    NASA Technical Reports Server (NTRS)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  10. Noise monitoring in airport communities

    NASA Astrophysics Data System (ADS)

    Connor, W. K.

    Current noise monitoring practices at airports are surveyed, with emphasis placed on extent, implementation, and rationale. It is noted that contemporary aircraft monitoring systems can perform a wide variety of functions in support of an airport noise abatement program. In establishing a system, the importance of developing the program before locating the stations and specifying functions is stressed. Among the basic design considerations are the location and type of the central station, the number and locations of the remote stations, the type of data output, the amount of data to be stored, and the operating costs.

  11. Airport surface moving map displays: OpEval-2 evaluation results and future plans

    NASA Astrophysics Data System (ADS)

    Livack, Garret; McDaniel, James I.; Battiste, Vernol

    2001-08-01

    The Federal Aviation Administration (FAA), in cooperation with the Cargo Airline Association (CAA) and three of its member airlines (Airborne Express, Federal Express, and United Parcel Service), have embarked upon an aggressive yet phased approach to introduce new Free Flight-enabling technologies into the U.S. National Airspace System (NAS). General aviation is also actively involved, represented primarily by the Aircraft Owners and Pilots Association (AOPA). These new technologies being evaluated include advanced cockpit avionics and a complimentary ground infrastructure. In support of this initiative, a series of operational evaluations (OpEvals) have been conducted or are planned. The OpEvals have evaluated in-flight as well as airport surface movement applications. Results from the second OpEval, conducted at Louisville, Kentucky in October 2000, indicated that runway incursions might be significantly reduced with the introduction of a cockpit-based moving map system derived from emerging technologies. An additional OpEval is planned to evaluate the utility of an integrated cockpit and airport surface architecture that provides enhanced pilot and controller awareness of airport surface operations. It is believed that the combination of such an airborne and a ground-based system best addresses many of the safety issues surrounding airport surface operations. Such a combined system would provide both flight crews and controllers with a common awareness, or shared picture of airport surface operations.

  12. Three-track runway and taxiway profiles measured at international airports G and H

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1972-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designated airports G and H).

  13. Three-track runway and taxiway profiles measured at International Airports E and F

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1971-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designed airports E and F).

  14. Simulating Global AeroMACS Airport Ground Station Antenna Power Transmission Limits to Avoid Interference With Mobile Satellite Service Feeder Uplinks

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.

    2013-01-01

    The Aeronautical Mobile Airport Communications System (AeroMACS), which is based upon the IEEE 802.16e mobile wireless standard, is expected to be implemented in the 5091 to 5150 MHz frequency band. As this band is also occupied by Mobile Satellite Service feeder uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference are under analysis in order to enable the definition of standards that assure that such interference will be avoided. In this study, the cumulative interference power distribution at low Earth orbit from transmitters at global airports was simulated with the Visualyse Professional software. The dependence of the interference power on antenna distribution, gain patterns, duty cycle, and antenna tilt was simulated. As a function of these parameters, the simulation results are presented in terms of the limitations on transmitter power from global airports required to maintain the cumulative interference power under the established threshold.

  15. An Evaluation of the Importance of Military Associations at Civil Airports

    ERIC Educational Resources Information Center

    Clark, Patti J.

    2010-01-01

    Today there are over 1,500 public-use airports in the United States. Each of these airports provides a service to the surrounding community, whether in the form of a general aviation or commercial air service facility. An airport is dependent on many facets of the local government infrastructure for support services. Also, the airports have ties…

  16. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Grounds for review; potential dismissal or denial for failure to raise or support grounds. 2425.6 Section 2425.6 Administrative Personnel FEDERAL LABOR RELATIONS AUTHORITY, GENERAL COUNSEL OF THE FEDERAL LABOR RELATIONS AUTHORITY AND FEDERAL SERVICE IMPASSES PANEL FEDERAL LABOR...

  17. Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures

    NASA Technical Reports Server (NTRS)

    Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  18. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  19. Environmentally friendly corrosion preventive compounds for ground support structures

    NASA Astrophysics Data System (ADS)

    Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  20. EGSE (Electrical Ground Support Equipment) for ESA VEGA Launcher

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; Ortenzi, A.; del Re, V.; Bordin, M.; Saccucci, Fr.

    2004-08-01

    Activities belonging to Assembly, Integration and Validation (AIV) phase of a launch vehicle are fundamental in development of a so much delicate system. The equipment used to support this long and crucial phase can be described as a set of Mechanical and Electrical Ground Support Equipment (EGSE). This paper describes the approach followed to develop such a system, and the benefits that this brings in terms of lower risk, more coordinated interfaces and improved functionality. The paper briefly outlines VEGA Electrical Ground Support Equipment major characteristics. In particular, this paper describes the EGSE design for a small launch vehicle such as VEGA. The objective of EGSE is to provide hardware and software for efficient electrical testing of either single stages and integrated launcher. The needs to develop a small launcher is a response to a Resolution in the Space Transportation Strategy adopted by the ESA Council in June 2000, aiming at: "completing, in the medium term, the range of launch services offered by the addition of European manufactured small and medium launcher, complementary to Ariane, consistent with diversified users' needs and relying on common elements, such as stages, subsystems, technologies, production facilities and operational infrastructure, thereby increasing the European launcher industry's competitiveness". Three different parts principally compose the Vega EGSE: TCS (Test Configuration System), TES (Test Execution System), PPS (Post Processing System). The TES is the part of the EGSE devoted to the tests execution; it has capabilities of immediate test data analysis, parameters monitoring and it is able to undertake pre-defined actions, in case of anomalous events happen, in order to put in safe conditions the Unity Under Test (UUT). The TES is composed of two main components: HLCS and LLCS. The HLCS is based on SCOS 2000 ESA product; it is mainly devoted to the interaction with operators. It allows loading Test Sequences and

  1. Spaceflight Ground Support Equipment Reliability & System Safety Data

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Riddlebaugh, Jeffrey; Brinkman, John; Wilkinson, Myron

    2012-01-01

    Presented were Reliability Analysis, consisting primarily of Failure Modes and Effects Analysis (FMEA), and System Safety Analysis, consisting of Preliminary Hazards Analysis (PHA), performed to ensure that the CoNNeCT (Communications, Navigation, and Networking re- Configurable Testbed) Flight System was safely and reliably operated during its Assembly, Integration and Test (AI&T) phase. A tailored approach to the NASA Ground Support Equipment (GSE) standard, NASA-STD-5005C, involving the application of the appropriate Requirements, S&MA discipline expertise, and a Configuration Management system (to retain a record of the analysis and documentation) were presented. Presented were System Block Diagrams of selected GSE and the corresponding FMEA, as well as the PHAs. Also discussed are the specific examples of the FMEAs and PHAs being used during the AI&T phase to drive modifications to the GSE (via "redlining" of test procedures, and the placement of warning stickers to protect the flight hardware) before being interfaced to the Flight System. These modifications were necessary because failure modes and hazards were identified during the analysis that had not been properly mitigated. Strict Configuration Management was applied to changes (whether due to upgrades or expired calibrations) in the GSE by revisiting the FMEAs and PHAs to reflect the latest System Block Diagrams and Bill Of Material. The CoNNeCT flight system has been successfully assembled, integrated, tested, and shipped to the launch site without incident. This demonstrates that the steps taken to safeguard the flight system when it was interfaced to the various GSE were successful.

  2. Lightning Impacts on Airports - Challenges of Balancing Safety & Efficiency

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias; Deierling, Wiebke; Nelson, Eric; Stone, Ken

    2013-04-01

    Thunderstorms and lightning pose a safety risk to personnel working outdoors, such as people maintaining airport grounds (e.g., mowing grass or repairing runway lighting) or servicing aircraft on ramps (handling baggage, food service, refueling, tugging and guiding aircraft from/to gates, etc.). Since lightning strikes can cause serious injuries or death, it is important to provide timely alerts to airport personnel so that they can get to safety when lightning is imminent. This presentation discusses the challenges and uncertainties involved in using lightning information and stakeholder procedures to ensure safety of outdoor personnel while keeping ramp operations as efficient as possible considering thunderstorm impacts. The findings presented are based on extensive observations of airline operators under thunderstorm impacts. These observations reveal a complex picture with substantial uncertainties related to the (1) source of lightning information (e.g., sensor type, network, data processing) used to base ramp closure decisions on, (2) uncertainties involved in the safety procedures employed by various stakeholders across the aviation industry (yielding notably different rules being applied by multiple airlines even at a single airport), and (3) human factors issues related to the use of decision support tools and the implementation of safety procedures. This research is supported by the United States Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

  3. Passive Wake Acoustics Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Wang, Frank Y.; Wassaf, Hadi; Dougherty, Robert P.; Clark, Kevin; Gulsrud, Andrew; Fenichel, Neil; Bryant, Wayne H.

    2004-01-01

    From August to September 2003, NASA conducted an extensive measurement campaign to characterize the acoustic signal of wake vortices. A large, both spatially as well as in number of elements, phased microphone array was deployed at Denver International Airport for this effort. This paper will briefly describe the program background, the microphone array, as well as the supporting ground-truth and meteorological sensor suite. Sample results to date are then presented and discussed. It is seen that, in the frequency range processed so far, wake noise is generated predominantly from a very confined area around the cores.

  4. Overview of environmental and hydrogeologic conditions at the Merle K. "Mudhole" Smith Airport near Cordova, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Sokup, J.M.

    1994-01-01

    Air service to Cordova, Alaska and the surrounding region is provided by the Merle K. "Mudhole" Smith Airport, 21 kilometers east of the townsite. The Federal Aviation Administration owns or operates support facilities at the airport and wishes to consider the environmental setting and hydro- geologic conditions when evaluating options for remediation of potential contamination at these facilities. The airport is within the Copper River Delta wetlands area and the Chugach National Forest. Silts, sands, and gravels of fluvial origin underlie the airport. Potential flooding may be caused by outbursts of glacier-dammed lakes, glacier icemelt, snowmelt runoff, or precipitation. Surface spills and disposal of hazardous materials in conjunction with precipitation or flooding may adversely affect the quality of ground water. Drinking water at the airport is currently supplied by wells. Alternative drinking-water sources include local rivers and streams, transporting city water from Cordova, or undiscovered aquifers. Each alternative source, however, would likely cost significantly more to develop than using the existing shallow aquifer supply.

  5. Benchmark Airport Charges

    NASA Technical Reports Server (NTRS)

    de Wit, A.; Cohn, N.

    1999-01-01

    The Netherlands Directorate General of Civil Aviation (DGCA) commissioned Hague Consulting Group (HCG) to complete a benchmark study of airport charges at twenty eight airports in Europe and around the world, based on 1996 charges. This study followed previous DGCA research on the topic but included more airports in much more detail. The main purpose of this new benchmark study was to provide insight into the levels and types of airport charges worldwide and into recent changes in airport charge policy and structure. This paper describes the 1996 analysis. It is intended that this work be repeated every year in order to follow developing trends and provide the most up-to-date information possible.

  6. Benchmark Airport Charges

    NASA Technical Reports Server (NTRS)

    deWit, A.; Cohn, N.

    1999-01-01

    The Netherlands Directorate General of Civil Aviation (DGCA) commissioned Hague Consulting Group (HCG) to complete a benchmark study of airport charges at twenty eight airports in Europe and around the world, based on 1996 charges. This study followed previous DGCA research on the topic but included more airports in much more detail. The main purpose of this new benchmark study was to provide insight into the levels and types of airport charges worldwide and into recent changes in airport charge policy and structure, This paper describes the 1996 analysis. It is intended that this work be repeated every year in order to follow developing trends and provide the most up-to-date information possible.

  7. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  8. Finding Common Ground: How Faith Communities Support Children's Learning.

    ERIC Educational Resources Information Center

    Gates, Saundra

    Noting that faith communities play a vital role in connecting to families and children and often become involved in and supportive of education issues important in their local community, this document discusses the development of partnerships involving public schools and faith-based communities. The document compiles a series of talking points for…

  9. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  10. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  11. Multimedia computer support for a course in ground control

    SciTech Connect

    Summers, D.A.; Unal, A.

    1996-12-31

    A prototype multimedia compact disc (CD) was created using the facilities at the Rock Mechanics and Explosives Research Center (RMERC) of the University of Missouri-Rolla (UMR) to teach a portion of a course in Ground Control. Multimedia computers offer an environment where audio-visual presentations can be made in an interactive fashion. Together with relevant animation clips, video clips, and 3-D representations, the difficulties in describing mining processes and earth structures can be overcome. This paper describes the experience gained in preparing interactive multimedia lectures on computers. The hardware and software used in creating the sound commentary, 3-D graphics, animation clips, video clips, and movies are listed. The structure of the program and how interactivity was achieved is explained in detail. Such an instructional tool is not only an excellent supplement to regular courses but it also is an inexpensive and effective way of providing distance education for mining engineers working at remote locations scattered all over the country.

  12. Airport cleanup rises above problems

    SciTech Connect

    Pressly, N.; Lucas, B.; Frumer, B.; Roth, R.

    1996-07-01

    Engineers used a treatment combination to improve the in-situ bioremediation system`s efficiency in removing underground fuel leaks at JFK Airport. John F. Kennedy International Airport, in New York City, on Jamaica Bay, has an above-ground storage capacity of about 32 million gallons of jet fuel, which flow through about 50 miles of high-pressure underground pipe to the central terminal area. EAch terminal`s fuel hydrant system was the major source os subsurface contamination at the site. The site is covered by 1 to 1.5 feet of reinforced concrete pavement. Liquid phase jet fuel (free product) was measured on the water table with true thickness ranging from less than 1 inch to 1 foot. After analysis of core samples, contamination was found adsorbed to the soil with maximum levels at the water table. This article describes the clean up, covering the following topics: microbial conditions during system operation; above-ground treatment challenges: free product emulsification, presence of biomass; evaluation of enhancements: dissolved air floatation, coagulation and flocculation, retention time adjustments; conclusions.

  13. Longevity of Emplacement Drift Ground Support Materials for LA

    SciTech Connect

    D. Tang

    2003-09-16

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the disruptive events features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for license application (TSPA-LA). A screening decision, either ''Included'' or ''Excluded,'' is given for each FEP, along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), and (f) [DIRS 156605]. The FEPs addressed in this report deal with both seismic and igneous disruptive events, such as fault displacements through the repository and an igneous intrusion into the repository. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded). Previous versions of this report were developed to support the total system performance assessments (TSPA) for various prior repository designs. This revision addresses the repository design for the license application (LA).

  14. Ground Support for the Space-Based Range Flight Demonstration 2

    NASA Technical Reports Server (NTRS)

    Burkes, Darryl A.

    2007-01-01

    The primary objective of the NASA Space-Based Range Demonstration and Certification program was to develop and demonstrate space-based range capabilities. The Flight Demonstration 2 flights at NASA Dryden Flight Research Center were conducted to support Range Safety (commanding and position reporting) and high-rate (5 Mbps) Range User (video and data) requirements. Required ground support infrastructure included a flight termination system computer, the ground-data distribution network to send range safety commands and receive range safety and range user telemetry data and video, and the ground processing systems at the Dryden Mission Control Center to process range safety and range user telemetry data and video.

  15. A model for common ground development to support collaborative health communities.

    PubMed

    Kuziemsky, Craig E; O'Sullivan, Tracey L

    2015-03-01

    Common ground is necessary for developing collaboration as part of building resilience for public health preparedness. While the importance of common ground as an essential component of collaboration has been well described, there is a need for studies to identify how common ground develops over time, across individual and group dimensions, and the contexts that influence its development. This paper studied common ground development in three Canadian communities between October 2010 and March 2011 through a project on capacity building for disaster management. Disaster management requires the integration of paid and volunteer participants across public and private sectors and is therefore a good domain to study common ground development. We used directed qualitative content analysis to develop a model of common ground development over time that describes its progression through coordinative, cooperative and collaborative common ground. We also identified how common ground develops at micro (individual) and macro (group) levels, as well as how agency, technology and geographical contexts influence its development. We then use the four phases of disaster management to illustrate how our model can support longitudinal common ground development. Our findings provide useful insight to enable proactive development of common ground in collaborative health communities. PMID:25621403

  16. Airport Surface Movement Technologies: Atlanta Demonstrations Overview

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Young, Steven D.

    1997-01-01

    A flight demonstration was conducted in August 1997 at the Hartsfield Atlanta (ATL) International Airport as part of low visibility landing and surface operations (LVLASO) research activities. This research was aimed at investigating technology to improve the safety and efficiency of aircraft movements on the surface during the operational phases of roll-out, turnoff, and taxi in any weather condition down to a runway visual range of 300 feet. The system tested at ATL was composed of airborne and ground-based components that were integrated to provide both the flight crew and controllers with supplemental information to enable safe, expedient surface operations. Experimental displays were installed on a Boeing 757-200 research aircraft in both headup and head-down formats. On the ground, an integrated system maintained surveillance of the airport surface and a controller interface provided routing and control instructions. While at ATL, the research aircraft performed a series of flight and taxi operations to show the validity of the operational concept at a major airport facility, to validate simulation findings, and to assess each of the individual technologies performance in an airport environment. The concept was demonstrated to over 100 visitors from the Federal Aviation Administration (FAA) and the aviation community. This paper gives an overview of the LVLASO system and ATL test activities.

  17. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea

    NASA Astrophysics Data System (ADS)

    Song, Sang-Keun; Shon, Zang-Ho

    2012-12-01

    The emissions of greenhouse gases (GHGs) and air pollutants from aircraft in the boundary layer at four major international airports in Korea over a two-year period (2009-2010) were estimated using the Emissions and Dispersion Modeling System (EDMS) (i.e. activity-based (Landing/Take-Off (LTO) cycle) methodology). Both domestic and international LTOs and ground support equipment at the airports were considered. The average annual emissions of GHGs (CO2, N2O, CH4 and H2O) at all four airports during the study period were 1.11 × 103, 1.76 × 10-2, -1.85 × 10-3 and 3.84 × 108 kt yr-1, respectively. The emissions of air pollutants (NOx, CO, VOCs and particulate matter) were 5.20, 4.12, 7.46 × 10-1 and 3.37 × 10-2 kt yr-1, respectively. The negative CH4 emission indicates the consumption of atmospheric CH4 in the engine. The monthly and daily emissions of GHGs and air pollutants showed no significant variations at all airports examined. The emissions of GHGs and air pollutants for each aircraft operational mode differed considerably, with the largest emission observed in taxi-out mode.

  18. Sampling for global epidemic models and the topology of an international airport network.

    PubMed

    Bobashev, Georgiy; Morris, Robert J; Goedecke, D Michael

    2008-01-01

    Mathematical models that describe the global spread of infectious diseases such as influenza, severe acute respiratory syndrome (SARS), and tuberculosis (TB) often consider a sample of international airports as a network supporting disease spread. However, there is no consensus on how many cities should be selected or on how to select those cities. Using airport flight data that commercial airlines reported to the Official Airline Guide (OAG) in 2000, we have examined the network characteristics of network samples obtained under different selection rules. In addition, we have examined different size samples based on largest flight volume and largest metropolitan populations. We have shown that although the bias in network characteristics increases with the reduction of the sample size, a relatively small number of areas that includes the largest airports, the largest cities, the most-connected cities, and the most central cities is enough to describe the dynamics of the global spread of influenza. The analysis suggests that a relatively small number of cities (around 200 or 300 out of almost 3000) can capture enough network information to adequately describe the global spread of a disease such as influenza. Weak traffic flows between small airports can contribute to noise and mask other means of spread such as the ground transportation. PMID:18776932

  19. IT Security Support for the Spaceport Command Control Systems Development Ground Support Development Operations

    NASA Technical Reports Server (NTRS)

    Branch, Drew A.

    2014-01-01

    Security is one of the most if not the most important areas today. After the several attacks on the United States, security everywhere has heightened from airports to the communication among the military branches legionnaires. With advanced persistent threats (APT's) on the rise following Stuxnet, government branches and agencies are required, more than ever, to follow several standards, policies and procedures to reduce the likelihood of a breach. Attack vectors today are very advanced and are going to continue to get more and more advanced as security controls advance. This creates a need for networks and systems to be in an updated and secured state in a launch control system environment. FISMA is a law that is mandated by the government to follow when government agencies secure networks and devices. My role on this project is to ensure network devices and systems are in compliance with NIST, as outlined in FISMA. I will achieve this by providing assistance with security plan documentation and collection, system hardware and software inventory, malicious code and malware scanning, and configuration of network devices i.e. routers and IDS's/IPS's. In addition, I will be completing security assessments on software and hardware, vulnerability assessments and reporting, and conducting patch management and risk assessments. A guideline that will help with compliance with NIST is the SANS Top 20 Critical Controls. SANS Top 20 Critical Controls as well as numerous security tools, security software and the conduction of research will be used to successfully complete the tasks given to me. This will ensure compliance with FISMA and NIST, secure systems and a secured network. By the end of this project, I hope to have carried out the tasks stated above as well as gain an immense knowledge about compliance, security tools, networks and network devices, as well as policies and procedures.

  20. IT Security Support for the Spaceport Command Control Systems Development Ground Support Development Operations

    NASA Technical Reports Server (NTRS)

    Branch, Drew

    2013-01-01

    Security is one of the most if not the most important areas today. After the several attacks on the United States, security everywhere was heightened from Airports to the communication among the military branches legionnaires. With advanced persistent threats (APTs) on the rise following Stuxnet, government branches and agencies are required, more than ever, to follow several standards, policies and procedures to reduce the likelihood of a breach. Attack vectors today are very advanced and are going to continue to get more and more advanced as security controls advance. This creates a need for networks and systems to be in an updated and secured state in a launch control system environment. FISMA is a law that is mandated by the government to follow when government agencies secure networks and devices. My role on this project is to ensure network devices and systems are in compliance with NIST, as outlined in FISMA. I will achieve this by providing assistance with security plan documentation and collection, system hardware and software inventory, malicious code and malware scanning and configuration of network devices i.e. routers and IDSsIPSs. In addition I will be completing security assessments on software and hardware, vulnerability assessments and reporting, conducting patch management and risk assessments. A guideline that will help with compliance with NIST is the SANS Top 20 Critical Controls. SANS Top 20 Critical Controls as well as numerous security tools, security software and the conduction of research will be used to successfully complete the tasks given to me. This will ensure compliance with FISMA and NIST, secure systems and a secured network. By the end of this project, I hope to have carried out stated above as well as gain an immense knowledge about compliance, security tools, networks and network devices, policies and procedures.

  1. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  2. Airport databases for 3D synthetic-vision flight-guidance displays: database design, quality assessment, and data generation

    NASA Astrophysics Data System (ADS)

    Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe

    1999-07-01

    In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite

  3. Commercial off the Shelf Ground Control Supports Calibration and Conflation from Ground to Space Based Sensors

    NASA Astrophysics Data System (ADS)

    Danielová, M.; Hummel, P.

    2016-06-01

    The need for rapid deployment of aerial and satellite imagery in support of GIS and engineering integration projects require new sources of geodetic control to ensure the accuracy for geospatial projects. In the past, teams of surveyors would need to deploy to project areas to provide targeted or photo identifiable points that are used to provide data for orthorecificaion, QA/QC and calibration for multi-platform sensors. The challenge of integrating street view, UAS, airborne and Space based sensors to produce the common operational picture requires control to tie multiple sources together. Today commercial off the shelf delivery of existing photo identifiable control is increasing the speed of deployment of this data without having to revisit sites over and over again. The presentation will discuss the processes developed by CompassData to build a global library of 40,000 control points available today. International Organization for Standardization (ISO) based processes and initiatives ensure consistent quality of survey data, photo identifiable features selected and meta data to support photogrammetrist, engineers and GIS professionals to quickly deliver projects with better accuracy.

  4. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  5. Electronic System for Preventing Airport Runway Incursions

    NASA Technical Reports Server (NTRS)

    Dabney, Richard; Elrod, Susan

    2009-01-01

    A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.

  6. A ground test program to support condition monitoring of a spacecraft attitude control propulsion system

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lester, Robert W.; Baroth, Edmund C.; Coleman, Arthur L.

    1991-01-01

    The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.

  7. Integrated Airport Surface Operations

    NASA Technical Reports Server (NTRS)

    Koczo, S.

    1998-01-01

    The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Research activity at NASA has culminated in the development, flight test and demonstration of a prototype Low Visibility Landing and Surface Operations (LVLASO) system. A NASA led industry team and the FAA developed the system which integrated airport surface surveillance systems, aeronautical data links, DGPS navigation, automation systems, and controller and flight deck displays. The LVLASO system was demonstrated at the Hartsfield-Atlanta International Airport using a Boeing 757-200 aircraft during August, 1997. This report documents the contractors role in this testing particularly in the area of data link and DGPS navigation.

  8. Probabilistic Analysis of Ground-Holding Strategies

    NASA Technical Reports Server (NTRS)

    Sheel, Minakshi

    1997-01-01

    The Ground-Holding Policy Problem (GHPP) has become a matter of great interest in recent years because of the high cost incurred by aircraft suffering from delays. Ground-holding keeps a flight on the ground at the departure airport if it is known it will be unable to land at the arrival airport. The GBPP is determining how many flights should be held on the ground before take-off and for how long, in order to minimize the cost of delays. When the uncertainty associated with airport landing capacity is considered, the GHPP becomes complicated. A decision support system that incorporates this uncertainty, solves the GHPP quickly, and gives good results would be of great help to air traffic management. The purpose of this thesis is to modify and analyze a probabilistic ground-holding algorithm by applying it to two common cases of capacity reduction. A graphical user interface was developed and sensitivity analysis was done on the algorithm, in order to see how it may be implemented in practice. The sensitivity analysis showed the algorithm was very sensitive to the number of probabilistic capacity scenarios used and to the cost ratio of air delay to ground delay. The algorithm was not particularly sensitive to the number of periods that the time horizon was divided into. In terms of cost savings, a ground-holding policy was the most beneficial when demand greatly exceeded airport capacity. When compared to other air traffic flow strategies, the ground-holding algorithm performed the best and was the most consistent under various situations. The algorithm can solve large problems quickly and efficiently on a personal computer.

  9. Role of helicopters in airport access

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Snyder, W. J.

    1978-01-01

    The paper briefly reviews the role of helicopter systems in the provision of airport access services and evaluates the potential for the future development of such services in major metropolitan areas in the United States. The evaluation is based on a computer simulation of potential helicopter system proposed for 20 metropolitan areas. The simulation provides two indicators that are used to gage the extent of the feasibility of developing successful systems in these areas: (1) the cost per seat mile, and (2) the break-even number of passengers, expressed as a percentage of total air travelers. It is found that a few metropolitan areas presently have the potential of marginally supporting intra-urban helicopter airport access service. The access systems offer a viable alternative for air passengers placing a high value on their time, and provides the opportunity for better integrating the air transportation service of multiple airports in a given urban region.

  10. Synthetic aperture radar imagery of airports and surrounding areas: Philadelphia Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic Aperture Radar (SAR) data were collected at the Philadelphia Airport. These data and the results of the clutter study are described. This 13 km x 10 km scene was imaged at 9.38 GHz and HH-polarization and contained airport grounds and facilities (6 percent), industrial (14 percent), residential (14 percent), fields (10 percent), forest (8 percent), and water (33 percent). Incidence angles ranged from 40 to 84 deg. Even at the smallest incidence angles, the distributed targets such as forest, fields, water, and residential rarely had mean scattering coefficients greater than -10 dB. Eighty-seven percent of the image had scattering coefficients less than -17.5 dB. About 1 percent of the scattering coefficients exceeded 0 dB, with about 0.1 percent above 10 dB. Sources which produced the largest cross sections were largely confined to the airport grounds and areas highly industrialized. The largest cross sections were produced by observing broadside large buildings surrounded by smooth surfaces.

  11. A model to compare performance of space and ground network support of low-Earth orbiters

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1992-01-01

    This article compares the downlink performance in a gross average sense between space and ground network support of low-Earth orbiters. The purpose is to assess what the demand for DSN support of future small, low-cost missions might be, if data storage for spacecraft becomes reliable enough and small enough to support the storage requirements needed to enable support only a fraction of the time. It is shown that the link advantage of the DSN over space reception in an average sense is enormous for low-Earth orbiters. The much shorter distances needed to communicate with the ground network more than make up for the speedup in data rate needed to compensate for the short contact times with the DSN that low-Earth orbiters have. The result is that more and more requests for DSN-only support of low-Earth orbiters can be expected.

  12. ESF GROUND SUPPORT - MATERIAL DEDICATION ANALYSIS FOR STRUCTURAL STEEL AND ACCESSORIES FROM A COMMERCIAL GRADE SOURCE

    SciTech Connect

    M.D. Stine

    1996-01-23

    The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.

  13. ORD Scientific and Engineering Technical Support for RPMs – Ground Water Technical Support Center

    EPA Science Inventory

    ORD Scientific and Engineering Technical Support for RPMs (and Others) is a hybrid informational and panel session that focuses on the technical support available from EPA’s Office of Research and Development (ORD) to RPMs and other EPA cleanup program staff. Examples of technica...

  14. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support.

    PubMed

    Sousa, Andreia S P; Santos, Rubim; Oliveira, Francisco P M; Carvalho, Paulo; Tavares, João Manuel R S

    2012-05-01

    Mechanisms associated with energy expenditure during gait have been extensively researched and studied. According to the double-inverted pendulum model energy expenditure is higher during double support, as lower limbs need to work to redirect the centre of mass velocity. This study looks into how the ground reaction force of one limb affects the muscle activity required by the medial gastrocnemius of the contralateral limb during step-to-step transition. Thirty-five subjects were monitored as to the medial gastrocnemius electromyographic activity of one limb and the ground reaction force of the contralateral limb during double support. After determination of the Pearson correlation coefficient (r), a moderate correlation was observed between the medial gastrocnemius electromyographic activity of the dominant leg and the vertical (Fz) and anteroposterior (Fy) components of ground reaction force of the non-dominant leg (r = 0.797, p < 0.000 1; r = -0.807, p < 0.000 1). A weak and moderate correlation was observed between the medial gastrocnemius electromyographic activity of the non-dominant leg and the Fz and Fy of the dominant leg, respectively (r = 0.442, p = 0.018; r = -0.684 p < 0.000 1). The results obtained suggest that during double support, ground reaction force is associated with the electromyographic activity of the contralateral medial gastrocnemius and that there is an increased dependence between the ground reaction force of the non-dominant leg and the electromyographic activity of the dominant medial gastrocnemius. PMID:22720393

  15. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  16. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  17. Plant diversity to support humans in a CELSS ground-based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1982-01-01

    Factors that influence the human nutritional requirements envisioned in a controlled ecological life support system ground-based demonstrator and on bioavailability experiments of Ca, Fe and Zn are discussed. The interrelationhip of protein and magnesium on Ca retention is also described.

  18. AN OPEN-SOURCE COMMUNITY WEB SITE TO SUPPORT GROUND-WATER MODEL TESTING

    EPA Science Inventory

    A community wiki wiki web site has been created as a resource to support ground-water model development and testing. The Groundwater Gourmet wiki is a repository for user supplied analytical and numerical recipes, how-to's, and examples. Members are encouraged to submit analyti...

  19. SITE CHARACTERIZATION TO SUPPORT MODEL DEVELOPMENT FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  20. Student Affairs Professionals Supporting Students with Disabilities: A Grounded Theory Model

    ERIC Educational Resources Information Center

    Kimball, Ezekiel; Vaccaro, Annemarie; Vargas, Nadia

    2016-01-01

    In an action-based grounded theory project, the authors collected data from 31 student affairs professionals. During seven focus groups, practitioners described feeling unknowledgeable about disability law, accommodations, and diagnoses. However, they drew upon their core values and transferrable skills to support individual students. Participants…

  1. 127. ARAII Administrative and technical support building (ARA606) ground floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    127. ARA-II Administrative and technical support building (ARA-606) ground floor plan. Indicates use of rooms for classrooms, offices, and lunch room. C.A. Sundberg and Associates 866-area-ALPR-606-A-2. Date: June 1958. Ineel index code no. 070-0606-00-822-102825. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  2. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  3. Objective Lightning Probability Forecasts for East-Central Florida Airports

    NASA Technical Reports Server (NTRS)

    Crawford, Winfred C.

    2013-01-01

    The forecasters at the National Weather Service in Melbourne, FL, (NWS MLB) identified a need to make more accurate lightning forecasts to help alleviate delays due to thunderstorms in the vicinity of several commercial airports in central Florida at which they are responsible for issuing terminal aerodrome forecasts. Such forecasts would also provide safer ground operations around terminals, and would be of value to Center Weather Service Units serving air traffic controllers in Florida. To improve the forecast, the AMU was tasked to develop an objective lightning probability forecast tool for the airports using data from the National Lightning Detection Network (NLDN). The resulting forecast tool is similar to that developed by the AMU to support space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) for use by the 45th Weather Squadron (45 WS) in previous tasks (Lambert and Wheeler 2005, Lambert 2007). The lightning probability forecasts are valid for the time periods and areas needed by the NWS MLB forecasters in the warm season months, defined in this task as May-September.

  4. Some New Caves under Airport in Dubrovnik

    NASA Astrophysics Data System (ADS)

    Garasic, Mladen; Garasic, Davor

    2013-04-01

    Till today six speleological sites are known to exist at the premises of the Dubrovnik Airport in Croatia. This is a highly weathered area that has been in the focus of attention of speleologists ever since the airport was built in 1961/62. Two vertical caves measuring 31 m and 10.5 m in depth were discovered at that time. These two caves are now situated right underneath the new control tower of the Dubrovnik Airport. A tunnel entrance to the cave that has been known to local population for a long time is situated in the immediate vicinity of the control tower. In late 1950's the entrance to the cave was closed with concrete because of a military airport construction, but a tunnel was built so as to enable access to the cave. The cave is about 200 meters long and it fully occupies the space underneath the concrete runways of the Dubrovnik Airport. Thanks to efforts made by speleologists in 2006-2010 the cave was adapted to enable tourist visits, and it is now the world's only tourist cave underneath an operating airport. During apron extension activities in May 2012, three additional speleological sites were discovered and examined, together with other previously discovered caves, from the standpoint of geophysics, geology and speleology. Results of exploration shows that there are several faults zones in karstified limestones. The water flow in the caverns varies depending on climatic conditions on the ground surface. Water reaches the caverns via joints directly from the ground surface (to a lesser extent) or in deeper parts via joints and paraclases from other parts of Cretaceous carbonate formations (in most cases). The weathering zone depth in the area of these speleological features, are estimated at 300 to 500 meters (included under sea levels) , and the zone of vertical circulation varies from 50 to 150 m. It is followed by the zone of horizontal circulation in which the ground water is carried via Cretaceous limestones toward submarine springs in the

  5. Synthetic Aperture Radar Imagery of Airports and Surrounding Areas: Denver Stapleton International Airport

    NASA Technical Reports Server (NTRS)

    Onstott, Robert G.; Gineris, Denise J.

    1990-01-01

    This is the third in a series of three reports which address the statistical description of ground clutter at an airport and in the surrounding area. These data are being utilized in a program to detect microbursts. Synthetic aperture radar (SAR) data were collected at the Denver Stapleton Airport using a set of parameters which closely match those which are anticipated to be utilized by an aircraft on approach to an airport. These data and the results of the clutter study are described. Scenes of 13 x 10 km were imaged at 9.38 GHz and HH-, VV-, and HV-polarizations, and contain airport grounds and facilities (up to 14 percent), cultural areas (more than 50 percent), and rural areas (up to 6 percent). Incidence angles range from 40 to 84 deg. At the largest depression angles the distributed targets, such as forest, fields, water, and residential, rarely had mean scattering coefficients greater than -10 dB. From 30 to 80 percent of an image had scattering coefficients less than -20 dB. About 1 to 10 percent of the scattering coefficients exceeded 0 dB, and from 0 to 1 percent above 10 dB. In examining the average backscatter coefficients at large angles, the clutter types cluster according to the following groups: (1) terminals (-3 dB), (2) city and industrial (-7 dB), (3) warehouse (-10 dB), (4) urban and residential (-14 dB), and (5) grass (-24 dB).

  6. Optical Communications Telescope Laboratory (OCTL) Support of Space to Ground Link Demonstrations

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Kovalik, Joseph M.; Wright, Malcolm W.; Roberts, William T.

    2014-01-01

    The NASA/JPL Optical Communication Telescope Laboratory (OCTL) was built for dedicated research and development toward supporting free-space laser communications from space. Recently, the OCTL telescope was used to support the Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmospheric Dust Environment Explorer (LADEE) spacecraft and is planned for use with the upcoming Optical Payload for Lasercomm Science (OPALS) demonstration from the International Space Station (ISS). The use of OCTL to support these demonstrations is discussed in this report. The discussion will feed forward to ongoing and future space-to-ground laser communications as it advances toward becoming an operational capability.

  7. SCaN Network Ground Station Receiver Performance for Future Service Support

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  8. Supersonics--Airport Noise

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2007-01-01

    At this, the first year-end meeting of the Fundamental Aeronautics Program, an overview of the Airport Noise discipline of the Supersonics Project leads the presentation of technical plans and achievements in this area of the Project. The overview starts by defining the Technical Challenges targeted by Airport Noise efforts, and the Approaches planned to meet these challenges. These are fleshed out in Elements, namely Prediction, Diagnostics, and Engineering, and broken down into Tasks. The Tasks level is where individual researchers' work is defined and from whence the technical presentations to follow this presentation come. This overview also presents the Milestones accomplished to date and to be completed in the next year. Finally, the NASA Research Announcement cooperative agreement activities are covered and tied to the Tasks and Milestones.

  9. Managed and Supported Missions in the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Replacing the p.m. orbit & ground system (GS) of POES satellites, JPSS sensors will collect weather, ocean & climate data. JPSS's Common Ground System (CGS), made up of C3 & IDP parts and developed by Raytheon, now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transfers data between ground facilities, processes them into Environmental Data Records for NOAA's weather centers and evolves to support JPSS-1 in 2017. CGS processed S-NPP data creates many TBs/day across >2 dozen environmental data products (EDPs), doubling after JPSS launch. But CGS goes beyond this by providing data routing to other missions: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program, and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs. CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. CGS gives a vital flexible-expandable-virtualized modern GS architecture. Using 5 global ground stations to receive S-NPP & JPSS-1 data, CGS links with high-bandwidth commercial fiber to rapidly move data to the IDP for EDP creation & delivery and leverages these networks to provide added support to more missions. CGS data latency will be < 80 minutes. JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate research. It features a flexible design handling order-of-magnitude increases in data over legacy systems and meets tough science accuracy needs. The Raytheon-built CGS gives the full GS capability, from design & development through operations & sustainment, facilitating future evolution to support more missions.

  10. ERTS-1 DCS technical support provided by Wallops Station. [ground truth stations and DCP repair depot

    NASA Technical Reports Server (NTRS)

    Smith, R.

    1975-01-01

    Wallops Station accepted the tasks of providing ground truth to several ERTS investigators, operating a DCP repair depot, designing and building an airborne DCP Data Acquisition System, and providing aircraft underflight support for several other investigators. Additionally, the data bank is generally available for use by ERTS and other investigators that have a scientific interest in data pertaining to the Chesapeake Bay area. Working with DCS has provided a means of evaluating the system as a data collection device possibly applicable to ongoing Earth Resources Program activities in the Chesapeake Bay area as well as providing useful data and services to other ERTS investigators. The two areas of technical support provided by Wallops, ground truth stations and repair for DCPs, are briefly discussed.

  11. Development and use of interactive displays in real-time ground support research facilities

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  12. Ground Taxi Navigation Problems and Training Solutions

    NASA Technical Reports Server (NTRS)

    Quinn, Cheryl; Walter, Kim E.; Rosekind, Mark (Technical Monitor)

    1997-01-01

    Adverse weather conditions can put considerable strain on the National Airspace System. Even small decreases in visibility on the airport surface can create delays, hinder safe movement and lead to errors. Studies of Aviation Safety Reporting System (ASRS) surface movement incidents support the need for technologies and procedures to improve ground operations in low-visibility conditions. This study examined 139 ASRS reports of low-visibility surface movement incidents at 10 major U.S. airports. Errors were characterized in terms of incident type, contributing factors and consequences. The incidents in the present sample were comprised of runway transgressions, taxiway excursions and ground conflicts. The primary contributing factors were Airport Layout and Markings, Communication and Distraction. In half the incidents the controller issued a new clearance or the flight crew took an evasive action and in the remaining half, no recovery attempt was made because the error was detected after the fact. By gaining a better understanding the factors that affect crew navigation in low visibility and the types of errors that are likely to occur, it will be possible to develop more robust technologies to aid pilots in the ground taxi task. Implications for crew training and procedure development for low-visibility ground taxi are also discussed.

  13. Controlling stress corrosion cracking in mechanism components of ground support equipment

    NASA Technical Reports Server (NTRS)

    Majid, W. A.

    1988-01-01

    The selection of materials for mechanism components used in ground support equipment so that failures resulting from stress corrosion cracking will be prevented is described. A general criteria to be used in designing for resistance to stress corrosion cracking is also provided. Stress corrosion can be defined as combined action of sustained tensile stress and corrosion to cause premature failure of materials. Various aluminum, steels, nickel, titanium and copper alloys, and tempers and corrosive environment are evaluated for stress corrosion cracking.

  14. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  15. Space station operations task force. Panel 2 report: Ground operations and support systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.

  16. PHM for Ground Support Systems Case Study: From Requirements to Integration

    NASA Technical Reports Server (NTRS)

    Teubert, Chris

    2015-01-01

    This session will detail the experience of members of the NASA Ames Prognostic Center of Excellence (PCoE) producing PHM tools for NASA Advanced Ground Support Systems, including the challenges in applying their research in a production environment. Specifically, we will 1) go over the systems engineering and review process used; 2) Discuss the challenges and pitfalls in this process; 3) discuss software architecting, documentation, verification and validation activities and 4) discuss challenges in communicating the benefits and limitations of PHM Technologies.

  17. Ground-Based Observational Support for Spacecraft Exploration of the Outer Planets

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.

    2009-09-01

    This report presents both a retrospective of ground-based support for spacecraft missions to the outer solar system and a perspective of support for future missions. Past support is reviewed in a series of case studies involving the author. The most basic support is essential, providing the mission with information without which the planned science would not have been accomplished. Another is critical, without which science would have been returned, but missing a key element in its understanding. Some observations are enabling by accomplishing one aspect of an experiment which would otherwise not have been possible. Other observations provide a perspective of the planet as a whole which is not available to instruments with narrow fields of view and limited spatial coverage, sometimes motivating a re-prioritizing of experiment objectives. Ground-based support is also capable of providing spectral coverage not present in the complement of spacecraft instruments. Earth-based observations also have the capability of filling in gaps of spacecraft coverage of atmospheric phenomena, as well as providing surveillance of longer-term behavior than the coverage available to the mission. Future missions benefiting from ground-based support would include the Juno mission to Jupiter in the next decade, a flagship-class mission to the Jupiter or to the Saturn systems currently under consideration, and possible intermediate-class missions which might be proposed in NASA’s New Frontiers category. One of the principal benefits of future 30 m-class giant telescopes would be to improve the spatial resolution of maps of temperature and composition which are derived from observations of thermal emission at mid-infrared and longer wavelengths. In many situations, this spatial resolution is competitive with those of the relevant instruments on the spacecraft themselves.

  18. Coarse-to-fine wavelet-based airport detection

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun

    2015-10-01

    Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.

  19. Plant diversity to support humans in a CELSS ground based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  20. 78 FR 7476 - Airport Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Federal Aviation Administration Airport Improvement Program AGENCY: Department of Transportation, Federal Aviation Administration. ACTION: Invitation to comment on draft FAA Order 5100-38, Airport Improvement...-38D, Airport Improvement Program Handbook. When finalized, this Order will replace Order...

  1. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Multimission Support

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Miller, S. W.; Grant, K. D.

    2014-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic, climatological & solar-geophysical data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into Environmental Data Records for NOAA & DoD weather centers, and expanding to support JPSS-1 in 2017.CGS now does data processing (DP) for S-NPP, creating many TBs/day across >2 dozen environmental data products (EDPs). This doubles after JPSS-1 launch. But CGS goes well beyond this by providing data routing support to other global missions.Those other missions are: GCOM-W1, Coriolis/Windsat, EOS, NSF's McMurdo Station, Defense Meteorological Satellite Program (DMSP), and POES & MetOp satellites. Each system orbits 14 times/day, downlinking data 1-2 times/orbit at up to 100s of MBs/sec, to support the creation of 10s of TBs of data/day across 100s of EDPs.CGS's flexible, multimission capabilities offer major chances for cost reduction & improved information integration across the missions. Raytheon has a unique ability to provide complex, highly-secure, multi-mission GSs. A flexible, expandable and virtualized modern GS architecture is vital -- CGS offers the solution.CGS supports 5 global ground stations receiving S-NPP & JPSS-1 mission data. These, linked with high-bandwidth commercial fiber, quickly transport data to the IDP for EDP creation & delivery. CGS data latency will be < 80 minutes. CGS leverages the fiber network to provide added support to many other missions.The JPSS CGS is a mature, tested solution for support to operational weather forecasting for civil, military and international partners and climate

  2. Innovative tailgate support for heavy ground: 11 left longwall panel, Cyprus Shoshone Mine

    SciTech Connect

    Woomer, C.C.; Stewart, C.

    1995-11-01

    Cyprus Shoshone Mines uses the longwall method to extract a deep, thick, pitching coal seam in the Hanna Basin of South Central Wyoming. The immediate, and main roof rock consists of weak, thinly-bedded, silty mudstones with weak, interbedded fine-to medium-grained sandstone. Tailgate ground control has been a critical factor impacting productivity at the mine. A gateroad condition mapping program for the 11 left longwall gateroads indicated potentially severe ground control problems for the tailgate. It was predicted that the existing, secondary support pattern of wood cribs would not provide adequate support capacity. Longwall coordinators and engineers made the decision to use a low density, pumpable cement known to the industry as Tekseal{trademark}, to provide the system required. A 200 psi ultimate strength mix was decided on to provide the required load capacity. The existing cribs were formed with 1-in. by 6-in. boards and brattice cloth to provide the containment. To overcome the access limitations, three boreholes were drilled from the surface to the tailgate on 2,000-ft centers. A mobile pumping station was established on the surface and the Tekseal{trademark} was pumped 900-ft. down the boreholes through a 1.5-in. steep pipe, then as much as 1,800-ft. along the tailgate entry through 1.25-in. miner spray hose. The materials required for the Tekseal{trademark} supports could all be carried into the construction locations by hand. As a direct result of incorporating relatively new methods of pumping high yield, low density, cementitious grout, the Shoshone Mine reduced downtime due to tailgate ground control problems by approximately 70% in comparison with previous longwall panels. The longwall set three monthly production records while mining the 11 left longwall under the deepest cover, steepest pitch, and most extreme ground control conditions ever encountered at the mine.

  3. The impact of NO x, CO and VOC emissions on the air quality of Zurich airport

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor; Schäfer, Klaus; Jahn, Carsten; Hoffmann, Herbert; Bauerfeind, Martina; Fleuti, Emanuel; Rappenglück, Bernhard

    To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO 2, CO and CO 2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C 2-C 3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.

  4. Human-in-the-Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Westheimer, David T.

    2011-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chamber) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international partners.

  5. Support Needs for Canadian Health Providers Responding to Disaster: New Insights from a Grounded Theory Approach

    PubMed Central

    Fahim, Christine; O'Sullivan, Tracey L.; Lane, Dan

    2015-01-01

    Introduction: An earlier descriptive study exploring the various supports available to Canadian health and social service providers who deployed to the 2010 earthquake disaster in Haiti, indicated that when systems are compromised, professionals are at physical, emotional and mental risk during overseas deployment. While these risks are generally well-identified, there is little literature that explores the effectiveness of the supports in place to mitigate this risk. This study provides evidence to inform policy development regarding future disaster relief, and the effectiveness of supports available to responders assisting with international disaster response. Methods: This study follows Strauss and Corbin’s 1990 structured approach to grounded theory to develop a framework for effective disaster support systems. N=21 interviews with Canadian health and social service providers, who deployed to Haiti in response to the 2010 earthquake, were conducted and analyzed. Resulting data were transcribed, coded and analysed for emergent themes. Results and Discussion: Three themes were identified in the data and were used to develop the evolving theory. The interview data indicate that the experiences of responders are determined based on an interaction between the individual’s ‘lens’ or personal expectations, as well as the supports that an organization is able to provide. Therefore, organizations should consider the following factors: experience, expectations, and supports, to tailor a successful support initiative that caters to the needs of the volunteer workforce. PMID:26203399

  6. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  7. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  8. 5 CFR 2425.6 - Grounds for review; potential dismissal or denial for failure to raise or support grounds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Grounds for review; potential dismissal... RELATIONS AUTHORITY REVIEW OF ARBITRATION AWARDS § 2425.6 Grounds for review; potential dismissal or denial... over an award relating to: (1) An action based on unacceptable performance covered under 5 U.S.C....

  9. A Highly Agile Ground Assessment Robot (HAGAR) for military battlefield and support missions

    SciTech Connect

    Klarer, P.

    1994-04-01

    A mobile robotic vehicle with potential for use in military field applications is described. Based on a Sandia design intended for use in exploration of the Lunar surface, the Highly Agile Ground Assessment Robot (HAGAR) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while operating in very rough terrain and climbing over obstacles as large as a wheel diameter. Skid steering and modular construction are used to produce a simple, rugged, lightweight, highly agile mobility chassis with a reduction in the number of parts required when compared to conventional vehicle designs for military battlefield and support missions. The design configuration, mobility parameters, potential mission configurations, and performance of existing and proposed HAGAR prototypes are discussed.

  10. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  11. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  12. Three-track runway and taxiway profiles measured at international airports I and J

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1972-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. Tabulated and plotted data for two international airports, (designated I and J), are included.

  13. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  14. Airport Pricing Strategies

    NASA Technical Reports Server (NTRS)

    Pels, Eric; Verhoef, Erik T.

    2003-01-01

    Conventional economic wisdom suggests that congestion pricing would be an appropriate response to cope with the growing congestion levels currently experienced at many airports. Several characteristics of aviation markets, however, may make naive congestion prices equal to the value of marginal travel delays a non-optimal response. This paper has developed a model of airport pricing that captures a number of these features. The model in particular reflects that airlines typically have market power and are engaged in oligopolistic competition at different sub-markets; that part of external travel delays that aircraft impose are internal to an operator and hence should not be accounted for in congestion tolls. We presented an analytical treatment for a simple bi-nodal symmetric network, which through the use of 'hyper-networks' would be readily applicable to dynamic problems (in discrete time) such as peak - off-peak differences, and some numerical exercises for the same symmetric network, which was only designed to illustrate the possible comparative static impacts of tolling, in addition to marginal equilibrium conditions as could be derived for the general model specification. Some main conclusions are that second-best optimal tolls are typically lower than what would be suggested by congestion costs alone and may even be negative, and that the toll as derived by Brueckner (2002) may not lead to an increase in total welfare. While Brueckner (2002) has made clear that congestion tolls on airports may be smaller than expected when congestion costs among aircraft are internal for a firm, our analysis adds to this that a further downward adjustment may be in order due to market power. The presence of market power (which causes prices to exceed marginal costs) may cause the pure congestion toll to be suboptimal, because the resulting decrease in demand is too high (the pure congestion tall does not take into account the decrease in consumer surplus). The various

  15. An expert system for ground support of the Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Rosenthal, Don; Monger, Patricia; Miller, Glenn; Johnston, Mark

    1986-01-01

    The Hubble Space Telescope is an orbiting optical observatory due to be launched by the Space Shuttle in late 1987. It is a complex, multi-instrument observatory whose resources will be available to the world-wide astronomical community. The 'Transformation' system is a hybrid system which utilizes a rule-based expert system to convert scientific proposals into pre-optimized linked hierarchies of spacecraft activities. These activities are generated in a format that can be directly scheduled by the planning and scheduling component of the Space Telescope ground support system. The Transformation system will be described in detail in this paper, with particular attention given to the rule base.

  16. JPL Table Mountain Facility Support of the Ground/Orbiter Lasercomm Demonstration

    NASA Astrophysics Data System (ADS)

    Gillam, S. D.; Young, J. W.; Sidwell, D. R.

    1996-01-01

    On 23 nights between October 30, 1995, and January 13, 1996, the JPL Table Mountain Facility (TMF) was the site of the ground stations of the Ground/Orbiter Lasercomm Demonstration (GOLD). These 0.6-m and 1.2-m telescopes acted as terminals in a bent-pipe optical communications link. This link went from the ground to an optical communications transceiver terminal on the Japanese Engineering Test Satellite (ETS-VI) and back to the ground. This article describes how the TMF supported this novel optical communications experiment. This experiment was a collaborative effort between JPL, NASA's Deep Space Network (DSN), the Japanese National Aeronautics and Space Development Agency (NASDA), and the Japanese Communications Research Laboratory (CRL), which operates the ETS-VI. The 0.6-m telescope, in the coude configuration, was used to uplink a 514-nm modulated laser to the transceiver on the ETS-VI communications satellite. The 1.2-m telescope, in the Cassegrain configuration, was used to detect an 830-nm diode laser signal downlinked from the ETS-VI terminal. The downlink was sent only if the uplink beam was detected. The uplink beam had to be kept within a box 5 arcsec on a side and centered on the position of the ETS-VI. This required that the 0.6-m telescope track the ETS-VI to a precision of ~2 arcsec. The 1.2-m telescope was required to track to a precision of 4{5 arcsec because the downlink detector had an aperture with a 13-arcsec-diameter field of view. This article describes how the above tracking performance was met by both telescopes. Equipment designed for the experiment at the transmitter and receiver stations, acquisition methods, and software developed to support this project are discussed, as are experiments performed to establish the suitability of the TMF telescopes for this demonstration. This article discusses upgrades to the TMF electrical power system needed to support GOLD; mechanical, optical, and servo-control aspects of the transmitter and

  17. FIELD EXPERIMENTS AND MODELING AT CDG AIRPORTS

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.

    2009-12-01

    Richard Ramaroson1,4, Klaus Schaefer2, Stefan Emeis2, Carsten Jahn2, Gregor Schürmann2, Maria Hoffmann2, Mikhael Zatevakhin3, Alexandre Ignatyev3. 1ONERA, Châtillon, France; 4SEAS, Harvard University, Cambridge, USA; 2FZK, Garmisch, Germany; (3)FSUE SPbAEP, St Petersburg, Russia. 2-month field campaigns have been organized at CDG airports in autumn 2004 and summer 2005. Air quality and ground air traffic emissions have been monitored continuously at terminals and taxi-runways, along with meteorological parameters onboard trucks and with a SODAR. This paper analyses the commercial engine emissions characteristics at airports and their effects on gas pollutants and airborne particles coupled to meteorology. LES model results for PM dispersion coupled to microphysics in the PBL are compared to measurements. Winds and temperature at the surface and their vertical profiles have been stored with turbulence. SODAR observations show the time-development of the mixing layer depth and turbulent mixing in summer up to 800m. Active low level jets and their regional extent have been observed and analyzed. PM number and mass size distribution, morphology and chemical contents are investigated. Formation of new ultra fine volatile (UFV) particles in the ambient plume downstream of running engines is observed. Soot particles are mostly observed at significant level at high power thrusts at take-off (TO) and on touch-down whereas at lower thrusts at taxi and aprons ultra the UFV PM emissions become higher. Ambient airborne PM1/2.5 is closely correlated to air traffic volume and shows a maximum beside runways. PM number distribution at airports is composed mainly by volatile UF PM abundant at apron. Ambient PM mass in autumn is higher than in summer. The expected differences between TO and taxi emissions are confirmed for NO, NO2, speciated VOC and CO. NO/NO2 emissions are larger at runways due to higher power. Reactive VOC and CO are more produced at low powers during idling at

  18. Education and Public Outreach for MSFC's Ground-Based Observations in Support of the HESSI Mission

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Hagyard, Mona J.; Newton, Elizabeth K.

    1999-01-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years'experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  19. A ground support electronic interface for the ionospheric spectroscopy and atmospheric chemistry (ISAAC) ultraviolet spectrograph

    NASA Astrophysics Data System (ADS)

    Macquarrie, Jeffrey A.

    1994-12-01

    This thesis details the design and development of an electronic Ground Support Equipment (GSE) interface for the Naval Postgraduate School's (NPS) Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) spectrograph. The ISAAC spectrograph, which was designed at NPS and built by Research Support Instruments, Inc., is intended to observe atmospheric airglow and auroral emissions in the ultraviolet (1800A to 3300A) wavelength region. It is to be included as one of several sensors flown onboard the Advanced Research and Global Observation Satellite (ARGOS), which is scheduled for an early 1996 launch. The GSE was developed in order to allow ground testing and calibration of the instrument prior to and during integration with the satellite bus. The GSE includes hardware to provide the connections between various components of the spectrograph and a Macintosh computer with an installed I/O card. The GSE also includes a user-friendly software interface written with LabVIEW 2.2 that provides the ability to view spectra obtained from the instrument and to remotely control mechanical functions of the spectrograph. An initial wavelength calibration of the spectrograph has been performed using the completed GSE.

  20. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  1. Education and Public Outreach for MSFC's Ground-based Observations in Support of the HESSI Mission

    NASA Astrophysics Data System (ADS)

    Adams, M.; Hagyard, M. J.; Newton, E.

    1999-05-01

    A primary focus of NASA is the advancement of science and the communication of these advances to a number of audiences, both within the science research community and outside it. The upcoming High Energy Solar Spectroscopic Imager (HESSI) mission and the MSFC ground-based observing program, provide an excellent opportunity to communicate our knowledge of the Sun, its cycle of activity, the role of magnetic fields in that activity, and its effect on our planet. In addition to ground-based support of the HESSI mission, MSFC's Solar Observatory, located in North Alabama, will involve students and the local education community in its day-to-day operations, an experience which is more immediate, personal, and challenging than their everyday educational experience. Further, by taking advantage of the Internet, our program can reach beyond the immediate community. By joining with Fernbank Science Center in Atlanta, Georgia, we will leverage their almost 30 years' experience in science program delivery in diverse situations to a distance learning opportunity which can encompass the entire Southeast and beyond. This poster will outline our education and public outreach plans in support of the HESSI mission in which we will target middle and high school students and their teachers.

  2. Auctioning Airport Slots?

    NASA Technical Reports Server (NTRS)

    Gruyer, Nicolas; Lenoir, Nathalie

    2003-01-01

    The current allocation of slots on congested European airports constitutes an obstacle to the effective liberalisation of air transportation undertaken in Europe. With a view to favouring effluent slot utilisation and competition, as is the goal of the Euopean commission, we propose to use a market mechanism, based on temporary" utilisation licences. In order to allocate those licences, we propose and describe an iterated combinatorial auction mechanism where a percentage of licences would be reallocated each season. A secondary market would also be set up in order to reallocate slots during a season. Since a combinatorial auction involve a complex optimisation procedure, we describe how it can be made to work in the case of auctions.

  3. RISK-BASED PROCEDURES USED TO SUPPORT REMEDIATION OF A GROUND WATER- SURFACE WATER TRANSITION ZONE CONTAMINATED WITH CHLOROBENZENES

    EPA Science Inventory

    Risk-Based Procedures Used to Support Remediation of a Ground Water - Surface Water Transition Zone Contaminated with Chlorobenzenes (Eastland Woolen Mill Superfund Site, Corinna, ME) In-situ and laboratory toxicity, sediment-toxicity identification evaluation (SIE), benthic macr...

  4. C-Band Airport Surface Communications System Standards Development, Phase I

    NASA Technical Reports Server (NTRS)

    Hall, Edward; Isaacs, James; Zelkin, Natalie; Henriksen. Steve

    2010-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." The proposed future C-band (5091- to 5150-MHz) airport surface communication system, referred to as the Aeronautical Mobile Airport Communications System (AeroMACS), is anticipated to increase overall air-to-ground data communications systems capacity by using a new spectrum (i.e., not very high frequency (VHF)). Although some critical services could be supported, AeroMACS will also target noncritical services, such as weather advisory and aeronautical information services as part of an airborne System Wide Information Management (SWIM) program. AeroMACS is to be designed and implemented in a manner that will not disrupt other services operating in the C-band. This report defines the AeroMACS concepts of use, high-level system requirements, and architecture; the performance of supporting system analyses; the development of AeroMACS test and demonstration plans; and the establishment of an operational AeroMACS capability in support of C-band aeronautical data communications standards to be advanced in both international (International Civil Aviation Organization, ICAO) and national (RTCA) forums. This includes the development of system parameter profile recommendations for AeroMACS based on existing Institute of Electrical and Electronics Engineering (IEEE) 802.16e- 2009 standards

  5. Aeronautical Mobile Airport Communications System (AeroMACS)

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  6. Progress on the Development of Future Airport Surface Wireless Communications Network

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  7. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  8. Modeling Weather Impact on Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Kulkarni, Deepak

    2011-01-01

    Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.

  9. Clutter modeling of the Denver Airport and surrounding areas

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delmore, Victor E.; Onstott, Robert G.

    1991-01-01

    To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described.

  10. 14 CFR 139.329 - Pedestrians and ground vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures...

  11. 14 CFR 139.329 - Pedestrians and ground vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures...

  12. 14 CFR 139.329 - Pedestrians and ground vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures...

  13. 14 CFR 139.329 - Pedestrians and ground vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures...

  14. 14 CFR 139.329 - Pedestrians and ground vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pedestrians and ground vehicles. 139.329... OF AIRPORTS Operations § 139.329 Pedestrians and ground vehicles. In a manner authorized by the... pedestrians and ground vehicles necessary for airport operations; (b) Establish and implement procedures...

  15. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    SciTech Connect

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  16. 76 FR 15028 - Airport Improvement Program (AIP): Interim Policy Regarding Access to Airports From Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Improvement Program (AIP): Policy Regarding Access to Airports From Residential Property (75 FR 54946..., Safety Management System for Certificated Airports (75 FR 62008, October 7, 2010). However, the...

  17. The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument

    NASA Astrophysics Data System (ADS)

    Molfese, C.; Schipani, P.; Marty, L.; Esposito, F.; D'Orsi, S.; Mannetta, M.; Debei, S.; Bettanini, C.; Aboudan, A.; Colombatti, G.; Mugnuolo, R.; Marchetti, E.; Pirrotta, S.

    2014-08-01

    This paper describes the Electrical Ground Support Equipment (EGSE) of the Dust characterization, Risk assessment, and Environment Analyser on the Martian Surface (DREAMS) scientific instrument, an autonomous surface payload package to be accommodated on the Entry, Descendent and landing Module (EDM) of the ExoMars 2016 European Space Agency (ESA) mission. DREAMS will perform several kinds of measurements, such as the solar irradiance with different optical detectors in the UVA band (315-400nm), NIR band (700-1100nm) and in "total luminosity" (200 -1100 nm). It will also measure environmental parameters such as the intensity of the electric field, temperature, pressure, humidity, speed and direction of the wind. The EGSE is built to control the instrument and manage the data acquisition before the integration of DREAMS within the Entry, Descendent and landing Module (EDM) and then to retrieve data from the EDM Central Checkout System (CCS), after the integration. Finally it will support also the data management during mission operations. The EGSE is based on commercial off-the-shelf components and runs custom software. It provides power supply and simulates the spacecraft, allowing the exchange of commands and telemetry according to the protocol defined by the spacecraft prime contractor. This paper describes the architecture of the system, as well as its functionalities to test the DREAMS instrument during all development activities before the ExoMars 2016 launch.

  18. Nighttime Ground and Space Based Ionospheric Measurements in Support of FORMOSAT- 3/COSMIC

    NASA Astrophysics Data System (ADS)

    Basu, S.; Groves, K.; Lin, C.; Dymond, K.; Coker, C.; Rocken, C.; Valladares, C.

    2006-12-01

    Coordinated multi-technique measurements were conducted in support of COSMIC launched in April 2006. These early measurements were organized to take advantage of the clustering of satellites in the constellation generally referred to as "beads on string" configuration. This configuration only occurs during the early phase when the satellites are around the launch altitude, approximately 500 km, before they are finally deployed at 800 km altitude. This clustered configuration permits measurements with high spatial and temporal resolution from all three COSMIC instruments, namely, the GPS occultation sensor (GOX), the Tiny Ionospheric Photometer (TIP) and the radio beacon. The main advantage of this constellation is that the coverage in latitude and longitude is unprecedented. The TIP observations of nighttime 135.6 nm emission provide the features of the equatorial anomaly, namely the ionization density at the crests, the crest to trough density ratio, the latitude separation of the crests and their asymmetry. The GOX sensor is able to provide accurate electron density profiles in the equatorial anomaly region at dusk by the assimilation of TIP data on density gradients. Major ground-based support was provided by incoherent scatter radars at Jicamarca and Kwajalein, the TEC network in the South American sector and scintillation measurements from nearby SCINDA sites. These early results on large and small-scale plasma structuring in the nighttime equatorial ionosphere will be presented.

  19. Operational Characteristics Identification and Simulation Model Verification for Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Zhu, Zhifan; Jung, Yoon C.; Jeong, Myeongsook; Kim, Hyounkyong; Oh, Eunmi; Hong, Sungkwon; Lee, Junwon

    2016-01-01

    Incheon International Airport (ICN) is one of the hub airports in East Asia. Airport operations at ICN have been growing more than 5 percent per year in the past five years. According to the current airport expansion plan, a new passenger terminal will be added and the current cargo ramp will be expanded in 2018. This expansion project will bring 77 new stands without adding a new runway to the airport. Due to such continuous growth in airport operations and future expansion of the ramps, it will be highly likely that airport surface traffic will experience more congestion, and therefore, suffer from efficiency degradation. There is a growing awareness in aviation research community of need for strategic and tactical surface scheduling capabilities for efficient airport surface operations. Specific to ICN airport operations, a need for A-CDM (Airport - Collaborative Decision Making) or S-CDM (Surface - Collaborative Decision Making), and controller decision support tools for efficient air traffic management has arisen since several years ago. In the United States, there has been independent research efforts made by academia, industry, and government research organizations to enhance efficiency and predictability of surface operations at busy airports. Among these research activities, the Spot and Runway Departure Advisor (SARDA) developed and tested by National Aeronautics and Space Administration (NASA) is a decision support tool to provide tactical advisories to the controllers for efficient surface operations. The effectiveness of SARDA concept, was successfully verified through the human-in-the-loop (HITL) simulations for both spot release and runway operations advisories for ATC Tower controllers of Dallas-Fort Worth International Airport (DFW) in 2010 and 2012, and gate pushback advisories for the ramp controller of Charlotte-Douglas International Airport (CLT) in 2014. The SARDA concept for tactical surface scheduling is further enhanced and is being

  20. Operational Characteristics Identification and Simulation Model Verification for Incheon International Airport

    NASA Technical Reports Server (NTRS)

    Eun, Yeonju; Jeon, Daekeun; Lee, Hanbong; Zhu, Zhifan; Jung, Yoon C.; Jeong, Myeongsook; Kim, Hyounkyong; Oh, Eunmi; Hong, Sungkwon; Lee, Junwon

    2016-01-01

    Incheon International Airport (ICN) is one of the hub airports in East Asia. Airport operations at ICN have been growing more than 5% per year in the past five years. According to the current airport expansion plan, a new passenger terminal will be added and the current cargo ramp will be expanded in 2018. This expansion project will bring 77 new stands without adding a new runway to the airport. Due to such continuous growth in airport operations and future expansion of the ramps, it will be highly likely that airport surface traffic will experience more congestion, and therefore, suffer from efficiency degradation. There is a growing awareness in aviation research community of need for strategic and tactical surface scheduling capabilities for efficient airport surface operations. Specific to ICN airport operations, a need for A-CDM (Airport - Collaborative Decision Making) or S-CDM(Surface - Collaborative Decision Making), and controller decision support tools for efficient air traffic management has arisen since several years ago. In the United States, there has been independent research efforts made by academia, industry, and government research organizations to enhance efficiency and predictability of surface operations at busy airports. Among these research activities, the Spot and Runway Departure Advisor (SARDA) developed and tested by National Aeronautics and Space Administration (NASA) is a decision support tool to provide tactical advisories to the controllers for efficient surface operations. The effectiveness of SARDA concept, was successfully verified through the human-in-the-loop (HITL) simulations for both spot release and runway operations advisories for ATC Tower controllers of Dallas/Fort Worth International Airport (DFW) in 2010 and 2012, and gate pushback advisories for the ramp controller of Charlotte/Douglas International Airport (CLT) in 2014. The SARDA concept for tactical surface scheduling is further enhanced and is being integrated into

  1. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  2. Extraction of Airport Features from High Resolution Satellite Imagery for Design and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Robinson, Chris; Qiu, You-Liang; Jensen, John R.; Schill, Steven R.; Floyd, Mike

    2001-01-01

    The LPA Group, consisting of 17 offices located throughout the eastern and central United States is an architectural, engineering and planning firm specializing in the development of Airports, Roads and Bridges. The primary focus of this ARC project is concerned with assisting their aviation specialists who work in the areas of Airport Planning, Airfield Design, Landside Design, Terminal Building Planning and design, and various other construction services. The LPA Group wanted to test the utility of high-resolution commercial satellite imagery for the purpose of extracting airport elevation features in the glide path areas surrounding the Columbia Metropolitan Airport. By incorporating remote sensing techniques into their airport planning process, LPA wanted to investigate whether or not it is possible to save time and money while achieving the equivalent accuracy as traditional planning methods. The Affiliate Research Center (ARC) at the University of South Carolina investigated the use of remotely sensed imagery for the extraction of feature elevations in the glide path zone. A stereo pair of IKONOS panchromatic satellite images, which has a spatial resolution of 1 x 1 m, was used to determine elevations of aviation obstructions such as buildings, trees, towers and fence-lines. A validation dataset was provided by the LPA Group to assess the accuracy of the measurements derived from the IKONOS imagery. The initial goal of this project was to test the utility of IKONOS imagery in feature extraction using ERDAS Stereo Analyst. This goal was never achieved due to problems with ERDAS software support of the IKONOS sensor model and the unavailability of imperative sensor model information from Space Imaging. The obstacles encountered in this project pertaining to ERDAS Stereo Analyst and IKONOS imagery will be reviewed in more detail later in this report. As a result of the technical difficulties with Stereo Analyst, ERDAS OrthoBASE was used to derive aviation

  3. The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing

    NASA Technical Reports Server (NTRS)

    Hagelschuer, Dirk; Messing, Rene; Westera, Roel

    2008-01-01

    Environmental test facilities are not suitable in any case to comply with special or complex test requirements without modifications. Dedicated upgrades of the test facility and their subsystems with respect to the test requirements and specifications are often necessary. The Flight Model of the Planck Space Telescope was tested in the Large Space Simulator (LSS) of the ESTEC Test Centre. Main goals of the test were the verification of the deformation of the Telescope during thermal vacuum conditions at different temperature levels and the validation of the Thermal Model. The deformations of the telescope have been traced by two Videogrammetry canisters. In order to provide different view positions with respect to the PLANCK Telescope it was necessary to rotate the specimen by +/- 180deg. In addition very stringent requirements for the low temperature level of the thermal environment has lead to a comprehensive test set-up which was divided in four main elements: Dedicated support structure for the Videogrammetry canisters providing several DoF for adjustment. Structure to support three Infrared panels around the specimen. MLI curtain to cover the LSS 8m auxiliary chamber opening. System providing LN2 supply for the rotating PLANCK telescope cold panel. The design, manufacturing and integration of the necessary mechanical ground support to install for instance the canisters and to ensure the 180 rotation of the telescope under cold and high vacuum conditions was an extensive and important part of the entire test program. This paper will concentrate on the design issues, the implementation and verification of the MGSE provided for the Planck Space Telescope FM Videogrammetry Test in the LSS and the troubleshooting caused by a failure during the first rotation under cold conditions.

  4. A Concept and Implementation of Optimized Operations of Airport Surface Traffic

    NASA Technical Reports Server (NTRS)

    Jung, Yoon C.; Hoang, Ty; Montoya, Justin; Gupta, Gautam; Malik, Waqar; Tobias, Leonard

    2010-01-01

    This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler provides take-off sequence and arrival runway crossing sequence to the controllers to maximize the runway usage. The description of a prototype implementation of this integrated decision support tool for the airport control tower controllers is also provided. The prototype decision support tool was evaluated through a human-in-the-loop experiment, where both the Spot Release Planner and Runway Scheduler provided advisories to the Ground and Local Controllers. Initial results indicate the average number of stops made by each departure aircraft in the departure runway queue was reduced by more than half when the controllers were using the advisories, which resulted in reduced taxi times in the departure queue.

  5. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    NASA Astrophysics Data System (ADS)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  6. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  7. 77 FR 4394 - Release of Airport Property: Orlando Executive Airport, Orlando, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Federal Aviation Administration Release of Airport Property: Orlando Executive Airport, Orlando, FL AGENCY... provides notice of intent to release certain airport properties 12.4 acres at the Orlando Executive Airport, Orlando, FL from the conditions, release certain properties from all terms, conditions, reservations...

  8. Evolution of Chinese airport network

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo; Cai, Kai-Quan

    2010-09-01

    With the rapid development of the economy and the accelerated globalization process, the aviation industry plays a more and more critical role in today’s world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of the Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN has remained steady during the past few years, there are many dynamic switchings inside the network, which have changed the relative importance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic continues to grow in an exponential form and has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  9. AN OPTIMAL MAINTENANCE MANAGEMENT MODEL FOR AIRPORT CONCRETE PAVEMENT

    NASA Astrophysics Data System (ADS)

    Shimomura, Taizo; Fujimori, Yuji; Kaito, Kiyoyuki; Obama, Kengo; Kobayashi, Kiyoshi

    In this paper, an optimal management model is formulated for the performance-based rehabilitation/maintenance contract for airport concrete pavement, whereby two types of life cycle cost risks, i.e., ground consolidation risk and concrete depreciation risk, are explicitly considered. The non-homogenous Markov chain model is formulated to represent the deterioration processes of concrete pavement which are conditional upon the ground consolidation processes. The optimal non-homogenous Markov decision model with multiple types of risk is presented to design the optimal rehabilitation/maintenance plans. And the methodology to revise the optimal rehabilitation/maintenance plans based upon the monitoring data by the Bayesian up-to-dating rules. The validity of the methodology presented in this paper is examined based upon the case studies carried out for the H airport.

  10. Proven and Robust Ground Support Systems - GSFC Success and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Donohue, John; Lui, Ben; Greer, Greg; Green, Tom

    2008-01-01

    Over the past fifteen years, Goddard Space Flight Center has developed several successful science missions in-house: the Wilkinson Microwave Anisotropy Probe (WMAP), the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), the Earth Observing 1 (EO-1) [1], and the Space Technology 5 (ST-5)[2] missions, several Small Explorers, and several balloon missions. Currently in development are the Solar Dynamics Observatory (SDO) [3] and the Lunar Reconnaissance Orbiter (LRO)[4]. What is not well known is that these missions have been supported during spacecraft and/or instrument integration and test, flight software development, and mission operations by two in house satellite Telemetry and Command (T & C) Systems, the Integrated Test and Operations System (ITOS) and the Advanced Spacecraft Integration and System Test (ASIST). The advantages of an in-house satellite Telemetry and Command system are primarily in the flexibility of management and maintenance - the developers are considered a part of the mission team, get involved early in the development process of the spacecraft and mission operations-control center, and provide on-site, on-call support that goes beyond Help Desk and simple software fixes. On the other hand, care must be taken to ensure that the system remains generic enough for cost effective re-use from one mission to the next. The software is designed such that many features are user-configurable. Where user-configurable options were impractical, features were designed so as to be easy for the development team to modify. Adding support for a new ground message header, for example, is a one-day effort because of the software framework on which that code rests. This paper will discuss the many features of the Goddard satellite Telemetry and Command systems that have contributed to the success of the missions listed above. These features include flexible user interfaces, distributed parallel commanding and telemetry decommutation, a procedure

  11. Implementing Solar Technologies at Airports

    SciTech Connect

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  12. An Open-source Community Web Site To Support Ground-Water Model Testing

    NASA Astrophysics Data System (ADS)

    Kraemer, S. R.; Bakker, M.; Craig, J. R.

    2007-12-01

    A community wiki wiki web site has been created as a resource to support ground-water model development and testing. The Groundwater Gourmet wiki is a repository for user supplied analytical and numerical recipes, howtos, and examples. Members are encouraged to submit analytical solutions, including source code and documentation. A diversity of code snippets are sought in a variety of languages, including Fortran, C, C++, Matlab, Python. In the spirit of a wiki, all contributions may be edited and altered by other users, and open source licensing is promoted. Community accepted contributions are graduated into the library of analytic solutions and organized into either a Strack (Groundwater Mechanics, 1989) or Bruggeman (Analytical Solutions of Geohydrological Problems, 1999) classification. The examples section of the wiki are meant to include laboratory experiments (e.g., Hele Shaw), classical benchmark problems (e.g., Henry Problem), and controlled field experiments (e.g., Borden landfill and Cape Cod tracer tests). Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  13. Ground-penetrating radar surveying in support of archeological site investigations

    NASA Astrophysics Data System (ADS)

    Baker, Jesse A.; Anderson, Neil L.; Pilles, Peter J.

    1997-12-01

    In April and July of 1996, ground-penetrating radar (GPR) surveys were conducted in support of archeological investigations at Flagstaff, Arizona and Sebastian, Florida, respectively. A GSSI SIR System 8 radar unit with a 500-MHz monostatic antenna was used for both surveys. The Flagstaff, Arizona survey was conducted at Elden Pueblo Ruins. The site is located in a coniferous forest and characterized by a myriad of surficial and subsurface features. Surficial features consisted mostly of pottery shards and the remnants of rock walled structures. The subsurface features consist mostly of rock lined pits, stone walls, and grave sites covered by a soil layer of variable thickness. The soil is derived from volcanic clastics and the underlying Kaibab Limestone bedrock. GPR profiles were acquired across various locations, some of which had been previously excavated and backfilled by archeologists. The main objectives were to determine the utility of the GPR technique with respect to locating subsurface features of archeological interest, determine the optimum field parameters in the area, and direct further field work. The Sebastian, Florida survey was conducted along the Atlantic coastline. Data were acquired along five beaches and one coastal sand dune. The beaches and dunes of the area are composed of a medium to coarse grained sand, containing quartz grains and carbonates. The principle objective of the Sebastian, Florida survey was to locate wreckage from a Spanish treasure fleet. A secondary objective was to determine the utility of GPR in a near shore marine environment.

  14. Planning, Management, and Economics of Airport Operation

    NASA Technical Reports Server (NTRS)

    Wiley, J.

    1972-01-01

    An overview of the role of the airport in the transportation complex and in the community is presented. The establishment of the airport including its requirements in regional planning and the operation of the airport as a social and economic force are discussed.

  15. 75 FR 39090 - Airport Privatization Pilot Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... procedures to be used in applications for exemption under the Airport Privatization Pilot Program (62 FR... Federal Aviation Administration Airport Privatization Pilot Program AGENCY: Federal Aviation... application for participation in the airport privatization pilot program received under 49 U.S.C....

  16. Methods for Determining Aircraft Surface State at Lesser-Equipped Airports

    NASA Technical Reports Server (NTRS)

    Roach, Keenan; Null, Jody

    2016-01-01

    Tactical departure scheduling within a terminal airspace must accommodate a wide spectrum of surveillance and communication capabilities at multiple airports. The success of such a scheduler is highly dependent upon the knowledge of a departure's state while it is still on the surface. Airports within a common Terminal RAdar CONtrol (TRACON) airspace possess varying levels of surface surveillance infrastructure which directly impacts uncertainties in wheels-off times. Large airports have access to surface surveillance data, which is shared with the TRACON, while lesser-equipped airports still rely solely on controllers in Air Traffic Control Towers (Towers). Coordination between TRACON and Towers can be greatly enhanced when the TRACON controller has access to the surface surveillance and the associated decision-support tools at well-equipped airports. Similar coordination at lesser-equipped airports is still based on verbal communications. This paper investigates possible methods to reduce the uncertainty in wheels-off time predictions at the lesser-equipped airports through the novel use of Over-the-Air (OTA) data transmissions. We also discuss the methods and equipment used to collect sample data at lesser-equipped airports within a large US TRACON, as well as the data evaluation to determine if meaningful information can be extracted from it.

  17. SITE CHARACTERIZATION TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND TRANSPORT MODELS FOR MONITORING CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  18. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  19. Ground-based support for the Juno Earth Fly-by (Invited)

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Bunce, E. J.; Yeoman, T. K.; Cowley, S. W.; Stromme, A.; Kavanagh, A. J.; McCrea, I. W.; Coster, A. J.; Erickson, P. J.; Haggstrom, I.; Heinselman, C. J.

    2013-12-01

    On 9th October 2013, the Juno spacecraft will undergo a gravitational slingshot as it passes Earth en route to Jupiter. In doing so, the trajectory of Juno will take it through the Earth's magnetosphere. The spacecraft will enter the magnetosphere at the post-noon, low-latitude dayside magnetopause, and will make its outbound magnetopause crossing at mid northern latitudes on the dawn flank approximately 15 Earth radii down-tail. Customised operations of a range of ground-based ionospheric instrumentation are planned in support of the in situ observations of the terrestrial magnetosphere that will be made by Juno. Global scale observations will be provided by the SuperDARN network of coherent scatter radars. SuperDARN consists of 21 radars in the northern hemisphere and 11 in the southern hemisphere; the fields of view of the SuperDARN radars cover the polar cap, auroral regions and mid latitudes. The ionospheric footprint of the Juno spacecraft will be within the SuperDARN field of view for most of the time that the spacecraft is within the magnetosphere. Local observations will be provided by three incoherent scatter radars: Millstone Hill (situated in Massachusetts), Sondrestrom (western Greenland) and the EISCAT Svalbard Radar (situated poleward of mainland Norway on the archipelago of Svalbard). As Juno first crosses the magnetopause and traverses the dayside magnetosphere, its magnetic footprint is expected to map to the region of the ionosphere observed by Millstone Hill and Sondrestrom, whilst the EISCAT Svalbard Radar will provide observations of the region of the ionosphere that maps to the section of the magnetotail to be sampled by Juno shortly before its outward magnetopause crossing. In this talk, we will present an overview of the geometry of the conjunctions between Juno and these ionospheric instruments and preliminary ionospheric observations from this interval.

  20. Development of a calibrated software reliability model for flight and supporting ground software for avionic systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Stella

    1991-01-01

    The object of this project was to develop and calibrate quantitative models for predicting the quality of software. Reliable flight and supporting ground software is a highly important factor in the successful operation of the space shuttle program. The models used in the present study consisted of SMERFS (Statistical Modeling and Estimation of Reliability Functions for Software). There are ten models in SMERFS. For a first run, the results obtained in modeling the cumulative number of failures versus execution time showed fairly good results for our data. Plots of cumulative software failures versus calendar weeks were made and the model results were compared with the historical data on the same graph. If the model agrees with actual historical behavior for a set of data then there is confidence in future predictions for this data. Considering the quality of the data, the models have given some significant results, even at this early stage. With better care in data collection, data analysis, recording of the fixing of failures and CPU execution times, the models should prove extremely helpful in making predictions regarding the future pattern of failures, including an estimate of the number of errors remaining in the software and the additional testing time required for the software quality to reach acceptable levels. It appears that there is no one 'best' model for all cases. It is for this reason that the aim of this project was to test several models. One of the recommendations resulting from this study is that great care must be taken in the collection of data. When using a model, the data should satisfy the model assumptions.

  1. An Analysis of Delay and Travel Times at Sao Paulo International Airport (AISP/GRU): Planning Based on Simulation Model

    NASA Technical Reports Server (NTRS)

    Santana, Erico Soriano Martins; Mueller, Carlos

    2003-01-01

    The occurrence of flight delays in Brazil, mostly verified at the ground (airfield), is responsible for serious disruptions at the airport level but also for the unchaining of problems in all the airport system, affecting also the airspace. The present study develops an analysis of delay and travel times at Sao Paulo International Airport/ Guarulhos (AISP/GRU) airfield based on simulation model. Different airport physical and operational scenarios had been analyzed by means of simulation. SIMMOD Plus 4.0, the computational tool developed to represent aircraft operation in the airspace and airside of airports, was used to perform these analysis. The study was mainly focused on aircraft operations on ground, at the airport runway, taxi-lanes and aprons. The visualization of the operations with increasing demand facilitated the analyses. The results generated in this work certify the viability of the methodology, they also indicated the solutions capable to solve the delay problem by travel time analysis, thus diminishing the costs for users mainly airport authority. It also indicated alternatives for airport operations, assisting the decision-making process and in the appropriate timing of the proposed changes in the existing infrastructure.

  2. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis.

    PubMed

    Niu, Wenxin; Feng, Tienan; Wang, Lejun; Jiang, Chenghua; Zhang, Ming

    2016-03-01

    There has been much debate on how prophylactic ankle supports (PASs) may influence the vertical ground reaction force (vGRF) during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2) and the time from initial contact to peak loading (T1, T2) during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1) the study was conducted on healthy adults; 2) the subject number and trial number were known; 3) the subjects performed landing with and without PAS; 4) the landing movement was in the sagittal plane; 5) the comparable vGRF parameters were reported; and 6) the F1 and F2 must be normalized to the subject's body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05) and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71) and T2 (-3.74 ms, 95% CI: -4.83, -2.65) with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane. Key pointsPAS can effectively protect the ligamentous structure from spraining by providing mechanical support and cutaneous proprioceptive benefits.Using of PAS can

  3. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis

    PubMed Central

    Niu, Wenxin; Feng, Tienan; Wang, Lejun; Jiang, Chenghua; Zhang, Ming

    2016-01-01

    There has been much debate on how prophylactic ankle supports (PASs) may influence the vertical ground reaction force (vGRF) during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2) and the time from initial contact to peak loading (T1, T2) during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1) the study was conducted on healthy adults; 2) the subject number and trial number were known; 3) the subjects performed landing with and without PAS; 4) the landing movement was in the sagittal plane; 5) the comparable vGRF parameters were reported; and 6) the F1 and F2 must be normalized to the subject’s body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05) and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71) and T2 (-3.74 ms, 95% CI: -4.83, -2.65) with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane. Key points PAS can effectively protect the ligamentous structure from spraining by providing mechanical support and cutaneous proprioceptive benefits. Using of PAS can

  4. Sprint running with a body-weight supporting kite reduces ground contact time in well-trained sprinters.

    PubMed

    Kratky, Sascha; Müller, Erich

    2013-05-01

    It is well founded that ground contact time is the crucial part of sprinting because the available time window to apply force to the ground diminishes with growing running velocity. In view of this knowledge, the purpose of this study was to investigate the effects of body-weight support during full-effort sprints on ground contact time and selected stride parameters in 19 Austrian male elite sprinters. A kite with a lifting effect combined with a towing system to erase drag was used. The subjects performed flying 20-m sprints under 3 conditions: (a) free sprint; (b) body-weight supported sprint-normal speed (BWS-NS); and (c) body-weight supported sprint-overspeed (BWS-OS). Sprint cycle characteristics were recorded during the high-speed phase by an optical acquisition system. Additionally, running velocity was derived from the 20-m sprint time. Compared with the fastest free sprint, running velocity, step length, and step frequency remained unchanged during BWS-NS, whereas ground contact time decreased (-5.80%), and air time increased (+5.79%) (both p < 0.001). Throughout, BWS-OS ground contact time (-7.66%) was reduced, whereas running velocity (+2.72%), air time (+4.92%), step length (+1.98%) (all p < 0.001), and step frequency (+1.05%; p < 0.01) increased. Compared with BWS-NS, BWS-OS caused an increase in running velocity (+3.33%), step length (+1.92%) (both p < 0.001), and step frequency (+1.37%; p < 0.01), whereas ground contact time was diminished (-1.97%; p < 0.001). In summary, sprinting with a body-weight supporting kite appeared to be a highly specific method to simulate an advanced performance level, indicated by higher running velocities requiring reduced ground contact times. The additional application of an overspeed condition led to a further reduction of ground contact time. Therefore, we recommend body-weight supported sprinting as an additional tool in sprint training. PMID:22744303

  5. Wireless Channel Characterization in the Airport Surface Environment

    NASA Technical Reports Server (NTRS)

    Neville, Joshua T.

    2004-01-01

    Given the anticipated increase in air traffic in the coming years, modernization of the National Airspace System (NAS) is a necessity. Part of this modernization effort will include updating current communication, navigation, and surveillance (CNS) systems to deal with the increased traffic as well as developing advanced CNS technologies for the systems. An example of such technology is the integrated CNS (ICNS) network being developed by the Advanced CNS Architecture and Systems Technology (ACAST) group for use in the airport surface environment. The ICNS network would be used to convey voice/data between users in a secure and reliable manner. The current surface system only supports voice and does so through an obsolete physical infrastructure. The old system is vulnerable to outages and costly to maintain. The proposed ICNS network will include a wireless radio link. To ensure optimal performance, a thorough and accurate characterization of the channel across which the link would operate is necessary. The channel is the path the signal takes from the transmitter to the receiver and is prone to various forms of interference. Channel characterization involves a combination of analysis, simulation, and measurement. My work this summer was divided into four tasks. The first task required compiling and reviewing reference material that dealt with the characterization and modeling of aeronautical channels. The second task involved developing a systematic approach that could be used to group airports into classes, e.g. small airfields, medium airports, large open airports, large cluttered airports, etc. The third task consisted of implementing computer simulations of existing channel models. The fourth task entailed measuring possible interference sources in the airport surface environment via a spectrum analyzer.

  6. 19 CFR 122.153 - Limitations on airport of entry or departure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Airport. Baltimore, Maryland Baltimore/Washington International Thurgood Marshall Airport. Chicago... International Airport. Houston, Texas George Bush Intercontinental Airport. Jamaica, New York John F....

  7. 19 CFR 122.153 - Limitations on airport of entry or departure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Airport. Baltimore, Maryland Baltimore/Washington International Thurgood Marshall Airport. Chicago... International Airport. Houston, Texas George Bush Intercontinental Airport. Jamaica, New York John F....

  8. Development of comprehensive remediation standards at San Francisco International Airport

    SciTech Connect

    Grosso, A.; Lawler, M.; Meek, S.; Tisoncik, D.

    1995-12-31

    An ongoing expansion at the San Francisco International Airport (Airport) will result in a 35 percent increase in both terminal square footage and passenger handling capability. Facility relocation and construction are set to begin in October, 1995. Appropriate cleanup of contaminated soil and groundwater must be completed prior to this activity. Remedial goals for this major industrial facility must be protective of both human health and the environment. A risk-based strategy for the development of recommended cleanup objectives has been developed with the support of state regulatory agencies. This strategy includes Remediation Management Zones (RMZs), distinct regions at the Airport with different remedial goals based on the associated risk to water quality, human health, and the environment. The RMZs and the final cleanup objectives for the Airport will be finalized by mid-1995, and will be used to govern future cleanup efforts at the site. This presentation will describe the history of the project, the determination of human health and ecological buffer zones, and the integration of these two concepts to produce cleanup objectives fully supported by the state regulatory authority.

  9. Airport Surface Delays and Causes: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Chin, David K.; Goldberg, Jay; Tang, Tammy

    1997-01-01

    This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/Lockheed Martin activities and findings related to airport surface delays and causes, in support of NASA Langley Research Center's Terminal Area Productivity (TAP) Program. The activities described in this report were initiated in June 1995. A preliminary report was published on September 30, 1995. The final report incorporates data collection forms filled out by traffic managers, other FAA staff, and an airline for the New York City area, some updates, data previously requested from various sources to support this analysis, and further quantification and documentation than in the preliminary report. This final report is based on data available as of April 12, 1996. This report incorporates data obtained from review and analysis of data bases and literature, discussions/interviews with engineers, air-traffic staff, other FAA technical personnel, and airline staff, site visits, and a survey on surface delays and causes. It includes analysis of delay statistics; preliminary findings and conclusions on surface movement, surface delay sources and causes, runway occupancy time (ROT), and airport characteristics impacting surface operations and delays; and site-specific data on the New York City area airports, which are the focus airports for this report.

  10. Advisory circular. Building for storage and maintenance of airport snow removal and ice control equipment: A guide

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Standards are suggested for an airport maintenance, storage, and snow removal equipment building that can protect the airport's investment in snow and ice control equipment, as well as in stored ice conrol materials, as well as support safe all-weather aircraft operations. It is advantageous to size the building to include storage for field lighting and other airport maintenance equipment, friction measuring equipment, rubber removal devices, and inspection or bird partol vehicles. Such buildings require site specific design, should be planned by an architectural and engineering firm familiar and airport needs and construction constraints.

  11. A new approach of drawing airport noise contours on computer based on Surfer.

    PubMed

    Zhang, Bang-jun; Guo, Chun-yan; Di, Guo-qing

    2004-01-01

    Noise contours are used to describe the extent of airport noise pollution and to plan land use around airports. The L(WECPN) (weighted equivalent continuous perceive noise level) recommended by ICAO(International Civil Aviation Organization) is adopted as airport noise rating parameter in this paper. With the help of various mathematical models in the software Surfer, noise contours can be drawn automatically by the completed program in Visual C++ Code. Corrections for thrust, velocity, atmospheric temperature, humidity and lateral ground attenuation are also considered in the new method, which can improve the efficiency of drawing contours. An example of its use for drawing noise contours of an airport in Zhejiang Province of China is proposed and the predictions and the measurements show agreements well. PMID:15495959

  12. Ground truth management system to support multispectral scanner /MSS/ digital analysis

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.; Ungar, S. G.

    1977-01-01

    A computerized geographic information system for management of ground truth has been designed and implemented to relate MSS classification results to in situ observations. The ground truth system transforms, generalizes and rectifies ground observations to conform to the pixel size and shape of high resolution MSS aircraft data. These observations can then be aggregated for comparison to lower resolution sensor data. Construction of a digital ground truth array allows direct pixel by pixel comparison between classification results of MSS data and ground truth. By making comparisons, analysts can identify spatial distribution of error within the MSS data as well as usual figures of merit for the classifications. Use of the ground truth system permits investigators to compare a variety of environmental or anthropogenic data, such as soil color or tillage patterns, with classification results and allows direct inclusion of such data into classification operations. To illustrate the system, examples from classification of simulated Thematic Mapper data for agricultural test sites in North Dakota and Kansas are provided.

  13. James Web Space Telescope: supporting multiple ground system transitions in one year

    NASA Astrophysics Data System (ADS)

    Detter, Ryan; Fatig, Curtis; Steck, Jane

    2004-09-01

    Ideas, requirements, and concepts developed during the very early phases of the mission design often conflict with the reality of a situation once the prime contractors are awarded. This happened for the James Webb Space Telescope (JWST) as well. The high level requirement of a common real-time ground system for both the Integration and Test (I&T), as well as the Operation phase of the mission is meant to reduce the cost and time needed later in the mission development for recertification of databases, command and control systems, scripts, display pages, etc. In the case of JWST, the early Phase A flight software development needed a real-time ground system and database prior to the spacecraft prime contractor being selected. To compound the situation, the very low level requirements for the real-time ground system were not well defined. These two situations caused the initial real-time ground system to be switched out for a system that was previously used by the flight software development team. To meet the high-level requirement, a third ground system was selected based on the prime spacecraft contractor needs and JWST Project decisions. The JWST ground system team has responded to each of these changes successfully. The lessons learned from each transition have not only made each transition smoother, but have also resolved issues earlier in the mission development than what would normally occur.

  14. James Webb Space Telescope: Supporting Multiple Ground System Transitions in One Year

    NASA Technical Reports Server (NTRS)

    Detter, Ryan; Fatig, Curtis; Steck, Jane

    2004-01-01

    Ideas, requirements, and concepts developed during the very early phases of the mission design often conflict with the reality of a situation once the prime contractors are awarded. This happened for the James Webb Space Telescope (JWST) as well. The high level requirement of a common real-time ground system for both the Integration and Test (I&T), as well as the Operation phase of the mission is meant to reduce the cost and time needed later in the mission development for re-certification of databases, command and control systems, scripts, display pages, etc. In the case of JWST, the early Phase A flight software development needed a real-time ground system and database prior to the spacecraft prime contractor being selected. To compound the situation, the very low level requirements for the real-time ground system were not well defined. These two situations caused the initial real-time ground system to be switched out for a system that was previously used by the Bight software development team. To meet the high-!evel requirement, a third ground system was selected based on the prime spacecraft contractor needs and JWST Project decisions. The JWST ground system team has responded to each of these changes successfully. The lessons learned from each transition have not only made each transition smoother, but have also resolved issues earlier in the mission development than what would normally occur.

  15. Assimilation of PFISR Data Using Support Vector Regression and Ground Based Camera Constraints

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Nicolls, M. J.; Hampton, D. L.; Michell, R.; Samara, M.; Guinther, J.

    2013-12-01

    In order to best interpret the information gained from multipoint in situ measurements, a Support Vector Regression algorithm is being developed to interpret the data collected from the instruments in the context of ground observations (such as those from camera or radar array). The idea behind SVR is to construct the simplest function that models the data with the least squared error, subject to constraints given by the user. Constraints can be brought into the algorithm from other data sources or from models. As is often the case with data, a perfect solution to such a problem may be impossible, thus 'slack' may be introduced to control how closely the model adheres to the data. The algorithm employs kernels, and chooses radial basis functions as an appropriate kernel. The current SVR code can take input data as one to three dimensional scalars or vectors, and may also include time. External data can be incorporated and assimilated into a model of the environment. Regions of minimal and maximal values are allowed to relax to the sample average (or a user-supplied model) on size and time scales determined by user input, known as feature sizes. These feature sizes can vary for each degree of freedom if the user desires. The user may also select weights for each data point, if it is desirable to weight parts of the data differently. In order to test the algorithm, Poker Flat Incoherent Scatter Radar (PFISR) and MICA sounding rocket data are being used as sample data. The PFISR data consists of many beams, each with multiple ranges. In addition to analyzing the radar data as it stands, the algorithm is being used to simulate data from a localized ionospheric swarm of Cubesats using existing PFISR data. The sample points of the radar at one altitude slice can serve as surrogates for satellites in a cubeswarm. The number of beams of the PFISR radar can then be used to see what the algorithm would output for a swarm of similar size. By using PFISR data in the 15-beam to

  16. Reliability, Maintainability, and Availability: Consideration During the Design Phase in Ground Systems to Ensure Successful Launch Support

    NASA Technical Reports Server (NTRS)

    Gillespie, Amanda M.

    2012-01-01

    The future of Space Exploration includes missions to the moon, asteroids, Mars, and beyond. To get there, the mission concept is to launch multiple launch vehicles months, even years apart. In order to achieve this, launch vehicles, payloads (satellites and crew capsules), and ground systems must be highly reliable and/or available, to include maintenance concepts and procedures in the event of a launch scrub. In order to achieve this high probability of mission success, Ground Systems Development and Operations (GSDO) has allocated Reliability, Maintainability, and Availability (RMA) requirements to all hardware and software required for both launch operations and, in the event of a launch scrub, required to support a repair of the ground systems, launch vehicle, or payload. This is done concurrently with the design process (30/60/90 reviews).

  17. Tailored fog climatology for Amsterdam Airport Schiphol

    NASA Astrophysics Data System (ADS)

    Leander, R.

    2010-07-01

    Like many airports, Amsterdam Airport Schiphol is vulnerable to climate change. The airport is situated in a complex and fragile urban area where fundamental changes take place in design and use of the region. To maintain its competitive position, the airport is beginning to respond to changes in weather and climate by formulating adaptation strategies, based on tailored climate information. The Royal Netherlands Meteorological Institute (KNMI), Amsterdam Airport Schiphol (AAS) and Air Trafic Control the Netherlands (LVNL) are working together to provide just that type of information. Due to safety regulations, reduced horizontal visibility on airports can have an immediate impact on the availability of runways and hence the airport capacity. Fog is therefore one of the most relevant meteorological phenomena to airport operations. A study has started in which the statistics of fog occurrence and visibility at Amsterdam Airport are assessed. The aim is describing the current climate (from 1970 onward) as well as making projections into the future (up to 2040). For the latter, the identification and attribution of trends is relevant. Another point of interrest is the spatial pattern of fog potential over the airport, in particular the related questions whether some runways are more prone to fog occurrence than others and whether these runways require a separate forecast. To answer these questions it is crucial to distinguish between large-scale and local influences. The preliminary results of this study are presented here.

  18. 41 CFR 102-37.530 - What are FAA's responsibilities in the donation of surplus property to public airports?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State, political subdivision of a State, or tax-supported organization for public airport use; (b... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are FAA's responsibilities in the donation of surplus property to public airports? 102-37.530 Section 102-37.530...

  19. 78 FR 48044 - Safety Zone; San Diego International Airport Terminal Two West Grand Opening Fireworks; San Diego...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; San Diego International Airport Terminal... support of a fireworks display for the Grand Opening of Lindbergh Airport Terminal Two West on August...

  20. 14 CFR 152.109 - Project eligibility: Airport planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Project eligibility: Airport planning. 152....109 Project eligibility: Airport planning. (a) Airport master planning. A proposed project for airport master planning is not approved unless— (1) The location of the existing or proposed airport is...

  1. Teaching at Logan International Airport

    ERIC Educational Resources Information Center

    Schmidt, Steffen

    2005-01-01

    Although Terminal C at Logan airport does not look like a classroom, for about fifty minutes on this author's way back from Boston it was for him. Like many public spaces, Logan now has a very robust Wi-Fi wireless network and this enabled him to take advantage of a departure delay to "teach" his class. In 1970 when the author started teaching,…

  2. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  3. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  4. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  5. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  6. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  7. 14 CFR 61.325 - How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-sport aircraft at an airport within, or in airspace within, Class B, C, and D airspace, or in... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Sport Pilots § 61.325 How do I obtain privileges to operate a light-sport aircraft at an airport within, or in airspace within, Class B, C, and...

  8. Measurements of aircraft emissions indices at airports passive remote sensing

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael

    2003-04-01

    The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.

  9. 78 FR 22024 - Request To Release Airport Property at the Oakley Municipal Airport (OEL), Oakley, Kansas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ...), Oakley, Kansas, under the provisions of 49 U.S.C. 47107(h)(2). DATES: Comments must be received on or... 2.5 acres of airport property at the Oakley Municipal Airport (OEL) under the provisions of 49...

  10. Airport noise complaint patterns and interviews of frequent complainers at two major air carrier airports

    NASA Astrophysics Data System (ADS)

    Jaggers, Nicholas; Eiff, Gary

    2005-09-01

    The complex and highly sensitive topic of aircraft noise and population annoyance continues to be a major inhibitor to airport development plans. The projected growth of air travel necessitates expanded capacity at many existing airports and the development and construction of new airports in order to accommodate burgeoning traveler needs. Concerns by citizens near major airports about their economic, health, and social welfare continue to generate community and individual declarations of annoyance and concern which threaten timely solutions to airport expansion plans. A deeper understanding of the nature of these concerns is important to more effectively cope with airport expansion concerns among adjacent communities and surrounding neighbors. This study analyzed existing noise complaints registered at Denver International Airport (DEN) and Fort Lauderdale/Hollywood International Airport (FLL) in an attempt to gain greater understanding of noise complaint drivers and public annoyance. Interviews of frequent complainers were utilized in order to gain richer data concerning individual annoyance issues.